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We devise local lattice models whose ground states are model fractional Chern insulators—Abelian and
non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size
and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct
families of bosonic lattice generalizations of the Zk parafermion quantum Hall states: (i) color-entangled
fractional Chern insulators at band filling fractions ν ¼ k=ðC þ 1Þ and (ii) nematic states at ν ¼ k=2, where
C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is
partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a
local (kþ 1) body repulsion term by term. In addition to providing the first known models hosting
intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states,
the remarkable stability and finite-size properties make our models particularly well suited for the study of
novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a
guide for designing experiments.
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Introduction.—The prospect of lattice-scale fractional
quantum Hall (FQH) phenomena at high temperatures,
without the need for a strong magnetic field, has attracted
ample recent attention to the theory of fractional Chern
insulators (FCIs) [1–3]. While experimental realizations of
FCIs are becoming increasingly realistic in the light of the
recent realizations of integer Chern insulators with unit
Chern number in solid state materials [4] and cold atom
systems [5], the theoretical frontier has turned towards
strongly correlated states in bands with higher Chern
numbers [6–27]. This is due to the fact that, although
notable differences compared to the continuum setting have
been established [2,28,29], all FCIs discovered in Chern
number C ¼ 1 bands have direct continuum FQH analogs
to which the adiabatic continuity has been explicitly
established in several important cases [30–35]. Of special
value is the early work by Kapit and Mueller who provided
a natural lattice discretization of the continuum lowest
Landau level and showed that a two-body on-site inter-
action leads to a perfect lattice version of the bosonic
ν ¼ 1=2 Laughlin state [30]. Related work has established
the existence of lattice parent Hamiltonians of non-Abelian
states [36–38].
There is, however, a glaring lack of similar models

describing C > 1 systems, despite intriguing progress with
long-ranged lattice models [39] and approximative map-
pings to continuum models with unusual boundary con-
ditions [14]. Given the importance of solvable models in
the theory of topological and strongly correlated states of
matter—ranging from the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model for the Haldane spin chain [40] and the

Kitaev chain describing a one-dimensional p-wave super-
conductor [41] to the model wave functions for the
continuum FQH effect [42–44] and their concomitant
pseudopotential parent Hamiltonians [45]—finding such
has remained an outstanding challenge in the theory of
FCIs. This is particularly pressing given the accumulating
numerical evidence that C > 1 systems feature an even
richer phenomenology than continuum Landau levels.
In the present Letter, we bridge this divide and provide

exact lattice parent Hamiltonians for a large class of
Abelian as well as non-Abelian model FCIs in bands
carrying any Chern number C. We explicitly verify that
the ground state multiplets are exactly degenerate at any
finite size, that the gap to excited states remains finite in the
thermodynamic limit, and that there is an infinite gap in the
particle entanglement spectrum [46,47].
Flatband model.—We begin by constructing a family of

multiorbital models possessing exactly flat lowest bands
with arbitrary Chern number C. For definitiveness, we
describe our construction on a square lattice with an
effective magnetic flux ϕ ¼ 1=q piercing each elementary
plaquette [48], although it can be generalized to any
Bravais lattice and rational flux.
We assign M internal orbitals to each lattice site i with

real-space coordinates ðxi; yiÞ, whereM must be a factor of
q. The site-dependent orbital index to the lattice site i is
si ¼ ximodðq=MÞ þmðq=MÞ, with m ¼ 0; 1;…;M − 1.
The single-particle physics is governed by

H0 ¼
X

j;sj

X

k;sk

t
sj;sk
j;k a†j;sjak;sk ; ð1Þ
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where a†j;sj (aj;sj) creates (annihilates) a particle on the
orbital sj at site j. To achieve an exactly flat lowest Chern
band we choose the hopping amplitudes as [49]

t
sj;sk
j;k ¼ δmodq

sj−xj;sk−xkð−1Þxþyþxye−ðπ=2Þð1−ϕÞjzj2e−iπϕð~xjþ~xkÞy;

ð2Þ
where zj ¼ xj þ iyj, z ¼ zj − zk, and ~xj ¼ xjþ
ðsj − xjÞmodq. The hopping amplitudes decay as a func-
tion of the distance between site k and site j like a
Gaussian. The hopping phase factor depends on both xi
and si according to the definition of ~xi. The unit cell of our
model contains q=M sites in the x direction. The q orbitals
in a unit cell lead to q bands, and the lowest thereof is
exactly flat and carries Chern number C ¼ M. For M ¼ 1,
our construction equations (1) and (2) reduce to the Kapit-
Mueller model [30] in the Landau gauge. Similar multi-
orbital models have also been studied in Refs. [10,18],
albeit with different choices for the hopping amplitudes.
Although it is generally impossible to have an exactly

flat band with nonzero Chern number and strictly finite
hopping [50], our model is local in the sense of being at
least exponentially bounded. Truncating the hopping at a
distance of d ¼ 2 lattice constants already gives a high
flatness ratio between the band gap and bandwidth: e.g., for
ϕ ¼ 1=6 and C ¼ 2 or 3 one finds f ≈ 85 or 73, respec-
tively. The efficiently quenched kinetic energy amplifies
the importance of interaction effects and we will now
proceed to show that local interactions indeed generate
model FCIs.
Color-entangled FCIs.—We begin by considering N

particles with the (kþ 1) body on-site repulsion on a finite
lattice of Nx × Ny unit cells with periodic boundary
conditions. The interaction Hamiltonian reads

Hint ¼
X

i

X

σ0≤σ1≤���≤σk∈fsig
∶ni;σ0ni;σ1 � � � ni;σk∶; ð3Þ

where ni;σ is the occupation operator on the orbital σ at
lattice site i, and ∶ � � � ∶ enforces the normal ordering. For
C ¼ M ¼ 1, the single-particle wave functions of the
lowest band of Eq. (1) have the structure of a discretized
lowest Landau level, and lattice analogs of the Zk Read-
Rezayi states are unique zero-energy ground states of
Eq. (3) at ν ¼ N=ðNxNyÞ ¼ k=2 up to an exact (kþ 1)-
fold degeneracy, when the number of particles is a multiple
of k, because the exact clustering properties of these wave
functions [44] carry over directly to the present lattice
setting. This is astonishing given that many other properties
such as the fluctuating Berry curvature in reciprocal
space and the excitation spectrum already deviate from
that in the continuum since the discretized Landau level
orbitals are nonorthogonal. Furthermore, if the wave
functions are written in a properly orthogonalized
Wannier basis [31–33], they differ from the continuum

model states [19,38]. Nevertheless, we find that these states
are characterized by an infinite gap in the particle entan-
glement spectrum (PES) which probes the quasihole
excitations of the system [46,47]. Remarkably, we find
that this scenario generalizes to any C ¼ M > 1: at filling
fractions ν ¼ k=ðC þ 1Þ, there are ðCþk

k Þ-fold exactly degen-
erate zero-energy ground states when the number of
particles is a multiple of k, and their PES has an infin-
ite gap.
To establish this, we project the interaction Hamiltonian

Eq. (3) for a large number of samples onto the lowest band,
and compute the many-body eigenvalues and eigenstates by
exact diagonalization. Indeed, we always observe the
expected number of zero-energy modes in the energy
spectrum [48,51], which in turn implies that the band
projection leaves the ground states unchanged. We also
find the number of zero-energy modes is robust against the
flux insertion (twisted boundary conditions). To demon-
strate the infinite entanglement gap in the particle entan-
glement spectrum (PES), we truncate the hopping range in
Eq. (1) at distance d, then track the evolution of the PES
with increasing d. While the lowest band is dispersive for
finite d, we study the band projected version thus ignoring
the band dispersion. For a system of N particles described
by the density matrix ρ ¼ ð1=DÞPD

α¼1 jΨαihΨαj, where
jΨαi is the αth state in the ground state manifold with
degeneracy D [52], the PES levels ξ are defined as
ξ≡ − ln λ, where the λ are the eigenvalues of the reduced
density matrix ρA of NA particles obtained by tracing out
NB ¼ N − NA particles from the whole system, i.e., ρA ¼
TrBρ [47]. Each PES level can be labeled by the total two-
dimensional quasimomentum ðKA

x ; KA
y Þ of part A. When the

PES levels are clearly divided into low-lying and higher
excited parts, we define the entanglement gap as
Δξ ≡ ξiþ1 − ξi, where ξi (ξiþ1) is the highest (lowest) level
in the low-lying (excited) part.
Typical PES at different truncations are shown in Fig. 1

for the ν ¼ 1=2 non-Abelian state in a C ¼ 3 band.
Including only nearest and next-nearest neighbor hopping,
i.e., d ¼ ffiffiffi

2
p

[Fig. 1(a)], we observe a clear entanglement
gap of Δξ ≈ 5 which is already larger than most of
previously reported results in the literature [6,12,53].
Increasing d further elevates the nonuniversal part of the
PES and quickly enlarges the entanglement gap [Figs. 1(b)
and 1(c)]. Our capability of tracking the growth of the
entanglement gap is limited only by the machine precision,
which determines that the PES levels can be computed
reliably at most up to ξc ≈ 36.7, which corresponds to an
exponentially small amplitude, of order Oðe−ξc=2Þ, in the
ground state wave function. When the nonuniversal levels
merge into the numerical noise, it is impossible to identify
the entanglement gap [Fig. 1(d)] accurately. This happens
when the machine error dominates the high-energy part in
the PES, the entanglement gap has already grown to
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Δξ ≈ 30, which is much larger than previously reported
values. We observe a similar growth of the entanglement
gap when 1=d → 0 in all investigated samples, as shown in
Fig. 2. Δξ reaches 5≲ Δξ ≲ 7 at d ¼ ffiffiffi

2
p

, exceeding most
of the previously reported results, and quickly increases to
Δξ ≈ 30 at d ≈ 4, where numerical noise starts to prevent us
from further tracking the growth of Δξ. However, the rapid
growing ofΔξ and extrapolating the data to 1=d ¼ 0 clearly
suggest infinite entanglement gaps of model FCIs. A short-
range truncation of Eq. (1) is enough to get FCIs which are
essentially indistinguishable from model FCIs with infinite
entanglement gaps.
While the ground states and quasihole excitations have

identically zero interaction energy in our model, the gap
ΔE—measured at a fixed particle number corresponding to
a particle-hole excitation pair—is in principle size depen-
dent. The projection of the interaction to the lowest band
will not affect the many-body gap as long as the band gap is
much larger than the interaction strength, since low-lying
excitations are purely determined by the interaction and the
projection, excluding excitations caused by hopping from
lower to higher bands. In Fig. 3, we plot ΔE versus the

inverse particle number 1=N for various model FCIs. In
each case we find that the gap clearly extrapolates to a finite
value in the thermodynamic limit, and, compared to other
FCI models, the gap is remarkably insensitive to the system
size (cf., e.g., Ref. [28]).
Having established the ideal nature of FCIs in our model,

we now turn to its color-entangled nature. If we interpret
m ¼ 0; 1;…;M − 1 in the orbital indices si as “layers” or
“colors,” Eq. (1) on an infinite lattice is equivalent to a
shifted stacking of M layers of the infinite M ¼ 1 model.
However, for a finite lattice of Nx × Ny unit cells with
periodic boundary conditions, the corresponding stacking
has color-entangled boundary conditions [7,14,18] in the x
direction in the sense that the hopping across the boundary
may occur between orbitals belonging to different layers
(usual periodic boundary conditions apply in the y direc-
tion) [48]. Crucially, each layer is not necessarily a
complete M ¼ 1 model with integer number of unit cells
and periodic boundary conditions. Instead, one finds that
Eq. (1) can be mapped to gcdðNx;MÞ copies of complete
M ¼ 1 model with usual periodic boundary conditions.
Reference [14] provided a color-entangled basis built from

FIG. 1. Typical particle entanglement spectra (PES), here displayed for the k ¼ 2, ν ¼ 2=3 non-Abelian state in a C ¼ M ¼ 3 band
withN ¼ 8,Nx × Ny ¼ 4 × 4, ϕ ¼ 1=3 and hoppings truncated at (a) d ¼ ffiffiffi

2
p

, (b) d ¼ 3, (c) d ¼ ffiffiffiffiffi
10

p
, and (d) d ¼ ∞ lattice constants.

Generally, a PES obtained by numerical diagonalization includes three parts: the low-lying levels with quasihole excitation information
(blue), the high nonuniversal levels (red), and numerical noise (gray) set by the double precision above ξc ≈ lnð2−53Þ ≈ 36.7. The high,
nonuniversal levels merge into numerical noise for large d, preventing us from further numerically tracking the growth of the
entanglement gap, which we argue to increase without bound with increasing d.

FIG. 2. The entanglement gap Δξ in the NA ¼ ⌈N=2⌋ sector
versus the inverse hopping distance 1=d in the (a) C ¼ 2 and
(b) C ¼ 3 band. For each C, we consider both Abelian states at
ν ¼ 1=ðC þ 1Þ and non-Abelian states at ν ¼ 2=ðC þ 1Þ and
ν ¼ 3=ðC þ 1Þ, with lattice geometry of either gcdðNx; CÞ ¼ C
or gcdðNx; CÞ ¼ 1. ϕ is chosen as 1=C. For d longer than three or
four lattice constants, the size of Δξ cannot be tracked further due
to the limitation of machine precision.

FIG. 3. The finite-size scaling of the energy gap for the Abelian
ν ¼ 1=ðC þ 1Þ states and non-Abelian ν ¼ 2=ðC þ 1Þ states in
C ¼ 2 and C ¼ 3 bands. Note that the spread of the ground state
manifold is exactly zero here.Nx andNy are appropriately chosen
to make samples as isotropic as possible. ϕ is chosen as 1=C.
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continuum Landau levels and showed a promising
approach to the ν ¼ k=ðC þ 1Þ FCIs by providing numeri-
cal evidence for a few states with small C and k [6,12,14].
When Nx is divisible by M, the FCIs correspond to color-
dependent magnetic-flux inserted versions of the Halperin
[54] or non-Abelian spin singlet states [55,56]. Our con-
struction extends this list of color-entangled FCIs and, by
contrast, gives an exact construction directly in the real-
space lattice.
Nematic states.—The Hamiltonian equation (3) includes

interactions within the same orbital and between different
orbitals. Now we consider the zero-energy states in the
presence of only on-site (kþ 1) body intraorbital repulsion,
i.e.,

Hint ¼
X

i

X

σ0¼σ1¼���¼σk∈fsig
∶ni;σ0ni;σ1 � � � ni;σk∶: ð4Þ

As discussed above, the single-particle problem can be
mapped to gcdðNx;MÞ copies of the M ¼ 1 model.
Because the interaction Hamiltonian Eq. (4) does not
couple different copies, the many-body physics in this
case is equivalent to distributing N on-site interacting
particles in gcdðNx;MÞ decoupled copies of M ¼ 1 mod-
els, each with ½Nx= gcdðNx;MÞ� × Ny unit cells. We can
count the zero-energy states straightforwardly by this
many-body mapping. For ν ¼ k=2 with N is divisible by
gcdðNx;MÞ, we have N= gcdðNx;MÞ on-site interacting
particles at ν ¼ k=2 in each copy of the M ¼ 1 model. If
N= gcdðNx;MÞ is divisible by k, this gives us kþ 1 zero-
energy states obeying the same exclusion rule as the Read-
Rezayi states within each copy, and hence a total of
ðkþ 1ÞgcdðNx;MÞ zero-energy states. However, when N is
not divisible by gcdðNx;MÞ, the filling fraction is larger
than k=2 in at least one copy, thus there are no zero-energy
states [48]. That the degeneracy depends on Nx but not on
Ny is a striking signature of the nematic nature of these
states [7]. Furthermore, the number of particles N does not
necessarily need to be a multiple of C ¼ M, which further
distinguishes the nematic model FCIs from their continuum
multilayer relatives.
Other states.—Following the constructions detailed

above, it is straightforward to construct parent
Hamiltonians for an entire zoo of new model FCIs. For
instance, forM ¼ 2 and even Nx, Eq. (1) has a bilayer FQH
system as the continuum counterpart. Thus, with an on-site
interorbital three-body repulsion in combination with a
two-body intraorbital repulsion is expected to mimic the
parent Hamiltonian for the coupled Moore-Read state
[57,58] in the continuum. The degeneracy of this state
on the torus is 2N þ 3 for an even number of particles [59],
which is consistent with our numerics [48].
Discussion.—In this Letter, we have introduced model

fractional Chern insulators—topologically ordered states
with an infinite entanglement gap—and constructed their

concomitant local parent Hamiltonians directly in the
lattice. Our construction provides natural FCI counterparts
of the AKLT model for the Haldane spin chain, the Kitaev
chain, and the model quantum Hall wave functions and
their associated continuum parent Hamiltonians. In analogy
with these models, our construction also carries a notion of
frustration freeness in that the ground states reside entirely
within the lowest band, and exactly minimize strictly local
(kþ 1) body repulsions term by term. However, rooted in
the impossibility of local Wannier functions for Chern
bands [60], it appears impossible to write a gapped parent
Hamiltonian, including both interactions and kinetic part,
entirely as a sum of positive local terms such that each of
them is minimized by the model FCIs in the two-dimen-
sional limit, Nx; Ny → ∞ [61–63].
We have conclusively shown that our model provides an

infinite gap in the particle entanglement spectrum and that
the energy gap remains finite in the thermodynamic limit.
These results are particularly remarkable considering the
strong lattice effects, e.g., reflected in a strongly nonuniform
Berry curvature at small ϕ, and underscores the incomplete-
ness of any long-wave-length description of FCIs [1].
Our construction extends the list of FCIs far beyond

those in the existing literature. Notably, the k ¼ 3 states
(Fig. 2) are the first reported C > 1 higher Chern number
generalizations of the Fibonacci anyon quantumHall states.
Moreover, the nematic higher Chern number states provide
a particularly promising basis for investigating lattice
dislocations, which have been predicted to behave like
non-Abelian wormholes in nematic Abelian parent states
[7]. Abelian nematic states have been previously found in
Refs. [18,39]; our construction is giving an ideal realization
in contrast to Ref. [18], and is much simpler than the
proposed parent Hamiltonian of Ref. [39], which includes a
long tail of two-body interactions. Our non-Abelian nem-
atic states are entirely new.
Our model also provides an ideal ground for investigat-

ing alternative platforms for Fibonacci anyons, deriving
from more elementary Abelian FCIs in proximity to
superconductors [64]. In particular, our C ¼ 2, k ¼ 1,
ν ¼ 1=3 provides an ideal lattice version of the (221)
Halperin state which is a key ingredient in the construction
considered in Ref. [64].
Finally, our construction provides a guide for designing

experimental implementations of FCIs, particularly in cold
atom or molecule systems [65] or in arrays of qubits or
nonlinear optical resonators [66,67]. The very recent
observation of higher Chern numbers in photonic crystals
is highly encouraging in this respect [68].
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