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We investigate the fluence-dependent dynamics of the exchange-split 5d6s valence bands 

of Gd metal after femtosecond, near-infrared (IR) laser excitation. Time- and 

angle-resolved photoelectron spectroscopy (tr-ARPES) with extreme ultraviolet (XUV) 

probe pulses is used to simultaneously map the transient binding energies of the minority 

and majority spin valence bands. The decay constant of the exchange splitting increases 

with fluence. This reflects the slower response of the occupied majority-spin component, 

which we attribute to Elliot-Yafet spin-flip scattering in accordance with the microscopic 

three-temperature model (M3TM). In contrast, the time constant of the partly unoccupied 

minority-spin band stays unaffected by a change in pump fluence. Here, we introduce as an 

alternative to superdiffusive spin transport exchange scattering, which is an ultrafast 

electronic mechanism explaining the observed dynamics. Exchange scattering can reduce 

the spin polarization in the partially unoccupied minority-spin band and thus its energetic 

position without effective demagnetization. 

 

1. Introduction 

Gadolinium is commonly regarded as a model system for the Heisenberg ferromagnet. The 

half-filled 4f shell gives rise to a large spin moment of S4f = 7 µB per atom. The direct 

exchange between the 4f electrons of neighboring atoms is negligible because of the 

localized character of the Gd 4f orbitals1). Ferromagnetic ordering is established by an 

indirect exchange (Ruderman-Kittel-Kasuya-Yosida) interaction via the hybridized, 

itinerant (5d6s)3 valence electrons. These spin-polarized valence electrons contribute an 

additional 0.63 µB per atom to the overall magnetic moment2). At 90 K, the minority and 

majority spin components of the valence band are separated by an exchange splitting of 
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about 0.9 eV 3) and exhibit a spin polarization of about 70-80% 4). We use changes in this 

splitting as a probe for the magnetization dynamics. The exact relationship between the spin 

polarization and the exchange splitting is not known for nonthermal dynamics5) and its 

behavior above the Curie temperature still remains a controversial topic4,6).  

 

The ultrafast magnetization dynamics of Gd metal have been investigated extensively in 

recent years. Results from a wide variety of experimental5-13) and theoretical14-20) approaches 

have been reported, but to date no consensus on the underlying processes has been achieved. 

Here, we will focus on the microscopic mechanisms responsible for the fluence-dependent 

dynamics of the itinerant 5d6s electrons after laser excitation, and compare our results of 

tr-ARPES with calculations obtained using a modified M3TM14). 

 

2. Experimental methods 

We performed measurements on a 10 nm-thick Gd(0001) film grown epitaxially on a 

W(110) substrate (see Refs. 7 and 21 for sample preparation details).  The experimental 

setup was based on a commercial Ti:sapphire laser that delivers 40 fs IR pump pulses at 

790 nm with a repetition rate of 10 kHz. The high-order harmonic generation of the IR 

yielded XUV probe pulses. We used the 23rd harmonic at 36 eV to probe the sample at the 

Γ-point in the fourth Brillouin zone. The photon energy was selected by a toroidal-grating 

monochromator with an energy resolution of 100 meV. The XUV pulse duration was a 

100 fs full-width at half-maximum (FWHM). The total time resolution of the measurement 

was determined by the pump pulse, stretched to 300 fs (FWHM) in order to minimize 

IR-induced space charge effects, which are prominent for the Gd(0001) surface owing to its 

low work function of 3.7 eV 22). Further details of the experimental apparatus can be found 

in Ref. 21.   

 

Figure 1 shows a typical ARPES measurement for ferromagnetic Gd recorded at 90 K. With 

increasing binding energy, we observe the surface state, the exchange-split 5d6s valence 

bands, and the 4f level. The magnetization dynamics of the surface state and the 4f levels 

have recently been reported (Refs. 5 and 9, respectively). To follow the dynamics of the 

exchange-split valence bands, we integrate a small angular slice of the photoelectron spectra 

around the Γ-point and determine the binding energies of the different states by fitting. For 

the analysis of the data obtained in pump-probe experiments, we include the position of the 

4f state to determine the Fermi energy. In this manner, we can correct for pump 
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pulse-induced space-charge effects that can lead to shifts in the spectra, since the thermal 

shift of the 4f binding energy is negligible7,23). The spectral line shapes of the states are given 

by Cauchy-Lorentz distributions with the intrinsic linewidth determined by the photohole 

lifetime. For the fit of the Gd spectrum in Fig. 1, we use 5 different Lorentzians describing 

the sharp surface-state peak (not shown), the minority (red) and majority (blue) components 

of the 5d6s valence band, and the 4f state (gray), which is represented by a combination of 

two Lorenzians. In reality, the 4f state consists of an unresolvable multiplet of 7 components, 

with a second set of components separated by the surface core level shift of about 0.48 eV 24). 

The fit by two Lorentzians is therefore only a rough approximation, which is sufficient in our 

case since we are only interested in the 4f energetic position to adjust the Fermi level.  

 

Because we have no special spin-dependent selection rules in our photoemission experiment, 

the intensities of the minority and majority valence band components are set to be the same. 

The difference in spectral width accounts for the lifetime of the photohole, which decreases 

with increasing binding energy, i.e., the different number of electrons available for filling the 

corresponding photohole. The width of the surface state at negative time delays mainly 

reflects our energy resolution of about 140 meV. Measurements with high energy resolution 

revealed an intrinsic width of only 70 meV FWHM for the surface state at 90 K 25). Such a 

width is increased during the excited phase of the electronic system as the hot electrons 

above the Fermi level decrease the lifetime of the surface state photohole. All bulk states 

contribute to a Shirley background to account for the scattering probability of the electrons 

on their way to the surface. This background is proportional to the energy-integrated peak 

intensities starting at the Fermi level. In addition to this, a linear background must be 

introduced to characterize the spectrum fully. It rises towards the Fermi level and defines the 

contribution of phonon-scattered electrons coming from other k-points, reflecting the 

increasing density of states 3,26).  

 

Finally, to obtain a complete energy distribution curve, all spectral features are cut by the 

Fermi edge and convolved with a Gaussian to account for the experimental resolution 

determined by the XUV monochromator and hemispherical analyzer21). For maximum 

objectivity and consistency, all spectra in a pump-probe dataset were fitted using the same 

starting parameter and identical boundary conditions. 
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3. Results and discussion 

Changes in the binding energies of the minority and majority spin valence bands following 

laser excitation are shown for two different pump fluences in Fig. 2. Most notably, the bands 

do not move simultaneously, as expected from static, temperature-dependent 

measurements3). Instead, we find an initial response of the minority valence band for both 

pump fluences that is too fast to be resolved by our time resolution of 0.3 ps. The response of 

the majority band, on the other hand, is delayed by about half a picosecond and exhibits 

much slower time constants that vary with the pump fluence: 0.8 ±0.1 ps and 1.4 ±0.2 ps for 

pump fluences of 3.1 and 4.6 mJ/cm2, respectively. Because of these different and 

fluence-dependent time constants, we conclude that different processes are responsible for 

the individual dynamics of the minority and majority spin bands. This is a startling result 

since they originate from the same 5d6s band. The slight delay in the majority band between 

the two fluences, as suggested by the exponential fit, is within the error bars. 

 

It is well known that the femtosecond-laser excitation of metals generates an initial 

nonequilibrium electronic state that thermalizes on the timescale of around 100 fs to produce 

a hot electron gas characterized by an electronic temperature Te 
27-30). The excited electrons 

scatter with phonons, leading to lattice heating in the first 1-2 picoseconds. Comparing these 

timescales with the observed dynamics, we attribute the fast response of the minority band to 

exchange scattering between hot electrons of opposite spins31). This process is ultrafast 

owing to the high energy of the excited electrons and establishes a defined electron 

temperature after laser excitation13). Thereby, the overall magnetization of the sample would 

not change, but the polarization of the partially occupied minority valence band can be 

reduced by spin mixing through the admission of excited majority electrons. Varying the 

fluence seems to only affect the amplitude of the minority band shift. We note that in 

addition to the discussed exchange scattering of hot electrons, the superdiffusive 

spin-dependent transport15) of hot electrons between the surface and the bulk can contribute 

to the observed ultrafast response of the minority spin band8).  

 

In contrast to the fast minority response, the slower majority correlates with lattice heating, 

which is limited to timescales set by the most energetic phonon branches of about 15 meV 32). 

It seems that this slower phononic response also affects the minority band and leads to a 

minor relaxation back towards lower binding energies. In combination, the dynamics of the 

minority and the majority spin bands reduces the exchange splitting whereby the amplitude 
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of the reduction is given by the shift of both. However, it is only the fluence dependence of 

the time constant of the fully occupied majority spin band that gives rise to the fluence 

dependence of the time constant of the exchange splitting. Fluence-dependent 

demagnetization rates were previously seen in magneto-optical Kerr effect measurements 

(MOKE) of Gd10) and Ni33,34).  For Ni, they were explained by the microscopic 

three-temperature model (M3TM)14). The M3TM is based on Elliott-Yafet phonon-magnon 

scattering and connects the lattice dynamics to the spin dynamics and thus to the 

magnetization dynamics. 

 

Figure 3 shows the magnetization dynamics as predicted by a slightly modified M3TM. 

The M3TM introduced by Koopmans et al.14) in 2010 extends the two-temperature model 

(2TM) of Anisimov et al.35) by the magnetic system using a mean-field Weiss approach and 

includes Elliott-Yafet spin-flip scattering36,37) as the microscopic origin of the 

magnetization dynamics. In our simulations, we modified the M3TM to include the laser 

excitation process, i.e., in analogy to earlier studies,38,39) a source term is added to the 

equation of the electron temperature Te. Beside this, we used the temperature dependence 

of the electronic heat capacity Ce = Ce,0 · Te, as already performed in other 2TM 

calculations30,39). This plays a significant role directly after laser excitation where Te 

reaches values of several thousand Kelvin. To simulate the effect of the substrate, which 

acts as a heat sink, we assumed a 1000- nm-thick Gd sample, where the electron 

temperature Te at its back is set to be low at all times. We further assumed that no heat 

transport through the surface (vacuum interface) occurs. In addition, the following physical 

constants were used for the simulations (in SI units): the phonon heat capacity 

Cp = 1.51 × 106 
�

���
 (Ref. [40]), the energy exchange rate between the electron and phonon 

systems g = 0.25 × 1018 
�

����
 (Ref. [30]), the Curie temperature TC = 292.5 K (Ref. 41), the 

electronic heat capacity Ce = Ce,0  Te with Ce,0 = 225
�

����
 (Ref. 30), and the 

material-specific constant R = 0.092 ps-1 (Ref. 14). Following the work of Hohlfeld et al.42) 

and Bovensiepen,30) we used an effective optical penetration depth of λ =  40 nm to account 

for ballistic electron transport. The calculations were performed with a constant electronic 

thermal conductivity, as in the case of the unmodified M3TM. To reflect the actual 

temperature dependence of the electronic thermal conductivity Ke = Ke,0 Te / Tp, we 

assumed an increased value of Ke = 110 
�

���
, which is reasonable shortly after laser 

excitation, when the electron temperature exceeds the phonon temperature significantly43). 
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The simulations in Fig. 3 show the predicted temperatures and magnetizations at the 

sample surface for the two absorbed fluences of 3.1 and 4.6 mJ/cm² used in the above 

measurements. As expected, we find that, for higher excitation densities, electron and 

phonon subsystems equilibrate at later delays. The slightly higher lattice temperature at 

delays of 2-3 ps reflects the ongoing electronic heat transport into the bulk. A single 

exponential fit to the calculated magnetization shown in Fig. 3(b) reflects the time 

constants found in the measured collapse of the exchange splitting. This corroborates that 

Elliott-Yafet scattering, which depends on electron and phonon temperatures, determines 

the response of the majority spin band and thus the exchange splitting. However, a 

quantitative comparison of the model with the experiment must be regarded with caution 

since the M3TM oversimplifies the magnetic system of Gd by choosing a mean-field Weiss 

approach. The latter does not distinguish between localized 4f and itinerant 5d6s electrons, 

which show a disparate response after laser excitation9). The initially disjoint 4f magnetic 

moments are also the reason for the observed difference in demagnetization amplitude 

between the probed 5d6s bands and the simulation results in the present study. In addition, 

dynamic parameters such as the electronic thermal conductivity are set constant in the 

simulation and important effects such as spin-orbit coupling are not included but might 

have a strong influence8). Nevertheless, the fluence dependence of the time constant that 

we find in the simulation is induced in the experiment by the majority valence band 

movement, so the Elliott-Yafet-like spin-flip scattering, which drives the dynamics of the 

M3TM, is likely the process responsible for the majority band dynamics.  

 

4. Conclusions 

This work has revealed microscopic details of the ultrafast laser-driven magnetization 

dynamics of the valence bands of ferromagnetic Gd. We have observed different 

fluence-dependent behaviors between the majority and minority spin components of the 

valence band following excitation by a 300 fs laser pulse. This provides evidence for both 

pure electronic scattering and phonon-mediated spin-flip scattering (Elliott-Yafet scattering) 

during ultrafast demagnetization. The fast response of the minority spin band is disentangled 

from the electron-phonon equilibration time, suggesting exchange scattering of hot electrons 

as the origin of its shift. The fluence dependence of the slower majority response is 

qualitatively in line with dynamics caused by an electron-phonon-mediated spin-flip 

scattering as proposed by the M3TM.  
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These results raise the question of how the observed nonequilibrium between the minority 

and majority spin bands is maintained for the first few picoseconds after excitation and how 

it is finally dissipated. 
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Figure Captions 

Fig. 1. Inset: ARPES spectrum of a 10-nm-thick ferromagnetic Gd(0001) film at 90 K. A 

selected energy distribution curve from the highlighted area ±0.15Å-1 around the Γ-point 

was fitted with the spectral components depicted below the experimental curve. Fitting 

gives the gray line that closely reproduces the experimental data. The binding energy of the 

minority and majority bands is extracted as a function of pump-probe delay to follow their 

evolution after laser excitation (see Fig. 2).  

 

Fig. 2. (a) Comparison of the Gd 5d6s valence band dynamics for absorbed pump fluences 

of 3.1 (gray squares) and 4.6 mJ/cm2 (black squares). Solid lines are single exponential fits 

that yield the displayed time constants. The top panel shows the minority component of the 

exchange-split 5d6s bands which exhibits a time constant reflecting the stretched 

pump-pulse length of 0.3 ps. The response of its majority spin counterpart, depicted in the 

bottom panel, is delayed and shows fluence-dependent time constants of 0.8 and 1.4 ps. (b) 

Dynamics of the corresponding exchange splittings. 

 

Fig. 3. Simulations with the modified M3TM for the two measured pump fluences. The 

excitation was modeled for a 300 fs, 800 nm laser pulse. (a) Electron (Te) and phonon (Tp) 

temperatures as a function of pump-probe delay. For the increased excitation density, the 

time at which the electron and lattice temperatures converge shifts to later delays. (b) 

Corresponding magnetization dynamics. The calculation shows a fluence-dependent 

demagnetization time constant, which is in line with the behavior of the exchange splitting 

induced by the majority valence band dynamics.  
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Fig. 1 (Color Online) 
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Fig. 2 (Black and white)  
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Fig. 3 (Black and white) 


