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Abstract: Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media 

for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact 

that important information concerning their local interactions is still lacking. Due to their small 

size, SPIO have great potential for magnetically labeling different cell populations, facilitating 

their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and 

tissue homoeostasis should be studied thoroughly. We have previously published data showing 

how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary 

microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge 

of VSOP interactions on the three-dimensional multicellular level, we further examined the 

influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice 

cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 

treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 

and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not 

affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial 

depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. 

These results are in line with our previous findings in cell coculture experiments regarding 

microglial protection of neurite branching. Thus, we have not only clarified the interaction 

between VSOP, slice culture, and microglia to a degree but also demonstrated that our model 

is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

Keywords: VSOP, SPIO, hippocampus, organotypic, viability

Introduction
Contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIO), are 

essential tools for diagnostic imaging in medicine. SPIO are suitable for magnetic 

resonance imaging (MRI) and are classified according to their size and structure into 

defined groups. They possess an iron oxide core of 5–8 nm and are stabilized with 

dextran or carboxydextran to an overall diameter of 50–120 nm.1 Using monomeric 

coating materials, it was possible to develop small monomer-coated SPIO. One very 

promising subgroup is citrate-coated very small superparamagnetic iron oxide particles 

(VSOP), which have a diameter of 7–10 nm.2

VSOP facilitate the binding of antigens or antibodies on their surface.3–6 None-

theless, even after such modifications, VSOP are still small enough for extravasation 

between capillary fenestrae and endothelial gaps.7 In addition, VSOP can reliably mark 

specific cells and assist in their subsequent detection in in vivo migration.8–10 It was 

thus possible to monitor implanted VSOP-labeled neuronal progenitors over 6 weeks 
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in addition to different kinds of immune competent cells.11,12 

For that purpose, neutrophil granule cells and T cells were 

tagged with nanoparticles ex vivo, intravenously injected, 

and traced via MRI at inflammatory sites.13–15

Although VSOP have been tested in clinical phase II 

trials, further assessment of cytotoxic effects is crucial.16,17 

SPIO can release free iron ions while degrading, subsequently 

altering cell cycle iron metabolism and potentially leading 

to an iron-catalyzed generation of reactive oxygen species, 

which increases mitochondrial dysfunction.18,19

So far, the cytotoxic effects of SPIO have been contro-

versially discussed in the literature. Most publications have 

found no cytotoxic effects of SPIO on human mesenchymal 

stem cells, murine embryonic stem cells, or neuronal stem 

cells.11,20–25 In contrast, Soenen et al showed that high intracel-

lular concentrations of SPIO limited the proliferation capacity 

of murine fibroblasts and neural progenitor cells via impaired 

actin-mediated signaling of cytoskeletal changes.26,27

Previously, we published data on the promotion of neurite 

outgrowth using a high concentration of VSOP-R2 in neuron-

glia cocultures in contrast to the degeneration of neurons 

after VSOP exposure in neuronal cell cultures.28 After 

obtaining this significant information on VSOP interaction 

using primary cell cultures and primary cell cocultures, we 

analyzed the particle and cell type-induced effects caused by 

VSOP treatment within a more complex setup of organotypic 

hippocampal slice culture (OHSC).

These tissue explants are widely used as a simplified, 

advantageous in vitro system for studying regeneration and 

neurodegeneration.29 The neuronal organization of OHSC is 

simple compared to the neocortex, and the main cell types 

(eg, granular and pyramidal cells) are easily distinguishable. 

After explantation, the hippocampal region develops nearly 

as in vivo, offering the possibility of analyzing neurogenesis, 

neuronal layering, neuronal specificity, synaptic formation, 

and neuronal circuits.30 In addition, OHSC are relatively easy 

to prepare, simple to cultivate and, compared to a variety 

of in vivo models, allow reproducible long-term studies 

of their cellular microenvironment.31 Due to their mostly 

preserved cytoarchitecture, OHSC help fill the gap between 

primary cell cultures and animal experiments.

As shown in our previous experiments, nanoparticles are 

phagocytosed by microglia.28,32 Their stimulus-dependent 

activation with a transformation from a ramified resting 

form to an amoeboid cell type usually occurs as a conse-

quence of infection, tissue damage, or neurodegenerative 

disease.33 Chronically activated microglia can harm the 

surrounding cell population even up to apoptosis and can be 

detected after long-term nanoparticle exposure.34,35 In such 

cases, neurotoxic effects are initialized due to microglial 

secretion of pro-inflammatory and cytotoxic molecules.36–38 

However, their trigger-linked activation can also develop 

into a neuroprotective pathway, which includes the release 

of neurotropic and anti-inflammatory molecules.39 In any 

event, the morphology of microglia in combination with 

neuronal death or survival can give hints as to the interaction 

of neurons and microglia.

Here, we describe the influence of VSOP (hydrodynamic 

diameter of 6.1–8.7 nm) on the viability, cytokine secretion, 

and iron uptake of OHSC. For this purpose, hippocampal 

slices were short-term or long-term incubated with differ-

ent nanoparticle concentrations in the presence or absence 

of internal microglia.

We confirmed VSOP penetration in deep tissue layers and 

proved a time, but not VSOP-R1-dependent increase in cell 

death during long-term incubation. Additionally, long-term 

VSOP-R2 treatment altered neuronal viability exclusively 

within the hippocampal dentate gyrus (DG) after longer 

incubation at 19 days in vitro (DIV). Microglia depletion 

plus VSOP treatment significantly increased cell death 

throughout the slices during short-term incubation, whereas 

VSOP-R2 treatment alone only altered the cornu ammonis 

(CA) 3 region. We were also able to preclude VSOP-R1 and 

VSOP-R2 from affecting the cytokine homeostasis in our 

experimental setup by applying a multiple analyte immu-

noassay. In addition, using magnetic particle spectroscopy 

(MPS) for iron quantification, we could prove that microglia 

depletion decreases VSOP accumulation within the tissue. 

By applying Prussian blue (PB) iron staining and micro-

glia immunofluorescence labeling to VSOP-treated slices, 

we confirmed nanoparticle phagocytosis by amoeboid- 

shaped microglia.

Thus, not only is our OHSC technique a useful 

reproducible approach to screening nanoparticles that 

potentially alter neuronal viability, but we were also able to 

uncover the interaction between VSOP, slice cultures, and 

microglia in detail.

Methods
Animals
Animals were raised and supplied by the Forschungsein-

richtung für Experimentelle Medizin of the Charité- 

Universitätsmedizin Berlin, Germany. All experimental 

procedures were carried out in accordance with the German 

Animal Welfare Act and European guidelines (2010/63/EU) 

for the use of laboratory animals and were approved by 
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the local regulatory authority of Berlin (Landesamt für 

Gesundheit und Soziales [LaGeSo]; registration number 

T0095/11). All measures were taken to minimize the degree 

of suffering and the number of animals sacrificed. Postnatal 

(P0–P3) C57 B6/J mice of up to 3 days old were used for 

all experiments.

Nanoparticles
VSOP were produced and provided by the Charité Institute 

of Radiology. We applied two different citrate-coated VSOP 

consisted of monocrystalline iron oxide cores of magnetite 

(Fe
3
O

4
) and maghemite (γ-Fe

2
O

3
), which have been previ-

ously described in detail.28 VSOP-R1 have a Z-average of 

30.44 nm (standard deviation [SD] =2.09) measured by 

dynamic light scattering, a polydispersity index of 0.739, 

a hydrodynamic diameter of 6.1 nm with 75% of particles 

within 4.1–7.5 nm, an iron content of 26.4 g/L (0.473 M) 

as well as a relaxivity (0.94 Tesla) of R
1
=18.3 and R

2
=41.9. 

VSOP-R2 have a Z-average of 36.33 nm (SD =0.9), a poly-

dispersity index of 0.470, a hydrodynamic diameter of 8.7 nm 

with 75% of particles within 6.5–10.10 nm, an iron content 

of 27.2 g/L (0.487 M) as well as a relaxivity (0.94 Tesla) 

of R
1
=18.9 and R

2
=56.1. VSOP-R1 were applied in con-

centrations of 0.5 mM =27.91 mg/L, 1.0 mM =55.82 mg/L, 

2.0 mM =111.64 mg/L, and 3.0 mM =167.46 mg/L. VSOP-R2 

were applied in concentrations of 0.5 mM =27.93 mg/L, 

1.0 mM =55.86 mg/L, 2.0 mM =111.72 mg/L, and 3.0 mM = 
167.58 mg/L, respectively.

OHSC preparation and incubation
Hippocampal slice cultures with a thickness of 350 nm were 

prepared from P0 to P3 C57 B6/J mice as described before.31,40 

Up to six OHSC were cultivated on a single membrane 

(Millicell-CM, EMD Millipore, Billerica, MA, USA) in a six-

well plate at 37°C in humidified 5% CO
2
-enriched atmosphere. 

Each well was filled with 1.2 mL incubation medium that was 

changed after 1 DIV and every second day thereafter.

SPIO treatment
VSOP short-term incubation: after 7 days of equilibration 

post preparation (7 DIV) and two more days with or without 

microglia depletion, VSOP-R1 and VSOP-R2 were added 

to the medium at a concentration of 3.0 mM from 9 DIV 

until 11 DIV.

VSOP long-term incubation: VSOP-R1 and VSOP-R2 

were added to the co-culture incubation medium after 7 days 

of equilibration post preparation. From 7 DIV and in any 

replacement of medium until 19 DIV, concentrations of 0 mM 

(negative control), 0.5, 1.0, 2.0, and 3.0 mM VSOP-R1 and 

VSOP-R2 were applied.

Microglia depletion, lipopolysaccharide 
(LPS) stimulation, and glutamic 
acid-induced excitotoxicity
VSOP short-term incubation: microglia were depleted using 

a free dichloromethylenediphosphonic acid disodium salt 

(DMDP) treatment (Sigma-Aldrich Co., St Louis, MO, USA) 

for 48 h (7–9 DIV) at a concentration of 0.5 mg/mL. Cytokine 

secretion was induced using LPS Escherichia coli endotoxin 

application (Enzo Life Sciences, Inc., Farmingdale, NY, 

USA) at a concentration of 0.1 µg/mL. Neuronal excitotoxic-

ity was induced by glutamic acid treatment (Sigma-Aldrich) 

at a concentration of 10 mM. LPS and glutamate stimula-

tion were performed for 48 h (9–11 DIV). VSOP long-term 

incubation: glutamate treatment (10 mM) was applied from 

7 DIV and in any replacement of medium until 12 DIV.

Immunofluorescence staining
OHSC were fixed and permabilized as described before.41 

Briefly, nonspecific binding caused by hydrophobic inter-

actions of the secondary goat anti-mouse antibodies with 

endogenous mouse IgG or other cells was blocked for 30 min 

using 1% Triton X-100, 1% bovine serum albumin (both from 

Carl Roth, Karlsruhe, Germany) and 5% normal goat serum 

(Vector Laboratories, Burlingame, CA, USA) diluted in 0.1 

M phosphate-buffered saline (PBS). Afterward OHSC were 

washed three times for 20 min each in 0.1 M PBS. For every 

preparation an immunofluorescence staining overnight at 

4°C was performed using the following primary antibodies: 

rabbit anti-mouse neuronal nuclear antigen (NeuN, 1:750, 

Millipore) and mouse anti-mouse Calbindin D-28k (1:750) 

or mouse anti-mouse Calretinin (1:750, both from Swant, 

Marly, Switzerland). To verify intact OHSC cytoarchitecture 

after microglia depletion, immunofluorescent staining was 

performed as described before using the additional primary 

antibodies rabbit anti-mouse ionized calcium binding adapter 

molecule 1 (Iba1, 1:500, Wako Chemical, Richmond, VA, 

USA) and mouse anti-mouse glial fibrillary acidic protein 

(GFAP, 1:1,000, Sigma-Aldrich). Subsequently, sections 

were washed three times for 10 min with 0.1 M PBS and 

stained with fluorescent-conjugated secondary antibodies 

for 4 h at room temperature on a shaker. The following sec-

ondary antibodies were used: goat anti-mouse Alexa Fluor 

488 (1:500) and goat anti-rabbit Alexa Fluor 568 (1:500, 

both from Thermo Fisher Scientific, Waltham, MA, USA). 

After three washes for 10 min with 0.1 M PBS, the slices 
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were immersed for 5 min in DRAQ5 (1:5,000, eBioscience, 

San Diego, CA, USA) diluted in 0.1 M PBS for nuclei 

staining. Following three rinsing steps for 10 min each 

in 0.1 M PBS, the slices were embedded in Immu-Mount 

(Thermo Fisher Scientific) and coverslipped.

Hematoxylin and eosin (H&E) and PB 
iron staining of resliced OHSC
After 11 DIV, VSOP short-term incubation samples were 

fixed with 4% paraformaldehyde as described before. Sub-

sequently, slices were embedded in 4% agarose (Carl Roth) 

and resliced in 30 µm sections in 0.1 M PBS at 4°C using a 

HM650V vibratome equipped with a CU65 cooling device, a 

cooling element for buffer solution (all from Thermo Fisher 

Scientific), and a KL200 light source (Schott AG, Mainz, 

Germany). Afterward, hippocampal cytoarchitecture was 

visualized by a H&E procedure, and SPIO were traced by 

PB staining as described before.42,43 Resliced OHSC were 

embedded using Immu-Mount and coverslipped.

Confocal, bright field, and fluorescence 
microscopy
Confocal microscopy was performed using a Leica TCS SL 

microscope (Leica Microsystems, Mannheim, Germany) 

equipped with argon and helium-neon lasers with excitation 

wavelengths of 488, 543, and 633 nm, respectively. Bright 

field and immunofluorescence images were photographed 

using an Olympus BX 51 microscope with narrow band 

filters (Olympus Corporation, Tokyo, Japan) equipped with 

a Magnafire digital camera and Magnafire 2.1B software 

(Intas, Göttingen, Germany). Background correction and 

adjustment of brightness and contrast were performed using 

Leica LCS confocal software and ImageJ.

OHSC viability assay
Slice viability was analyzed using propidium iodide (PI, Carl 

Roth). PI was applied to the culture medium at a concentra-

tion of 5 µg/mL. Slices were incubated for 15 min at 37°C in a 

humidified 5% CO
2
-enriched atmosphere, followed by a 5 min 

washing step using fresh preheated culture medium. Thereafter, 

medium was changed, and long shots of unfixed slices were 

taken using an inverse Olympus IX 81 microscope equipped 

with a 1.25 object lens, a 1.6 Bertrand lens, an F-View II digital 

camera, and cellSens Dimension software (all from Olympus). 

Identical exposure time and instrument settings were used 

for PI measurements for all sections. Afterward, slices were 

incubated until the end of the test as described before. Data col-

lection was carried out using cellSens Dimension software.

VSOP short-term incubation: in total, 106 OHSC 

were analyzed from one experimental setup (12 OHSC 

for untreated control, 17 OHSC for DMDP, 18 OHSC for 

3.0 mM VSOP-R1, 18 OHSC for 3.0 mM VSOP-R1 + DMDP, 

17 OHSC for 3.0 mM VSOP-R2, 18 OHSC for 3.0 mM 

VSOP-R2 + DMDP, 6 OHSC for glutamate). Using cellSens 

Dimension software, regions of interest were defined sepa-

rately for DG, CA1, and CA3 for each slice. Statistical analy-

sis was performed with GraphPad Prism software (GraphPad 

Software, La Jolla, CA, USA) using two-way analysis of 

variance (ANOVA) with Dunnett and Sidak as post hoc tests. 

Data are presented as mean ± SD. *P,0.05, **P,0.01, and 

***P,0.001 were considered significant.

VSOP long-term incubation: for VSOP-R1 treatment, 

a total of 40 OHSC were analyzed from one experimental 

setup (8 OHSC for untreated control, 9 OHSC for 0.5 mM, 

9 OHSC for 1.0 mM, 7 OHSC for 2.0 mM, 7 OHSC for 

3.0 mM). For VSOP-R2 treatment, a total of 34 OHSC were 

analyzed from one experimental setup (7 OHSC for untreated 

control, 7 OHSC for 0.5 mM, 7 OHSC for 1.0 mM, 6 OHSC 

for 2.0 mM, 6 OHSC for 3.0 mM). Using cellSens Dimension 

software, regions of interest were defined separately for DG 

and CA3 for each slice. Statistical analysis was performed with 

GraphPad Prism software using two-way ANOVA and Bonfer-

roni post hoc tests. Data are presented as mean ± SD. *P,0.05, 

**P,0.01, and ***P,0.001 were considered significant.

Cytokine and chemokine evaluation
OHSC supernatants were collected at 11 DIV. The amount 

of C-X-C motif chemokine (CXCL1)/KC, granulocyte- 

macrophage colony-stimulating factor (GM-CSF), interleukin 

(IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, 

IL-17, IL-18, interferon (IFN-γ), monocyte chemoattrac-

tant protein (MCP)-1, and tumor necrosis factor (TNF)-α 

in OHSC supernatants was determined with a bead-based 

FlowCytomix multiple analyte immunoassay according 

to the manufacturer’s instructions (eBioscience). Super-

natant analysis was performed using a FACSCanto II flow 

cytometer equipped with FACSDiva software (both from 

BD Bioscience) and Flowcytomix software (eBioscience). 

Statistical analysis was performed with GraphPad Prism 

software using one-way ANOVA and Tukey test. In total, 

32 supernatants obtained from 192 OHSC (six slices per 

well) were analyzed from two different experimental setups. 

Measurements were performed using double determinations 

of every specimen (24 OHSC for untreated control, 24 OHSC 

for DMDP, 24 OHSC for LPS, 24 OHSC for DMDP + LPS,  

24 OHSC for 3.0 mM VSOP-R1, 24 OHSC for 3.0 mM 
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VSOP-R1 + DMDP; 24 OHSC for 3.0 mM VSOP-R2, 

24 OHSC for 3.0 mM VSOP-R2 + DMDP). Data are pre-

sented as mean ± SD. *P,0.05, **P,0.01, and ***P,0.001 

were considered significant.

MPS for iron quantification
At 11 DIV, OHSC were removed without fixation from the 

Millipore-CM membrane using a cell scraper. Subsequently, 

slices were washed with 0.1 M PBS and transferred into a 

polymerase chain reaction (PCR) tube. In total, 150 OHSC 

were analyzed from one experimental setup (30 OHSC for 

untreated control, 30 OHSC for 3.0 mM VSOP-R1, 30 OHSC 

for 3.0 mM VSOP-R1 + DMDP, 30 OHSC for 3.0 mM 

VSOP-R2, 30 OHSC for 3.0 mM VSOP-R2 + DMDP). Six 

OHSC of each group were placed in each PCR tube for a 

single measurement. MPS measurements were performed 

as described before.44

Statistical analysis was performed with GraphPad Prism 

software using one-way ANOVA and Tukey post hoc test. 

Data are presented as mean ± SD. *P,0.05, **P,0.01, and 

***P,0.001 were considered significant.

Results
OHSC cytoarchitecture is maintained 
during incubation
After 11 or 19 DIV, hippocampal cytoarchitecture was visual-

ized by immunofluorescence labeling to ensure preserved cellu-

lar tissue organization and a valid cutting angle (Figure 1A–H). 

Using Calbindin, Calretinin, DRAQ5, and NeuN staining, we 

clearly distinguished the CA1 from the CA3 and DG regions 

and assured a maintained hippocampal cytoarchitecture.

VSOP long-term incubation: OHSC viability 
decreases equally in a time-dependent 
manner
VSOP-R2 treatment increases cell death within the DG 

region between 13 DIV and 19 DIV. The influence of 

VSOP-R1 and VSOP-R2 on murine OHSC viability was 

Figure 1 Cytoarchitecture of murine hippocampal slices and experimental setups.
Notes: (A–H) Confocal images of two individual hippocampal slice cultures after 11 DIV showing maintained neuronal cytoarchitecture. Scale bar =300 µm. (A) DRAQ5 
ubiquitous nuclear staining (red); solid lines demonstrate the outer edge of the slice; dotted line surrounds the CA; double line defines the DG, between CA3 and SUB. 
(B) NeuN, neuronal nuclei labeling (green) visualizes mature neurons primarily in the CA region. (C) Calbindin D-28k staining (white) shows hippocampal interneurons 
located in the CA1 and DG areas. (D) Merge of (A–C). (E) DRAQ5 staining. (F) NeuN labeling. (G) Calretinin staining (cyan) shows the hippocampal hilus located in the DG 
area. (H) Merge of (E–G). (I) Experimental setup for slice culture VSOP long-term incubation. (J) Experimental setup for slice culture VSOP short-term incubation.
Abbreviations: CA, cornu ammonis; DG, dentate gyrus; DIV, days in vitro; H&E, hematoxylin and eosin; LPS, lipopolysaccharide; OHSC, organotypic hippocampal slice 
culture; PI, propidium iodide; SUB, subiculum; VSOP, very small superparamagnetic iron oxide particles.

 
In

te
rn

at
io

na
l J

ou
rn

al
 o

f N
an

om
ed

ic
in

e 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/ b
y 

87
.7

7.
11

8.
21

2 
on

 2
5-

A
pr

-2
01

7
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1582

Pohland et al

tested after 7 days of equilibration post preparation. For 

this purpose, different SPIO concentrations (0.5–3.0 mM) 

were used over a 12-day incubation period. PI assay was 

continuously performed at 7 DIV, 13 DIV, and 19 DIV in 

order to visualize dying or dead cells that have lost their  

membrane integrity within the hippocampal CA1 and DG 

regions. Representative images of OHSC treated with 

VSOP-R1 are shown in Figure 2A–H and in Figure 2K–R 

for VSOP-R2. Hippocampal slices without VSOP incuba-

tion served as negative controls (Figure 2I and J); 10 mM 

Figure 2 Time- and VSOP-dependent decrease in OHSC viability.
Notes: (A–T) PI fluorescence images of representative hippocampal slices shown in inverted colors. Pictures were taken after 7 days of equilibration time post 
preparation (7 DIV), and after 12 DIV and 19 DIV of treatment with and without different concentrations of VSOP-R1 and VSOP-R2 as well as 10 mM of Glut, CA, DG, 
SUB. Scale bar =500 µm. (A) Same hippocampal slice before and (B) after 0.5 mM VSOP-R1 treatment. (C) Identical hippocampal slice before and (D) after 1.0 mM VSOP-R1 
treatment. (E) Same hippocampal slice before and (F) after 2.0 mM VSOP-R1 treatment. (G) Identical hippocampal slice before and (H) after 3.0 mM VSOP-R1 treatment. 
(I) Same negative control without VSOP treatment at 7 DIV and 19 DIV (J). (K) Identical hippocampal slice before and (L) after 0.5 mM VSOP-R2 treatment. (M) Same 
hippocampal slice before and (N) after 1.0 mM VSOP-R2 treatment. (O) Identical hippocampal slice before and (P) after 2.0 mM VSOP-R2 treatment. (Q) Same hippocampal 
slice before and (R) after 3.0 mM VSOP-R2 treatment. (S) Identical positive control with 10 mM Glut treatment at 7 DIV and 12 DIV (T). (U–X) Integrated PI fluorescence 
intensities after VSOP-R1 and VSOP-R2 treatment analyzed between 7 DIV and 19 DIV show a time-dependent decrease in viability in the CA1 and DG regions. Long-term 
VSOP-R2 treatment (1.0–3.0 mM) alters DG viability at 19 DIV. (U) VSOP-R1 incubation did not affect hippocampal CA1 viability (error bars represent SD, number of slices: 
n=8 for untreated control; n=7–9 for 0.5 mM; n=8/9 for 1.0 mM; n=7 for 2.0 mM; n=7 for 3.0 mM). (V) Treatment using VSOP-R1 did not alter hippocampal DG viability 
(error bars represent SD, number of slices: n=8 for untreated control; n=7–9 for 0.5 mM; n=8/9 for 1.0 mM; n=7 for 2.0 mM; n=7 for 3.0 mM). (W) VSOP-R2 incubation 
did not affect hippocampal CA1 viability (error bars represent SD, number of slices: n=8 for untreated control; n=7 for 0.5 mM; n=7 for 1.0 mM; n=6 for 2.0 mM; n=6 for 
3.0 mM). (X) Treatment using 1.0–3.0 mM VSOP-R2 decreased hippocampal DG viability at 19 DIV (error bars represent SD, number of slices: n=8 for untreated control; 
n=7 for 0.5 mM; n=7 for 1.0 mM; n=6 for 2.0 mM; n=6 for 3.0 mM; **P,0.01, and ***P,0.001 were considered significant).
Abbreviations: CA, cornu ammonis; DG, dentate gyrus; DIV, days in vitro; Glut, glutamate; Neg, negative; OHSC, organotypic hippocampal slice culture; PI, propidium 
iodide; Pos, positive; SD, standard deviation; SUB, subiculum; VSOP, very small superparamagnetic iron oxide particles.
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glutamate treatment to induce cell death served as positive 

control (Figure 2S and T). Due to glutamate excitotoxicity, 

we could only analyze these slices until 12 DIV because 

treated slices detached from the membrane.

Statistical analysis representing the integrated PI fluo-

rescence intensities of the CA1 and DG regions in terms 

of VSOP treatment are shown in Figure 2U–X. On the one 

hand, we found an overall decrease in OHSC viability in a 

time-dependent manner, whereas an equal degree of cell 

death was already detectable at 7 DIV in all groups. During 

OHSC incubation, DG and CA1 integrated PI fluorescence 

intensity roughly doubled in the negative control as well as 

in VSOP-treated specimens between 7 DIV and 13 DIV. 

Until 19 DIV, this was followed by an additional reduction of 

viability within the regions of interest. We found no statistical 

differences between the control groups and VSOP-R1 

treatment either in CA1 (Figure 2U) nor in DG (Figure 2V). 

Notwithstanding this, it has to be noted that there is an 

apparent tendency for VSOP-R1 to affect DG neurons. Apart 

from 1.0 mM VSOP-R2 treatment (Figure 2W), no obvious 

correlation between increasing concentration and cell death 

was visible in CA1. In contrast, VSOP-R2 significantly 

increased cell death within the DG region (Figure 2X) exclu-

sively at 19 DIV in concentrations of 1.0–3.0 mM.

VSOP penetrate deeper layers of OHSC
Hippocampal slices were short-term treated using 3.0 mM 

VSOP-R1 and VSOP-R2. After 9 days of equilibration post 

preparation, OHSC were exposed to VSOP until 11 DIV. 

We used H&E and PB staining to visualize tissue cytoarchi

tecture and iron deposits, respectively, and confirmed the 

absence of iron or VSOP in the untreated control (Figure 3A). 

We proved the presence of iron or VSOP in OHSC treated with 

VSOP-R1 (Figure 3B) and VSOP-R2 (data not shown). Subse-

quently, VSOP-treated OHSC were resliced into sections with 

a thickness of 30 µm each (schematic drawing in Figure 3C). 

On the one hand, we could confirm cellular VSOP accumula-

tion in successive sections of individual OHSC (Figure 3D–L) 

and proved VSOP penetration of up to 150 µm deep (section 5 

in Figure 3J–L). On the other hand, we found a decline in 

the quantity of PB-labeled cells with increasing section 

distance to the membrane. In addition, VSOP-containing 

cells primarily showed an amoeboid-like shape (Figure 3F), 

indicating microglial nanoparticle phagocytosis.

DMDP treatment decreased the amount 
of microglia and altered OHSC viability
Compared to controls (Figure 4A), we found an ~90% 

decrease in the amount of microglia in DMDP-incubated 

specimens (Figure 4B), whereas astroglia was not affected 

(Figure 4C and D). Using a PI viability assay, we found that 

microglia depletion significantly increased cell death of the 

remaining population (Figure 4O, P, and S–V).

VSOP short-term incubation: high doses 
of VSOP decreased OHSC viability
Prior microglia depletion increased the impact of VSOP 

application The influence of high VSOP-R1 and VSOP-R2 

doses of 3.0 mM on murine OHSC viability was tested during 

short-term incubation. PI assay was performed at 9 DIV before 

VSOP treatment and afterward at 11 DIV. Representative 

images of OHSC incubated with VSOP-R1 with and without 

microglia depletion are shown in Figure 4E–L for VSOP-R2. 

Hippocampal slices without any treatment served as negative 

controls (Figure 4M and N), 0.5 mg/mL DMDP was used as 

depletion control (Figure 4O and P), and 10 mM glutamate 

incubation functioned as positive control (Figure 4Q and R). 

The fluorescence images clearly show a VSOP-dependent 

increase in cell death in OHSC, with previous microglia 

depletion additionally enhancing cytotoxicity (Figure 4E–L). 

These results are in line with the statistical analysis (two-

way ANOVA, Dunnett and Sidak tests), representing the 

integrated PI fluorescence intensities of the DG, CA1, and 

CA3 in terms of VSOP treatment (Figure 4S–V). In all areas, 

we observed a roughly threefold DMDP-induced decrease 

in OHSC viability compared to the control. In addition, 

VSOP-R1 treatment without DMDP altered all regions 

of interest significantly. In contrast, VSOP-R2 treatment 

exclusively affected the CA3 region but did not change 

cell viability in DG and CA1. VSOP and DMDP treatment 

maximized hippocampal cell death in general.

VSOP treatment did not change cytokine 
homeostasis
We analyzed cytokine secretion in OHSC supernatants after 

VSOP short-term incubation at 11 DIV. The release of anti- 

and pro-inflammatory as well as stimulating factors was inves-

tigated. We identified secreted CXCL1/KC, IL-6, MCP-1,  

and TNF-α utilizing our experimental setup (Figure 4W–Z). 

Statistical analysis (one-way ANOVA and Tukey test) did 

not confirm any difference between the negative control 

and VSOP-treated group. Due to a relatively high SD, the 

tendency that both VSOP-R1 and VSOP-R2 induced higher 

levels of MCP-1 in the supernatant has to be noted, even 

though it is not significant. However, LPS stimulus signifi-

cantly induced the secretion of CXCL1/KC, IL-6, MCP-1, 

and TNF-α. In comparison, previous DMDP incubation 

substantially reduced the endotoxin-caused cytokine release. 
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Figure 3 VSOP penetrate deeper layers of hippocampal slices.
Notes: (A) Bright field image of a hippocampal slice without VSOP treatment shows no PB staining. Furthermore, hematoxylin and eosin (H&E) staining was performed to 
reveal cytoarchitecture, CA, DG, SUB. (B) Using 48 h VSOP-R1 (3 mM) short-term treatment until 11 DIV and PB + H&E staining, iron or VSOP-loaded cells can be detected. 
Scale bar =200 µm. (C) Schematic drawing of the sectional planes (S1–S6) obtained by reslicing the hippocampal explants using a vibratome. S1 represents the closest slice 
to the semipermeable membrane, S6 is the furthest away; each slice is 30 µm thick. The green area indicates the CA region. (D–L) Selected vibratome sectional planes of 
an individual hippocampal slice treated with 3 mM VSOP-R1 for 48 h until 11 DIV after PB + H&E staining. Scale bar (D/G/J) =200 µm; scale bar (E/H/K) =100 µm; scale bar 
(F/I/L) =25 µm. (D) Overview of the S1 (0–30 µm) plane. (E) Section of (D black box) at a higher magnification shows several PB-labeled cells (black arrows). (F) Magnified 
section of (E) depicts VSOP-R1-loaded cells in detail. (G) Overview of the S3 (60–90 µm) plane. (H) Section of (G) at a higher magnification shows PB-labeled cells, where 
their quantity and staining intensity were decreased compared to S1. (I) Magnified section of (H). (J) Overview of the S3 (120–150 µm) plane. (K) Section of (J) at a higher 
magnification shows one PB-labeled cell. (L) Magnified section of (K).
Abbreviations: CA, cornu ammonis; DG, dentate gyrus; DIV, days in vitro; Neg, negative; PB, Prussian blue; SUB, subiculum; VSOP, very small superparamagnetic iron 
oxide particles.
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Figure 4 (Continued)

Neither VSOP nor LPS treatment induced the release of 

GM-CSF, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12p70, 

IL-17, IL-18, or IFN-ɣ (data not shown).

Microglia depletion decreased VSOP uptake
The OHSC iron content was quantified after nanoparticle 

short-term incubation at 11 DIV. Statistical analysis of 

MPS confirmed the uptake of VSOP-R1 and VSOP-R2 and, 

therefore, significantly increased iron levels (Figure 5). No 

differences in the amounts of iron were detectable between 

both groups. However, the DMDP and nanoparticle-treated 

samples showed a significantly reduced iron uptake com-

pared to exclusively VSOP-incubated OHSC. Because of 

the high sensitivity of the MPS measurement, a low iron 

content was detected in the untreated controls (data not 

shown) and subtracted from the other results. We attributed 

the general iron basis level to tissue handling and sample 

processing.
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Discussion
Before applying SPIO on a large scale in humans, it is 

important to carefully analyze their interactions concerning 

cell viability, cytotoxicity, and tissue homoeostasis. So far, 

VSOP have been tested in vitro and in vivo by means of 

immortalized or primary cell cultures, animal models, 

and human probands.2,17,28,44,45 In our view, further studies 

and assessments using OHSC are imperative. On the one 

hand, cell culture experiments exclude questions regarding 

VSOP interactions on the three-dimensional multicellular 

level. Additionally, cell lines have modified proliferation, an 

altered intrinsic physiology, and a changed life cycle. On the 

other hand, in vivo models often require high experimental 

expenditure and complicate local long-term analysis under 

constant conditions.

This study extends our previous findings by analyzing the 

impact of VSOP using hippocampal slice cultures.28 In this 

context, we focused on the assessment of cell viability, 

cytokine secretion, iron uptake, and VSOP interactions with 

cells and tissue.

We carefully calculated the concentration range of SPIO, 

and we applied based on literature findings. Several publica-

tions using in vitro cell culture models of the blood–brain 

barrier proved that 30%–40% of the applied SPIO can cross 

this obstacle depending on the magnetic field force or/and 

surface coating.46–48 In vivo studies using rodents have shown 

that 17%–30% of injected SPIO overcome the intact blood–

brain barrier.49,50

In humans, a dose of 0.075 mM iron/kg bodyweight, as 

demonstrated for VSOP, leads to a plasma concentration 

Figure 4 DMDP treatment decreased the amount of microglia and altered OHSC viability.
Notes: VSOP treatment did not change chemokine and cytokine homeostasis but contributed with and without microglia depletion to increasing neuronal cell death. 
(A–D) Confocal images of the microglia depletion experiments. Scale bar =300 µm. (A) Iba1-microglia staining (red) of the control slice without depletion; CA, DG, 
SUB. (B) Microglia labeling of the control slice with depletion shows decreased amount of Iba1-positive cells compared to (A). (C) GFAP-astrocyte (green) staining of 
the control slice with microglia depletion shows maintained cellular astrocytic organization. (D) Merge of (B) and (C). (E–R) PI fluorescence images of representative 
hippocampal slices shown in inverted colors. The first and third columns of the pictures were taken after 7 days of equilibration time post preparation and 2 more days 
with or without microglia depletion until 9 DIV. The second and fourth columns of the images were photographed after 2 more days of incubation using identical slices and 
treatment with or without 3.0 mM VSOP-R1 and VSOP-R2 or 10 mM of Glut until 11 DIV. Scale bar =500 µm. (E) Same hippocampal slice before and (F) after 3.0 mM  
VSOP-R1 treatment. (G) Identical hippocampal slice with depleted microglia before and (H) after 3.0 mM VSOP-R1 treatment. (I) Same hippocampal slice before and 
(J) after 3.0 mM VSOP-R2 treatment. (K) Identical hippocampal slice with depleted microglia before and (L) after 3.0 mM VSOP-R2 treatment. (M) Same negative control 
without VSOP treatment at 9 DIV and 11 DIV (N). (O) Identical control with microglia depletion without VSOP treatment at 9 DIV and 11 DIV (P). (Q) Same positive 
control with 10 mM Glut treatment at 9 DIV and 11 DIV (R). (S–U) Integrated PI fluorescence intensities of hippocampal slices with or without microglia depletion before  
(9 DIV) and after (11 DIV) 3.0 mM VSOP-R1 or VSOP-R2 treatment and Glut incubation. CA1, CA3, and DG regions were analyzed. (S) Microglia depletion with and without 
VSOP-R1 incubation affects hippocampal CA1 viability but not VSOP-R2 alone (error bars represent SD, number of slices: n=12 for untreated control; n=17 for DMDP; 
n=18 for 3.0 mM VSOP-R1; n=18 for 3.0 mM VSOP-R1 + DMDP; n=17 for 3.0 mM VSOP-R2; n=18 for 3.0 mM VSOP-R2 + DMDP; n=6 for Glut). (T) Microglia depletion 
with and without VSOP-R1/R2 incubation alters hippocampal CA3 viability (error bars represent SD, number of slices: n=12 for untreated control; n=17 for DMDP; n=18 
for 3.0 mM VSOP-R1; n=18 for 3.0 mM VSOP-R1 + DMDP; n=17 for 3.0 mM VSOP-R2; n=18 for 3.0 mM VSOP-R2 + DMDP; n=6 for Glut). (U) Microglia depletion with 
and without VSOP-R1 incubation affects hippocampal DG viability but not VSOP-R2 alone (error bars represent SD, number of slices: n=12 for untreated control; n=17 for 
DMDP; n=18 for 3.0 mM VSOP-R1; n=18 for 3.0 mM VSOP-R1 + DMDP; n=17 for 3.0 mM VSOP-R2; n=18 for 3.0 mM VSOP-R2 + DMDP; n=6 for Glut). (V) Summarized 
statistical analysis of (S–U); NS = not significant, **P,0.01, and ***P,0.001 were considered significant. (W–Z) Hippocampal slice culture cytokine secretion analysis 
measured after VSOP treatment with or without microglia depletion in the supernatant at 11 DIV. (W) Microglia depletion with and without VSOP incubation did 
not affect CXCL1/KC secretion (error bars represent SD, number of supernatant double determinations for all groups: n=4; ***P,0.001 was considered significant).  
(X) Microglia depletion with and without VSOP treatment did not alter IL-6 secretion (error bars represent SD, number of supernatant double determinations for all groups: 
***P,0.001 was considered significant). (Y) Microglia depletion with and without VSOP incubation did not affect MCP-1 secretion (error bars represent SD, number of 
supernatant double determinations for all groups: n=4; ***P,0.001 was considered significant). (Z) Microglia depletion with and without VSOP treatment did not alter TNF-
alpha secretion (error bars represent SD, number of supernatant double determinations for all groups: n=4; ***P,0.001 was considered significant).
Abbreviations: CA, cornu ammonis; CXCL1, C-X-C motif chemokine; DG, dentate gyrus; DIV, days in vitro; DMDP, dichloromethylenediphosphonic acid disodium salt; 
GFAP, glial fibrillary acidic protein; Glut, glutamate; GM-CSF, granulocyte-macrophage colony-stimulating factor; Iba1, ionized calcium binding adapter molecule 1; IFN, 
interferon; IL, interleukin; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; Neg, negative; OHSC, organotypic hippocampal slice culture; PI, propidium 
iodide; Pos, positive; SD, standard deviation; SUB, subiculum; TNF, tumor necrosis factor; VSOP, very small superparamagnetic iron oxide particles.
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of 90 mg/L iron or ~1.6 mM.16 With regard to the recom-

mended bolus dose of 510 mg Ferumoxytol (Feraheme®), 

we assumed an amount of 8.5 mg iron/kg bodyweight for a 

person weighing 60 kg, which could lead to a plasma iron 

concentration of ~10.0 mM. This is three times higher than 

the maximal concentration of SPIO used in our experimental 

approach. But taking into account the 70% SPIO loss due to 

the blood–brain barrier crossing, a plasma concentration of 

10.0 mM equates to ~3.0 mM permeated iron, and 1.6 mM 

equates to 0.5 mM. Thus, we are confident that we exposed 

OHSC to SPIO of clinically relevant doses.

So far, publications analyzing the biocompatibility of 

SPIO are rare and, when compared, inconclusive. Lu et al 

showed a nonsignificant impact of SPIO on the viability of 

mesenchymal stem cells after 1 h of exposure.21 Stroh et al 

applied VSOP to embryonic stem cells for 90 min at a con-

centration of 1.5 mM without an impact on cell viability.23 

Foldager et al showed an influence on the gene expression 

of chondrocytes but not on their proliferation potential.51 

Furthermore, these findings are based on short-term incu-

bation studies and, so far, no long-term trials have been 

published.

We used immunofluorescence and histochemical stain-

ing to ensure preserved cytoarchitecture and consistently 

confirmed an intact hippocampal formation during incuba-

tion (Figure 1A–H). In addition, we were aware of utilizing 

postnatal animals (P0–P3) and the massive trauma caused 

by explantation. Cellular development is widely complete at 

this age, and tissue plasticity and survival in vitro are at their 

highest.52 Moreover, the intrinsic hippocampal excitation 

pathway can regenerate even though afferents and efferents 

were interrupted.30

We excluded preparation-induced cell death artifacts 

from evaluation by allowing slice regeneration and avoiding 

any treatments until 7 DIV. Thus, the amount of apoptotic 

cells was reduced to a basic level (Figure 2). Afterward, 

we kept the OHSC in culture up to 19 DIV. As described, 

clinically relevant VSOP concentrations from 0.5 to 3.0 mM 

were used for nanoparticle treatment.28 Furthermore, VSOP 

were applied for 48 h at high concentrations in order to imitate 

a peak effect after SPIO application in vivo with regard to 

bolus doses as explained above. Simultaneously, VSOP 

were utilized at 12 DIV in different concentrations in order 

to imitate long-term in vivo exposure. Recently, the fate of 

SPIO-labeled neural cell implants was monitored in rats for 

87 days using magnetic particle imaging.53

As described, a general time-dependent decrease in 

OHSC viability was detected during VSOP long-term incuba-

tion (Figure 2U–X). We traced the result back to the fact that 

OHSC passed through several PI staining. As bounded and 

nonbounded PI staining differ in their fluorescence excitation 

and emission maximum, we can exclude nonintercalated PI 

artifacts. However, staining and microscopy are accompanied 

by OHSC manipulations. It is likely that the repeated inter-

ruption of incubation increased cell death. Nonetheless, it is 

a general phenomenon that does not affect the evaluation. 

In addition, we found no differences between the untreated 

control and VSOP-R1-incubated samples in all regions of 

interest, but we observed an apparent trend of VSOP-R1 to 

affect DG neurons (Figure 2U and V). Conversely, 1.0 mM 

VSOP-R2 treatment exclusively altered CA1 viability sig-

nificantly and increased cell death within the DG region at 

19 DIV in concentrations of 1.0–3.0 mM (Figure 2W and X). 

We consider the impact of 1.0 mM VSOP-R2 on CA1 as a 

not worthy statistical bias, which is in the end unremark-

able because even higher concentrations did not have more 

adverse effects on cell viability. Additionally, we are aware 

that the determination of neuronal toxicity using OHSC could 

lead to a relatively high SD. However, we are convinced of 

the benefits OHSC offer and deem our methodology as a 

good and reasonable approach.

These results are in line with our previously published 

data analyzing the viability of primary hippocampal neurons 

Figure 5 MPS iron quantification after VSOP treatment with or without microglia 
depletion.
Notes: Microglia depletion before VSOP incubation decreases iron uptake compared 
to VSOP treatment alone (error bars represent standard deviation, number of 
double determinations for all groups: n=5; *P,0.1; **P,0.01).
Abbreviations: DMDP, dichloromethylenediphosphonic acid disodium salt; MPS, 
magnetic particle spectroscopy; VSOP, very small superparamagnetic iron oxide 
particles.
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after SPIO exposure.28 Here, VSOP-R1 application did not 

change neuronal viability, whereas VSOP-R2 treatment 

increased the number of degenerated neurons in concentra-

tions of 1.5–3.0 mM. Similarly, the viability of primary 

microglia decreased in a VSOP-dependent manner. By com-

parison, neuron-glia co-cultures were not affected by the 

same concentration range.

The CA is associated with small (CA1) and large (CA3) 

pyramidal cells while the DG contains a larger number of gran-

ule cells. As published before, nanoparticle exposure attenuates 

granule cell viability in vitro and in vivo, showing the vulner-

ability of the population.54–56 Based on the result that VSOP-R2 

treatment altered DG viability during long-term incubation, 

we hypothesize that VSOP-R2 caused oxidative stress and 

induced apoptosis (Figure 2X). Because of the outcome of 

the aforementioned neuron-glia co-culture experiment, we 

assume protective effects by microglia in OHSC. These effects 

prevented cell and tissue degeneration during VSOP-R1 treat-

ment (Figure 2U and V) and in earlier measurements taken at 

13 DIV applying VSOP-R2 (Figure 2W and X). At 19 DIV, 

the microglial ability to defend the surrounding tissue was 

reduced. Consequently, granule cells were both unprotected 

and exposed to VSOP-R2 and died.

As presented in Figure 3, we observed ubiquitous VSOP 

accumulation and a VSOP penetration of deep hippocampal 

slice layers. Iron-containing cells showed an amoeboid-like 

shape (Figure 3F) and were less detectable with increasing 

distance to the membrane. In addition, we can exclude that 

VSOP are preferentially assimilated in selected slice areas. 

Acute central nervous system injury (eg, OHSC prepara-

tion and in vitro cultivation) activates microglia and leads 

to their conversion from a static ramified state to a dynamic 

amoeboid form within several hours. The morphological 

changes are accompanied by the degradation of ramified 

branches, the development of dynamic protrusions and their 

cellular translocation within the slice (up to 118 µm/h).57 In 

our view, our data (Figure 3) indicate VSOP phagocytosis by 

dynamic amoeboid microglia following their diffuse migra-

tion. The fact that their quantity decreases with increasing 

distance from section S1 (Figure 3D–L) can be attributed to 

the higher probability of getting in contact with permeating 

VSOP next to the membrane.

To further point out the role of microglia, we applied 

DMDP (DMDP/clodronate) during VSOP short-term 

treatment, which induces irreversible functional damage 

and apoptosis in macrophages or macrophage-like cells.58 

Although free DMDP is a highly hydrophilic drug that 

hardly crosses the cellular phospholipid membrane, we 

successfully decreased the amount of microglia in our setup 

(Figure 4A and B).59 Compared to the control, DMDP-treated 

specimens showed increased tissue degeneration at 9 DIV but 

no further alteration until 11 DIV (Figure 4M–P). At 9 DIV, 

this is partially a result of DMDP-caused microglial cell 

death. However, after hippocampal slice preparation, 

microglia can diminish the amount of trauma-induced dead 

cells 10-fold within 7 days.60 Thus, the increased PI signal 

can also be attributed to the absence of microglia and the 

deficient disposal of decaying cells (7–9 DIV). With regard 

to the exclusively SPIO-treated samples, VSOP-R1 signifi-

cantly decreased viability in all regions of interest, whereas 

VSOP-R2 affected CA3 alone (Figure 4S, T, and V). These 

results are at first sight contrary to the 3.0 mM nanopar-

ticle long-term exposure (Figure 2U–X). Nonetheless, we 

are  convinced that equal degenerative processes occurred 

in the long-term study, but due to the extended time frame 

for data acquisition, microglia engulfed almost all dead cells 

between 7 DIV and 13 DIV. Consequently, increased cell 

death was not detectable.

In our recent publication, we found higher microglial 

degeneration during 24 h of incubation using 3.0 mM 

VSOP-R1 compared with VSOP-R2.28 This correlation 

regarding microglia could be an explanation for why 

VSOP-R2 differed from VSOP-R1 in OHSC. In addition, 

DMDP plus VSOP treatment caused severe general cell 

death (Figure 4G, H, K, and L). This reinforces our belief that 

the loss of microglial protection due to DMDP application 

consequently exposed the vulnerable slices to the VSOP, 

which, as a result, led to cell degeneration.

In addition, we investigated cytokine secretion at 11 DIV 

and were able to prove the existence of pro-inflammatory 

CXCL1/KC, IL-6, MCP-1, and TNF-α in the OHSC super-

natant (Figure 4W–Z). In general, LPS stimulus significantly 

induced their release, confirming a capable OHSC immune 

response, whereas previous DMDP treatment decreased the 

endotoxin-caused effect, significantly proving successful 

microglial depletion. Nonetheless, VSOP application did not 

alter cytokine production. Hence, no significant difference 

was detectable compared to controls or VSOP and DMDP-

treated samples, although increased cytokine levels could 

have been expected due to significant elevated cell death 

(Figure 4S–V). One could assume that VSOP treatment is 

tending to alter CXCL1/KC and MCP-1 secretion. However, 

compared to a LPS stimulus, their impact is comparatively 

low and accompanied by a relatively high SD.

Using THP-1 monocytic cells, it was previously shown 

that VSOP do not affect cytokine production.61 Thus, one 
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could assume that VSOP are immunotolerant. Instead, 

experiments using BV2 microglial cells have proved that 

Fe
2
O

3
 nanoparticle treatment could induce cell proliferation, 

phagocytosis, and the generation of reactive oxygen species 

as well as nitric oxide, but did not initiate a significant release 

of inflammatory cytokines, including IL-6 and TNF-α.62 

They also suggest that microglial activation might function 

as an alarm and defense system in the course of exogenous 

nanoparticles invading and being stored in the brain. In our 

view, these results are in line with our findings.

MPS was recently published as a new, highly accurate 

technique for quantifying VSOP.44 We used MPS and found a 

significant iron uptake in VSOP-treated specimens (Figure 5). 

Even though no difference was detectable in the amount of 

iron between VSOP-R1 and VSOP-R2-incubated samples, 

DMDP treatment plus SPIO application led to a significantly 

decreased iron accumulation in OHSC, proving the involve-

ment of microglia. In addition, we attributed the general iron 

basis level detected in the VSOP-untreated controls to sample 

processing due to the use of metallic surgical instruments.

Conclusion
This study demonstrates that OHSCs are a suitable model 

for investigating the safety and biocompatibility of VSOP 

ex vivo. Our approach is adequate for giving information 

about alterations caused after VSOP exposure regarding 

cytoarchitecture, cell viability, cytokine secretion, and 

iron uptake. We focused on the role of microglia and could 

prove once again their protective function. Compared to 

cell lines, primary cell cultures, and in vivo studies, our 

methodology represents a major advance in investigating 

VSOP in a complex tissue compound, providing a simple, 

reproducible option for analyzing the impact of nanoparticle 

application and initially avoiding in vivo experiments. Even 

though both citrate-coated SPIO vary only slightly in their 

diameter, our data demonstrated time- and concentration-

dependent differences in biocompatibility using OHSC. 

We would therefore recommend VSOP-R1 and VSOP-R2 

concentrations below 1.0 mM during long-term studies 

and favor VSOP-R2 if higher SPIO doses are required in 

short-term trials.
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