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Germany, 2 Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France,
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Abstract

Background

Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable,

but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are

driven by molecular and immune events, and thus we hypothesized that they convey rele-

vant information for decision making.

Patients and methods

We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2

close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth

before, under and after BRAFi. All metastases (mets) were individually measured at each

CT-scan. From these measurements, different measures of growth kinetics of each met and

total tumor volume were computed at different time points. A historical cohort permitted to

build a reference model for the expected spontaneous disease kinetics without BRAFi. All

variables were included in Cox and multistate regression models for survival, to select best

candidates for predicting overall survival.

Results

Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow

growing mets in a same patient) were pejorative markers. At the first assessment after

BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added inde-

pendent information over RECIST progression in multivariate analysis. Metastatic growth
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rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but

they were often more heterogeneous than before.

Conclusions

Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides

information for predictive mathematical modelling. Disease kinetics deserves more interest

Introduction

The course of a metastatic melanoma (MM) is currently unpredictable since aggressiveness

depends on a network of variables related to tumour and host reaction [1, 2]. B-RAF inhibitors

(BRAFi), and MEKi, have led to a major improvement on survival in B-RAF mutated patients

[3–7]. However, resistance mechanisms are mostly unpredictable [8–10] and heterogeneity of

resistance mechanisms within the same individual [11–14] makes the monitoring difficult,

even if liquid biopsies are under development [15]. In addition, resistance may not only be due

to molecular events and immune changes may interfere [16].

Growth kinetics, measuring the change in tumor load over time, may be one of the best

ways to characterize disease scenarios for therapeutic trials [17]. In a historical cohort of MM

patients treated before the era of new treatments, we have shown that initial kinetics of metas-

tases (mets) measured by 2 successive CT-scans is highly predictive for survival [18]. It has

also been shown that the homogeneity of response under BRAFi had a prognostic impact on

survival [19].

We hypothesized that kinetics of changes in tumor load before and under BRAFi was per se
reflecting molecular, genetic, and immune mechanisms driving the disease, and could be eas-

ier to monitor than a huge number of biomarkers.

Our objective was to show that monitoring of metastatic disease kinetics under targeted

therapy is a source of relevant predictive information, which mathematical modelling could

use to anticipate events for decision-making.

Materials and methods

Study populations

BRAFi treated population. To have the simplest approach for modelling, we retrospec-

tively selected from the cohort of MM patients treated in our department (Dermatology and

skin cancer department, La Timone Hospital Marseille, France), a series of patients with the

following inclusion criteria: stage IIIC or IV AJCC [20], BRAF V600E/K mutation, treatment

with BRAFi monotherapy only, and at least two whole-body CT-scans available before BRAFi

treatment and at least one CT-scan after BRAFi treatment, all performed on the same machine

(in one of the radiology department of our institution), with the same procedure, at most three

months apart. Data collection was performed between June 2014 and April 2015.

Historical cohort. To estimate the natural kinetics of the metastatic disease, we used a his-

torical cohort of patients who never received any treatment with a demonstrated impact on

survival [18] retrospectively selected with the following inclusion criteria: stage IV MM

patients treated in our Institution between September 2007 and October 2011 who had two

total body computed tomography (CT) scans on the same machine with the same procedure

within a maximum of 4 months period after first distant metastases diagnosis, and who
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meanwhile received either no treatment or only monochemotherapy with dacarbazine or fote-

mustine or vaccines. Data collection was performed between June and September 2012.

Assessment of metastatic volumes and kinetics

Volumes of mets were computed using the two native axial measurements and the third mea-

surement from a coronal reconstruction (General Electric Medical Systems, Advantage Work-

station 4�4), and assuming an ellipsoidal shape. Each met of which any diameter exceeded 1cm

at some time during the follow-up was measured (Fig 1) in all patients at all CT-scans along

the follow-up. In this pilot study, measurements were manual and required many hours per

patient, which led to limit the sample of patients.

Different variables characterizing metastatic growth kinetics were computed and tested as

prognostic markers for survival. Growth kinetics were evaluated as exponential growth rate,

linear slope, and relative volume change (RVC). As a measure of the overall kinetic tendency

in an individual, kinetics of the total tumor volume and mean kinetics of all mets were calcu-

lated. In addition, range and standard deviation of individual metastatic growth kinetics were

computed as a measure of homogeneity vs heterogeneity of kinetics between different mets of

a given individual. Tumor size-based kinetic indices were computed before and after start of

BRAFi therapy (Table 1).

All kinetic measures were computed both on the global volume and as a mean measure on

the individual metastases. Spread of kinetics was evaluated as standard deviation and range of

measures computed on the individual metastases, thus representing a measure of inter-metas-

tasis heterogeneity.

Fig 1. Example plots of metastases volume assessment along the course of the disease in 6 patients.

https://doi.org/10.1371/journal.pone.0176080.g001
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Modelling the natural spontaneous course of the disease

We used the historical cohort to predict, from initial kinetics, what would have been the natu-

ral course of the metastatic disease. An exponential model based on pre-treatment tumor vol-

umes was used to calculate a theoretical total metastatic volume at a time t after first kinetics

measure: VðtÞ ¼ VBLexpðaGlobal
Exp tÞ. We assumed that a patient would die when V(t) reached a

critical metastatic burden Vlethal, the most realistic value of which was computed from the his-

torical cohort. The best variable to predict spontaneous survival was found to be the inverse of

the time to reach the critical metastatic burden
aGlobal

Exp
logðVlethalÞ� logðVBLÞ

, thereafter called “lethal burden

risk score”. More complex tumor growth models were not considered because the risk score

had to be derived from only two volume measurements per patient.

Assessing the predictive value of kinetics indices

Kinetics variables were included in multivariate models with best recognized pejorative predic-

tive markers in patients treated by BRAFi, i.e. RECIST (Response Evaluation Criteria In Solid

Tumors version 1.1) progression [21] appearance of new mets under BRAFi, and mixed vs uni-

form initial response [19]. Since RECIST evaluation was not always available, the baseline

lesions with largest volumes were considered as theoretical RECIST targets, up to a maximum

of five in total and two per organ. A doubling of any non-target lesion volume was considered

an unequivocal progression.

Statistical analyses

Overall survival from start of BRAFi therapy was taken as the clinical endpoint. Patient sur-

vival was censored on 16/02/2015 and left-truncated at the time where inclusion criteria were

met, i.e. at the first evaluation after start of BRAFi. Impact of covariates available at entering

the group at-risk on patient survival was evaluated in Cox proportional hazards (PH) models.

To assess whether the tested kinetic indices are independent prognostic markers with respect

Table 1. Tumor size-related measures used in the regression models.

Measure Timeline Variable Formula / symbols

Tumor burden BL Global volume VBL

Number of metastases

Kinetics BL V1 = VBBL Exponential growth rate (global / mean) aExp ¼
logðV2Þ� logðV1Þ

Dt

V2 = VBL

and Linear slope (global / mean) aLin ¼
V2 � V1

Dt

IR V1 = VBL Relative volume change (global / mean) RVC ¼ V2 � V1

V1

V2 = VIR

BL Lethal burden risk score LB ¼
aGlobal

Exp

logðVlethalÞ� logðVBLÞ

Spread of kinetics BL / IR Exponential growth rate (SD / range)

Linear slope (SD / range)

Relative volume change (SD / range)

Change in kinetics From BL to IR Change in exponential growth rate (global / mean)

Change in linear slope (global / mean)

Abbreviations: BL = baseline, observation prior to BRAFi; BBL = before baseline, observation prior to baseline observation; IR = initial response, first

observation after baseline; SD = standard deviation.

https://doi.org/10.1371/journal.pone.0176080.t001
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to the above-mentioned other clinical criteria, they were also evaluated together in multiple

explanatory covariate Cox PH models. Furthermore, to account for the appearance of brain

metastases and change in RECIST status, multistate models with transition-specific covariates

were used [22].

All regression analyses were carried out in R software version 3�1�3 [23] using packages

“survival” for Cox and multistate regression [24, 25], and “mstate” for multistate modelling

pre and postprocessing [26–28]. Continuous covariates ranging over several orders of magni-

tude were log-transformed prior to inclusion. The adequacy of functional form of a covariate

was evaluated graphically via martingale residuals vs. covariate plots [29]. Likelihood ratios

tests were used for model selection, and p-values below 0.05 were considered to be statistically

significant.

A survival tree was generated using the “rpart” R package version 4�1–9 with default options

[30]. In the algorithm, a two-step procedure is used: in the first step, a tree is built up by recur-

sively partitioning patients into binary subgroups, maximizing the relative risk at each node.

Then, to avoid overfitting, the tree is pruned back using a cross-validation criterion, a method

that mimics prediction of a future patient not used in building the model. The local full likeli-

hood model allows to deal with censored observation times [31].

Results

Study populations

BRAFi-treated population. 37 patients fulfilled the inclusion criteria. 27 were treated by

vemurafenib only, 5 by dabrafenib and 5 successively by vemurafenib and dabrafenib. Popula-

tion characteristics were as follows: 20 m/17 f, median age 54 (range 20–84 years), AJCC III C

in 1 patient, IV M1a in 3 patients, IV M1b in 11 patients and IV M1C in 22 patients. At the

end of follow-up, 12 patients were alive on BRAFi, 4 alive with another treatment after BRAFi,

7 died after BRAFi discontinuation, and 14 died during BRAFi therapy.

Historical cohort. 109 patients of the historical cohort fulfilled the inclusion criteria. Pop-

ulation characteristics are described elsewhere [18] but were similar as in the BRAFi-treated

population. In the above-mentioned “lethal burden risk score”, the optimal critical value

Vlethal = 1200 cm3 was determined from the historical cohort.

Cox regression

A high “lethal burden risk score”, which was the most significant predictors of overall survival

(OS) in the historical cohort (p<0�0001) was shown to be also predictor of a poor prognosis in

the BRAFi cohort, although less strongly associated (p = 0�04), confirming that initial kinetics

before BRAFi is influencing survival under BRAFi. However, the hazard ratio (HR) of a unit

increase in risk score tends to belower in the BRAFi cohort, than in the historical cohort with

no active treatment: HR = 1�6 (95% CI 1�0–2�3) vs 2�5 (95% CI 1�9–3�4, respectively (p = 0�07

in a test for same HR in both cohorts).

Heterogeneity of initial kinetics expressed as range of RVC before BRAFi, as well as hetero-

geneity of kinetics in response to BRAFi were significantly predicting poor survival (p = 0�02,

and p = 0�005, respectively). Standard deviations were not considered further to describe het-

erogeneity, due to the high correlation with range of RVC.

As expected, RECIST progressive disease (PD), appearance of new lesions, and a “mixed

response” [19] at 1st disease assessment after BRAFi were significantly associated with a poorer

outcome (RECIST PD p = 0�004, new lesions p = 0�01, mixed response p = 0�005). Since these

three criteria were highly correlated, only RECIST PD, the most significant variable, was

retained for further evaluation.
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All predictors retained in single explanatory covariate Cox regression, namely “lethal bur-

den risk score”, range of RVC at baseline, and range of RVC at initial response were tested

together with RECIST at 1st treatment assessment in a multiple explanatory covariate Cox

model. Only range of RVC, hereafter referred to as “response heterogeneity” significantly con-

tributed to the predictive power of the model (p = 0�05). High response heterogeneity was a

predictor of poor outcome among RECIST progressors, but not significantly linked to survival

in RECIST responders.

Multistate modelling

To evaluate the impact of dynamic changes of the disease status likely to have an impact on

survival, two multistate models were considered, one for brain mets and one for RECIST pro-

gression (see Fig 2). Brain-metastatic status was defined by presence or absence of brain mets

and by distinguishing the cause of death (linked to or independent from brain mets). Both

RECIST PD at 1st assessment and response heterogeneity were associated to the risk of dying

for other reasons than brain mets, but not to the risk of developing brain mets, or the risk of

dying from brain mets.

Compared to the standard Cox model, the level of significance of “response heterogeneity”

increased both independently of RECIST PD at 1st assessment (p = 0�001 in multistate vs
p = 0�005 in Cox model) and also when considering RECIST PD and response heterogeneity

jointly (p = 0�03 in multistate vs p = 0�05 in Cox model). A proportional baseline hazard

assumption for the different causes of death was tested but not supported by the data [26].

We tested whether response heterogeneity could be also prognostic at a RECIST PD occur-

ring later in the course of the diseases. Considering a multistate model for RECIST progres-

sion, response heterogeneity was shown to be a prognostic marker for survival from RECIST

Fig 2. Graphical representation of the developed multistate models. hx: Transition hazards. Asterisks (*) indicate transitions

on which covariates are modelled.

https://doi.org/10.1371/journal.pone.0176080.g002
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PD (p = 0�02), but no link was found between time to RECIST PD and survival from RECIST

PD.

Comparing metastatic kinetics after BRAFi with pre-treatment kinetics

In the 11 patients with CT-scans performed after BRAFi discontinuation, empirical exponen-

tial growth rates computed from two volume measurements just before treatment start and

two measurements just after treatment were compared to assess the impact of BRAFi on meta-

static growth kinetics. Exponential rates of global burden and mean exponential rates were

decreased in 9 and 7 patients, stable in 0 and 2, increased in 2 and 2, respectively. Heterogene-

ity of kinetics between the different mets of a given individual (range of individual growth

rates for each met), was decreased in 5 patients, stable in 2, but increased in 5.

Discussion

Although manual measurement is extremely time-consuming until automatic measures are

developed, this study is the proof of concept that a mathematical modelling using kinetics data

could be helpful in predicting disease course under BRAFi. Several variables seem important:

those characterizing initial kinetics, but more importantly those characterizing chaos in kinet-

ics either before BRAFi or at 1st assessment under BRAFi.

Initial kinetics of MM disease are known to be a good reflect of tumor aggressiveness [18],

which can be measured by 2 CT-scans at least 1 month interval before treatment. Ethical

considerations about potential loss of time during this interval are not a real issue since

usual delay before treatment (eg, validation of mutational status, surgery, pretreatment

assessment. . .) is often longer than a month. A variable like “Lethal burden risk score” repre-

senting the predicted spontaneous survival according to initial kinetics, confirms that a high

initial kinetics is associated with poor prognosis even in patients treated by BRAFi. This score

however shows a trend for a lower impact on the outcome in BRAFi treated patients than in

the patients of the historical cohort, suggesting that BRAFi can change the natural history of

the disease. It should be noticed that due to the limited cohort size no distinction was made

between the two different BRAFi molecules which seem to have similar response profile and

response rate.

This study underlines the major prognostic role of heterogeneity of the kinetics as expressed

by range of RVC or other similar variables. It is true for heterogeneity of initial kinetics, which

may reflect the diversity of molecular pathways at work before treatment, thus increasing the

probability of primary resistance in some mets. It is also true for heterogeneity of kinetics at 1st

response under BRAFi, which may reflect the diversity of secondary resistance mechanisms in

different mets. This evaluation of heterogeneity based on a comprehensive assessment of all

mets is supporting the results of a previous study measuring changes in a sample of mets show-

ing that a “mixed” initial response with BRAFi was associated to poorer outcome than a “uni-

form” response [19]. High heterogeneity in the kinetics of response under BRAFi was still able

to add an independent pejorative information to RECIST progression (Cox and multistate

models), although initial RECIST progression was one of the most powerful predictor of short

survival for any treatment of MM. Furthermore, if we focus on the prediction of survival after

RECIST progression, response heterogeneity between mets at progression was a better pejora-

tive marker than a short time to RECIST progression. Unexpectedly, deaths due to brain a

mets did not correlate with response heterogeneity perhaps because brain lesions were treated

by Gamma-knife in most of our patients.

It is a common perception among clinicians that, when a patient is escaping the B-RAF

blockade, the disease is even faster than before treatment. Although potentially biased since
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cases with early deaths did not permit post-treatment evaluation, our data are not supporting

this perception. However, they show more heterogeneity in kinetics after treatment than

before, which may be accounted by the fact that BRAFi may promote different resistance

mechanisms in the different mets. Describing the whole time course of metastatic growth

under BRAFi with a mathematical model could potentially alleviate this bias, but was beyond

the scope of this manuscript.

Monitoring of kinetics can be used as a predictor at 2 levels. As a simple clinical indicator,

it is more or less supporting the instinct of the clinician experienced with BRAFi: 1- fast meta-

static growth before treatment, especially if there is a clear disorder in growth among the dif-

ferent mets is probably not an ideal situation for BRAFi, and 2-a response to BRAFi with

contrasting kinetics in different mets should prompt clinician to switch treatment early if pos-

sible. Another level of application is to build up a real predictive model to facilitate therapeutic

decision. An example of survival tree has selected two factors (Fig 3): expected spontaneous

survival deduced from initial kinetics before BRAFi and 2) heterogeneity of kinetics at 1st

assessment of response under BRAFi expressed as range of RVC. This model requires a com-

prehensive measure of all mets. Such a model could obviously be improved if it was generated

from a larger sample of patients, and validated in another sample. This is out of reach for man-

ual measurements but automatization or computer assistance seems quite feasible.

This pilot study shows that kinetics monitoring is a useful source of information in MM

patients treated with BRAFi, which may also apply to BRAFi-MEKi combinations. Although

most of research is focusing on molecular and immunological biomarkers for the selection

and adaptation of the treatment in a given patient, mathematical modelling based on usual

imaging systems deserves more interest.

Fig 3. Regression tree for relative risk (RR) of death. Using a partitioning algorithm, 2 kinetics-related

factors were selected from the four variables considered in the multiple explanatory covariate Cox model

described in the Results. The derived classification algorithm first uses the expected survival deduced from

initial kinetics and then heterogeneity of kinetics at 1st assessment expressed as range of RVC.

https://doi.org/10.1371/journal.pone.0176080.g003
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