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Abstract
Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile
randomaccessmemories. Any practical implementation of such amemory cell calls for a strong
miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed
understanding of switchingmechanisms and reliability is essential. For this reason, we formulate a
particlemodel based on the stochasticmotion of oxygen vacancies. It allows us to investigate
fluctuations in the resistance states of a switchwith two active zones. The vacancies’ dynamics are
governed by amaster equation.Upon the application of a voltage pulse, the vacancies travel
collectively through the switch. By deriving a generalized Burgers equationwe can interpret this
collectivemotion as nonlinear traveling waves, and numerically verify this result. Further, we define
binary logical states bymeans of the underlying vacancy distributions, and establish a framework of
writing and reading suchmemory elementwith voltage pulses. Considerations about the discrimin-
ability of these operations under fluctuations together with themarkedness of the RS effect itself lead
to the conclusion, that an intermediate vacancy number is optimal for performance.

1. Introduction

Resistive switching (RS) refers to a change in the resistance of a dielectric due to the action of an external electric
field or an electric flux through themedium. Thereby, the resistance depends on the history of the field orflux
passing through the system, hence it can be considered as a hysteretic effect. RS has been observed in awide
range of transitionmetal oxides (TMOs), such asmanganitesMnO(OH) [1, 2], perovskites CaTiO3 [3–5] and
titaniumdioxide TiO2 [6–9]. Its basic layout is a two terminal device consisting of a TMOsandwiched between
two electrodes, as sketched infigure 1. In general the strength of the effect, i.e. the ratio of the high and low
resistance, increases with smaller system sizes [7].

Recently, applications particularly in the semiconductor industry have taken up at a rapid pace. Among the
most promising candidates is resistive randomaccessmemory (ReRam). Other interesting applications are the
integration of logic inmemory [10], enabling example concepts of neuromorphic computing [11, 12]. ReRam is
expected to provide highly scalable, fast, non-volatile and low costmemory [13–15]. A single such cell is toggled
in between its high- and low-resistive state by application of an external voltage or current. Typical
implementations for industrial use aim for high density and stack those elements into a 3d nanocrossbar, layered
grids of wires with RS cells in between [15–17]. However, alongwith high integration andminiaturization,
challenges of reliability due to sneak paths andfluctuations become evermore significant.

To address the problemof read failures and heat dissipation due to sneak paths, Linn et al [17] suggested a
complementary resistive switch (CRS). Therein, twoRS elements are combined anti-serially to onememory cell.
Both its logical states have a high resistance, albeit with differing internal states of the constituent elements. Due
to the high resistance, the current and associated energy dissipation through thememory cell and the occurrence
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of sneak paths around it are drastically reduced. As such, the concept has been picked up by variousworks, see
e.g. [6, 18–22]. Conceptually, this setup is similar to having a single element with two active switching zones, one
at each electrode-TMOboundary, as it will be applied in this work.

Fluctuations can appear externally and internally. They have been studied for phenomenologicalmemristor
models , whose resistance is determined by a single internal scalar variable, which denotes the relative sizes of a
high and low and high resistivity area. Internal fluctuations are incorporated by addingwhite noise to this
variable, [23, 24], with beneficial effects on theRS-effect, such as increasing the contrast between the resistive
states. External fluctuationswere studied in the formof noisy impulses switching the states, and depending on
the setup can either have a positive [25, 26] or detrimental effect [24]. As yet, no study offluctuations has been
conducted for a particle basedmodel.

Such an approach is essential to addressmany characteristics of RS. From experimental observations it is
known that the functionality of a RS device is determined by the electrode–TMO interface and the distribution
of oxygen vacancies [27–29]. In this setting, a one-dimensional latticemodel inwhich a probability distribution
of the vacancies evolves depending on the external voltage and the local resistance of each lattice site is
proportional to its density of vacancies has been proposed in [30] formanganites, termed the voltage enhanced
oxygen-vacancymigrationmodel (VEOV-model) by the authors. The Schottky barriers are incorporated by
enhancing the vacancies effect near the interfaces compared to the bulk, resulting effectively in a two active
switching zones. Further investigation of thismodel showed shock-wave like behavior, [31], made plausible by
the formulation of a generalized Burgers equation for the time evolution of the vacancy distribution, whichwas
used to predict the commutation speed of anRS element.

Hence, our goal is to describe aCRS based on thismesoscopicmodel for discrete particles.We elaborate on
the requirements to implement such a device, namely as a large contrast between the resistive states, and the
reliability againstfluctuations. For very small system, thefluctuationswill be driven by the inherent stochasticity
in themotion of just a few oxygen vacancies. This lets us determine a lower limit for the possible level of
miniaturization andwe can predict an optimal system size for the resistive switch.We proceed as follows:

In section 2wewill formulate theVEOV-model for discrete particles, i.e. the oxygen vacancies. It is governed
by amultivariatemaster equationwith nonlinear transition rates. This allows us to consider not only the system
dynamics depending on the parameters of the external driving, but also to further examine thefluctuations,
whosemagnitude is determined by the number of vacancies in the system.

Subsequently, we investigate the stochastic dynamics of the oxygen vacancies in section 3.Hereby, we pay
special attention to the hysteretic effects, whichwewill quantify by the area of the corresponding hysteresis
loops, and on theminimumandmaximum resistances the system visits within a period of a periodic driving (see
section 3.1). Further, we introduce continuous space and derive a nonlinear continuity equation governing the
evolution of the oxygen vacancy distribution (see section 3.2). This equation can also be considered a generalized
Burgers’ equation, and hence the dynamics of the oxygen vacancies are interpreted as nonlinear travelingwaves.
Also, we successfully numerically integrate said equation to compare it with the results gained in the discrete
particle picture, and showhow thesewave processes affect the electric properties of the device.

In section 4, we define the logical states of the a resistive switchwith two active zones in terms of the
underlying particle distributions. This allows us to express the actions of the driving voltage in these terms and
develop a framework of how towrite and read information in such a system (see section 4.1). The resulting read
operation isfinally considered for its stability with regard tofluctuations (see section 4.2). Together with the
previous results, this leads to an estimate for the optimal particle number.

Figure 1. Single RS-element consisting of a TMOelectrodes on a substratematerial (gray), connected to an external voltage sourceV.
The right electrode is defined as having zero voltage. Crossing through the device is a filament of high conduction, whose behavior is
responsible for the state of the device. It ismodeled as a 1d latticewith three different zones, the bulk (B)which has a small resistance
factor = A Ai , and the interface zones to the electrodes on the left and right, which have large resistance factors = A Ai , with

 A A . The individual sites are filledwith ni vacancies, that can hop to neighboring positions.
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2. A stochastic vacancy hoppingmodel for bipolar RS

Webase our considerations on the phenomenological VEOV-model. It focuses on the oxygen vacancy defects
togetherwith the influence of the electrode–TMO interface on bipolar switching [30]. Justified by experimental
measurements showing filamentary paths of high conductance [32], thememristor ismodeled as a one-
dimensional lattice, i.e. a network of resistors in serial order.

In TMOs the oxygen vacancies affect the resistance in a complexway.On the one hand, they provide dopants
and thereby facilitate conductance [33]. On the other hand, they disrupt the TM–O–TMbonds. In order to
minimize the energetic cost of the vacancies, their place is filled by free electrons from the conduction band, that
are localized now in this place and have an energy level below the conduction band [34]. This resistance effect is
more pronounced at the boundary of the TMO, because at ametal-insulator transition the TMO is depleted of
freelymoving charges, an effect that is also known as Schottky-barrier. Hence, taking electrons of the
conduction band leads to a higher impact on the local resistance here.

For our investigations, the disrupting influence of the vacancies is considered, as it occurs for example in
manganites [1, 2].We assume that a specific lattice site i hasNi vacancies, every lattice site can hold a total ofN0

vacancies (with, in general, N Ni 0), and that the resistance of that each site is proportional to its density of
vacancies,

≔ ( )n N N . 1i i 0

The depletion zones at the electrode interface are taken into account by furthermultiplicationwith a resistivity
factorAi, whereAi in the bulk is small againstAinear the boundaries of the domain. As a result, the local
resistance is given by

= ( )R A
N

N
, 2i i

i

0

fromwhichwe gain the total resistance of the lattice by summation over all sites, = åR A N Ni i i 0. The
analytical formofAi is given by
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its actual course can be seen infigure 2(b), where it is indicated by the dash dotted lines, for a discrete lattice of
length L, with a length of the depletion zones x0, andwith 100 sites at the positions =( ) ( · )i x x Lfloor 100 .
Therein, the parameters used are k=20, =x L 0.10 and = A A 100.

Let a configuration of lattice vacancies ( )N N N, , , L1 2 be denoted by  , and by ¢{ } the set of
configurations that arises from  through a single particle hopping to a neighboring site. This results in the
followingmaster equation

  
 

   å= - + ¢
¢ ¹

 ¢ ¢( ) ( ( ) ( )) ( )
{ }t

P t W P t W P t
d

d
, , , . 4

An external voltage at the electrodes will induce an electrical current I through the system. It can be used to
determine the voltage drop over a lattice site,DVi . The oxygen vacancies are quasiparticles holding a charge of
qdop, whose diffusivemotion is biased by the local voltage dropDVi . Agitated, oxygen vacancies nowmovewith
a certain probability fromone site to another, limited by the number of possible free spaces at their respective
target sites. Also, the vacancy requires an activation energyEA to leave its place in the lattice, that needs to be
weighted against its thermal energy qkB , with the temperature θ and the Boltzmann constant kB. As a
quasiparticle holding a charge qdop it is agitated by the external voltage, leading to the hopping rate

q
= -

-  D
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The total rate Wi j of a particle hop from lattice site i to j is proportional to the number of vacancies at the
starting place, = W N wi j i i j. This basic setup is visualized infigure 1.

Without external voltage, the oxygen vacancies will be equidistributed. If the external voltage is changed
according to some time protocol, directedmotion of the vacancies appears.Wewill investigate the system for a
sinusoidal voltage driving p=( ) ( )V t V t Tsin 20 with amplitudeV0 and periodT, the latter setting the scale for
all system times. The voltage drop over a lattice site is proportional to its resistance, hence

D = =( ) ( ) ( )V V t R R I t R . 6i i i
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Here, the electrical current I(t) is, just as the total resistanceR, a non-local property that depends on the
configuration of the entire lattice.

Simulation results for this dynamics are obtained via theGillespie algorithm [35–38], which provides a
feasible performance since it scales with the transition rates, which themselves are exponentially dependent on
the external voltage.

For convenience, we introduce reduced units in which all quantities will be given,

q= =ˆ · ˆ ( )V V q k R R R, 7dop B 0

q= =ˆ · ˆ ( )I I q R k t t T, 8dop 0 B

q= =ˆ ˆ ( )E E k x x L, . 9A A B

Thereby º WR 1.760 follows by a resistivity weighted equidistribution of the vacancies, which is explained in
appendix B.1. Unless stated otherwise, we choose for the simulations parameters EA=1,T=1, =V 5000 and

=N 100
4. Henceforth, all hats are dropped.

3.General dynamics

The time evolution of a system governed by equations (2)–(6) is depicted infigure 2. The electrical current I
follows the voltage input, until at a certain threshold value above or below zero the resistance suddenly drops
significantly and the current spikes. Hereby, the course of I andR is periodic within each half-cycle of the voltage
driving, due to the symmetry of the device.

Looking at the time dependent vacancy occupation distribution figure 2(b) for the positive half-period of the
voltage driving, we see that this corresponds to vacanciesmoving from the left boundary region ofAi to the bulk.
The formof thismotion reminds us to a dispersingwave, as also noted in [31], until it reaches the bulk. From
there some vacanciesfinally reach the right boundary region. In the final panels the hysteresis loops in the I–V
plane and a two-legged structure in theR–V plane are depicted, see [30]. It reveals that thewave reaching the

Figure 2. Simulation of stochastic RS-device with sinusoidal voltage driving. Parameters are á ñ =N 10i
2, =N 100

4. (a)Time behavior
of the electrical quantities. (b)Occupation of the individual lattice sites at different times (indicated by the color scale). Local resistivity
Ai is indicated by the red dashed–dotted line. (c)Hysteresis in the I–V and (d)R–V planes, the colored circles indicate the states for the
various occupation distributions of themiddle panel, the arrows show the curves’ directionality with increasing time.
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bulk corresponds to a drop in the device resistance, and a corresponding spike in the current. As soon as the
vacancies reach the right side, the resistance increases again.

As the transport from an accumulation on the sides to the bulk differs in its dynamics from the transport
from the bulk to the side, we see the emergence of hysteresis loops in the I–V andR–V diagrams. Alsowe note
that the voltage dropDVi depends on both the external voltageV and theNi-configuration of the entire lattice,
and as a consequence so does wi j. Hence, the distribution of the vacancies plays the role of the inherent
memory variable of this RS device,much as the boundary positionsw does in theHP-memristor [7].While a
transition of oxygen vacancies between lattice sites with different form factorsAi exerts a global influence on all
reaction rates, jumps between lattice sites with the sameAi only affect local rates.

We further want to investigate the systemdependence on the sinusoidal driving, particularly on its periodT
aswell as its amplitudeV0. To that endwe study two different quantities. Firstly themaximumandminima of
the resistance during a switching cycle, Rmin and Rmax, and their ratio R Rmax min. Secondly, the area of the
hysteresis loops in the RV-diagram, Fhyst.

The results are shown in figure 3. Thereinwe see that for very smallT the systemhas no time to react to the
sudden changes of the voltage. Theminimumandmaximum resistances do not differ and the vacancy
distribution approaches a state inwhich, besides fluctuation, every lattice site contributes equally to the
resistance, µ n A R1 , 1i i . The corresponding hysteresis loops vanish. For longer periods, Rmax and Rmin

start to spread, and the area of the hysteresis loops increases. This ismainly due to the increment in Rmax when
the vacancies accumulate near the interface; however, when thewave reaches the bulk,Rmin reaches values
considerably lower than in the equilibriumdistribution also.

The picture for the amplitudes is somewhat different. Specifically, for very smallV0, the systemhas a high
resistance. The diffusivemotion that is counteracting the external driving is dominant and pushes the vacancies
into a uniformdistribution.We have á ñ =  á ñ å- n R n A10 , 17.5i t i t i

2 . From a certain threshold above
V 750 , the resistance suddenly drops and the switching dynamics sets in, with corresponding spread in Rmax

and Rmin and hysteresis loops. Now, the external driving dictates the dynamics.With increasing amplitudesV0

more vacancies can gather in the high resistance regions near the boundaries, which results in a largermaximal
resistance Rmax. Hence, there is a connection between amplitude and period so that the system shows
meaningful switching behavior.

For the relevant time scale, we remark that the transition rates are proportional to the activation energy,
µ - ( )w Eexpi j A , see equation (5). The largerEA is, the slower all reactions take place. The other element that

sets the time scale of the dynamics, is the external voltageV(t). Sincewe assume a periodically driven system, the
length of the periodmust increase exponentially to offset the delay due to an increased EA.

Figure 3.Resistanceminima andmaxima, their respective ratio and hysteresis loops in theR–V diagram, varied over several cycles of
sinusoidal voltage driving. The area of the hysteresis loops Fhyst is normalized to that at = =V T500, 10 . (a)Variation of the driving
periodT at =V 5000 . (b)Variation of voltage amplitudeV0 atT=1. Shared legend for (a) and (b), all parameters as in figure 2. The
right panel shows sample distributions at t=0.01 and resistance over voltage plots for the encircled values of the plot to the left, with
curve colorsmatching the color of the circles.
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3.1. Effects offluctuations
The influence of stochasticity is investigated by changing the number of vacancies per lattice sites, while keeping
the average vacancy density = á ñn N Ni i 0 and the other parameters constant. Thismeans, that for a reduced
total number of vacancies å Ni i each individual one bears a larger fraction of the total resistanceR and hence
causes a larger change in the systemproperties if it hops in between lattice sites with differentAi, while the
electrical quantities do not differ in principal, since only the ratio N Ni 0 enters (see equations (2)–(6)). For large
vacancy numbers on the other hand, each individual vacancy barely affects the system and its dynamics will
approach the deterministic behavior described by the correspondingmaster’s equation equation (4). Infigure 4
results for various numbers of vacancies per lattice site are depicted at different time points in the switching
cycle. Clearly, the fluctuations in the occupation distributions increase for smaller á ñNi .

The area of the hysteresis curves of the implicitV–R plot is depicted infigure 5 for varying average particle
numbers per lattice site á ñNi , together with themaxima andminima of the resistance and their respective ratio.
We see that for small á ñNi , the spread in betweenRmax andRminmonotonically increases, which also implies an
increase in the size of the corresponding hysteresis loops. Also, we see that the variation between individual
cycles are larger for small average particle numbers, which can be seen in formof the larger statistical deviations
in this case.

These observations are confirmed in the particleR–V diagram,wherewe indeed see that both the size of the
loops and theirfluctuations are bigger for smaller á ñNi , whereas formany particlesfluctuations barely play a role
and the results approach the values we gain by direct numerical integration of the correspondingmaster
equation (4). Hence, we conclude that the RS effect becomesmore pronouncedwith increasing fluctuations. In
this sense, the resultsmirror investigations of theHP-memristor, where it was found that an additional noise
increases thememristive response of the system [23].

3.2. Continuum limit andBurgers-like equation forwave transit
In this part, wewant to introduce a continuum limit of themaster equation in ameanfield approximation
(MFA). Here, only the outline of the calculations is given. A detailed derivation is shown in the appendix A. For
the time derivative of themean occupation density at lattice site i, see equation (1), we have

Figure 4.RS dynamics with enhancedfluctuations due to decreased average vacancy number at constant á ñ =N N 0.01i 0 . Colored
faces are the standard deviation around themean value, inside which one sample distribution for each á ñNi is shown. Curves given at
different time points of the driving cycle, as indicated by the color scheme.

Figure 5.Effects due to enhanced stochasticity caused by differentmean number of particles per lattice site á ñNi . (a)Resistanceminima
andmaxima, and hysteresis loops in theR–V diagram as infigure 3, albeit as a function of á ñNi . (b) SampleR–V plots for various á ñNi .
All parameters as in figure 2.
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á ñ = +á ñ - á ñ + á ñ - á ñ- -   + + +   -( ) ( )
t

n t n w n w n w n w
d

d
. 10i i i i i i i i i i i i i1 1 1 1 1 1

This expression follows from themaster equation (4) and is derived in the appendix. Nowwe decouple the two
point and higher order correlations, resulting in

á ñ = á ñ - á ñ á ñ
- D( ) ( )n w n n1 e e . 11i i j i j

E VA i

Next, we introduce the lattice spacing ò between neighboring sites and define ≔x i . Formally, the continuum
limit is taken by letting the lattice spacing become infinitesimal while the number of lattice sitesN runs to
infinity, in such away that the product of both remains the constant lattice length  = ¥ N Llim N0, . The
hopping rates that formerly depended upon the density of neighboring lattice sites nowdepend on those at an
infinitesimal distance ò, whichwill obviously introduce a derivative. Thewhole approach is quite similar to the
derivations of Burgers equations as found formolecularmotors in the ASEPmodel [39]. Fromhere, wewill use
the rescaled length =x̃ x L and drop the tilde.

Let the averaged density profile be denoted by r ( )x , from the connection





ò rá ñ =
+

( ) ( ) ( )
( )

n t x x td , 12i

i

i

1

we obtain r = á ñ( ) ( )x t n t, i . Recall that our previous choice of a lattice with 100 sites corresponds to  = 0.01.
The continuous voltageV(x) is introduced analogously to equation (12). Entering this into theMFAhopping
rate equation (11) and developing the resulting expression to the second order yields the equation

   r r r
¶
¶

= ¶ ¶ - ¶ ¶- -( ) ( ) ( ) ( )
t

x t V V, e cosh 2e sinh . 13E
x x

E
x x

2 2A A

As the electrical current through the system is not position dependent, we express local voltage in the following
way (see equation (6))

ò r
r r¶ =

¢ ¢ ¢
( ) ( )

( ) ( )
( ) ( ) ≕ ( ) ( ) ( ) ( )V x t

V t

x A x x t
A x x t I t A x x t,

d ,
, , , 14x

thereby splitting it in a non-local and local component. Bearing inmind the continuity equation
r¶ + =t jdiv 0, equation (13) is recast into

   r r r r r
¶
¶

= ¶ ¶ - ¶- -( ) [ ( ) ] [ ( ) ] ( )
t

x t IA h IA, e cosh 2e sin . 15x
E

x x
E2A A

Here, the term in braces is the oxygen vacancyflux. Since ρ can be considered a probability density with the

normalization ò r =( )x xd 1
0

1
, this constitutes nonlinear continuity equation for the probability. By rescaling

the time, the prefactor  -( )Eexp A
2 can be eliminated. By further, expanding the hyperbolic function to thefirst

order, we are left with

r r r
¶
¶

= ¶ - ¶( ) ( ) ( ) ( ( ) ( )) ( )
t

x t x t I t A x x t, , 2 , . 16x x
2 2

This equation can be formally compared to the viscous Burgers equation.With the viscosity denoted by ν, it
reads n¶ = ¶ - ¶u u u1 2t x x

2 2. So equation (16) is a Burgers-like equationwith a current and resistance profile
dependent prefactor. Following thewave-likemotion of the vacancies, this connection has also been noted
in [31].

To validate the derived result, we aim at numerically integrating equation (16) and compare the thereby
obtained results with the original numerical results. The integration is donewithNeumann boundary
conditions, there is no density flux out of the system. The travelingwave solution is shown infigure 6. Similar to
the results seen infigure 2(b), at the beginning of a period there is a surplus of vacancies stored at the left-hand
side of the RS-device, near x=0, which increases significantly with the driving periodT. Upon being agitated by
a voltage, these vacancies set inmotion in formof awavewith decreasing peak height, until it reaches the bulk.
ForT=1 the distribution in the bulk is almost flat, the incomingwave forms a hump thatmoves further to the
right with time.Meanwhile, before the second bulk interface around x=0.7 there is initially a hump that
flattens andfinally disappears as the distribution shifts further to the right. ForT=10 on the other hand, the
initial distribution in the bulk looks like an inclined plane. The incomingwave rushes through the bulk here,
reversing the orientation of the inclined plane on its way through it.

Aswe can see, the travelingwave reproduces the previous results with good principal agreement, as shown
exemplary in theR–V for two different driving periods infigure 7 superimposed on the corresponding diagrams
gained by integration of the particle picture. For all driving periodsT, we see some alteration of the two-legged
structure.
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4. Logical states

Aswe have seen in the previous sections, the resistance of the systemdepends on howmany vacancies are stored
within the bulk versus in one of the two boundary regions. Principally, this configuration is similar to two serial
switches with counter oriented polarities, and one active switching zone each. To that end, we think of the lattice
as cut in half and each site constituting one resistor that can be either in a high resistive or low resistive state,
depending on the distribution of vacancies. This also determines the logical state of the device, as indicated in
figure 8. A gathering of vacancies near one of the electrodes, i.e. in an areawith A 0i , leads to a large
resistance, whereas in the bulk vacancies onlymarginally contribute to the resistance, since here A 0i . Hence,

Figure 6.Vacancy distribution of RSmodeled by numerical integration of the corresponding Burgers equation (16). Various time
points of the switching cycle indicated by the color coding. Parameters as in figure 2, for driving periods (a)T=1 and (b)T=10.

Figure 7.Resistance over voltage of particle simulation (colored, see equation (4)) versus numerical integration of Burgers equation
(black, see equation (16)) for several cycles of the driving periods (a)T=1 and (b)T=10.

Figure 8. Logical states of the RS device. The top panels illustrate how the lattice can be thought of as two serial resistors, one in a high
and one a low resistive state. Their order then determines the logical state. The bottompanels feature a sample vacancy distribution
(red color) in the lattice according to the respective states, together with the dashed resistivity profileAi. A further dotted line cuts the
lattice in two halves, each ofwhich corresponds to one of the serial resistors above. An accumulation of vacancies near the left side
results in a high resistance of that part, and vice versawith amirror inverted accumulation near the right side.
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a gathering of vacancies near thefirst electrode–TMO interface corresponds to a setting Å =( ) ( )R R 0high
1

low
2 , the

logical zero, and a gathering near the second interface corresponds to Å =( ) ( )R R 1low
1

high
2 , the logical one.Other

configurations, namely an on–on state, Å( ) ( )R Rlow
1

low
2 , can occur during a read or in the transient of a switching

operation, but has no logical equivalent, whereas a vacancy gathering near both electrode interfaces, i.e.
Å( ) ( )R Rhigh

1
high

2 does not occur during the operation of the device [17].

4.1. Reading andwriting operations
Now that we have defined the logical states, we can express the actions of the driving voltage in these terms and
develop a framework of how towrite and read information in our system.

Infigure 2we have seen how the positive half-cycle of the external voltage driving acts upon an initial
vacancy accumulation near the left interface. Namely, by pushing it to the right interface. During its course, the
resistance dropswhen the vacancywave hits the bulk, but returns to its initial value once the voltage pulse ends
and enough vacancies have accumulated near the right interface. In terms of the logical states, this corresponds
an initial 0-state, ontowhich the positive voltage pulse acts. Afterwards, the system is in a 1-state. Hence, the
process is thewrite 1 operation. It is again displayed infigure 9(a).

Infigure 9(b) the antagonistic process is shown,where the negative voltage half-cycle acts on a 1-state,
resulting in a 0-state.Mirror reversed, the vacanciesmove from the right interface to the left one.Hence, the
negative voltage pulse performs the opposingwrite 0 operation. During its course, the resistance has the same
dynamics.We note that the initial states here and for the read operation are prepared by several switching
cycles   0 1 0 ....

Let us turn to the reading operation. The state of the system is determined by sending a reading pulse
through it andmonitoring the reaction. The reading pulse itself is is the positive voltage half-cycle, albeit with
half the amplitude of thewriting signal =V V 2read 0 .

If the reading pulse acts on an initial 0-state, the resistance drops to itsminimum level, Rmin. For the oxygen
vacancy distributions this we see that the initial vacancy accumulation near the left interface dissolves andmoves
to the bulk. But unlike for thewrite case, there is no subsequent buildup of vacancies near the right interface.
Hence, when the reading pulse has passed, the system remains in the low resistive state Å( ) ( )R Rlow

1
low

2 . The process
is shown infigure 9(c).

On the other hand, if the system is prepared in the 1-state, the reading pulse leads to a slight increase in the
resistance above the value Rmax that is obtained for the switching cycle  1 0 1. For the distribution, there
are virtually no vacancies near the left interface that can be transported to the bulk, while the accumulation near
the right electrode already exists and only slightly increases in size. Hence, in this case we have only a small effect
on the resistance; see figure 9(d).

Thismeans that two logical states are distinguished by their differing reactions to the reading pulse. Only
when it acts upon the 0-state is there a distinct drop in the resistance. Obviously, the reading pulse has changed
the initial distribution, hence a reversely oriented reset pulse needs to restore the original configuration in
either case.

4.2. Clarity and stability of the reading operation
As noted in section 3.1, the resistance drop increases with lower particle numbers and so do the statistical
fluctuations associatedwith it. To be able to correctly determine the state of the device, wemust assure that the
respective resistances after a read pulse and the corresponding reset pulse do not overlap. This property is
demanded for a single read–reset cycle as well as for several.

Infigure 10 various such cycles are shown for two different average particle densities á ñNi . Aswe can see, for
á ñ =N 0.2i , the possible outcomes for the resistances fall almost perfectly onto discrete levels, one of which is
overlapping.Here, we cannot determine inwhich state the system actually is. For á ñ =N 178i on the other hand,
the ratio of R Rreset read ismuch smaller, but so are thefluctuations accompanying them.Hence, both states can
be distinguished easily.

In order to quantify the effect, we employ themeasure of the discriminability. Originally defined as the
difference between the signals with andwithout noise [40], we adapt it to our current situation by setting

s
=

á ñ - á ñ∣ ∣ ( )d
R R

17reset read

with the standard variations of the respective resistances denoted byσ. As such, it is closely related to the signal to
noise ratio, which simply is its square: = dSNR 2.We approximate that the results fall onto a normal
distribution, with peaks at á ñRreset and á ñRread and the standard deviationσ. This is justified sincewe are
interested only in an estimate of the error.

Infigure 11 thismeasure is depicted as a function of the average particle number á ñNi .With increasing á ñNi ,
the discriminability of the output improves, since fluctuations largely vanish.Moreover, it dropswith the
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number of read–reset cycles, a spreadwhich ismore pronounced for large á ñNi . In view offigure 10, this can be
attributed to the transient of the average resistance values. The optimalVread reset (shown in the inset offigure 11)
was determined after a writing operation, 1⇌ 0 read, and apparently differs slightly from the value that is
obtained after a read/reset cycle, read⇌ reset read, thereby increasing the interval of the possible outcomes.

To interpret the discriminabilitymeasure, we check on howmany values will be falsely attributed. The
measurements of the read and reset resistances fall onto two normal distributionswhose peaks are s · d apart.
Allmeasured values  s+ ≕x R d x2read mid are then assigned to the distribution ofRread, all larger values to
Rreset. Hence, the probability of an erroneous attribution is given by those reset values smaller than

sá ñ +R d 2read plus the reading values larger than it. Expressed as a formula

Figure 9.Writing and reading operations in the stochastic RS device. The left panels depict the resistance and voltage over time
diagrams, and the right panels depict vacancy distributions at several time points of the specific operation as indicated by the color
coding; and the implicitR overV plot. (a) Systemprepared in state 0 by several writing cycles  0 1 0, thenwrite 1 operation. (b)
Systemprepared in state 1 by several writing cycles  1 0 1, thenwrite 0 operation. (c) Systemprepared in state 0, then reading
operation. (d) Systemprepared in state 1, then reading operation.Writing operationswith =V 5000 , reading operationwith

=V 2500 , all other parameters as infigure 2.
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where erf ( )x denotes the error function. The corresponding results are plotted infigure 11.We conclude that for
an average vacancy occupation per lattice site of á ñN 10i we are secure independently of the number of cycles.
Hence, the unambiguity of the reading establishes a lower boundary for the optimal particle number, while the
clarity of the RS effect is emphasizedwith lower particle numbers. This favors a intermediate range of the optimal
average particle number of about = å = á ñ =·N N N100 1000i i ioptimal particles.

We note that the number of vacancies scales with the size of the device. Hence, the risk of erroneous read-
outs limits the possible degree ofminiaturization. In a rough estimate, wefind that this translates into a length of
about 18 nm, assuming a cubical element of lanthanum-strontiummanganite La1−xSrxMnO3−x/2 with a
vacancy density of x= 0.3 [41].

In actual systems, there is intrinsic asymmetry between the upper and lower electrodes, which can be
reflected by different heights of the left and rightflank of the resistivity profileAi in our system. This will result in
two different leg lengths in the resistance diagrams, but does not change the stochastic fluctuations, i.e. the
results for the discriminability apply to this scenario as well.

5. Conclusion

Resistive switching is a topical and high current interest field in condensedmatter physics and a prototype of a
nonlinear stochastic switching event. Itsmain application, the non-volatile ReRam, is a promising candidate for
futurememory technologies. The scaling to small elements however, leads to an increasing role offluctuations.
It is therefore required, to have an understanding of the switchingmechanism and the reliability under the
influence of thesefluctuations.Herewe develop a particle basedmesoscopicmodel based on the distribution of
oxygen vacancies. Fluctuations caused by the stochasticity of theirmotion both enhance the resistive contrast

Figure 10.Resistances after several repeats (=cycles) of read and reset operations, for different average particle numbers per lattice
site, (a) á ñ =N 0.2i and (b) á ñ =N 178i . Other parameters as infigure 2.

Figure 11.Discriminability and associated probability of a reading error as a function of the average particle number for various
numbers of read–reset-cycles. The inset denotes the optimal reading and reset voltages, i.e., those forwhich the reading resistance
drops to aminimumand the reset resistance is close to the value reached in thewriting cycle, respectively. Other parameters as in
figure 2.

11

New J. Phys. 19 (2017) 093007 PKRadtke et al



and reduce the reliability of the resistive switch. These counteracting tendencies enable us to predict a limit to
miniaturization and an optimal system size.

We have introduced a setup to describe a complementary resistivememory switch based on a discrete
particle hoppingmodel. Hereby, the spatial distribution of oxygen vacancies plays the vital part in determining
the state of the system, which switches between a high and low resistive state. The vacancies’ dynamics is given by
amaster equationwith transition rates depending on the vacancy distribution and an external voltage driving.

The application of voltage pulses led to an accumulation of vacancies near the electrode–TMO interface. An
antagonistic pulse then sets these accumulations inmotion and they collectively wander through the system,
thereby affecting the resistance. By formulating the problem in a particle picture, we gained a tool to vary the
accompanying fluctuations: less vacancies,more fluctuations.We looked at the characteristics that define anRS
element, such as the spread between the high and low resistance, and discovered that they becomemore
pronouncedwith increasingfluctuations.

The nature of this collective vacancymotion could be elucidated by deriving a nonlinear continuity equation
in aMFA from themaster equation in continuum space. It has the structure of a Burgers equationwith an
additional non-local factor, that also incorporates the influence of the driving.We succeeded at numerically
integrating this equation tofind good agreement with the results gained by particle simulations. Hence, we
interpreted themotion of the vacancies as a nonlinear travelingwave.

Further, we defined binary logical states in terms of the underlying particle distributions. By linking the
actions of voltage pulses to switches between these states, we have established the reading andwriting operations
necessary to run amemory element. Interestingly, investigations in the stability and discriminability of these
operations let us gain a lower limit for the possible number of vacancies in the system, a quantity that is
connectedwith the possible level ofminiaturization. Together with the finding of enhanced RS-characteristics
for fewer vacancies, this results in an optimal performance for about 1000 oxygen vacancies, which corresponds
to a device length of about 18 nm.
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AppendixA.Derivation of the Burgers’ equation

In this appendix, we derive a wave equation from themaster equation that governs our system.We proceed in
two steps: atfirst, wemanipulate the discreteMaster equation to gain the time derivation of the average
occupation of a lattice site.With this result, we then introduce the continuum limit and expand it to the second
order. In themaster equation

      
 
å= -  ¢ + ¢  ¢
¢ ¹

( ) ( ( ) ( ) ( ) ( )) ( )
{ }t

P t W P t W P t
d

d
, , , , A1

a configuration of lattice occupations is denoted by  = ( )N N N, , , L1 2 and { } is the set of all possible
configurations.With it, we can express the time derivative of an individual lattice site occupation á ñṄk as



åá ñ = ( ) ( )
{ }t

N
t

N P t
d

d

d

d
, A2k k

     
  
å å= -  ¢ + ¢  ¢

¢ ¹

( ( ) ( ) ( ) ( )) ( )
{ } { }

N W P t W P t, , . A3k

Since only hopping between neighboring sites is allowed, the number of possible transitions is vastly reduced. By
¢ = ¢ ¢+ ( )N N, , ,i i 1 we denote a configuration, that differs from  only at the ith and +i 1th position,
where it takes the values ¢Ni and ¢+Ni 1, respectively. The remaining transitions of the second sumof
equation (A3) can nowbewritten explicitly, yielding
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We seek to collect the terms in the brackets by performing a substitution  = ¢N N1i i , such that the probability
function depends on a configuration ¢ that is not altered by subtraction or addition of a particle. This
substitution can either affectNk or not. First, the terms of equation (A4)without particle hop at the kth position:
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Since the summation is done over all possible configurations in both sums, we can rename ¢ to  and see that
all summands vanish. In the remaining terms the hopping involve the particles at the kth position, and hence
substitutions affect the prefactorNk in equation (A4),
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Relabelling themarked quantities ¢ to unmarked ones shows that all expressions with prefactorNk cancel each
other out. This leaves us only with
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The transition ratesW can nowbe connected to the reaction rates equation (5) by considering the
proportionality with the number of particlesNi at an individual lattice site,

  - + = = -+  +
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With the further introduction of the density offilled oxygen vacancies ≔n N Ni i 0, equation (A7) becomes

á ñ = -á ñ + á ñ + á ñ - á ñ - + +  - -   +( ) ( )
t

n t n w n w n w n w
d

d
. A9k k k k k k k k k k k k k1 1 1 1 1 1

In this part, we introduce the continuum limit of themaster equation in aMFA. TheMFAnowdecouples the
two point and higher order correlations, resulting in
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á ñ = á ñ - á ñ á ñ
- D( ) ( )n w n n1 e e . A10i i j i j

E VA i

Next, we introduce the lattice spacing ò between neighboring sites and define ≔x i . The continuum limit is
taken by letting the lattice spacing become infinitesimal while the number of lattice sitesN runs to infinity, in
such away that the product of both remains the constant lattice length  = ¥ N Llim N0, . Let the averaged
density profile be denoted by r ( )x t, , from the relation





ò rá ñ =
+

( ) ( ) ( )
( )

n t x x td , A11i

i

i

1

we obtain  r = = á ñ( ) ( )x t n ti , i . The hopping rates that formerly depended upon the density of neighboring
lattice sites nowdepend on those at an infinitesimal distance ò, whichwill obviously introduce an derivation. The
continuumcounterpart of the voltage drop equation (6)

D 
¶
¶

( )V
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x
A12i

further introduces a sign depending onwhetherwe consider forward ( = +∣ ∣) or backward ( = -∣ ∣)fluxes,
for it is a directed quantity. Entering this into theMFAhopping rate equation (A10) yields
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The density is expanded up to the second order in ρ according to
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With the definitions of the hyberbolic functions follows
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In the last recast, we have also disregarded the  2 order in the sinh term. As the electrical current through the
system is not position dependent, we express local voltage in the followingway (see equation (6))
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thereby splitting it in a non-local and local component. Bearing inmind the continuity equation
r¶ + =t jdiv 0, wewant to put the spatial derivation in fromof the right-hand side of equation (A15). Since the

inner derivatives of the hyperbolic functions introduce a further order in ò, we disregard these terms and the
hyperbolic functions commutewith the derivation operator.We gain
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fromwhichwe can easily read the expression for the diffuse and directed oxygen vacancy flux, = +j j jdir diff .
Finally, by further expanding the hyberbolic functions to thefirst order, we obtain the expression
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By rescaling the time, the prefactor  -( )Eexp A
2 can be eliminated. Thefinal equation reads

r r r
¶
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x t x t I t A x x t, , 2 , . A19x x
2 2

It can be compared to the generic viscous Burgers equation, n¶ = ¶ - ¶u u u1 2t x x
2 2, with the viscosity ν. So

equation (A19) is a Burgers-like equationwith a current and resistance profile dependent prefactor.
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Appendix B.Notes on the numerics

B.1. General remarks
Herewe specify our assumptions for the formof the resistance profileA(x).While Rozenberg et al [30] used a
step profile, for simulation purposes it is feasible to smoothen out the regions between the steps. Also, from a
physical point of view, a smoother conduit seems reasonable, since both regions are essentially of the same
material. The analytical formwas given by equation (3). The higher k is, themore rapid the transition fromhigh
to low resistivity occurs. For all simulations, we choose the parameter set k=20, L=1 and =x L 0.10 .
Obviously, the limit  ¥k gives a step profile forA(x). For the discretized simulation, the number of lattice
sites is set to =N 100LS .

Given a device of length L that has a certain total resistanceR, the resistance profile cannot be independent of
the number of lattice sites we choose, but scales with it. If for some simulations for example due to numerical
expenditure, we need to reduce the number of lattice sites,Ai scales accordingly. In fact, we should think of the
resistance profile that is introduced in equation (2) as a resistance per length

å= =˜ ˜ ( )R
L

N
A

N

N
A

L

N
A, . B1

i
i

i
i i

LS 0 LS

We then choose A and A according to the resistances wewant to accomplish, and the number of lattice sites,
whereas the lengthD plays no role. Concerning the dynamics, the relative differences inAi aremore important
than its absolute value, whose influence can just as well be scaledwith other parameters, such as the strength of
the driving signal,V0. Further calculations are donewith = WA 100 and = WA 1 .

The initial distribution of vacancies is chosen in such away, that all the lattice site contribute equally to the
resistance. This choiceminimizes the necessary thermalization time of the system. As the individual sites’
resistance is proportional toAi (see equation (2)), the individual vacancies are placed at site i according to the
probability
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In effect, all sites then contributewith
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for the choice of parameters of the simulations, seefigure 2, this yields the normalization WR 1.760 .

B.2.Numerical integration of the Burgers equation
The generalized Burgers equation is a nonlinearflux transport equation, which can be cast intoweak formon
multiplication by a suitable test function,ψ and integrating by parts
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The neglected boundary terms ensure that the natural boundary conditions are enforced: noflux out of the
domain.

We discretise solve equation (B4) using piecewise quadratic finite elements for the unknown density ρ. The
non-local term I(t) is handled by treating it as an independent additional variable with the defining equation
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This equation is assembled in the same integration loop over the elements used to construct the discrete
nonlinear residuals from equation (B4).

The nonlinear residuals are assembled and solved by theC++ libraryoomph-lib [42]. Time is advanced
by an implicit second-order backward differencemethod (BDF2). The resultingmatrix system is solved by a
direct solver. Adaptivity in space and time is required to achieve accurate results and it has been confirmed that
the results do not change if the error tolerances are reduced.
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