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Abstract

Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile
random access memories. Any practical implementation of such a memory cell calls for a strong
miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed
understanding of switching mechanisms and reliability is essential. For this reason, we formulate a
particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate
fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are
governed by a master equation. Upon the application of a voltage pulse, the vacancies travel
collectively through the switch. By deriving a generalized Burgers equation we can interpret this
collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define
binary logical states by means of the underlying vacancy distributions, and establish a framework of
writing and reading such memory element with voltage pulses. Considerations about the discrimin-
ability of these operations under fluctuations together with the markedness of the RS effect itselflead
to the conclusion, that an intermediate vacancy number is optimal for performance.

1. Introduction

Resistive switching (RS) refers to a change in the resistance of a dielectric due to the action of an external electric
field or an electric flux through the medium. Thereby, the resistance depends on the history of the field or flux
passing through the system, hence it can be considered as a hysteretic effect. RS has been observed in a wide
range of transition metal oxides (TMOs), such as manganites MnO(OH) [1, 2], perovskites CaTiO3 [3-5] and
titanium dioxide TiO, [6—9]. Its basic layout is a two terminal device consisting of a TMO sandwiched between
two electrodes, as sketched in figure 1. In general the strength of the effect, i.e. the ratio of the high and low
resistance, increases with smaller system sizes [7].

Recently, applications particularly in the semiconductor industry have taken up at a rapid pace. Among the
most promising candidates is resistive random access memory (ReRam). Other interesting applications are the
integration of logic in memory [10], enabling example concepts of neuromorphic computing [11, 12]. ReRam is
expected to provide highly scalable, fast, non-volatile and low cost memory [13—15]. A single such cell is toggled
in between its high- and low-resistive state by application of an external voltage or current. Typical
implementations for industrial use aim for high density and stack those elements into a 3d nanocrossbar, layered
grids of wires with RS cells in between [15—17]. However, along with high integration and miniaturization,
challenges of reliability due to sneak paths and fluctuations become ever more significant.

To address the problem of read failures and heat dissipation due to sneak paths, Linn et al [17] suggested a
complementary resistive switch (CRS). Therein, two RS elements are combined anti-serially to one memory cell.
Both its logical states have a high resistance, albeit with differing internal states of the constituent elements. Due
to the high resistance, the current and associated energy dissipation through the memory cell and the occurrence
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Figure 1. Single RS-element consisting of a TMO electrodes on a substrate material (gray), connected to an external voltage source V.
The right electrode is defined as having zero voltage. Crossing through the device is a filament of high conduction, whose behavior is

responsible for the state of the device. It is modeled as a 1d lattice with three different zones, the bulk (B) which has a small resistance

factor A; = Aj, and the interface zones to the electrodes on the left and right, which have large resistance factors A; = Ay, with

A < A;. Theindividual sites are filled with #; vacancies, that can hop to neighboring positions.

of sneak paths around it are drastically reduced. As such, the concept has been picked up by various works, see
e.g.[6, 18-22]. Conceptually, this setup is similar to having a single element with two active switching zones, one
at each electrode-TMO boundary, as it will be applied in this work.

Fluctuations can appear externally and internally. They have been studied for phenomenological memristor
models , whose resistance is determined by a single internal scalar variable, which denotes the relative sizes of a
high and low and high resistivity area. Internal fluctuations are incorporated by adding white noise to this
variable, [23, 24], with beneficial effects on the RS-effect, such as increasing the contrast between the resistive
states. External fluctuations were studied in the form of noisy impulses switching the states, and depending on
the setup can either have a positive [25, 26] or detrimental effect [24]. As yet, no study of fluctuations has been
conducted for a particle based model.

Such an approach is essential to address many characteristics of RS. From experimental observations it is
known that the functionality of a RS device is determined by the electrode-TMO interface and the distribution
of oxygen vacancies [27-29]. In this setting, a one-dimensional lattice model in which a probability distribution
of the vacancies evolves depending on the external voltage and the local resistance of each lattice site is
proportional to its density of vacancies has been proposed in [30] for manganites, termed the voltage enhanced
oxygen-vacancy migration model (VEOV-model) by the authors. The Schottky barriers are incorporated by
enhancing the vacancies effect near the interfaces compared to the bulk, resulting effectively in a two active
switching zones. Further investigation of this model showed shock-wave like behavior, [31], made plausible by
the formulation of a generalized Burgers equation for the time evolution of the vacancy distribution, which was
used to predict the commutation speed of an RS element.

Hence, our goal is to describe a CRS based on this mesoscopic model for discrete particles. We elaborate on
the requirements to implement such a device, namely as a large contrast between the resistive states, and the
reliability against fluctuations. For very small system, the fluctuations will be driven by the inherent stochasticity
in the motion of just a few oxygen vacancies. This lets us determine a lower limit for the possible level of
miniaturization and we can predict an optimal system size for the resistive switch. We proceed as follows:

In section 2 we will formulate the VEOV-model for discrete particles, i.e. the oxygen vacancies. It is governed
by a multivariate master equation with nonlinear transition rates. This allows us to consider not only the system
dynamics depending on the parameters of the external driving, but also to further examine the fluctuations,
whose magnitude is determined by the number of vacancies in the system.

Subsequently, we investigate the stochastic dynamics of the oxygen vacancies in section 3. Hereby, we pay
special attention to the hysteretic effects, which we will quantify by the area of the corresponding hysteresis
loops, and on the minimum and maximum resistances the system visits within a period of a periodic driving (see
section 3.1). Further, we introduce continuous space and derive a nonlinear continuity equation governing the
evolution of the oxygen vacancy distribution (see section 3.2). This equation can also be considered a generalized
Burgers’ equation, and hence the dynamics of the oxygen vacancies are interpreted as nonlinear traveling waves.
Also, we successfully numerically integrate said equation to compare it with the results gained in the discrete
particle picture, and show how these wave processes affect the electric properties of the device.

In section 4, we define the logical states of the a resistive switch with two active zones in terms of the
underlying particle distributions. This allows us to express the actions of the driving voltage in these terms and
develop a framework of how to write and read information in such a system (see section 4.1). The resulting read
operation is finally considered for its stability with regard to fluctuations (see section 4.2). Together with the
previous results, this leads to an estimate for the optimal particle number.

2



10P Publishing

NewJ. Phys. 19 (2017) 093007 P K Radtke et al

2. A stochastic vacancy hopping model for bipolar RS

We base our considerations on the phenomenological VEOV-model. It focuses on the oxygen vacancy defects
together with the influence of the electrode-TMO interface on bipolar switching [30]. Justified by experimental
measurements showing filamentary paths of high conductance [32], the memristor is modeled as a one-
dimensional lattice, i.e. a network of resistors in serial order.

In TMOs the oxygen vacancies affect the resistance in a complex way. On the one hand, they provide dopants
and thereby facilitate conductance [33]. On the other hand, they disrupt the TM—O-TM bonds. In order to
minimize the energetic cost of the vacancies, their place is filled by free electrons from the conduction band, that
are localized now in this place and have an energy level below the conduction band [34]. This resistance effect is
more pronounced at the boundary of the TMO, because at a metal-insulator transition the TMO is depleted of
freely moving charges, an effect that is also known as Schottky-barrier. Hence, taking electrons of the
conduction band leads to a higher impact on the local resistance here.

For our investigations, the disrupting influence of the vacancies is considered, as it occurs for example in
manganites [1, 2]. We assume that a specific lattice site i has N; vacancies, every lattice site can hold a total of Ny
vacancies (with, in general, N; < Np), and that the resistance of that each site is proportional to its density of
vacancies,

n; = N;/Np. )

The depletion zones at the electrode interface are taken into account by further multiplication with a resistivity
factor A;, where A; in the bulk is small against A; near the boundaries of the domain. As a result, the local
resistance is given by

NA

Ri = A;—, ©))

No
from which we gain the total resistance of the lattice by summation over all sites, R = >, A;N;/Ny. The
analytical form of A;is given by

Ay, ifx < xgorx > L — x,

1 x—x )\ 3
Ap + (A — A5 + Jcos Zﬂﬁ else,
— 2Xo

A(x) =

its actual course can be seen in figure 2(b), where it is indicated by the dash dotted lines, for a discrete lattice of
length L, with a length of the depletion zones x,, and with 100 sites at the positions i(x) = floor(100 - x/L).
Therein, the parameters used are k = 20, xo /L = 0.1and A;/A; = 100.

Leta configuration of lattice vacancies (N}, N, -+, N;) be denoted by V', and by { A7} the set of
configurations that arises from A/ through a single particle hopping to a neighboring site. This results in the
following master equation

LpN = 3 (Wi POV, 1) + Wik POV, 1) @)

dt NN
An external voltage at the electrodes will induce an electrical current I through the system. It can be used to
determine the voltage drop over alattice site, AV;. The oxygen vacancies are quasiparticles holding a charge of
daop> Whose diffusive motion is biased by the local voltage drop AV;. Agitated, oxygen vacancies now move with
a certain probability from one site to another, limited by the number of possible free spaces at their respective
target sites. Also, the vacancy requires an activation energy E, to leave its place in the lattice, that needs to be
weighted against its thermal energy kg6, with the temperature 6 and the Boltzmann constant kz. As a
quasiparticle holding a charge gq,,, it is agitated by the external voltage, leading to the hopping rate

. —E4 £+ AV
Wini+1 = |1 — A= exp A Aaop . (5
Ny kg0

The total rate W;_,; of a particle hop from lattice site i to jis proportional to the number of vacancies at the
starting place, W_,; = N;w,_,;. This basic setup is visualized in figure 1.

Without external voltage, the oxygen vacancies will be equidistributed. If the external voltage is changed
according to some time protocol, directed motion of the vacancies appears. We will investigate the system for a
sinusoidal voltage driving V' (¢t) = V; sin(27t/T) with amplitude V and period T, the latter setting the scale for
all system times. The voltage drop over a lattice site is proportional to its resistance, hence

AV, =V(@)R;/R = I(H)R;. (6)
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Figure 2. Simulation of stochastic RS-device with sinusoidal voltage driving. Parameters are (N;) = 102, Ny = 10*. (a) Time behavior
of the electrical quantities. (b) Occupation of the individual lattice sites at different times (indicated by the color scale). Local resistivity
A;isindicated by the red dashed—dotted line. (c) Hysteresis in the -V and (d) R—V planes, the colored circles indicate the states for the
various occupation distributions of the middle panel, the arrows show the curves’ directionality with increasing time.

Here, the electrical current I(#) is, just as the total resistance R, a non-local property that depends on the
configuration of the entire lattice.

Simulation results for this dynamics are obtained via the Gillespie algorithm [35-38], which provides a
feasible performance since it scales with the transition rates, which themselves are exponentially dependent on
the external voltage.

For convenience, we introduce reduced units in which all quantities will be given,

V=v. qdop/kBQ, R= R/R0 )
I=1-qgRo/ke6  t=1/T ®)
EA :EA/kBH, )’EZX/L (9)

Thereby Ry = 1.76 (2 follows by a resistivity weighted equidistribution of the vacancies, which is explained in
appendix B.1. Unless stated otherwise, we choose for the simulations parameters E; = 1, T = 1, V; = 500 and
Np = 10*. Henceforth, all hats are dropped.

3. General dynamics

The time evolution of a system governed by equations (2)—(6) is depicted in figure 2. The electrical current I
follows the voltage input, until at a certain threshold value above or below zero the resistance suddenly drops
significantly and the current spikes. Hereby, the course of I and R is periodic within each half-cycle of the voltage
driving, due to the symmetry of the device.

Looking at the time dependent vacancy occupation distribution figure 2(b) for the positive half-period of the
voltage driving, we see that this corresponds to vacancies moving from the left boundary region of A; to the bulk.
The form of this motion reminds us to a dispersing wave, as also noted in [31], until it reaches the bulk. From
there some vacancies finally reach the right boundary region. In the final panels the hysteresis loops in the -V
plane and a two-legged structure in the R—V plane are depicted, see [30]. It reveals that the wave reaching the
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Figure 3. Resistance minima and maxima, their respective ratio and hysteresis loops in the R—V diagram, varied over several cycles of
sinusoidal voltage driving. The area of the hysteresis loops Fp,y is normalized to thatat Vo = 500, T = 1. (a) Variation of the driving
period T'at V = 500. (b) Variation of voltage amplitude Vyat T = 1. Shared legend for (a) and (b), all parameters as in figure 2. The
right panel shows sample distributions at t = 0.01 and resistance over voltage plots for the encircled values of the plot to the left, with
curve colors matching the color of the circles.

bulk corresponds to a drop in the device resistance, and a corresponding spike in the current. As soon as the
vacancies reach the right side, the resistance increases again.

As the transport from an accumulation on the sides to the bulk differs in its dynamics from the transport
from the bulk to the side, we see the emergence of hysteresis loops in the I-V and R—V diagrams. Also we note
that the voltage drop AV; depends on both the external voltage Vand the N;-configuration of the entire lattice,
and as a consequence so does w;_,;. Hence, the distribution of the vacancies plays the role of the inherent
memory variable of this RS device, much as the boundary positions w does in the HP-memristor [7]. While a
transition of oxygen vacancies between lattice sites with different form factors A; exerts a global influence on all
reaction rates, jumps between lattice sites with the same A; only affect local rates.

We further want to investigate the system dependence on the sinusoidal driving, particularly on its period T
as well as its amplitude V. To that end we study two different quantities. Firstly the maximum and minima of
the resistance during a switching cycle, Ry, and Ryax, and their ratio R,y /Riin- Secondly, the area of the
hysteresis loops in the RV-diagram, Fy,y;.

The results are shown in figure 3. Therein we see that for very small T'the system has no time to react to the
sudden changes of the voltage. The minimum and maximum resistances do not differ and the vacancy
distribution approaches a state in which, besides fluctuation, every lattice site contributes equally to the
resistance, n; < 1/A;, R — 1.The corresponding hysteresis loops vanish. For longer periods, Ryax and Ryin
start to spread, and the area of the hysteresis loops increases. This is mainly due to the increment in Ry, when
the vacancies accumulate near the interface; however, when the wave reaches the bulk, R,,;,, reaches values
considerably lower than in the equilibrium distribution also.

The picture for the amplitudes is somewhat different. Specifically, for very small V;, the system has a high
resistance. The diffusive motion that is counteracting the external driving is dominant and pushes the vacancies
into a uniform distribution. We have (n;); = 1072, R — (n;);>"A; ~ 17.5. From a certain threshold above
Vo = 75, the resistance suddenly drops and the switching dynamics sets in, with corresponding spread in R.x
and Ry, and hysteresis loops. Now, the external driving dictates the dynamics. With increasing amplitudes V;
more vacancies can gather in the high resistance regions near the boundaries, which results in a larger maximal
resistance Ry,,«. Hence, there is a connection between amplitude and period so that the system shows
meaningful switching behavior.

For the relevant time scale, we remark that the transition rates are proportional to the activation energy,
w;_.j o< exp(—Ey), see equation (5). The larger E,4 is, the slower all reactions take place. The other element that
sets the time scale of the dynamics, is the external voltage V(#). Since we assume a periodically driven system, the
length of the period must increase exponentially to offset the delay due to an increased E4.
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1072x

Figure 4. RS dynamics with enhanced fluctuations due to decreased average vacancy number at constant (N;) /Ny = 0.01. Colored
faces are the standard deviation around the mean value, inside which one sample distribution for each (N;) is shown. Curves given at
different time points of the driving cycle, as indicated by the color scheme.

a 6 e — 30 b
H };m{\x/Rmiu | | L = \1‘ i
8 af Roo  H o F [\ 12,0
-
-Jg - H Flyst | 7> = 1718 i :U
© F
3 2 K B 110
o
- - - N -
(Ni) =6
O 5 L \\\Hu‘l L \\\HH‘O L \\\HH‘O L \\\\\\\4 | | | | | 0.0
10 10 10° 10° 10 -1.0 0.5 0.0 0.5 1.0
(N3) %

Figure 5. Effects due to enhanced stochasticity caused by different mean number of particles per lattice site (N;). (a) Resistance minima

and maxima, and hysteresis loops in the R—V diagram as in figure 3, albeit as a function of (N;). (b) Sample R-V plots for various (N;).
All parameters as in figure 2.

3.1. Effects of fluctuations

The influence of stochasticity is investigated by changing the number of vacancies per lattice sites, while keeping
the average vacancy density n; = (N;) /Np and the other parameters constant. This means, that for a reduced
total number of vacancies 3, N; each individual one bears a larger fraction of the total resistance R and hence
causes a larger change in the system properties if it hops in between lattice sites with different A;, while the
electrical quantities do not differ in principal, since only the ratio N; /Nj enters (see equations (2)—(6)). For large
vacancy numbers on the other hand, each individual vacancy barely affects the system and its dynamics will
approach the deterministic behavior described by the corresponding master’s equation equation (4). In figure 4
results for various numbers of vacancies per lattice site are depicted at different time points in the switching
cycle. Clearly, the fluctuations in the occupation distributions increase for smaller (N;).

The area of the hysteresis curves of the implicit V=R plot is depicted in figure 5 for varying average particle
numbers per lattice site (N;), together with the maxima and minima of the resistance and their respective ratio.
We see that for small (N;), the spread in between Ry, and R,,;,, monotonically increases, which also implies an
increase in the size of the corresponding hysteresis loops. Also, we see that the variation between individual
cycles are larger for small average particle numbers, which can be seen in form of the larger statistical deviations
in this case.

These observations are confirmed in the particle R—V diagram, where we indeed see that both the size of the
loops and their fluctuations are bigger for smaller (N;), whereas for many particles fluctuations barely play a role
and the results approach the values we gain by direct numerical integration of the corresponding master
equation (4). Hence, we conclude that the RS effect becomes more pronounced with increasing fluctuations. In
this sense, the results mirror investigations of the HP-memristor, where it was found that an additional noise
increases the memristive response of the system [23].

3.2. Continuum limit and Burgers-like equation for wave transit

In this part, we want to introduce a continuum limit of the master equation in a mean field approximation
(MFA). Here, only the outline of the calculations is given. A detailed derivation is shown in the appendix A. For
the time derivative of the mean occupation density at lattice site 7, see equation (1), we have

6
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d
a@li(t)) = +(niWi—1-i) — (MiWisit) + (RipWit1—i) — (Biwisio). (10)

This expression follows from the master equation (4) and is derived in the appendix. Now we decouple the two
point and higher order correlations, resulting in

(miwij) = (n;) (1 — (n;))eEa(eBV). (11)

Next, we introduce the lattice spacing e between neighboring sites and define x := ie. Formally, the continuum
limit is taken by letting the lattice spacing become infinitesimal while the number of lattice sites N runs to
infinity, in such a way that the product of both remains the constant lattice length lim, g y_—.oo ¢ N = L. The
hopping rates that formerly depended upon the density of neighboring lattice sites now depend on those at an
infinitesimal distance €, which will obviously introduce a derivative. The whole approach is quite similar to the
derivations of Burgers equations as found for molecular motors in the ASEP model [39]. From here, we will use
the rescaled length ¥ = x/L and drop the tilde.

Let the averaged density profile be denoted by p(x), from the connection

(i+1)e
) = [ dxp( 1) (12)

we obtain ep(x, t) = (n;)(t). Recall that our previous choice of a lattice with 100 sites corresponds to € = 0.01.
The continuous voltage V(x) is introduced analogously to equation (12). Entering this into the MFA hopping
rate equation (11) and developing the resulting expression to the second order yields the equation

%p(x, t) = e Facosh (0, Ve) e20%p — 2e Fasinh (O, Ve) € Oyp. (13)

As the electrical current through the system is not position dependent, we express local voltage in the following
way (see equation (6))

V(1)
Jdx'AEp(, 1)

OV(x, t) = A@x)p(x, t) = I(DAX)p(x, 1), (14)

thereby splitting it in a non-local and local component. Bearing in mind the continuity equation
0rp + divj = 0, equation (13) is recast into

g,o (x, t) = Oc[e " Brcosh (IAep) €20xp] — Oc[2e Easin h(IAep) ep]. (15)
t
Here, the term in braces is the oxygen vacancy flux. Since p can be considered a probability density with the

1
normalization fO dxp(x) = 1, this constitutes nonlinear continuity equation for the probability. By rescaling
the time, the prefactor €2 exp(—Ex) can be eliminated. By further, expanding the hyperbolic function to the first
order, we are left with

%ﬂ&DZ%Mxﬂ—Hmamwﬁmﬂl (16)

This equation can be formally compared to the viscous Burgers equation. With the viscosity denoted by v, it
reads O,u = v0%u — 1/20,u. So equation (16) is a Burgers-like equation with a current and resistance profile
dependent prefactor. Following the wave-like motion of the vacancies, this connection has also been noted
in[31].

To validate the derived result, we aim at numerically integrating equation (16) and compare the thereby
obtained results with the original numerical results. The integration is done with Neumann boundary
conditions, there is no density flux out of the system. The traveling wave solution is shown in figure 6. Similar to
the results seen in figure 2(b), at the beginning of a period there is a surplus of vacancies stored at the left-hand
side of the RS-device, near x = 0, which increases significantly with the driving period T. Upon being agitated by
avoltage, these vacancies set in motion in form of a wave with decreasing peak height, until it reaches the bulk.
For T = 1 the distribution in the bulk is almost flat, the incoming wave forms a hump that moves further to the
right with time. Meanwhile, before the second bulk interface around x = 0.7 there is initially a hump that
flattens and finally disappears as the distribution shifts further to the right. For T = 10 on the other hand, the
initial distribution in the bulk looks like an inclined plane. The incoming wave rushes through the bulk here,
reversing the orientation of the inclined plane on its way throughit.

As we can see, the traveling wave reproduces the previous results with good principal agreement, as shown
exemplary in the R—V for two different driving periods in figure 7 superimposed on the corresponding diagrams
gained by integration of the particle picture. For all driving periods T, we see some alteration of the two-legged
structure.
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T

Figure 6. Vacancy distribution of RS modeled by numerical integration of the corresponding Burgers equation (16). Various time
points of the switching cycle indicated by the color coding. Parameters as in figure 2, for driving periods (a) T = 1 and (b) T = 10.
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Figure 7. Resistance over voltage of particle simulation (colored, see equation (4)) versus numerical integration of Burgers equation
(black, see equation (16)) for several cycles of the driving periods (a) T = 1and (b) T = 10.
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Figure 8. Logical states of the RS device. The top panels illustrate how the lattice can be thought of as two serial resistors, one in a high
and one a low resistive state. Their order then determines the logical state. The bottom panels feature a sample vacancy distribution
(red color) in the lattice according to the respective states, together with the dashed resistivity profile A;. A further dotted line cuts the
lattice in two halves, each of which corresponds to one of the serial resistors above. An accumulation of vacancies near the left side
results in a high resistance of that part, and vice versa with a mirror inverted accumulation near the right side.

4. Logical states

As we have seen in the previous sections, the resistance of the system depends on how many vacancies are stored
within the bulk versus in one of the two boundary regions. Principally, this configuration is similar to two serial
switches with counter oriented polarities, and one active switching zone each. To that end, we think of the lattice
as cut in half and each site constituting one resistor that can be either in a high resistive or low resistive state,
depending on the distribution of vacancies. This also determines the logical state of the device, as indicated in
figure 8. A gathering of vacancies near one of the electrodes, i.e. in an area with A; >> 0, leadsto alarge
resistance, whereas in the bulk vacancies only marginally contribute to the resistance, since here A; ~ 0. Hence,
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a gathering of vacancies near the first electrode—TMO interface corresponds to a setting R}(ﬁléh ® RZ = 0, the

logical zero, and a gathering near the second interface corresponds to R\ @ Réizg)h = 1, thelogical one. Other

low
configurations, namely an on—on state, Rl(olv)v &) Rl(fv)v’ can occur during a read or in the transient of a switching
operation, but has no logical equivalent, whereas a vacancy gathering near both electrode interfaces, i.e.

Réiléh ® R}(fg)h does not occur during the operation of the device [17].

4.1. Reading and writing operations
Now that we have defined the logical states, we can express the actions of the driving voltage in these terms and
develop a framework of how to write and read information in our system.

In figure 2 we have seen how the positive half-cycle of the external voltage driving acts upon an initial
vacancy accumulation near the left interface. Namely, by pushing it to the right interface. During its course, the
resistance drops when the vacancy wave hits the bulk, but returns to its initial value once the voltage pulse ends
and enough vacancies have accumulated near the right interface. In terms of the logical states, this corresponds
an initial 0-state, onto which the positive voltage pulse acts. Afterwards, the system is in a 1-state. Hence, the
process is the write 1 operation. It is again displayed in figure 9(a).

In figure 9(b) the antagonistic process is shown, where the negative voltage half-cycle acts on a 1-state,
resulting in a 0-state. Mirror reversed, the vacancies move from the right interface to the left one. Hence, the
negative voltage pulse performs the opposing write 0 operation. During its course, the resistance has the same
dynamics. We note that the initial states here and for the read operation are prepared by several switching
cycles0 - 1 — 0 — ...

Let us turn to the reading operation. The state of the system is determined by sending a reading pulse
through it and monitoring the reaction. The reading pulse itself is is the positive voltage half-cycle, albeit with
half the amplitude of the writing signal V,.q = V/2.

If the reading pulse acts on an initial 0-state, the resistance drops to its minimum level, Ry,;,. For the oxygen
vacancy distributions this we see that the initial vacancy accumulation near the left interface dissolves and moves
to the bulk. But unlike for the write case, there is no subsequent buildup of vacancies near the right interface.
Hence, when the reading pulse has passed, the system remains in the low resistive state R\}) & Rl((,z»)v- The process
is shown in figure 9(c).

On the other hand, if the system is prepared in the 1-state, the reading pulse leads to a slight increase in the
resistance above the value Ry, thatis obtained for the switchingcycle 1 — 0 — 1. For the distribution, there
are virtually no vacancies near the left interface that can be transported to the bulk, while the accumulation near
the right electrode already exists and only slightly increases in size. Hence, in this case we have only a small effect
on the resistance; see figure 9(d).

This means that two logical states are distinguished by their differing reactions to the reading pulse. Only
when it acts upon the 0-state is there a distinct drop in the resistance. Obviously, the reading pulse has changed
the initial distribution, hence a reversely oriented reset pulse needs to restore the original configuration in
either case.

4.2. Clarity and stability of the reading operation

Asnoted in section 3.1, the resistance drop increases with lower particle numbers and so do the statistical
fluctuations associated with it. To be able to correctly determine the state of the device, we must assure that the
respective resistances after a read pulse and the corresponding reset pulse do not overlap. This property is
demanded for a single read—reset cycle as well as for several.

In figure 10 various such cycles are shown for two different average particle densities ( N;). As we can see, for
(N;) = 0.2, the possible outcomes for the resistances fall almost perfectly onto discrete levels, one of which is
overlapping. Here, we cannot determine in which state the system actually is. For (N;) = 178 on the other hand,
the ratio of Ryeser /Riead 1s much smaller, but so are the fluctuations accompanying them. Hence, both states can
be distinguished easily.

In order to quantify the effect, we employ the measure of the discriminability. Originally defined as the
difference between the signals with and without noise [40], we adapt it to our current situation by setting

|<Rreset> - <Rread > |
g

d= 17)
with the standard variations of the respective resistances denoted by . As such, it is closely related to the signal to
noise ratio, which simply is its square: SNR = d2. We approximate that the results fall onto a normal
distribution, with peaks at (Reser) and (Ryeaq ) and the standard deviation o. This is justified since we are
interested only in an estimate of the error.

In figure 11 this measure is depicted as a function of the average particle number (N;). With increasing (N;),
the discriminability of the output improves, since fluctuations largely vanish. Moreover, it drops with the

9
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Figure 9. Writing and reading operations in the stochastic RS device. The left panels depict the resistance and voltage over time
diagrams, and the right panels depict vacancy distributions at several time points of the specific operation as indicated by the color
coding; and the implicit R over V plot. (a) System prepared in state 0 by several writing cycles 0 — 1 — 0, then write 1 operation. (b)
System prepared in state 1 by several writing cycles1 — 0 — 1, then write 0 operation. (c) System prepared in state 0, then reading
operation. (d) System prepared in state 1, then reading operation. Writing operations with V; = 500, reading operation with

Vo = 250, all other parameters as in figure 2.

number of read-reset cycles, a spread which is more pronounced for large (N;). In view of figure 10, this can be
attributed to the transient of the average resistance values. The optimal Viead /reset (sShown in the inset of figure 11)
was determined after a writing operation, 1 = 0 — read, and apparently differs slightly from the value that is
obtained after aread/reset cycle, read = reset — read, thereby increasing the interval of the possible outcomes.
To interpret the discriminability measure, we check on how many values will be falsely attributed. The
measurements of the read and reset resistances fall onto two normal distributions whose peaks are o - d apart.
All measured values x < Ryeaq + 0d/2 =: xp;q are then assigned to the distribution of R, .4, all larger values to
Rieser- Hence, the probability of an erroneous attribution is given by those reset values smaller than
(Rieaq) + 0d/2 plus the reading values larger than it. Expressed as a formula

10
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Figure 10. Resistances after several repeats (=cycles) of read and reset operations, for different average particle numbers per lattice
site, (@) (N;) = 0.2 and (b) (N;) = 178. Other parameters as in figure 2.
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Figure 11. Discriminability and associated probability of a reading error as a function of the average particle number for various
numbers of read—reset-cycles. The inset denotes the optimal reading and reset voltages, i.e., those for which the reading resistance
drops to a minimum and the reset resistance is close to the value reached in the writing cycle, respectively. Other parameters as in
figure 2.
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where erf (x) denotes the error function. The corresponding results are plotted in figure 11. We conclude that for
an average vacancy occupation per lattice site of (N;) > 10 we are secure independently of the number of cycles.
Hence, the unambiguity of the reading establishes a lower boundary for the optimal particle number, while the
clarity of the RS effect is emphasized with lower particle numbers. This favors a intermediate range of the optimal
average particle number of about Nypiimai = >; Nj = 100 - (N;) = 1000 particles.

We note that the number of vacancies scales with the size of the device. Hence, the risk of erroneous read-
outs limits the possible degree of miniaturization. In a rough estimate, we find that this translates into a length of
about 18 nm, assuming a cubical element of lanthanum-strontium manganite La; _,Sr,MnO;_y , witha
vacancy density of x =0.3 [41].

In actual systems, there is intrinsic asymmetry between the upper and lower electrodes, which can be
reflected by different heights of the left and right flank of the resistivity profile A; in our system. This will result in
two different leg lengths in the resistance diagrams, but does not change the stochastic fluctuations, i.e. the
results for the discriminability apply to this scenario as well.

5. Conclusion

Resistive switching is a topical and high current interest field in condensed matter physics and a prototype of a
nonlinear stochastic switching event. Its main application, the non-volatile ReRam, is a promising candidate for
future memory technologies. The scaling to small elements however, leads to an increasing role of fluctuations.
Itis therefore required, to have an understanding of the switching mechanism and the reliability under the
influence of these fluctuations. Here we develop a particle based mesoscopic model based on the distribution of
oxygen vacancies. Fluctuations caused by the stochasticity of their motion both enhance the resistive contrast
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and reduce the reliability of the resistive switch. These counteracting tendencies enable us to predict a limit to
miniaturization and an optimal system size.

We have introduced a setup to describe a complementary resistive memory switch based on a discrete
particle hopping model. Hereby, the spatial distribution of oxygen vacancies plays the vital part in determining
the state of the system, which switches between a high and low resistive state. The vacancies’ dynamics is given by
amaster equation with transition rates depending on the vacancy distribution and an external voltage driving.

The application of voltage pulses led to an accumulation of vacancies near the electrode-TMO interface. An
antagonistic pulse then sets these accumulations in motion and they collectively wander through the system,
thereby affecting the resistance. By formulating the problem in a particle picture, we gained a tool to vary the
accompanying fluctuations: less vacancies, more fluctuations. We looked at the characteristics that define an RS
element, such as the spread between the high and low resistance, and discovered that they become more
pronounced with increasing fluctuations.

The nature of this collective vacancy motion could be elucidated by deriving a nonlinear continuity equation
in a MFA from the master equation in continuum space. It has the structure of a Burgers equation with an
additional non-local factor, that also incorporates the influence of the driving. We succeeded at numerically
integrating this equation to find good agreement with the results gained by particle simulations. Hence, we
interpreted the motion of the vacancies as a nonlinear traveling wave.

Further, we defined binarylogical states in terms of the underlying particle distributions. By linking the
actions of voltage pulses to switches between these states, we have established the reading and writing operations
necessary to run a memory element. Interestingly, investigations in the stability and discriminability of these
operations let us gain a lower limit for the possible number of vacancies in the system, a quantity that is
connected with the possible level of miniaturization. Together with the finding of enhanced RS-characteristics
for fewer vacancies, this results in an optimal performance for about 1000 oxygen vacancies, which corresponds
to adevice length of about 18 nm.
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Appendix A. Derivation of the Burgers’ equation

In this appendix, we derive a wave equation from the master equation that governs our system. We proceed in
two steps: at first, we manipulate the discrete Master equation to gain the time derivation of the average
occupation of a lattice site. With this result, we then introduce the continuum limit and expand it to the second
order. In the master equation

iP(-/\/, t) = Z (=WW —= MPWN, t) + WN — N)PWN, 1)), (A1)
dt (VT2

a configuration of lattice occupations is denoted by ' = (N}, Ny, ---, N;) and {/'} is the set of all possible
configurations. With it, we can express the time derivative of an individual lattice site occupation (N ) as

d d

—(Ny) = — NP(N, A2

dt< k) dfg\/:} kPN, 1) (A2)
=S N S (W = PN, ) + WV — NP, 1)), (A3)

N} (V=N

Since only hopping between neighboring sites is allowed, the number of possible transitions is vastly reduced. By
N = (-, N/, N/}, ---) we denote a configuration, that differs from A onlyat theithand i + 1th position,
where it takes the values N} and Ny, ;, respectively. The remaining transitions of the second sum of

equation (A3) can now be written explicitly, yielding
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L
SNg=% Nk[—ZW(J\/H N+ 1L, N = 1,.)PN; )
dr %! i—2

— > WW = .,N;, = I, Niy1 + 1,.)P(N; 1)

L
W Nt + LN = 1w = NPy Nioy + 1, Ni = 1,0 8)
i=2

L—1
+ > W(oN = I, Nigy + Lo > NP, N; — 1, Nigy + 1., t)]. (A4)
i=1

We seek to collect the terms in the brackets by performing a substitution N; 4= 1 = N7, such that the probability
function depends on a configuration A’ that is not altered by subtraction or addition of a particle. This
substitution can either affect Ny or not. First, the terms of equation (A4) without particle hop at the kth position:

ZNkl S WW = Ny + 1, N; = 1,.)PN, 1)

(N} i=kk+1

+ >, WW— .,N,— 1, Niy1 + 1,.)PWN, t)]

i=k—1,k

+3 Nk[ > WW — .,N/+1,N/,, — 1,.)PN, 1)
{

N} i=k—1,k
+ > WW — .,N_,— I, N/ + 1,.)P(N, t)] =0. (A5)
i=kk+1

Since the summation is done over all possible configurations in both sums, we can rename N to A and see that
all summands vanish. In the remaining terms the hopping involve the particles at the kth position, and hence
substitutions affect the prefactor N in equation (A4),

%(NQ = Z Ne[-WWN = N1+ 1, N — 1,.)PWN, B)

d g,

—WW — .,N+ 1, Niyy — 1,.)PN, 1)

—WWN—=.,N1— 1, Ny + 1,.)PWN, t)

—WW = ...Ne — 1, Niyy + 1,.) PN, 1)]

+ 3 W= DWW — N — 1L, N[ + 1,.)P(V, 1)

(N}

+ N[+ DWW — .,N/_,— 1, N[+ 1,.)P(NV, 1)

+ (Np+ DWWV — . Ny + 1, Niy — 1,.)P(N, 1)

+(N; — DWW — .,Ni_; + 1, N; — 1,.)PV, ). (A6)
Relabelling the marked quantities A to unmarked ones shows that all expressions with prefactor Ny cancel each
other out. This leaves us only with

i<Nk> =S -WW = s Neoy + 1, Ne — 1,.)PN, 1)

dt %!
+WWN— (N + 1, Neyy — 1,.)PWN, B)
+WW — .uNeoi — L, Nk + 1,.)PWN, 1)
—WW — ..,N.— 1, Ney1 + 1,.)PWN, 1)]. (A7)

The transition rates W can now be connected to the reaction rates equation (5) by considering the
proportionality with the number of particles N;at an individual lattice site,

W = Ny — 1, Net + 10) = Nowioj = M(l - %)e—%”f. (A8)
0

With the further introduction of the density of filled oxygen vacancies n; := N; /Ny, equation (A7) becomes

d
E<nk> ) = —(mWisk—1) + (M 1Wkr1-k) + (Mo 1Wk—12k) — (MWk—ks1)- (A9)

In this part, we introduce the continuum limit of the master equation in a MFA. The MFA now decouples the
two point and higher order correlations, resulting in
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(miwij) = (n;) (1 — (nj))e Ea(eRV). (A10)

Next, we introduce the lattice spacing e between neighboring sites and define x := ie. The continuum limitis
taken by letting the lattice spacing become infinitesimal while the number of lattice sites N runs to infinity, in
such a way that the product of both remains the constant lattice length lim, o y_,oo ¢ N = L. Let the averaged
density profile be denoted by p(x, ), from the relation

(i+1)e
) = [ depx 1) (AL1)
we obtain ep(x = ie, t) = (n;)(¢). The hopping rates that formerly depended upon the density of neighboring
lattice sites now depend on those at an infinitesimal distance ¢, which will obviously introduce an derivation. The
continuum counterpart of the voltage drop equation (6)

AV, — v, (A12)
Ox
further introduces a sign depending on whether we consider forward (¢ = +|¢|) or backward (¢ = —|¢|) fluxes,

for itis a directed quantity. Entering this into the MFA hopping rate equation (A10) yields

%p(x, H=—> pl, D — ep(x + o€, t))e Frexp(+00,Ve)
o==+1

+ Z px + oe, (A — ep(x, t))e Frexp(—od, Ve). (A13)
o==+1

The density is expanded up to the second order in p according to
plx + o6, t) = p(x, t) + cedep(x, t) + %ezaip(x, t) + O(e?) and the resulting terms are collected with
regard to the sign in the exponential,

%p(x, t) = —I—e‘EAexp(—l—axVe)(—eaxp + 62(%8ip + 2p8xp))

+e exp(afo)(+ €0kp + 62(%8ip - 2p8xp)). (Al4)
With the definitions of the hyberbolic functions follows

%p(x, t) = e Facosh (0, Ve) €202 p + 2e Easin h(0,Ve)(—€Oep + 262p0xp)

= e Prcosh (0, Ve) €202 p — 2e Fasin h(0,Ve) e Oxp. (A15)

In the last recast, we have also disregarded the ¢ order in the sinh term. As the electrical current through the
system is not position dependent, we express local voltage in the following way (see equation (6))

40)

V(X 1) = ——"——
Jdx'A() p(x))

AX)p(x) = I(H)AX)p(x), (Al6)

thereby splitting it in a non-local and local component. Bearing in mind the continuity equation

0-p + divj = 0, we want to put the spatial derivation in from of the right-hand side of equation (A15). Since the
inner derivatives of the hyperbolic functions introduce a further order in ¢, we disregard these terms and the
hyperbolic functions commute with the derivation operator. We gain

gp (x, t) = Ocle Frcosh (IAep) €20, p] — Ox[2e Ersinh(IAep) ep], (A17)
t

from which we can easily read the expression for the diffuse and directed oxygen vacancy flux, j = jy. + jyg-
Finally, by further expanding the hyberbolic functions to the first order, we obtain the expression

%P(X, 1) = Ole P10 p] — Ox[2e I (1) A(x) €2p7], (A18)
By rescaling the time, the prefactor €2 exp(—E,) can be eliminated. The final equation reads

%P(x, 1) = 93p(x, 1) — 20 () AA(x) p*(x, 1)]. (A19)

It can be compared to the generic viscous Burgers equation, 0,u = vd*u — 1/20,u?, with the viscosity v. So
equation (A19) is a Burgers-like equation with a current and resistance profile dependent prefactor.
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Appendix B. Notes on the numerics

B.1. General remarks

Here we specify our assumptions for the form of the resistance profile A(x). While Rozenberg et al [30] used a
step profile, for simulation purposes it is feasible to smoothen out the regions between the steps. Also, from a
physical point of view, a smoother conduit seems reasonable, since both regions are essentially of the same
material. The analytical form was given by equation (3). The higher k is, the more rapid the transition from high
to low resistivity occurs. For all simulations, we choose the parameter setk = 20, L = 1and x,/L = 0.1.
Obviously, thelimit k — oo gives a step profile for A(x). For the discretized simulation, the number of lattice
sitesis setto Nig = 100.

Given a device of length L that has a certain total resistance R, the resistance profile cannot be independent of
the number of lattice sites we choose, but scales with it. If for some simulations for example due to numerical
expenditure, we need to reduce the number of lattice sites, A; scales accordingly. In fact, we should think of the
resistance profile that is introduced in equation (2) as a resistance per length

R= LZAI-&, A; = LA,». (B1)
Nis 57 No Nis
We then choose A| and A; according to the resistances we want to accomplish, and the number of lattice sites,
whereas the length D plays no role. Concerning the dynamics, the relative differences in A; are more important
than its absolute value, whose influence can just as well be scaled with other parameters, such as the strength of
the driving signal, V;. Further calculations are done with A} = 100 Q2and A = 1.

The initial distribution of vacancies is chosen in such a way, that all the lattice site contribute equally to the
resistance. This choice minimizes the necessary thermalization time of the system. As the individual sites’
resistance is proportional to A; (see equation (2)), the individual vacancies are placed at site i according to the
probability

P=—. (B2)

In effect, all sites then contribute with

N
Ro = Nis(R;) = —= (B3)

=5
AiZiA_i

for the choice of parameters of the simulations, see figure 2, this yields the normalization Ry ~ 1.76 ().

B.2. Numerical integration of the Burgers equation
The generalized Burgers equation is a nonlinear flux transport equation, which can be cast into weak form on
multiplication by a suitable test function, ¢ and integrating by parts
1
f a—pdi + [@ - ZI(t)A(x)pz]a—d} dx = 0. (B4)
o Ot Ox Ox
The neglected boundary terms ensure that the natural boundary conditions are enforced: no flux out of the
domain.
We discretise solve equation (B4) using piecewise quadratic finite elements for the unknown density p. The
non-local term I(¢) is handled by treating it as an independent additional variable with the defining equation

V(t)

=—2r
S dxA () p()

(B5)

This equation is assembled in the same integration loop over the elements used to construct the discrete
nonlinear residuals from equation (B4).

The nonlinear residuals are assembled and solved by the C+4+-library oomph-11ib [42]. Time is advanced
by an implicit second-order backward difference method (BDF2). The resulting matrix system is solved by a
direct solver. Adaptivity in space and time is required to achieve accurate results and it has been confirmed that
the results do not change if the error tolerances are reduced.
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