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Abstract: Cluster analyses are often conducted with the goal to characterize an underlying probability
density, for which the data-point density serves as an estimate for this probability density. We here
test and benchmark the common nearest neighbor (CNN) cluster algorithm. This algorithm assigns a
spherical neighborhood R to each data point and estimates the data-point density between two data
points as the number of data points N in the overlapping region of their neighborhoods (step 1).
The main principle in the CNN cluster algorithm is cluster growing. This grows the clusters by
sequentially adding data points and thereby effectively positions the border of the clusters along an
iso-surface of the underlying probability density. This yields a strict partitioning with outliers, for
which the cluster represents peaks in the underlying probability density—termed core sets (step 2).
The removal of the outliers on the basis of a threshold criterion is optional (step 3). The benchmark
datasets address a series of typical challenges, including datasets with a very high dimensional state
space and datasets in which the cluster centroids are aligned along an underlying structure (Birch sets).
The performance of the CNN algorithm is evaluated with respect to these challenges. The results
indicate that the CNN cluster algorithm can be useful in a wide range of settings. Cluster algorithms
are particularly important for the analysis of molecular dynamics (MD) simulations. We demonstrate
how the CNN cluster results can be used as a discretization of the molecular state space for the
construction of a core-set model of the MD improving the accuracy compared to conventional
full-partitioning models. The software for the CNN clustering is available on GitHub.

Keywords: density-based clustering; molecular dynamics simulations; Markov state models;
core sets; milestoning

1. Introduction

A data point xi is a vector in a (high-dimensional) state space (or feature space) Ω. A dataset
S = {x1, . . . xn} is a set of n data points. The task of cluster algorithms is to partition the dataset into
meaningful subsets C1 ⊂ S, . . . Cm ⊂ S, where the subsets C1 . . . Cm are called clusters.

In many practical cases, the dataset S represents a sample of a probability density ρ : Ω→ R≥0,
and the true goal of the analysis is to characterize this density. There are several reasons why one would
take the detour via a cluster analysis of the sample rather than by analyzing the probability density
directly. For example, the probability density might not be known analytically, or the state space
Ω might be too high dimensional to allow for an analytical or numerical analysis of the probability
density. If the goal is to characterize a probability density, then the clusters are often interpreted
as discretizations of the state space Ω, where we denote the state associated to cluster Ci by C̄i,
with C̄i ⊂ Ω.

Cluster algorithms can be classified according to a wide range of categories. A very basic
categorization is according to whether or not the cluster algorithm enforces a one-to-one mapping of
each data point to a specific cluster [1]. In strict partitioning clustering, each data point is assigned to
exactly one cluster. By contrast, in overlapping clustering, each data point belongs to one or more
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clusters. Finally, in strict partitioning clustering with outliers, any given data point can either belong to
exactly one cluster or to no cluster at all. The data points that are not assigned to a cluster are
called outliers. Strict partitioning clustering yields a discretization of the state space into crisp,
non-overlapping states

⋃n
i=1 C̄i = Ω, and C̄i ∩ C̄j = ∅ for all i 6= j (Figure 1c). By contrast, strict

partitioning clustering with outliers yields a discretization that does not fully partition the state space⋃n
i=1 C̄i ⊂ Ω, and C̄i ∩ C̄j = ∅ for all i 6= j. That is, there is a region I = Ω\⋃n

i=1 C̄i that is not covered
by the cluster states. This is the region in which the outliers are located (Figure 1d).
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Figure 1. (a) Potential energy surface (PES) spanned by two coordinates x1 and x2; (b) trajectories
within the PES (projection onto x1 and x2); (c) Boltzmann distribution of the PES divided into three
states; (d) core sets (blue) within the Boltzmann distribution; all non-assigned data points are outside
the core sets.

An alternative way to categorize cluster algorithms is according to the criterion the algorithms
uses to assign a data point xi to a cluster [1]. Many commonly used cluster algorithms assign an
objective function or a cost function to each possible partitioning of the dataset and aim to optimize the
objective function by modifying the partitioning. For example, k-means clustering aims to minimize
the sum of the squared deviations of the cluster members to the cluster center. Because their objective
function is based on the relation of each single data point to the cluster center, these algorithms tend to
yield spherically shaped clusters. However, shapes in a dataset that we intuitively recognize as clusters
are in fact defined by a sudden change in the data-point density at the rims of the cluster, rather than
by how distant its members are to the cluster center. This can for example be seen in the t4.8k [2] and
Flame datasets [3] (Figure 2). Thus, cluster algorithms that are based on such distance-based objective
functions are poorly suited to identify clusters with complex shapes or to characterize an underlying
probability density [4]. Unfortunately, measuring the data-point density, that is, the number of data
points per volume element, is often not possible, because calculating the volume of a state with
irregular borders in a high-dimensional and sometimes non-linear state space is extremely difficult.
Density-based clustering algorithms [4–10] circumvent this problem by using the number of data
points in the neighborhood of a data point xi as a proxy for the data-point density. As a consequence,
the objective function of these algorithms is often only given implicitly [11].
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Figure 2. Performance of the common nearest neighbor (CNN) algorithm on a variety of different
two-dimensional (2D) datasets; the parameter sets are presented in Table 1; non-assigned data points
(noise) are highlighted in light gray; if accessible, the true centroids are highlighted blue. A For the
Birch3 dataset, a three-step hierarchical clustering approach was applied. The original clusters after the
first step are highlighted in light red and light blue.

Table 1. Properties of the benchmark datasets: n: dataset size; d: dimensionality; kR: reference
number of clusters. Parameters for the common nearest neighbor (CNN) algorithm: R and N:
cluster parameter set; M: minimal cluster size. Parameter for the Density based spatial clustering of
applications with noise DBSCAN algorithm: Eps: cutoff distance; MP: minimum number of neighbors;
M: minimal cluster size. A Hierarchical clustering was necessary. B The size was reduced from 100,000
extracting every 10th data point.

Dataset CNN Parameter DBSCAN Parameter

Name n d kR R N M Eps MP M

A sets [12]

A1 3000 2 20 1 × 103 9 10 800 9 10
A2 5200 2 35 1 × 103 9 10 800 9 10
A3 7500 2 50 1 × 103 9 10 800 9 10
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Table 1. Cont.

Dataset CNN Parameter DBSCAN Parameter

Name n d kR R N M Eps MP M

S sets [13]

S1 5000 2 15 2.5 × 104 5 10 2.0 × 104 9 10
S2 5000 2 15 2.5 × 104 17 10 2.0 × 104 9 10
S3 5000 2 15 2.5 × 104 25 10 1.7 × 104 9 10
S4 5000 2 15 2.5 × 104 30 10 1.7 × 104 9 10

Birch sets [14]

Birch1 10,000 B 2 100 2.5 × 104 23 10 1.5 × 104 9 10
Birch2 10,000 B 2 100 2.5 × 103 20 10 1.5 × 103 9 10
Birch3 A 10,000 B 2 100 3 × 104 10 10 --- --- ---
--- --- --- --- 2 × 104 10 10 --- --- ---
--- --- --- --- 1.5 × 104 10 10 1.5 × 104 9 10

Dim sets [15,16]

Dim-32 1024 32 16 10 5 10 15 9 10
Dim-64 1024 64 16 10 5 10 15 9 10
Dim-128 1024 128 16 10 5 10 15 9 10
Dim-256 1024 256 16 10 5 10 15 9 10
Dim-512 1024 512 16 10 5 10 20 9 10
Dim-1024 1024 1024 16 10 5 10 20 9 10

Unbalance [17]

Unbalance 6500 2 8 1 × 104 5 10 6 × 103 9 10

Shape sets

Aggregation [18] 788 2 7 2.50 17 10 --- --- ---
Compound [19] 399 2 6 2.00 15 10 --- --- ---
D31 [20] 3100 2 31 0.45 4 10 --- --- ---
Flame [3] 240 2 2 2.00 15 10 --- --- ---
Jain [21] 373 2 2 2.50 3 10 --- --- ---
Path-based [22] 300 2 3 1.40 2 5 1.4 2 5
R15 [20] 600 2 15 0.60 9 10 --- --- ---
Spiral [22] 312 2 3 3.00 3 10 --- --- ---
t4.8k [2] 8000 2 6 10.00 15 10 --- --- ---

When the goal of the cluster analysis is to characterize an underlying probability density,
one would ideally like to partition the state space along iso-density lines. We have developed the
common nearest neighbor (CNN) clustering for this purpose [4,23]. The algorithm defines a small
spherical neighborhood around each data point and approximates the data-point density between
two data points xi and xj as the number of data points within the overlapping region of the two
neighborhoods. If the data-point density in the overlap region exceeds a threshold value, the two data
points are assigned to the same cluster. Thus, CNN clustering is a density-based clustering that yields
a strict partitioning with outliers. We refer to the clusters from such a strict partitioning with outliers,
which are interpreted as designating peaks in the underlying probability density, as core sets. In [24],
the algorithm has been extended to a hierarchical cluster algorithm.

The initial purpose of the CNN algorithms was to analyze molecular dynamics (MD) simulations,
which yield a sample of a particularly high-dimensional and complicated probability distribution,
the Boltzmann distribution. The CNN algorithm successfully processes MD data without prior
dimensionality reduction of the dataset [4,24]. It also compares favorably to other density-based cluster
algorithms for the analysis of MD data [24]. The CNN algorithm has been used to characterize the
molecular ensemble as well as to discretize the molecular state space for the construction of a core-set
model of MD [24–29].
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In this contribution, we ask whether the CNN algorithm is limited to MD datasets, or whether
it can successfully cluster a diverse benchmark dataset with challenges that are unlikely to occur in
the context of MD simulations. We analyze the performance of the CNN algorithm with respect
to general properties of datasets, such as the cluster size, cluster shape or cluster overlap, in
Section 4.1. A characterization of a probability density by a partitioning into core sets {C1, C2, ...}
and an intermediate region I = Ω\⋃n

i=1 C̄i seems insufficient at first glance, because, particularly for
high-dimensional probability densities, the vast majority of the state space tends to be assigned to
the intermediate region. We demonstrate why such a partitioning is in fact often preferable to a strict
partitioning when it comes to characterizing high-dimensional probability densities in Section 4.2.
Section 2 contains a brief review of MD simulations. The CNN algorithm is explained in Section 3.1.

2. Molecular Dynamics Simulations

Molecules are not rigid entities but fluctuate between different three-dimensional shapes, called
conformations. To understand the properties and functions of complex molecules, such as, for example,
proteins, one often needs to have a detailed understanding of their conformational dynamics.

These conformational changes are difficult to characterize by experiments, but they can be
simulated by classical MD simulations [30–32]. In these simulations, a conformation is represented
by a position vector x ∈ Ω = R3N , where N is the number of atoms in the system, and each atom is
assigned a position in the three-dimensional space. The interactions between the atoms are represented
by a predefined potential energy function V : R3N → R (Figure 1a). The dynamics are generated by
assigning initial velocities to each atom and integrating Newton’s equations of motion numerically
on the potential energy surface (PES) V(x). This yields a trajectory, that is, a sequence of positional
vectors S = {x1, . . . xn}, where n is the number of time steps in the simulations. The trajectory can be
visualized as a trace in the conformational space (Figure 1b).

If the system is coupled to a heat bath by a thermostat algorithm, the trajectory represents a
sample of the Boltzmann probability density:

p(x) =
exp

(
− 1

kBT V(x)
)

∫
Ω exp

(
− 1

kBT V(x)
)

dx
(1)

where T denotes the absolute temperature, and kB is the Boltzmann constant (Figure 1c). Equation (1)
implies that regions with low energy are sampled much more frequently than regions with high
potential energy. Of particular importance are the minima in the potential energy functions, which
correspond to regions with a high data-point density that are separated from other frequently
sampled regions (other minima) by regions of significantly low data-point density (transition states).
In a simulation of the MD, a trajectory will stay for a long time within one minimum before it transitions
to another minimum. Thus, the minima do not only correspond to frequently sampled conformations
but concomitantly to long-lived conformations (metastable states).

Figure 3 shows an example: the conformations of the C-type lectin receptor Langerin. Langerin is a
mostly rigid protein (gray parts in Figure 3b), but it has a flexible short loop that assumes several
distinct conformations (colored parts in Figure 3b). For details of the simulation protocol, see [33].
Figure 3a shows a projection of the Boltzmann distribution on a two-dimensional (2D) reduced
space (obtained by principle component analysis of the trajectory). The conformations correspond
to highly populated regions in this space. Figure 3a also shows that, in this reduced space,
the conformations partially overlap. Knowing the core sets of these regions is thus much more
useful for the characterization of the conformations than knowing the exact boundaries. In this case,
the gap between the short loop and the long loop can open and close (Figure 3b), and the conformations
are distinct states along this reaction coordinate (Figure 3c). Finally, changes in the environment or
interactions with other molecules, for example, ligands, can induce shifts in the Boltzmann distribution
of a molecule, which are critical to its functions [33–35]. For the analysis of simulations and the
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elucidation of MD, it is therefore of supreme importance that we can accurately identify the regions of
high probability density (core sets).

  

b cLong Loop

Short Loop
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Figure 3. Molecular dynamics (MD) simulation trajectory of Langerin [33] (a) projected onto the first
two principle components. Each core set (highlighted in different colors) represents a minimum of the
potential energy surface spanned by the principle components and is linked to (b) a metastable state.
(The core sets were identified by common nearest neighbor clustering, where the distance metric was
the Euclidean distance in the space spanned by the first two principle components. A preprocessing of
the MD dataset by principle component analysis is however not strictly necessary [4,24]). (c) Distance
distribution of the distance Met260-Gly290 (highlighted in (b) by orange spheres).

3. Materials and Methods

3.1. Common Nearest Neighbor Algorithm

The CNN algorithm [4] is a density-based cluster algorithm that yields a strict partitioning with
outliers. CNN clustering depends on two parameters: the radius of the neighborhood R and the
number of common nearest neighbors N. R determines the neighborhood of a data point xi; that
is, all data points that are closer than this distance are the nearest neighbors of xi (Figure 4). Two
data points xi and xj are density-reachable if they share at least N nearest neighbors. This condition
serves as an approximation of the local data-point density in the region between the two data points
(Figure 4b). Data points that are density-reachable from each other always belong to the same cluster.
It is important to point out that not all nearest neighbors of xi are necessarily density-reachable from
xi. This is, for example, the case if no data points are located in the overlapping region of the two
neighborhoods (Figure 4c).

We consider a situation in which data point xj is density-reachable from xi and data point xk
is density-reachable from xi but data points xj and xk are not density-reachable from each other.
In CNN clustering, all three data points belong to the same cluster. In fact, the cluster is iteratively
extended by adding data points that are density-reachable by at least one of the current cluster members.
Thus, a given cluster member is not necessarily density-reachable from all other cluster members,
but it must be density-connected to all other cluster members. Two data points are density-connected
if they are connected via a sequence of density-reachable data points (Figure 4f). As a consequence, the
algorithm can identify clusters of arbitrary shapes and sizes.

The following is the CNN cluster algorithm:

0. Choose R and N.
1. Cluster initialization: Choose an arbitrary data point xi from the set of unclustered data points

U as the first member of the cluster C. Set xi to xcurrent (first line in Figure 4g).
2. Cluster expansion:

(a) Add any unclustered data point within 2R of xcurrent, which fulfils the density criterion
with respect to xcurrent, to the cluster C (second line in Figure 4g) and remove it from U.
Keep a list L of the newly added data points.
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(b) Choose a data point xj from L and set xj to xcurrent.
(c) Repeat steps (a) and (b) until no further data point can be added to C (third and fourth

line in Figure 4g).
(d) Save C to file and reset C to an empty list C = {}.

3. Repeat steps 1 and 2 until all data points are assigned to a cluster.

N=4

cluster 1
cluster 2
noise

a

b c

e

N=6

f

N=6

d

First Member

Iteration 1

Iteration 2

Further Iterations

Final Cluster

g

Figure 4. Clustering process using the common nearest neighbor (CNN) algorithm: (a) A dataset that
consists of two clusters and several noise points. (b–e) Depiction of the density criteria that determine
whether two data points xi and xj belong to the same cluster: (b) The first density criterion, N shared
nearest neighbors, is fulfilled. (c) The second density criterion, xi and xj are nearest neighbors with
respect to the other data point, is fulfilled. (d) Both criteria (b,c) are fulfilled at the same time. Hence, xi

and xj belong to the same cluster. (e) One criterion is fulfilled, the other is not. Hence, xi and xj do not
belong to the same cluster. (f) xa and xb fulfil no density criteria but belong to the same cluster as they
are density-connected (reproduced from Lemke, O.; Keller, B.G. “Density-based cluster algorithms for
the identification of core sets”, J. Chem. Phys. 2016, 145, 164104, with the permission of AIP Publishing).
(g) Depiction of a clustering process over several cluster expansion steps (iterations). We note that the
cluster is expanded by adding single data points to the current cluster that fulfil the density criterion
with respect to a data point within the cluster.

We note that the CNN algorithm is not an optimization algorithm; it is a cluster growing
algorithm [36]. The cluster memberships are completely defined by the parameters R and N, which stay
constant over the complete clustering. All data points that are density-connected will be assigned to one
cluster (steps 1 and 2 in the described procedure). Thus, the number of clusters is also defined by these
parameters. Additionally, the cluster result is completely independent of the choice for the initial cluster
member. The CNN algorithm merely extracts the cluster memberships from the datasets by checking
the density criterion. Starting from an initial cluster member, it grows a specific cluster by adding
members one-by-one (single-link). A data point becomes a cluster member if it is density-connected
to any of the current cluster members. Unclustered points are checked several times until the cluster
cannot be extended any further. The remaining unclustered data points belong to either another cluster
or are outliers. The cluster is thus removed from the dataset and a new cluster is initialized. That is,
the clusters are sequentially “cut out” from the dataset.

The algorithm can yield clusters with only a single member. These clusters are labeled as noise
points and are combined into a single set. Alternatively, one can assign all clusters with less than M
members to the set of noise points. The parameter M then represents the minimal cluster size, for
which the default value is M = 2.



Algorithms 2018, 11, 19 8 of 21

The parameters R and N together represent a data-point density threshold. They thus have to be
adapted to the data-point density of the dataset at hand. The neighborhood radius R is chosen to be
smaller than the position of the first peak d0 in the histogram of pairwise distances. For the benchmark
datasets, we chose R = 0.9 · d0 (see Section 4.1 and Figure 5 for more details and an illustration).
N is chosen by reclustering the dataset with different values of N and plotting the number of clusters
as a function of N. Usually one finds a plateau region in this plot, which then determines the value for
N (see [4]). Alternatively, one can analyze the distance distribution within the clusters to decide on
the value of N (see Section 4.1 and Figure 5 for more details and an illustration). At the moment,
there is no scheme to choose the parameters R and N automatically. However, following the schemes
described above, it is very easy to find a good parameter set manually. For the benchmark datasets,
the parameter M has been set to 10. For MD datasets, we find that M = 0.001 · n, where n is the size of
the dataset, is a useful heuristic.

Aggregation Compound Spiral

t4.8k Birch1 A1

Figure 5. Distance distribution of different datasets (left axis, black). Distance distribution of the
isolated clusters (right axis, colored according to the clusters in Figure 2). In the third row, a zoom
into the datasets of the second row is shown. The dashed line denotes the chosen cutoff distance R for
each dataset.

We note that in each cluster extraction step (steps 1 and 2), the algorithm identifies a single
cluster, which is then removed from the set of unclustered data points. There are two modifications
that decrease the run-time of the algorithm. First, the first member of each new cluster is chosen to
be the data point that has the greatest number of nearest neighbors in the set of unclustered data
points. Second, the current cluster criterion data points, which are potentially density-reachable from
a given cluster member, lie within a radius of 2R from this data point. If one additionally requires
that density-reachable data points have to be neighbors of each other (i.e., they are members of each
other’s neighbor list), the search radius reduces to R (Figure 4d), and all data points that are potentially
density-reachable from xi are members of its neighbor list.

The software for the algorithm is available on GitHub [23].
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3.2. Hierarchical Clustering

The CNN algorithm aims to define clusters along iso-surfaces of the underlying probability
density. If the dataset contains clusters with varying data-point densities, which are however well
separated from each other by regions of very low data-point density, a single parameter set (R and N) is
usually sufficient to extract all clusters in a single clustering step. For this, one chooses the parameters
such that they correspond to the low data-point density in the intervening space between the clusters,
and the CNN algorithm identifies all regions with higher density as separate clusters. In some cases it
might, however, be necessary to characterize local density peaks within a single cluster. Achieving
this with only a single set of parameters is often not possible, because the data-point density between
two local peaks is often higher than the data-point density in some of the other clusters in the dataset.
Such a situation is shown for the dataset of the simulation of Langerin (Figure 6a). The region between
clusters 1 and 2 has a higher data-point density than clusters 3 and 4. Yet, one would not like to
categorize clusters 3 and 4 as noise points because they represent distinct states (Figure 3), which
might be relevant to the function of the molecule. The solution is to apply a hierarchical approach [24].
First, the dataset (Figure 6c) is partitioned into clusters 3 and 4 and a large cluster that combines
clusters 1 and 2 (Figure 6d) using a set of clustering parameters, which represents a very low data-point
density, that is, either large R or small N. The large cluster is then partitioned into clusters 1 and 2 by
clustering with a parameter set that represents a higher data-point density (Figure 6e), decreasing R
and/or increasing N. Reclustering clusters 3 and 4 with these “harsher” parameters partitions these
clusters into only noise points, which shows that these clusters do not exhibit any local structure.
The procedure can be repeated iteratively until no further substructures can be identified.

  

b ca

f e d

1

2

3
4

1

2

3
4

Figure 6. Hierarchical clustering: (a) the density of a molecular dynamics simulation trajectory
projected onto two meaningful coordinates; (b) the dataset of the trajectory; (c) a reduced dataset (red)
for the clustering; (d) outcome of the first clustering step; (e) outcome of the second clustering step;
(f) final core sets. A direct step from (b–f) is not possible because of the dataset size. A direct step from
(c–e) is not possible because of the high difference in the cluster density.

3.3. Dataset Reduction

For large datasets, the most computationally expensive step in the CNN clustering is the
calculation of the pairwise distances (O(N2) complexity). The true clustering step scales much faster,
and its computational costs are typically negligible compared to the construction of the distance matrix
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(see Section 4.3). This is particularly true for datasets from simulations, because (i) the state space is
high dimensional, and (ii) each distance calculation is preceded by a rotational and translational
alignment of the two conformations. Thus, in practice, the full dataset (Figure 6b) is reduced by,
for example, extracting every nth data point from the full dataset (Figure 6c). The clustering is then
carried out on the reduced dataset (Figure 6d–e). In the final step, the full dataset is mapped onto the
clusters using, for each cluster, the parameter set that was used for its isolation (Figure 6f).

3.4. Centroid Index at Cluster Level

In benchmark sets for which a set of reference centroids was given {r1, r2, ...rm}, we used the
centroid index at cluster level (CI) [37] to estimate the quality of the CNN cluster results. For each CNN
cluster Ci, we calculated a centroid as the arithmetic mean ci over all cluster members and obtained
a set of cluster centroids {c1, c2, ...cn}. We note that m 6= n if the CNN cluster algorithm identified a
different number of clusters than the reference partition contained. The CI maps each ci onto its closest
reference centroid and counts the number of reference orphans, that is, reference centroids to which no
cluster centroid was mapped. The reverse CI maps each ri onto its closest cluster centroid and counts
the number of cluster orphans, that is, cluster centroids to which no reference centroid was mapped.
In Table 1, we report the maximum of these two numbers.

3.5. Markov Chain Monte Carlo Sampling

We used the Markov chain Monte Carlo (MCMC) algorithm [38] to generate pseudo-dynamics in
the potential energy function:

V(x, y) = A ·
3

∏
i=1

(
(aixx− bix)

2 + (aiyy− biy)
2 + Bi

)
(2)

with A = 10−9. All other parameters are shown in Table 2 and the potential energy function is depicted
in Figure 1a.

Table 2. Parameters used for the construction of a generated potential energy surface as shown in
Figure 1a.

i aix bix aiy biy Bi

1 0.8 −45 0.9 40 10
2 0.8 0 0.9 −65 0
3 0.8 45 0.9 55 10

In MCMC sampling, a random position xtrial , ytrial is drawn from a normal distribution
N ((xn, yn), σ = 40) centered at the current position (xn, yn). The new position is accepted with a
probability of pacc. By setting

pacc = min{1, e−β(V(xtrial ,ytrial)−V(xn ,yn))} (3)

the resulting dataset represents a sample of the Boltzmann distribution. The starting point was set to
xinit = yinit = 0, and β = (kbT)−1 = 0.05, where T denotes the absolute temperature and kb denotes
the Boltzmann constant. The sampling was performed over 2× 105 iterations.

4. Results

4.1. Benchmark

The CNN algorithm was evaluated using different 2D datasets, which showed regions of different
data-point density (Table 1). These datasets were chosen to cover several typical challenges for cluster
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algorithms: the dataset containing clusters in a variety of sizes and shapes (shape sets); the centroids of
the clusters being aligned along a specific pattern (Birch sets); the number of clusters varying between
different datasets (A sets); the dataset containing overlapping clusters (S sets). The datasets were
obtained from [39]. The clustering results are presented in Figure 2 and Table 3. The parameters are
recorded in Table 1. The cluster parameters were determined by the following procedure: we plotted
the histogram of the pairwise distances in the dataset and chose R to be smaller than the distance
for which the first maximum in the histogram appeared (Figure 5). The first peak in this histogram
often represents the average distance between data points within a cluster. With a larger value of R,
the neighborhood of a data point is so large that the boundary between the cluster and noise region
is often not accurately resolved. A second advantage of a small value for R is that the neighbor lists
are short, which keeps the run-time of the CNN algorithm small. Once R was set, the neighborhood
parameter N was varied from small to large values, and the best clustering results from this scan are
reported in Figure 2 and Table 1. This procedure is possible because the CNN clustering is, as far as
the distances are calculated once, computationally inexpensive. The choice of the cluster parameters
can in principle be automized by numerically identifying the peak in the histogram of the pairwise
distances to determine R and by numerically identifying the plateau region in the number of clusters
during the scan of the neighborhood parameter N. However, this has not been implemented yet
because the procedure can be carried out manually very quickly. For all datasets, which could be
resolved with a single parameter set, the hierarchical variant of the algorithm was not applied, as every
single step involved the definition of a new parameter set.

Table 3. Clustering results for different datasets. The left part shows the number of isolated clusters
kC for the common nearest neighbor (CNN) and the DBSCAN algorithm (compared to the reference
number of cluster kR) as well as the percentage of data points declared as noise. The right part shows
the centroid index at cluster level (CI) [37] using the CNN algorithm, the DBSCAN-algorithm and the
kMeans(++) algorithm (kM(++)) [40] as implemented in pyEMMA [41]. The CI values are compared
to reference values provided by the authors of [39] for the kMeans algorithm [42] using a random
initialization (kM) and using a further point heuristic (Max) [43] initialization. The reference data were
averaged over 5,000 runs. A Hierarchical clustering was necessary. B After the last clustering step.

Dataset CNN DBSCAN CI

Name kR kC Noise kC Noise CNN DBSCAN kM(++) kM [39] kM (Max) [39]

A sets [12]

A1 20 20 22% 19 19% 0 1 1 2.5 1.0
A2 35 35 22% 34 18% 0 1 1 4.5 2.6
A3 50 50 22% 50 18% 0 1 2 6.6 2.9

S sets [13]

S1 15 15 4% 16 6% 0 1 0 1.8 0.7
S2 15 15 28% 14 12% 0 2 1 1.4 1.0
S3 15 16 46% 15 20% 1 5 0 1.3 0.7
S4 15 16 48% 12 14% 1 4 1 0.9 1.0

Birch sets [14]

Birch1 100 100 34% 95 14% 0 9 4 6.6 5.5
Birch2 100 100 9% 100 3% 0 0 0 16.6 7.3
Birch3 A 100 21 2%

35 11%
42 32% 41 6% 58 B 59 16 --- ---

Dim sets [15,16]

Dim-32 16 16 50% 16 29% 0 0 0 3.6 0.0
Dim-64 16 16 47% 16 27% 0 0 0 3.7 ---
Dim-128 16 16 51% 16 32% 0 0 0 3.8 ---
Dim-256 16 16 60% 16 34% 0 0 0 3.9 ---
Dim-512 16 15 71% 16 25% 1 0 0 4.1 ---
Dim-1024 16 16 78% 16 26% 0 0 0 3.8 ---
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Table 3. Cont.

Dataset CNN DBSCAN CI

Name kR kC Noise kC Noise CNN DBSCAN kM(++) kM [39] kM (Max) [39]

Unbalance [17]

Unbalance 8 8 1 % 8 4 % 0 0 0 3.6 0.9

Shape sets

Aggregation [18] 7 7 9% --- --- % --- --- --- --- ---
Compound [19] 6 5 27% --- --- % --- --- --- --- ---
D31 [20] 31 31 17% --- --- % --- --- --- --- ---
Flame [3] 2 2 15% --- --- % --- --- --- --- ---
Jain [21] 2 3 1% --- --- % --- --- --- --- ---
Path-based [22] 3 13 3% 13 3% --- --- --- --- ---
R15 [20] 15 15 5% --- --- % --- --- --- --- ---
Spiral [22] 3 3 0% --- --- % --- --- --- --- ---
t4.8k [2] 6 6 13% --- --- % --- --- --- --- ---

To determine the quality of the clustering, we visually inspected the results (Figure 2).
Additionally, we used the CI [37]. This measure maps the original centroids of the dataset (if available)
to the centroids obtained by the clustering algorithm and counts mismatches. A perfect clustering has
a CI of zero. As a third criterion, we analyzed the distribution of pairwise distances within each cluster
(Figure 5). For datasets without any nested clusters, the distance distribution within each cluster
should show a single maximum. Otherwise, the cluster can be split into two separate clusters. This is
even true for datasets with convex but well-separated clusters; see, for example, datasets Compound [19]
and Spiral [22]. However, if the dataset contains convex clusters that are nested at a very small distance,
the rule does not apply. This is shown for the dataset t4.8k [2].

CNN clustering correctly partitioned the vast majority of the benchmark datasets (Figure 2
and Table 3). To obtain a deeper insight into the performance of the CNN algorithm as well as the
dependency on the choice of parameters, we analyzed the clustering results with respect to five
main challenges of typical datasets: (1) differences in cluster size and shape; (2) number of clusters;
(3) unbalanced data-point density; (4) cluster overlap; (5) dimensionality of the dataset.

4.1.1. Cluster Size and Shape

Analyzing the cluster results of the Shape sets, we observe that CNN clustering can extract
clusters with different sizes and shapes without prior knowledge of the exact number of clusters
(see, e.g., the t4.8k [2] (shape) and the Aggregation (size) datasets [18]). Only for two datasets was
the reference solution not found. In the Jain dataset [21], the green and the blue clusters are aligned
along the same curved line and thus visually appear to be linked. However, there is a clear gap in
the data-point density between these two clusters. Thus, classifying them as two different clusters
seems to be justified. Therefore, the only Shape set that could not be clustered satisfactorily by the
CNN algorithm was the Path-based dataset [22]. The data-point densities between the two central
clusters and between the clusters and the outer ring were comparable to or even higher than the
data-point density within the outer ring. Thus, we could extract the two central clusters using a small
neighborhood distance R (i.e., targeting a high data-point density). This parameter setting split the
outer ring into seven separate clusters (M was reduced to five for this case to highlight the splitting).
Even with hierarchical clustering, the outer ring could not be separated from the noise points.

4.1.2. Number of Clusters

To investigate, the influence of varying the cluster number on the A sets was analyzed.
These datasets had the property that the smaller sets were subsets of the larger sets. Hence, only one
parameter set should have been needed to resolve all three datasets. As shown in Table 1, this was
the case for the CNN algorithm, as it could perfectly resolve all three datasets with one parameter set.
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In addition, it has to be remembered that the cluster number is not predefined and is an outcome of
the algorithm.

4.1.3. Unbalanced Data-Point Density

Differences in data-point density were analyzed by clustering the Unbalance dataset [17].
The results show that the CNN algorithm can handle datasets for which the clusters have different
data-point density. If the clusters are well separated, this is even possible with a single set of parameters
(i.e., without hierarchical clustering). However, if the clusters overlap, the CNN algorithm can fail, as
was observed for the Birch3 dataset [14]. This dataset was particularly challenging because the clusters
had vastly different data-point densities and because the overlap between the clusters in the reference
solution was so strong that no drop in the data-point density occurred. The latter problem cannot be
counteracted using the CNN algorithm, as a density drop between two clusters is essential for the
definition of clusters within CNN clustering. However, applying a hierarchical clustering approach, as
described in Section 3.2, results in a better cluster identification (compared to one-step clustering) and
can solve the first issue. We used three rounds of hierarchical clustering to highlight the optimization.
Further rounds would have yielded an even more detailed resolution of the dataset. At this point it
has to be remembered that each hierarchical step is done separately, and a parameter set has to be
selected manually for each single step.

4.1.4. Cluster Overlap

As shown in the former section, the CNN algorithm fails if overlapping clusters of different
data-point density are clustered. Therefore, it is of interest to investigate the influence of the overlap for
clusters of equal data-point density. Increasing cluster overlap was tested using the S sets [13].
The datasets with a small overlap (S1 and S2) were clustered correctly. In the datasets S3 and
S4, CNN identified 16 instead of 15 clusters, as in the reference solution. The additional cluster,
however, had a similar data-point density compared to the 15 reference clusters. From the viewpoint
of density-based clustering, there was thus no reason to declare the data points in the additional
cluster as noise. To further evaluate how the overlap influences the clustering results (depending on
the chosen parameter set), the G2 datasets [44] were also tested. The G2 datasets consisted of two
Gaussian-distributed clusters in 1–1024 dimensions. For every dimension, 10 datasets were present,
where the standard deviation differed between 10 and 100. The distance between the maxima was√

dimensionality · 100. The CNN algorithm was probed on the datasets of 2, 8 and 128 dimensions.
To gain useful information out of these 30 datasets, three parameters were recorded: The distance
cutoff R (0.9 of the position of the first maximum in the distance distribution), the minimal value of
N needed to separate the two clusters, and the maximal relative cluster size that could be obtained
with the resulting parameter set (the maximal cluster size for each cluster was 50%). The results are
summarized in Figure 7a. Figure 7a shows that with an increasing standard deviation (i.e., increasing
overlap), the chosen cut-off parameter R also increased as the maxima of the distance distribution
merged, as shown in [39]. The CNN algorithm could separate the clusters in two dimensions until a
standard deviation of 60 was reached. For higher standard deviations, no separation could be observed
using this algorithm. Additionally, with increasing overlap, the density parameter N had to also be
increased, resulting in a decrease of the maximal cluster size from 50% (σ = 10) to 10% (σ = 60).
The effects of increasing dimensionality are discussed in the next paragraph.
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a b CNN     DBSCAN       Density Peaks

Figure 7. Further evaluation of the clustering: (a) Parameters R (solid, left axis) and N (dashed,
right axis) for the clustering of the G2 datasets for 2 (blue), 8 (red) and 128 (green) dimensions.
For N the minimal value is reported for which a split of the two clusters is observed. The colored
region highlights the cluster sizes that are possible to extract. We note that beyond σ = 60 for two
dimensions and σ = 70 for eight dimensions, no split of the clusters is observed. (b) Clustering for
the Birch3 (upper) and the Path-based (lower) datasets using the common nearest neighbor (CNN), the
DBSCAN and the density peaks algorithms.

4.1.5. Dimensionality

In the previous paragraphs, it is shown that the CNN algorithm can handle 2D datasets, consisting
of clusters of different sizes, shapes and densities, quite well. However, many problems cannot be
represented as a 2D dataset and show a higher dimensionality (e.g., protein dynamics). We therefore
applied the CNN algorithm to high-dimensional datasets (Dim [16] and G2 datasets [44]). The Dim
datasets consist of 16 Gaussian functions in 32 to 1024 dimensions (Dim-32 to Dim-1024 [16]). For all
datasets, a clear separation of the Gaussians was achieved. This proves that the CNN algorithm
can also resolve higher-dimensional datasets. However, for 512 dimensions, one cluster became lost.
Additionally, the number of noise points increased with increasing dimensionality. Both observations
came into play as a result of the vastness of the high-dimensional space. However, for the G2 datasets,
the advantages of a higher dimensionality can also be observed (Figure 7a). With each additional
dimension, the distance between the maxima increased. Hence, with constant standard deviation, the
overlap decreased. As a consequence, the density parameter N could be kept small over a long range
of standard deviations, resulting in larger clusters.

4.1.6. Comparison to Other Cluster Algorithms

To evaluate the obtained results discussed in the former chapters, other cluster algorithms were
also tested. One algorithm is the kMeans(++) algorithm [40,42], as implemented in the MD analysis
package pyEMMA [41], which is often applied for the analysis of MD simulations. This algorithm
shows satisfactory partition for datasets consisting of well-separated spherical clusters such as the
Dim sets. However, the more the clusters overlap, the worse the results of the kMeans++ algorithm
become. For convex clusters (Shape sets), the algorithm fails completely. Hence, a highly increased
cluster number is needed to apply to real data, such as MD data. Additionally, the kMeans(++)
algorithm is not capable of extracting only the cores and also yields, for most cases, bad boundaries.
For further comparison, the results for other kMeans variants are also added to Table 3. The results were
taken from [39] and are therefore not further discussed. In [24], we showed that other density-based
cluster algorithms are also capable of extracting core sets in MD data. One of these algorithms is the
DBSCAN algorithm [6]. There are two main differences between CNN and DBSCAN: (1) The CNN
algorithm estimates the data-point density in the region between two data points, whereas DBSCAN
estimates the data-point density for which a single data point merges this data point with its neighbors
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independent of whether there is dip in the data-point density or not. (2) The results of DBSCAN
depend on the initialization, whereas with CNN, the cluster results depend only on the parameters
R, N, and M. For the DBSCAN algorithm, the sorted-9-dist graph as proposed by [6] was applied to
determine the cut-off parameter. To make this algorithm comparable to the CNN algorithm, a minimal
cluster size of 10 was added. The results of the DBSCAN algorithm show that using this scheme,
for most datasets, only worse results compared to the CNN algorithm were obtained. Only for the
Dim datasets [16] were better results observed. However, in [24] we showed that using a comparable
scheme for the parameter selection as presented in this paper for the CNN algorithm, better results for
the DBSCAN algorithm were observed. It has to be remembered that if the noise level of the dataset
is not known in both parameter selection schemes, at least one parameter is chosen manually by the
user. For two datasets, the CNN algorithm failed completely: the Pathbased and the Birch3 dataset.
To check if other density-based cluster algorithms could handle these datasets besides the DBSCAN
algorithm, the density peaks algorithm [9,10] was also evaluated. For the reduced Birch3 dataset, both
algorithms failed, resulting in a CI of 59 for DBSCAN and a CI of 87 for the density peaks algorithm
(δ = 105, ρ = 100; 13 clusters isolated). The Pathbased dataset could also not be resolved as a result of
the reasons explained above (DBSCAN: 13 clusters; density peaks (δ = 10; ρ = 2): three clusters, but
not perfectly resolved). The results for the two datasets are shown in Figure 7b.

4.2. Core-Set Models of Molecular Dynamics

MD simulations are not only used to sample and analyze the Boltzmann distribution, but also
to extract and analyze the slow dynamic processes of the system. The slow dynamic processes of
pseudo-dynamics (i.e., generated by a MCMC algorithm) on the PES in Figure 1 are shown in Figure 8d.
The first process l1 is the stationary process and is equal to the Boltzmann distribution. Formally, it
is associated to a time scale of infinity. The slowest dynamic process with a finite time scale is l2 and
represents the dynamic exchange between the minimum at the bottom and the two minima at the top,
that is, across the largest barrier. Its time scale is ≈70 time steps, where each iteration of the MCMC
algorithm is interpreted as a time step. The next slowest process, l3, represents the dynamic exchange
between the two minima at the top and is associated to a time scale of ≈24 time steps.

There are several methods known that can extract information from such a trajectory, such
as sequence kernels and support vector machines [45–49]. However, most of these are currently
not applied to MD data, as these data are described in terms of non-linear internal coordinates in a
high-dimensional conformational space. The most commonly used method to extract the slow dynamic
processes from a trajectory are Markov state models [50–55] (MSM). They represent a discretization of
the dynamical propagator [50,55] and are based on a discretization of the molecular state space into
crisp non-overlapping states. The dynamics are approximated as a jump process (Markov process)
between pairs of states within a time lag τ (Figure 8a), which yields a matrix of pairwise transition
probabilities, the transition matrix T(τ). The transition probabilities can be estimated from a trajectory.
The transition matrix is however only a model of the true dynamics, and the approximation error
depends sensitively on the discretization [56]. Recently, methods to discretize the dynamical propagator
with respect to arbitrary ansatz functions have emerged [29,57–60]. In core-set models [24–26,28],
the state space is discretized into core sets, which do not fully partition the state space. Associated
to each core set C̄i is a committor function qi : Ω → [0, 1], which represents the probability that
the dynamic process will reach C̄i before it reaches any of the other core sets. Thus, qi(x) = 1 if
x ∈ C̄i, qi(x) = 0 if x ∈ C̄j 6=i, and 0 < qi(x) < 1 otherwise. If the core sets represent long-lived
conformations (which usually coincide with maxima in the Boltzmann distribution), discretizing the
dynamical propagator with respect to the associated committor functions yields models with a very
small approximation error.
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The approximation error of a model is usually judged by the drift of the implied time scale tk as a
function of the time lag τ (Figure 8b,c):

tk(τ) = −
τ

ln|λk(τ)|
(4)

where τ is the time lag of the model and λk(τ) is the eigenvalue associated to the kth eigenvector of
the discretized propagator [51]. If the dynamics were fully Markovian within the chosen discretization,
the implied time scale would be constant, that is, independent of τ. However, even for models with
a discretization error, the implied time scales typically reach a plateau region for large τ. However,
large values of τ also imply a low time resolution of the model. In general, the smaller the value of
τMarkov for which the drift of the implied time scale becomes negligible, the smaller the approximation
error. At time lags shorter than this τMarkov, the implied time scales are typically underestimated.
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Figure 8. (a) Core sets of the two-dimensional (2D) potential energy surface (PES) using different
parameter sets. A smaller core set corresponds to a smaller cutoff radius. Implied time scales (colored
according to the upper right cluster in (a)) of the slower process (b) and the faster process (c). The black
dashed line denotes the convergence limit. (d) Corresponding eigenvectors to the slow processes:
Stationary distribution (left), slower process (middle), and faster process (right). The eigenvectors
describe transitions of probability density between states with different sign (highlighted by the color).

Figure 8b,c shows the implied time scale test for the slow dynamic processes l2 and l3 in the
three-well potential energy function. We used a crisp discretization (cyan lines) and two different
core-set discretizations (blue and black lines) and estimated the models from the same MCMC trajectory.
The crisp discretization was obtained by kMeans(++) clustering [40–42], where the number of clusters
was set to three (Figure 8a). The core-set discretization was obtained by CNN clustering with N = 20
and R = {3, 4}, where the smaller cutoff radius corresponded to the smaller core sets (Figure 8a).
Both core-set models yielded a much smaller discretization error than the crisp discretization. The two
core-set models had a similar discretization error. However, the model with the smaller core sets was
slightly more accurate. At a time lag of τ = 10 time steps, at the time lag at which both processes could
be resolved, the slowest implied time scale t2 was estimated to be 64 time steps and 62 time steps by
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the two core-set models, which was relatively close to the limit value of ≈70 time steps. By contrast,
the crisp discretization yields a value of 46 time steps. For the implied time scale t3, the estimates were
23 time steps and 22 time steps for the core-set model, and 18 time steps for the crisp discretization,
where the limit value was ≈24 time steps.

4.3. Run-Time Analysis

The input of the CNN algorithm is a distance matrix of the dataset. For most practical applications,
the computational cost of calculating the distance matrix from a set of data points in a often
high-dimensional feature space by far outweighs the computational cost of the clustering. This
is particularly true for MD data, for which each distance calculation is preceded by a translational and
rotational fit. The complexity of calculating the distance matrix is O(N2).

Figure 9 shows the run-time analysis of the CNN clustering, that is, the computational cost of
the clustering, excluding the cost for the calculation of the distance matrix. The run-time of the CNN
algorithm depends on the size of the neighbor lists, which in turn depends on the structure of the
dataset. We therefore tested two different datasets. The Birch2 set (blue line) showed a high number of
well-separated clusters, which resulted in a short neighbor list and thus a fast run-time. By contrast,
the sample of the 2D Boltzmann distribution (Section 4.2), called MCMC, consisted of three strongly
overlapping clusters, which yielded large neighbor lists. The full datasets consisted of 105 (Birch2)
and 2× 105 data points (MCMC) and were downsampled to test the run-time on smaller datasets. We
chose the neighborhood radii R using the procedure described in Section 3.1. The value of N was set
to 0.2% of the dataset size (e.g., N = 20 for 10,000 data points). The run-times for both systems were
far from a quadratic scaling. Datasets with 105 data points could be clustered within a few minutes
on an Intel(R) Core(TM) i5-4590 CPU with 3.30 GHz and 16 GB of RAM. We might be able to further
reduce the run-time of the algorithm by adopting a more efficient neighbor-search strategy, which has
recently been proposed in [10].

Figure 9. Run-time of the clustering step (without calculation of the distance matrix) for different
dataset sizes for the (blue) Birch2 and (green) sample of the two-dimensional Boltzmann distribution
(Section 4.2). The blue area highlights the scaling of the clustering step between linear (lower bound)
and quadratic (upper bound) behavior. The dashed lines represent 1 h, 1 min and 1 s respectively. All
calculations were performed on an Intel(R) Core(TM) i5-4590 CPU with 3.30 GHz and 16 GB of RAM.

5. Conclusions

We have previously shown that cluster algorithms that base their clustering criterion on a
distance-based objective function are poorly suited to characterize probability density, because the
distance to a centroid is not distinctive for features in the probability density [4]. By contrast, changes
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in data-point density are. Thus, density-based cluster algorithms, which aim to estimate the data-point
density, are well suited for this task. Characterizing the underlying probability density often means
finding its peaks or finding a set of data points that are representative for these peaks. Thus, one is
interested in identifying a core set. The term core set corresponds to a strict partitioning with
outliers of a sample of the underlying probability density. Algorithms that yield such a partitioning
are much more suited for the identification of core sets than cluster algorithms that yield a full
partitioning of the dataset. This is particularly true for high-dimensional datasets, for which the data
points at the rim of the peak can easily outnumber the data points within the core. We have illustrated
this for the conformations of the protein Langerin. Finally, the characterization of the underlying
probability density sometimes serves as a preliminary step for a discretization of the state space.
Using a model of the dynamics on a 2D PES as an example (Section 4.2), we have shown that a core-set
discretization yields more accurate models than a full partitioning discretization (i.e., strict partitioning
without outliers).

The CNN cluster algorithm assigns cluster membership according to an estimate of the data-point
density in between two closely spaced points (maximum distance 2R, where R is set to a small value).
In this way, it aims at cutting out clusters from the state space along iso-density lines. Hierarchical
clustering to subdivide clusters and to identify local density peaks is possible, but this was not
needed for most of the test datasets. Other density-based cluster algorithms, such as DBSCAN [6] and
the density peak algorithm [9,10], use similar strategies to extract the clusters from a dataset. For MD
datasets, the CNN algorithm and the DBSCAN algorithm yield similar results [24]. A comparison of
CNN with density peaks for MD data will be part of future work.

We have successfully applied CNN clustering to a series of test datasets, including datasets
with cluster overlap, datasets with a very high dimensional state space and datasets in which the
cluster centroids are aligned along an underlying structure (Birch sets). CNN successfully clustered
24 of 26 benchmark datasets (3 out of 24 with small deviations), when the value R was set by visual
inspection of the pairwise distance histogram and N was determined as described in Section 3.1.
Success was defined by calculating the CI and, for the 2D datasets, by visual inspection of the cluster
results. We highlighted that no problems regarding cluster size, cluster shape or cluster number were
present for the CNN algorithm. However, cluster overlap in combination with unbalanced cluster sizes
(Birch3) can challenge the algorithm, as the required drop-in data-point density vanishes. In addition
to this, we showed that an increasing overlap makes it harder to find a suitable set of parameters (G2),
as the number of parameter sets that can resolve the clusters decreases.

In conclusion, CNN clustering was originally developed for the analysis of MD data. The positive
benchmark results indicate that CNN clustering is not limited to this setting but that it is likely to
be useful for datasets from a wide range of sources. If the dataset resembles dynamic processes, we
showed that the dynamics can be described more accurately using core sets instead of a strict clustering
without outliers.
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Abbreviations

The following abbreviations are used in this manuscript:

CI Centroid Index at Cluster Level
CNN Common nearest neighbor
DBSCAN Density-Based Spatial Clustering of Applications with Noise
kM kMeans algorithm
Max Further point heuristic
MCMC Markov chain Monte Carlo
MD Molecular dynamics
MSM Markov state model
PCA Principle component analysis
PES Potential energy surface
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