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Abstract: Rare, but important, transition events between long-lived states are a key feature
of many molecular systems. In many cases, the computation of rare event statistics by direct
molecular dynamics (MD) simulations is infeasible, even on the most powerful computers,
because of the immensely long simulation timescales needed. Recently, a technique for
spatial discretization of the molecular state space designed to help overcome such problems,
so-called Markov State Models (MSMs), has attracted a lot of attention. We review the
theoretical background and algorithmic realization of MSMs and illustrate their use by some
numerical examples. Furthermore, we introduce a novel approach to using MSMs for the
efficient solution of optimal control problems that appear in applications where one desires
to optimize molecular properties by means of external controls.

Keywords: rare events; Markov State Models; long timescales; optimal control

1. Introduction

Stochastic processes are widely used to model physical, chemical or biological systems. The goal
is to approximately compute interesting properties of the system by analyzing the stochastic model.
As soon as randomness is involved, there are mainly two options for performing this analysis: (1) Direct
sampling and (2) the construction of a discrete coarse-grained model of the system. In a direct sampling
approach, one tries to generate a statistically significant amount of events that characterize the property
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of the system one in which is interested. For this purpose, computer simulations of the model are a
powerful tool. For example, an event could refer to the transition between two well-defined macroscopic
states of the system. In chemical applications, such transitions can often be interpreted as reactions or,
in the context of a molecular system, as conformational changes. Interesting properties are, e.g., average
waiting times for such reactions or conformational changes and along which pathways the transitions
typically occur. The problem with a direct sampling approach is that many interesting events are so-
called rare events. Therefore, the computational effort for generating sufficient statistics for reliable
estimates is very high, and particularly if the state space is continuous and high dimensional, estimation
by direct numerical simulation is infeasible.

Available techniques for rare event simulations in continuous state space are discussed in [1]. In
this article, we will discuss approach (2) to the estimation of rare event statistics via discretization of
the state space of the system under consideration. That is, instead of dealing with the computation of
rare events for the original, continuous process, we will approximate them by a so-called Markov State
Model (MSM) with discrete finite state space. The reason is that for such a discrete model, one can
numerically compute many interesting properties without simulation, mostly by solving linear systems
of equations as in discrete transition path theory (TPT) [2]. We will see that this approach, called Markov
State Modeling, avoids the combinatorial explosion of the number of discretization elements with the
increasing size of the molecular system in contrast to other methods for spatial discretization.

The actual construction of an MSM requires one to sample certain transition probabilities of the
underlying dynamics between sets. The idea is: (1) to choose the sets such that the sampling effort
is much lower than the direct estimation of the rare events under consideration; and (2) to compute
all interesting quantities for the MSM from its transition matrix, cf. [2,3]. There are many examples
for the successful application of this strategy. In [4], for example, it was used to compute dominant
folding pathways for the PinWW domain in explicit solvent. However, we have to make sure that
the Markov State Model approximates the original dynamics well enough. For example, the MSM
should correctly reproduce the timescales of the processes of interest. These approximation issues have
been discussed since more than a decade now [5,6]; in this article, we will review the present state of
research on this topic. In the algorithmic realization of Markov State Modeling for realistic molecular
systems, the transition probabilities and the respective statistical uncertainties are estimated from short
molecular dynamics (MD) trajectories only, cf. [7]. This makes Markov State Modeling applicable to
many different molecular systems and processes, cf. [8–13].

In the first part of this article, we will discuss the approximation quality of two different types of
Markov State Models that are defined with respect to a full partition of state space or with respect to
so-called core sets. We will also discuss the algorithmic realization of MSMs and provide references
to the manifold of realistic applications to molecular systems in equilibrium that are available in the
literature today.

The second part will show how to use MSMs for optimizing particular molecular properties. In this
type of application, one wants to steer the molecular system at hand by external controls in a way such
that a pre-selected molecular property is optimized (minimized or maximized). That is, one wants to
compute a specific external control from a family of admissible controls that optimizes the property of
interest under certain side conditions. The property to be optimized can be quite diverse: For example,
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it can be (1) the population of a certain conformation that one wants to maximize under a side condition
that limits the total work done by the external control or (2) the mean first passage time to a certain
conformation that one wants to minimize (in order to speed up a rare event), but under the condition
that one can still safely estimate the mean first passage time of the uncontrolled system. The theoretical
background of case (1) has been considered in [14], for example, and of case (2) in [1,15]. There, one
finds the mathematical problem that has to be solved in order to compute the optimal control. Here, we
will demonstrate that one can use MSMs for the efficient solution of such a mathematical problem (for
both cases). We will see that the spatial discretization underlying an MSM turns the high-dimensional
continuous optimal control problem into a rather low-dimensional discrete optimal control problem of
the same form that can be solved efficiently. Based on these insights, MSM discretization yields an
efficient algorithm for solving the optimal control problem, whose performance we will outline in some
numerical examples, including an application to alanine dipeptide.

2. MSM Construction

Let (Xt)t≥0 be a time-continuous Markov process on a continuous state space, E, e.g., E ⊂ Rd.
That is, Xt is the state of the molecular system at time t resulting from any usually used form of
molecular dynamics simulation, be it based on Newtonian dynamics with thermostats or resulting
from Langevin dynamics or other diffusion molecular dynamics models. The idea of Markov
State Modeling is to derive a Markov chain, (X̂k)k∈N, on a finite and preferably small state space
Ê = {1, ..., n} that models characteristic dynamics of the continuous process, (Xt). For example,
in molecular dynamics applications, such characteristic dynamics could refer to protein folding
processes [16,17], conformational rearrangements between native protein substates [18,19], or ligand
binding processes [20]. Since the approximating Markov chain, (Xk)k∈N, lives on a finite state space,
the construction of an MSM boils down to the computation of its transition matrix, P :

Pij = P[X̂k+1 = j|X̂k = i] (1)

The main benefit is that for a finite Markov chain, one can compute many interesting dynamical
properties directly from its transition matrix, e.g., timescales and the metastability in the
system [5,21,22], a hierarchy of important transition pathways [2] or mean first passage times between
selected states. With respect to an MSM, these computations should be used afterwards to answer related
questions for the original continuous process. To do this, we must be able to link the states of the Markov
chain back to the spatial information of the original process, and the approximation of the process (Xt)

by the MSM must be valid in some sense.
Having this in mind, the first natural idea is to let the states of an MSM correspond to sets

A1, ..., An ⊂ E in continuous state space that form a full partition, i.e.:

Ai ∩ Aj = ∅ for i 6= j,

n⋃
i=1

Ai = E (2)

Typical choices for such sets are box discretizations or Voronoi tessellations [23]. For such a full
partition, it is trivial to also define a corresponding discretized process by the original switching dynamics
between the sets. For a given lag time, τ > 0, we can define the index process:
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X̃k = i⇔ Xkτ ∈ Ai (3)

It is well known that this process is not Markovian, mainly due to the so-called recrossing problem.
This refers to the fact that the original process typically crosses the boundary between two sets, Ai
and Aj , several times when transitions take place, as illustrated in Figure 1. This results in cumulative
transitions between indices i and j for the index process, that is, a not memoryless transition behavior.

Figure 1. Cumulative transitions between two sets along boundaries are typical.
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The non-Markovianity of the index process is often seen as a problem in Markov State Modeling,
because many arguments assume that X̃k is a Markov process. In this article, we will not make this
assumption. We interpret the process (X̃k) as a tool to construct the following transition matrix, P τ :

P τ
ij = P[X̃k+1 = j|X̃k = i] = P[X(k+1)τ ∈ Aj|Xkτ ∈ Ai] (4)

and, hence, the MSM as the Markov chain, (X̂k)k∈N, associated with this transition matrix. From above,
it is clear that, in general, we have X̂k 6= X̃k, and in [24] it was analyzed how these two processes
relate in terms of density propagation. In the following, we will show under which assumptions and in
which sense the MSM (X̂k) will be a good approximation of the original dynamics given by (Xt). For
convenience, we will usually write P τ ≡ P and leave the τ -dependence implicit.

3. Analytical Results

In order to compare the MSM to the continuous process, we introduce one of the key objects for our
analysis, the transfer operator of a Markov process. We assume that the Markov process (Xt) has a
unique, positive invariant probability measure, µ, and that it is time-reversible. Then, for any time-step,
t ≥ 0, we define the transfer operator, Tt, via the property:∫

A

Ttv(y)µ(dy) =

∫
E

v(x)p(t, x, A)µ(dx) for all measurable A (5)

as an operator Tt : L2(µ) → L2(µ). Here, p(t, x, A) = P[Xt ∈ A|X0 = x] defines the transition
probability measure and L2(µ) denotes the Hilbert space of functions v with:∫

E

v(y)2µ(dy) ≤ ∞ (6)

and the scalar product:

〈v, w〉 =

∫
E

v(y)w(x)µ(dy) (7)



Entropy 2014, 16 262

Note that Tt is nothing else other than the propagator of densities under the dynamics, but the densities
are understood as densities with respect to the measure, µ. That is, if the Markov process is initially
distributed according to:

P[X0 ∈ A] =

∫
A

v0(x)µ(dx) (8)

its probability distribution at time t is given by:

P[Xt ∈ B] =

∫
B

vt(x)µ(dx), vt = Ttv0 (9)

The benefit of working with µ-weighted densities is that the transfer operator, Tt, becomes essentially
self-adjoint on L2(µ) for all cases of molecular dynamics satisfying some form of detailed balance
condition. Hence, it has real eigenvalues and orthogonal eigenvectors with respect to Equation (7)
(or, at least, the dominant spectral elements are real-valued). Moreover, the construction of an MSM
can be seen as a projection of the transfer operator [25]. Assume Q is an orthogonal projection in L2(µ)

onto an n-dimensional subspace, D ⊂ L2(µ), with 1 ∈ D, and χ1, ..., χn is a basis of D. Then, the
so-called projected transfer operator, QTτQ : D → D, has the matrix representation:

PQ = PM−1 (10)

with the non-negative, invertible mass matrix, M ∈ Rn,n, with entries:

Mij =
〈χi, χj〉
〈χi,1〉

(11)

The matrix, P ∈ Rn,n, is also non-negative and has entries:

Pij =
〈χi, Tτχj〉
〈χi,1〉

(12)

Full Partition MSM. If we choose χi = 1Ai
to be the characteristic function of set Ai for i = 1, ..., n,

one can easily check that we get M = I to be the identity matrix and:

Pij = Pµ[Xτ ∈ Aj|X0 ∈ Ai] (13)

as in Equation (4). The subscript, µ, shall indicate that X0 ∼ µ. Therefore, the transition probabilities
are evaluated along equilibrium paths.

The previously constructed transition matrix of the MSM based on a full partition can be interpreted
as a projection onto a space of densities that are constant on the partitioning sets. This interpretation of
an MSM is useful, since it allows one to analyze its approximation quality. For example, in [25,26], it
is proven that we can reproduce an eigenvalue, λ, of a self-adjoint transfer operator, Tt, by the MSM
by choosing the subspace appropriately. That is, if u is a corresponding normalized eigenvector, Q the
orthogonal projection to a subspace, D, with 1 ∈ D, then there exists an eigenvalue, λ̂, of the projected
transfer operator, QTtQ, with:

|λ− λ̂| ≤ λ1δ(1− δ2)−
1
2

where λ1 < 1 is the largest non-trivial eigenvalue of Tt and δ = ‖u−Qu‖.
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In particular, for δ ≤ 3
4
, one can simplify the equation to:

|λ− λ̂| ≤ 2λ1δ (14)

An eigenvalue, λi, of the transfer operator directly relates to an implied timescale, Ti, of the
system via:

Ti = − τ

log(λi)
(15)

Therefore, the transition matrix Equation (4) that we construct from transitions between the sets,
A1, ..., An, will generate a Markov chain that will reproduce the original timescales well if the
partitioning sets are chosen such that the corresponding eigenvectors are almost constant on these sets.
In this case, δ = ‖u − Qu‖; that is, the approximation error of the eigenvector by a piecewise constant
function on the sets will be small.

The projection error, δ, depends on our choice of the discretizing sets. As an example, let us consider
a diffusion in the potential that is illustrated in Figure 2, that is, the reversible Markov process given by
the stochastic differential equation:

dXt = −∇V (Xt)dt+
√

2εdBt (16)

where V is the potential, Bt denotes a Brownian motion and ε > 0.

Figure 2. A potential with three wells and a choice of three sets, A1, A2, A3.
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The figure also shows a choice of three sets that form a full partition of state space. The computation
of the transition matrix Equation (4) for σ = 0.7 and a lag time τ = 1 yields:

PQ = P =

0.9877 0.0123 0.0000

0.0420 0.9160 0.0419

0.0000 0.0123 0.9877


that has three eigenvalues λ0 = 1, λ1 = 0.9877, λ2 = 0.9037. Table 1 shows the two resulting implied
timescales Equation (15) in comparison to the timescales of the original system.

As one can see, the timescales are strongly underestimated. This is a typical phenomenon. From
a statistical point of view, the recrossing problem will lead to cumulatively appearing transition counts
when one computes the transition probabilities, Pµ[Xτ ∈ Aj|X0 ∈ Ai], from a trajectory (Xt), as
discussed above. Therefore, on average, transitions between sets seem to become too likely, and hence,
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Table 1. Comparison of implied timescales

T1 T2

Original 103.7608 11.9566

Full partition 3 sets 80.6548 9.8784

the processes in the coarse-grained system get accelerated. We have seen in Equation (14) that this cannot
happen if the associated eigenvectors can be approximated well by the subspace that corresponds to the
MSM. Figure 3 shows the first non-trivial eigenvector, u1, belonging to the timescale T1 = 103.7608 and
its best-approximation by a step function.

Figure 3. The first non-trivial eigenvector, u1 (solid blue), and its projection, Qu1 (dashed
red), onto step functions that are constant on A1, A2, A3.
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The eigenvector is indeed almost constant in the vicinity of the wells, but within the transition region
between the wells, the eigenvector is varying and the approximation by a step function is not accurate.
Therefore, we have two explanations of why the main error is introduced in the region close to shared
boundaries of neighboring sets: (1) because of recrossing issues; and (2) because of the main projection
error of the associated eigenvector. Of course, one solution would be an adaptive refinement of the
discretization, that is, one could choose a larger number of smaller sets, such that the eigenvector is
better approximated by a step function on these sets. In the following section, we will present an
alternative solution for overcoming the recrossing problem and reducing the projection error without
refining the discretization.

4. The Core Set Approach

From Equation (10), we know how to compute a matrix representation for a projected transfer operator
for an arbitrary subspace, D ⊂ L2(µ). For a given basis, χ1, ..., χn, we have to compute Equations (11)
and (12), so:

Mij =
〈χi, χj〉
〈χi,1〉

, Pij =
〈χi, Tτχj〉
〈χi,1〉

(17)
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In general, the evaluation of these scalar products for arbitrary basis functions is a non-trivial task. On the
other hand, we have seen that for characteristic functions χi = 1Ai

on a full partition, we do not have to
compute the scalar products numerically, since the matrix entries have a stochastic interpretation in terms
of transition probabilities between set Equation (13). This means they can be directly estimated from
a trajectory of the process, which is a strong computational advantage, particularly in high-dimensional
state spaces.

Now, the question is if there is another basis other than characteristic functions that: (a) is more
adapted to the eigenvectors of the transfer operator; and (b) still leads to a probabilistic interpretation of
the matrix entries Equation (17), such that scalar products never have to be computed. The basic idea is
to stick to a set-oriented definition of the basis, but to relax the full partition constraint. We will define
our basis with respect to so-called core sets, C1, ..., Cn ⊂ E, that are still disjoint, so Ci ∩ Cj = ∅, but
they do not have to form a full partition. Figure 4 suggests that this could lead to a reduction of the
recrossing phenomenon, since the sets do not share boundaries anymore.

Figure 4. Core sets do not have to share boundaries anymore. This can reduce the
recrossing effect.

C1

C2

Now, we use the core sets to define our basis functions, χ1, ..., χn. Assume Tτ is, again, a self-adjoint
transfer operator and consider n core sets C1, ..., Cn. For every i, take the committor function, χi, of
the process with respect to core set Ci; that is, χi(x) denotes the probability to hit the core set, Ci, next,
rather than the other core sets, when starting the process in x. If we now study the projection, Q, onto
the space spanned by these committor functions, the two following properties hold [25,27].

(P1) The matrices, M and P , in Equation (10) can be written as:

Mij = Pµ[X̃+
k = j|X̃−k = i], Pij = Pµ[X̃+

k+1 = j|X̃−k = i] (18)

where (X̃+
k ) and (X̃−k ) are forward and backward milestoning processes [25,28]; that is, X̃−k = i

if the process came at time t = kτ , last from core set Ci and X̃+
k = j if the process went next to

core set Cj after time t = kτ .

(P2) Let ui be an eigenvector of Tτ that is almost constant on the core sets. Let the regionC = E\⋃iCi

that is not assigned to a core set be left quickly enough, so Ex[τ(Cc)]� Ti for all x ∈ C, where Ti
is the timescale associated with ui and Ex[τ(Cc)] is the expected hitting time of Cc =

⋃
iCi when

starting in x ∈ C. Then, ‖ui −Qui‖ is small; so, the committor approximation to the eigenvector
is accurate.
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The message behind (P1) is that it is possible to relax the full partition constraint and use a
core set discretization that does not cover the whole state space. We can still define a basis for a
projection of the transfer operator that leads to a matrix representation that can be interpreted in terms of
transition probabilities.

Important Remark: The construction of the projection onto the committors is only necessary for
theoretical purposes. In practice, neither the committor functions nor scalar products between the
committors have to be computed numerically, since the matrix entries of M and P can be estimated
from trajectories again.

Property (P2) yields that the relaxation of the full partition constraint should also lead to an
improvement of the MSM if the region, C, between the core sets is typically left on a faster timescale
than the processes of interest taking place. Let us get back to the example from above. We will see
that we can achieve a strong improvement of the approximation by simply excluding a small part of
state space from our discretization. In Figure 5, we have turned our initial full partition into a core set
discretization by removing parts of the transition region between the wells.

Figure 5. Excluding a small region of state space from the sets, A1, A2, A3, as in Figure 2,
to form core sets C1, C2, C3 that do not share boundaries anymore.
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The matrix PQ = PM−1 that represents the projection, QTτQ, of the transfer operator onto the
committor space associated with the core sets is given by:

PQ =

0.9897 0.0103 0.0000

0.0352 0.9298 0.0351

0.0000 0.0103 0.9897


Comparing to the MSM for the full partition one can see that transitions between indices i and j, i 6= j are
less likely. Table 2 shows this leads to a far more accurate reproduction of the timescales in the system.

From the discussion above, this has to be expected, because the eigenvectors are almost constant in
the vicinity of the wells, and we removed a part of state space from the discretization that is typically
left quickly compared to the timescales, T1 and T2. Therefore, the committor functions should deliver a
good approximation of the first two eigenvectors. Figure 6 underlines this theoretical result.
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Table 2. More accurate approximation if implied timescales

T1 T2

Original 103.7608 11.9566

3 core sets 100.8066 11.9145
Full partition 3 sets 80.6548 9.8784

Figure 6. (Upper panel) The first non-trivial eigenvector, u1 (solid blue), and its projection,
Qfu1 (finely dashed red), onto step functions (full partition) and its projection, Qcu1 (dashed
green), onto committors (core sets). (Lower panel) The same plot for the second non-trivial
eigenvector, u2.
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5. Practical Considerations and MD Applications

In the previous sections, we have interpreted the construction of an MSM as a projection of the
dynamics onto some finite dimensional ansatz space. We have discussed two types of spaces that both
have been defined on the basis of a set discretization. First, we chose a full partition of state space
and the associated space of step functions, and second, we analyzed a discretization by core sets and
the associated space spanned by committor functions. These two methods have the advantage that the
resulting projections lead to transition matrices for the MSM with entries that are given in terms of
transition probabilities between the sets. That is, one can compute estimates for the transition matrices
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from simulation data. This is an important property for practical applications, because it means that we
never need to compute committor functions or scalar products between committors or step functions.
We rather generate trajectories x0, x1, ...xN of the process (Xt), let us say, for a time step h > 0, so
xi = Xhi. For example, we can then define for a full partition, A1, ..., Am, and a lag time τ = nh the
discrete trajectory sk = i⇔ xk ∈ Ai and compute the matrix, P̂ :

P̂ij =
Cij∑
j

Cij
, Cij =

N−n∑
k=0

1{sk=i}1{sk+n=j} (19)

It is well known [7] that P̂ is a maximum likelihood estimator for the full partition MSM transition matrix
Equation (4). Similarly one can also compute estimates for a core set MSM by using the definition of
milestoning processes [27,28]. That is, if we have core sets C1, ..., Cm, a lag time τ = nh as before, and
we define discrete milestoning trajectories by:

s−k = i⇔ xk ∈ Ai or came last from Ai before time k

s+
k = i⇔ xk ∈ Ai or went next to Ai after time k

we can compute an estimator P̂Q = P̂ M̂−1 of the core set MSM matrix Equation (10) by
counting transitions:

P̂ij =
Cij∑
j

Cij
, Cij =

N−n∑
k=0

1{s−k =i}1{s+k+n=j} (20)

M̂ij =
Nij∑
j

Nij

, Nij =
N∑
k=0

1{s−k =i}1{s+k =j} (21)

Since, in practice, we will only have a finite amount of data available, we will have statistical errors
when constructing an MSM. This is an additional error to the projection error related to the discretization
that we have discussed above. On the other hand, one should note that these errors are not independent
of each other. For example, it is clear that if we take a full partition of state space, and we let the partition
become arbitrarily fine by letting the number of sets go to infinity, the discretization error will vanish.
At the same time, for a fixed amount of statistics, the statistical error will become arbitrarily large,
because we will need to compute more and more estimators for transition events between the increasing
number of sets. For more information on statistical errors, we refer to the literature [7,29].

Besides the choice of discretization and the available statistics, the estimates above also depend on a
lag time, τ . This dependence can be used to validate an MSM by a Chapman–Kolmogorov test [7]. This
is based on the fact that the MSM matrices approximately form a semi-group for all large enough lag
times τ > τ ∗; although, for small lag times, this is typically not true, due to memory effects. These facts
also motivate one to look at something, like an infinitesimal generator, that approximately generates these
MSM transition matrices for large enough lag times. In [27], two types of generator constructions have
been compared for a core set setting. The first generator, K, is simply constructed from the transition
rates between the core sets in the milestoning sense, that is:

Kij = lim
T→∞

NT
ij

RT
i

, i 6= j Kii = −
∑
j 6=i

Kij (22)
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where NT
ij is the amount of time in [0, T ] the process has spent on its way from core set Ci to Cj and

RT
i is the total time in [0, T ] the process came last from Ci. On the other hand, one can see [27,30] that

K∗ = KM−1 with the mass matrix, M , from above Equation (18), can be interpreted as a projection of
the original generator of the process and, also, as a derivative of the core set MSM from above, i.e.:

K∗ = lim
τ→0

PM−1 − I
τ

(23)

where P depends on τ Equation (17).
Let us now analyze how the choice of core sets, particularly the size of the core sets, influences the

resulting approximation. Therefore, we consider an MD example that was discussed in [27], namely
one molecule of alanine dipeptide monitored via its φ and ψ backbone dihedral angles. Two core sets
are defined as balls with radius r around the two points with angular coordinates xα = (−80,−60) and
xβ = (−80, 170). The stationary distribution of the process and the two centers of the core sets, xα, xβ ,
in the angular space are shown in Figure 7.

Figure 7. The stationary distribution of alanine dipeptide and the two centers of the core
sets, xα, xβ , in the angular space as white dots.

For computing a reference timescale, several MSMs based on three different full partitions using 10,
15 and 250 sets have been constructed for increasing lag times. In [27], it is shown that in each setting,
the estimate for the longest implied timescale of the process converged to ≈19 ps for large enough τ .
Now, the implied timescales for the two different generators, K Equation (22) and K∗ Equation (23),
are computed. In Figure 8, the resulting timescales are plotted against the reference timescale ≈ 19 ps
for varying size of the core sets.

One can see that the estimate by the milestoning generator, K, is rather sensitive to the size of core
sets. It overestimates the timescales for small core sizes and underestimates it for larger core sizes. On the
other hand, the projected generator, K∗, can never overestimate the timescale, due to its interpretation as
projection. It is also rather robust against the choice of size of the core sets until the core sets become too
large, e.g., r > 15. Then, the discretization becomes close to a full partition discretization using only two
sets. In this case, the timescales have to be underestimated heavily, because of recrossing phenomena.
On the other hand, the underestimation for very small core sets has to be explained by a lack of statistics.
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When the core sets are chosen as arbitrarily small, it is clearly more difficult for the process to hit the sets,
and therefore, transition events become rare. Note that for the straightforward milestoning generator, K,
the processes seem to become very slow, but for the projected generator K∗ = KM−1, this effect is
theoretically corrected by the mass matrix, M . Nevertheless, in both cases, the generation of enough
statistics will be problematic for too small core sets.

Figure 8. Estimate of the implied timescales from K Equation (22), the projected generator
K∗ Equation (23) and the reference computed from several full partition Markov State
Models (MSMs).
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6. Further Applications in MD

Markov State Modeling has been show to apply successfully to many different molecular systems,
like peptides, including time-resolved spectroscopic experiments [10–12], proteins and protein
folding [4,9,13], DNA [31] and ligand-receptor interaction [32]. In most of the respective publications,
full partition MSMs are used, and the underlying discretization is based on cluster finding methods
(see [7] for a review), while the sampling issues are tackled by means of ideas from enhanced
sampling [33] and based on ensembles of rather short trajectories instead of one long one, cf. [4]. Core
set-based approaches have been used just recently [10,27]; related algorithms are less well developed.
However, recent work has shown that and how every full partition MSM can be easily transformed into
a core set-based MSM with significantly improved approximation quality [34], making core set MSMs
the most promising next generation MSM tools.

Very Rare Transitions between Discretization Sets. When constructing a full partition or a core set
MSM, we have to estimate transition probabilities between sets in state space, and it can happen that
we cannot avoid that some of these transitions are very rare. That is, the transition probabilities for a
lag time, τ , between some sets can be non-zero, but small even, if compared to the remaining transition
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probabilities that are small already. This is why it is important to note that neglecting these very rare
transitions during the construction of an MSM does not harm its approximation quality. For example,
we can define for a transition matrix, P , another transition matrix, P̃ , by:

P̃ij =

Pij, i 6= j, (i, j) /∈ R
0, i 6= j, (i, j) ∈ R

(24)

where R denotes the set of pairs of indices for which the transition are very rare and for which we set
the transition probability to zero. If the Markov chain is reversible and (i, j) ∈ R⇔ (j, i) ∈ R, one can
show that for all ordered eigenvalues, λk(P ) and λk(P̃ ), it holds that:

|λk(P )− λk(P̃ )| ≤ max
i

∑
j 6=i,(i,j)∈R

Pij (25)

That is, if we cannot estimate a very small transition probability, Pij , for a very rare transition event
between two sets, Ai and Aj , and even totally neglect this probability by setting it to zero, the timescales
of the MSM remain almost unaffected. Thus, if we compute the set of the “first order” transition
probability of a system correctly enough and ignore all “higher order” ones, then our accuracy will not
be spoiled. This nicely illustrates the main advantage of MSM modeling compared to classical long-term
simulation: since only neighboring core sets have to be connected by accurately estimated rates, the long
residence time of long-term trajectories between and in core sets can be avoided, thus cutting down total
simulation time.

Computation from Trajectories. Clearly, constructing and analyzing a core set MSM will only have a
computational advantage compared to the direct sampling of a rare event if the transition events between
neighboring core sets occur on a much shorter timescale than the rare event itself. One should note that
from the purely theoretical point of view, it would be optimal to choose only very few core sets in the
most metastable regions of state space, because this would minimize the projection error δ = ‖u−Qu‖
for each dominant eigenvector u, as discussed in Section 3. On the other hand, when estimating the MSM
from trajectories, only a finite amount of statistics will be available, so there will also be a statistical error.
In order to keep the total error small, additional core sets in less metastable parts of state space typically
have to be introduced. In the end, this makes the estimation of a core set MSM possible without having
to sample rare events. Note that the projection error is still under control, as long as there is a transition
region between the core sets that is typically left very quickly (see Property (P2) in Section 4).

In practice, the statistics of the transition events between core sets will preferably be estimated from
many short trajectories using milestoning techniques [27,28] and parallel computing. However, any
algorithm for the construction of a core set MSM has to find a balance between sampling issues (not too
many too long trajectories needed) and discretization issues (not too many core sets). Construction of
such an algorithm still is ongoing research.

This article cannot give a detailed review on the algorithmic realization of MSMs for realistic
molecular systems and on the findings resulting from such applications, since this is discussed
to some extent elsewhere; see [7] for a recent review of the algorithmic aspects and [32,35] for
ligand-receptor interaction.
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7. MSM for Optimal Control Problems

In this section, we will borrow ideas from the previous section and explain how MSMs can be used
to discretize optimal control problems that are linear-quadratic in the control variables and which appear
in, e.g., the sampling of rare events. Specifically, we consider the case that (Xt)t≥0 is the solution of:

dXt = (
√

2ut −∇V (Xt))dt+
√

2εdBt (26)

with potential V , Brownian motion Bt and temperature ε > 0, as in Equation (16), and an unknown
control variable, u : [0,∞)→ Rd, that is chosen so as to minimize the cost function:

J(u;x) = E
[∫ τ

0

(
f(Xs) +

1

2
|ut|2

)
ds

∣∣∣∣X0 = x

]
(27)

(The factors of 1/2 and
√

2 in front of the control terms are for notational convenience.) Here, f ≥ 0 is a
bounded continuous function called running cost and τ <∞ (almost surely) is a random stopping time
that is determined by Xt hitting a given target set, A ⊂ E, i.e., τ = inf{t > 0: Xt ∈ A}, in other words,
we are interested in controlling Xt = Xu

t until it reaches A. As an example, consider the case f = 1

with the potential considered in Figure 5 and the target region, A, around the left well. This situation
is illustrated in Figure 9 and amounts to the situation that one seeks to minimize the time to reach A by
tilting the potential towards A; tilting the potential too much is prevented by the quadratic penalization
term in the cost functional that grows when too much force is applied.

Figure 9. The potential from Figure 5 (blue) and a tilted potential to minimize the time
required to hit the target set, A (green).
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Other choices of f in Equation (26) result in alternative applications. One obvious application would
be to set τ = T to a fixed time and f to the characteristic function of the complement of a conformation
set C, f = 1E\C . In this case, minimization of J wrt. the control ut would mean maximization of the
probability to find the system in the conformation, C, until time T under a penalty on the external work
done to the system. See [14] for more details on such applications.
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There are other types of cost functions, J , one might consider, e.g., control until a deterministic
finite time τ = T is reached or, even, τ → ∞, and the construction would follow analogously. For
compactness, we consider here only cost functions as in Equation (27).

Optimal Control and Equilibrium Expectation Values. It turns out that when minimizing J , it is
sufficient to consider control strategies that are Markovian and depend only on Xt, i.e., we consider
feedback laws of the form ut = α(Xt) for some smooth function, α : E → Rd. Moreover, only
controls with finite energy are considered, for otherwise, J(u;x) = ∞. For control problems of the
form Equations (26) and (27), the optimal feedback function can be shown to be α∗(x) = −

√
2∇W ,

where W is the value function or optimal-cost-to-go [1,15]:

W (x) = min
u
J(u;x) (28)

with the minimum running over all admissible Markovian feedback strategies. It can be shown that W
satisfies the following dynamic programming equation of the Hamilton–Jacobi–Bellman type (see [36]):

LW (x)− |∇W (x)|2 + f = 0

W |A = 0
(29)

with the second-order differential operator:

L = ε∆−∇V · ∇
that is the infinitesimal generator of the process, Xt, for u = 0. If the value function, W , is known, it
can be plugged into the equation of motion, which then turns out to be of the form:

dX∗t = −∇U(X∗t )dt+
√

2εdBt (30)

with the new potential:
U(x) = V (x) + 2W (x)

The difficulty is that Equation (29) is a nonlinear partial differential equation and for realistic high-
dimensional systems, it is not at all obvious how to discretize it, employing any kind of state space
partitioning. It has been demonstrated in [14,15] that Equation (29) can be transformed into a linear
equation by a logarithmic transformation. Setting: W (x) = −ε log φ(x) it readily follows, using chain
rule and Equation (29), that φ solves the linear equation:

(L− ε−1f)φ = 0

φ|A = 1
(31)

The last equation is linear and can be solved by using MSMs, as we will show below. Moreover, by the
Feynman–Kac theorem [37], the solution to Equation (31) can be expressed as:

φ(x) = E
[
exp

(
−1

ε

∫ τ

0

f(Xt)dt

)∣∣∣∣X0 = x

]
(32)

where Xt solves the control-free equation:

dXt = −∇V (Xt)dt+
√

2εdBt

That is, the optimal control for Equation (26) can be computed by solving Equation (31), which can
be done in principle via Monte Carlo approximation of the expected value in Equation (32) if critical
slowing down by rare events can be avoided.
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Remark. The optimization problem Equation (28) admits an interpretation in terms of entropy
minimization: let Q = Qu

x and P = Q0
x denote the path probability measures of controlled and

uncontrolled trajectories starting at x at time t = 0, and set:

Z =

∫ τ

0

f(Xs) ds

Then, it follows that we can write:

W (x) = min
Q�P

J(u;x), J(u;x) =

∫ {
Z + ε log

(
dQ

dP

)}
dQ (33)

where the notation “Q � P ” means that Q has a density (That is, the density function, dQ/dP , exists
and is almost everywhere positive and normalized) with respect to P . It turns out that for every such Q,
there is exactly one control strategy, u, such that Q = Qu

x is generated by Equation (26); in this sense,
the notation in Equation (33) is meaningful. The second term:

H(Q‖P ) = ε

∫
log

(
dQ

dP

)
dQ

is the relative entropy or Kullback–Leibler divergence between Q and P . For details on this matter
that are based on Girsanov transformations for stochastic differential equations, we refer to [38] or the
article [1] in this special issue.

8. MSM Discretization of Optimal Control Problems

The basic idea is now to choose a subspace, D ⊂ L2(µ), with basis χ1, . . . , χn as in Markov State
Modeling and then discretize the dynamic programming Equation (29) of our optimal control problem by
projecting the equivalent log transformed Equation (31) onto that subspace. As we will see, the resulting
discrete matrix equation can be transformed back into an optimal control problem for a discrete Markov
jump process (MJP).

We will do this construction for the full partition case χi = 1Ai
and the core set case χi = qi

discussed earlier. We will see that in both cases, we arrive at a structure-preserving discretization of
the original optimal control problem, where the states of the corresponding MJP will be related to the
partition subsets, Ai. The first case will give us back a well-known lattice discretization for continuous
control problems, the Markov chain approximation [39]. This is illustrated in the following diagram:

Lφ = ǫ−1fφ

SDE

W = minu J(u)

Gφ̂ = ǫ−1f̂ φ̂

MJP

Ŵ = minv Ĵ(v)

Linear equation

Control Problem

W = −ǫ log φ Ŵ = −ǫ log φ̂

discretize

D ⊂ V

?
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Subspace Projection. The key step for the discretization is that we pick a suitable subspace,
D ⊂ L2(µ), that is adapted to the boundary value problem Equation (31). Specifically, we require
that the subspace contains the constant function, 1 ∈ D, and that it gives a good representation of
the most dominant metastable sets. To this end, we choose basis functions χ1, . . . , χn+1 with the
following properties:

(S1) The χi form a partition of unity, that is
∑n+1

i=1 χi = 1.

(S2) The χi are adapted to the boundary conditions in Equation (31), that is χn+1|A = 1 and χi|A = 0

for i ∈ {1, . . . , n}.

Now, let Q be the orthogonal projection onto D, and define the matrices:

Fij =
〈χi, fχj〉
〈χi,1〉

, Kij =
〈χi, Lχj〉
〈χi,1〉

Now, if φ solves the linear boundary value problem Equation (31), then the coefficients, φ̂1, . . . , φ̂n+1,
of its finite-dimensional representation Qφ =

∑
j φ̂jχj on the subspace, D, satisfy the constrained

linear system:
n+1∑
j=1

(
Kij − ε−1Fij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1

(34)

that is the discrete analogue of Equation (31). The discrete solution φ̂ = Qφ is optimal in the sense of
being the best approximation of φ in the energy norm, i.e.:

‖φ− φ̂‖A = inf
ψ∈D
‖φ− ψ‖A (35)

where:
‖φ‖2

A =
〈
φ, (ε−1f − L)φ

〉
is the energy norm on L2(µ), and the infimum runs over all functions, ψ ∈ L2(µ), that are of the form
ψ(x) =

∑
j ψjχj(x) with coefficients ψj ∈ R. This is a standard result about projections of PDEs;

see [40] for details. (By the same argument as in the previous sections, A = ε−1f − L is symmetric and
positive definite as an operator on the weighted Hilbert space, L2(µ). Moreover, ‖φ‖2

A = ε−1〈φ, fφ〉 +

ε〈∇φ,∇φ〉.) In analogy with Equation (14), we can use the above result to get the error estimate:

‖φ− φ̂‖2
µ ≤

(
1 +

1

δ2
‖QAQ⊥‖2

)
inf
ψ∈D
‖φ− ψ‖2

µ (36)

where A = ε−1f − L is a shorthand for the operator appearing in Equation (31) and the constant δ > 0

is defined, such that ‖v‖2
A ≥ δ‖v‖2

µ holds for all v ∈ L2(µ); see [41]. The bottom line of Equation (35)
shows that discretizing Equation (31) via Equation (34) minimizes the projection error measured in the
energy norm. Since all functions are µ-weighted, the approximation will be good in regions visited
with high probability and less good in regions with lower probability. The error estimate Equation (36)
is along the lines of the MSM approximation result: if we switch to the norm on L2(µ), the function
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φ̂ = Qφ is still almost the best approximation of φ, provided that A leaves the subspace, D, almost
invariant. As was pointed out earlier, this is exactly the case when the χi are close to the eigenfunctions
of A (e.g., when the system is metastable).

The best approximation error ‖Q⊥φ‖µ = infψ∈D ‖φ − ψ‖µ, which appears in Equation (36), will
vanish if the χi form an arbitrarily fine full partition of E. If we follow the core set idea from Section 4
and choose the χi to be committor functions, we have good control over ‖Q⊥φ‖µ. Due to [41]:

‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ + µ(C)1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
(37)

where C = E \ ∪iCi is the transition region, κ = supx∈C ExτE\C is the maximum expected time of
hitting the metastable set from outside (which is short) and P is the orthogonal projection onto the
subspace V = {v ∈ L2(µ), v = const on every Ci} ⊂ L2(µ). Note that P⊥φ = 0 on C. The errors,
‖P⊥φ‖µ and ‖P⊥φ‖∞, measure how constant the solution, φ, is on the core sets. Hence, Equation (37)
together with Equation (36) gives us complete control over the approximation error of our projection
method, even if we consider just a few core sets. In Section 9, we will investigate the full and core set
partition cases further.

Properties of the Projected Problem. We introduce now the diagonal matrix, Λ, with entries
Λii =

∑
j Fij (zero otherwise) and the full matrix G = K − ε−1(F − Λ), and rearrange Equation (34)

as follows:
n+1∑
j=1

(
Gij − ε−1Λij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1

(38)

This equation can be given a stochastic interpretation. To this end, let us introduce the vector, π ∈
Rn+1, with nonnegative entries πi = 〈χi,1〉 and notice that

∑
i πi = 1 follows immediately from the fact

that the basis functions, χi, form a partition of unity, i.e.,
∑

i χi = 1. This implies that π is a probability
distribution on the discrete state space Ê = {1, . . . , n + 1}. We summarize properties of the matrices,
K, F and G; see also [41]:

(M1) K is a generator matrix of an MJP (X̂t)t≥0 (i.e.,K is a real-valued square matrix with row sum zero
and positive off-diagonal entries) with stationary distribution, π, that satisfies detailed balance:

πiKij = πjKji , i, j ∈ Ê

(M2) F ≥ 0 (entry-wise) with πiFij = πjFji for all i, j ∈ Ê.

(M3) G has a row sum of zero and satisfies πTG = 0 and πiGij = πjGji for all i, j ∈ Ê; furthermore,
there exists a constant 0 < C < ∞, such that Gij ≥ 0 for all i 6= j if ‖f‖∞ ≤ C. In this case,
Equation (38) admits a unique and strictly positive solution φ̂ > 0.

It follows that if the running costs, f , are such that (M3) holds, thenG is a generator matrix of an MJP
that we shall denote by (X̂t)t≥0, and Equation (38) has a unique and positive solution. In this case, the
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logarithmic transformation Ŵ = −ε log φ̂ is well defined. It was shown in [42] that Ŵ can be interpreted
as the value function of a Markov decision problem with cost functional (cf. also [36]):

Ĵ(v; i) = E
[∫ τ

0

(
f̂(X̂s) + k(X̂s, vs)

)
ds

∣∣∣∣X̂0 = i

]
(39)

that is minimized over the set of Markovian control strategies, v : Ê → (0,∞), subject to the constraint
that the controlled process X̂t = X̂v

t is generated by Gv, where:

Gv
ij =

{
v(i)−1Gijv(j) , i 6= j

−∑j 6=iG
v
ij , i = j

(40)

with stopping time τ = inf{t > 0: X̂t = n+ 1} and running costs:

f̂(i) = Λii , k(i, v) = ε
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
(41)

Properties of the Projected Problem, Continued. From [42], we know that the optimal cost:

Ŵ (i) = min
v
Ĵ(v; i)

is given by Ŵ = −ε log φ̂, where φ̂ solves Equation (38), with the optimal feedback strategy given by
v∗(i) = φ̂i (see [36]). We list additional properties:

(i) The v-controlled system has the unique invariant distribution:

πv = (πv1 , . . . , π
v
n+1) , πvi =

v(i)2πi
Zv

with Zv an appropriate normalization constant; in terms of the value function, π∗ = πv
∗ reads:

π∗ = (π∗1, . . . , π
∗
n+1) , π∗i =

1

Z∗
e−2ε−1Ŵ (i)πi

(ii) Gv is reversible and stationary with respect to πv, i.e., πviG
v
ij = πvjG

v
ji for all i, j ∈ Ê.

(iii) Ĵ admits the same interpretation as Equation (33) in terms of the relative entropy:

Ŵ (i) = min
Q�P

Ĵ(v; i), Ĵ(v; i) =

∫ {
Ẑ + ε log

(
dQ

dP

)}
dQ

where P denotes expectation with respect to the uncontrolled MJP, X̂t, starting at X̂0 = i, Q
denotes the path measure of the corresponding controlled process with generator Gv and:

Ẑ =

∫ τ

0

f̂(X̂s) ds
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A few remarks seem in order: Item (i) of the above list is in accordance with the continuous setting,
in which the optimally controlled dynamics is governed by the new potential U = V + 2W and has the
stationary distribution, µ∗ ∝ exp(−2ε−1W )µ, with µ being the stationary distribution of the uncontrolled
process. Hence, the effect of the control on the invariant distribution is the same in both cases. Further,
note that optimal strategies change the jump rates according to:

Gv∗

ij = Gije
−ε−1(Ŵ (j)−Ŵ (i)) (42)

that is, Ŵ acts as an effective potential as in the continuous case, and the change in the jump rates can
be interpreted in terms of Kramer’s law for this effective potential.

This completes our derivation of the discretized optimal control problem, and we now compare it with
the continuous problem we started with for the case of a full partition of E and a core set partition of E.

9. Markov Chain Approximations and Beyond

Full Partitions. Let E be fully partitioned into disjoint sets, A1, . . . , An+1, with centers x1, . . . , xn+1

and such that An+1 := A, and define χi := χAi
. These χi satisfy Assumptions (S1) and (S2) discussed

in Section 8. Since they are not overlapping, F is diagonal, and:

f̂(i) =
1

πi

∫
Ai

f(x)µ(x)dx = Eµ[f(Xt)|Xt ∈ Ai] (43)

is just obtained by averaging f(x) over the cell, Ai. Equation (43) is also a sampling formula for
f̂(i). It follows directly that G = K, and in particular, (M3) holds for any f . One can show that K
has components:

Kij ≈
1

∆ij

e−β(V (x̄ij)−V (xi)), ∆−1
ij = β−1 m(Sij)

m(hij)m(Ai)
(44)

if i and j are neighbors (Kij = 0 otherwise). Here, m is the Lebesgue measure, and hij , Sij and x̄ij are
defined as in Figure 10. K is the generator of an MJP on the cells, Ai, and coincides with the so-called
finite volume approximation of L discussed in [43]. It is reversible with stationary distribution:

πi =

∫
Ai

dµ ≈ m(Ai)e
−βV (xi)

One can show that the approximation error vanishes for n → ∞. K and π can be computed from
the potential, V , and the geometry of the mesh. By inspecting Equations (12) and (13), we see that K is
connected to the transition matrix, P τ , of a full partition MSM with lag time τ by

lim
τ→0

1

τ

(
P τ
ij −Mij

)
= lim

τ→0

1

πi
〈χi,

1

τ
(Tτ − 1)χj〉 =

1

πi
〈χi, Lχj〉 = Kij,

thus K is the generator of the semigroup of transition matrices, P τ . Therefore we could obtain K

by sampling in the same way we obtained P τ through Equation (19) in Section 5. This is difficult,
however, due to recrossing problems for small τ ; see e.g., [44]. Finally, let us note in passing that we
can drastically simplify kv if the cells, Ai, are boxes of length h. Denote the elementary lattice vectors
by en. Then,

kv(i) =
1

2
|uv(i)|2 +O(h), uvn(i) :=

1√
2

ε

2h
(log v(i+ en)− log v(i− en)) ,
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which establishes the connection to the continuous case. However, more is true: The whole discrete
control problem reduces to first order in h to the well-known Markov chain approximation (MCA) [39],
which allows us to use convergence theory for MCAs to conclude that, for n → ∞, the optimal control
and value function of the discrete control problem converge to their continuous counterparts. More
details can be found in [41].

Figure 10. The mesh for the full partition.
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x̄ij

Sij

Ai

Aj

hij

Core Set Partition. Now, we choose core sets C1, . . . , Cn+1 with Cn+1 = A, and we let χi = qi be the
committor function of the process with respect to Ci, as in Section 4. These χi satisfy Assumptions
(S1) and (S2) discussed in Section 8. The projection onto the committor basis also allows for a
stochastic interpretation. Recall the definition of the forward and backward milestoning process, X̃±t ,
from Equation (18). The discrete costs can be written as:

f̂(i) =
1

πi
〈qi, f

∑
j

qj〉 =

∫
νi(x)f(x)dx = Eµ

[
f(Xt)

∣∣∣X̃−t = i
]

(45)

where νi(x) = qi(x)µ(x)
πi

= P(Xt = x|X̃−t = i) is the probability density of finding the system in state x
given that it came last from i. Hence, f̂(i) is the average costs conditioned on the information X̃−t = i,
i.e., Xt came last from Ai, which is the natural extension to the full partition case, where f̂(i) was the
average costs conditioned on the information that Xt ∈ Ai.

The matrix K = π−1
i 〈qi, Lqj〉 is reversible with stationary distribution

πi = 〈qi,1〉 = Pµ(X̃−t = i)

and is related to core MSMs again:

K = lim
τ→0

1

τ
(P τ −M)

where P τ and M are now the matrices for core MSMs, as in Equation (18). Formally, K is the generator
of the P τ , but these do not form a semigroup, since M 6= 1. Therefore, we cannot interpret K directly
as, e.g., the generator of X̃−t . Nevertheless, the entries of K are the transition rates between the core
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sets, as defined in transition path theory [45]. We can sample P τ and M using Equations (20) and (21);
because we used an incomplete partition, the recrossing problem is removed, and there is no difficulty in
sampling P τ for all lag times, τ , and therefore, K directly. It is worth noting that F can also be sampled:

Fij = Eµ
[
f(Xt)χ{X̃+

t =j}

∣∣∣X̃−t = i
]

Therefore, as in the construction of core MSMs, we do not need to compute committor functions
explicitly. Note, however, that G 6= L, there is a reweighting, due to the overlap of the qi’s, which causes
F to be non-diagonal. This reweighting is the surprising bit of this discretization. From properties (M1)–
(M3) from Section 8, we see, however, that G and K are both reversible with stationary distribution, π.
Finally, note that if the cost function, f(x), does not satisfy ‖f‖∞ ≤ C from (M3), G will not even be
a generator matrix. In this case, (34) still has a solution, φ̂, which is the best approximation to φ, but
this solution may not be unique; it may not satisfy φ̂ > 0, and we have no interpretation as a discrete
control problem.

10. Numerical Results

10.1. 1D Potential Revisited

Firstly, we study diffusion in the triple well potential, which is presented in Figure 2. This potential
has three minima at approximately x0/1 = ±3.4 and x2 = 0. We choose the three core sets
Ci = [xi − δ, xi + δ] around the minima with δ = 0.2. Take τ to be the first hitting time of C0.
We are interested in the moment generating function φ(x) = E

[
e−ε

−1στ
]

of passages into C0 and the
cumulant generating function W = ε log φ. This is of the form Equation (32) for A = Ci and f = σ, a
constant function.

In Figure 11a, the potential, V , and effective potential, U , are shown for β = 2 and σ = 0.08 (solid
lines), cf. Equation (30). One can observe that the optimal control effectively lifts the second and third
well up, which means that the optimal control will drive the system into C0 very quickly. The reference
computations here have been carried out using a full partition FEM (finite element method) discretization
of Equation (31) with a lattice spacing of h = 0.01. Now, we study the MJP approximation constructed
via the committor functions shown in Figure 11b. These span a three-dimensional subspace, but due to
the boundary conditions, the subspace, D, of the method is actually two-dimensional. The dashed line in
Figure 11a gives the approximation to U calculated by solving Equation (38). We can observe extremely
good approximation quality, even in the transition region. In Figure 11c, the approximation to the optimal
control, α∗(x) (solid line), and its approximation α̂∗ = −

√
2∇Ŵ (dashed line) are shown. The core sets

are shown in blue. We can observe jumps in α̂∗ at the left boundaries of the core sets. This is to be
expected and comes from the fact that the committor functions are not smooth at the boundaries of the
core sets, but only continuous. Therefore, the approximation to U is continuous, but the approximation
to α∗ is not.

Next, we construct a core MSM to sample the matrices, K and F . One hundred trajectories of length
T = 20, 000 were used to build the MSM. In Figure 11d, W and its estimate using the core MSM are
shown for ε = 0.5 and different values of σ. Each of the 100 trajectories has seen about four transitions.
For comparison, a direct sampling estimate of W using the same data is shown (green). The direct
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sampling estimate suffers from a large bias and variance and is practically useless. In contrast, the MSM
estimator for W performs well for all considered values of σ, and always, its variance is significantly
small. The constant, C, which ensures φ̂ > 0 when σ ≤ C, is approximately 0.2 in this case. This seems
restrictive, but still allows one to capture all interesting information about φ and W .

Figure 11. Three well potential example for ε = 0.5 and σ = 0.08. (a) Potential V (x) (blue),
effective potential U = V + 2W (green) and approximation of U with committors (dashed
red). (b) The three committors, q1(x), q2(x) and q3(x). (c) The optimal control α∗(x) (solid
line) and its approximation (dashed line). Core sets are shown in blue; (d) Optimal cost W
for β = 2 as a function of σ. Blue: Exact solution. Red: Core MSM estimate. Green: Direct
sampling estimate.
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10.2. Alanine Dipeptide

Lastly, we study α-β-transitions in alanine dipeptide, a well-studied test system for molecular
dynamics applications. We use a 1µs long trajectory simulated with the CHARMM (Chemistry at
HARvard Molecular Mechanics) 27 force field. The conformational dynamics is monitored as usual
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via the backbone dihedral angles, φ and ψ. The data was first presented in [27]. We construct a full
partition MSM with 250 clusters using k-means clustering. We are interested in the MFPT (mean first
passage time) t̂(i) = Ei[τα], where τα is the first hitting time of the α conformation, which we define as
a circle with radius r = 45 around (φα, ψα) = (−80,−60). The MFPT vector, t̂, solves the boundary
value problem

Kt̂ = −1 outside of α, t̂ = 0 in α

, but since K is not available directly via sampling, we have to consider the equation
1

τ
(P τ − 1) t̂ = −1 outside of α, t̂ = 0 in α

instead. The result will depend on the choice of lag time τ . In Figure 12a, the results are shown for
τ = 5; we can identify the β-structure as the red cloud of clusters where t̂(i) is approximately constant.
In Figure 12b, t̂βα = E(t̂(i)|i ∈ β) is shown as a function of τ . We observe a linear behavior for large
τ , which is due to the linear error introduced in the replacement of K with 1

τ
(P τ − 1), and a nonlinear

drop for small τ , which is due to non-Markovianity. Our best guess is, therefore, a linear interpolation to
τ = 0, which is indicated by the solid line. The result is t̂(0)

βα = 35.5ps. As a comparison, the reference
value t̂refβα = 36.1ps from [27] is shown as a dashed line. It was computed in [27] as an inverse rate,
using the slowest ITS (implied time scale) and information about the equilibrium weights of the α and β
structure. We see very good agreement. The result is, of course, dependent, though, on the assignment
of clusters to the α and β structure. Some tests show that t̂(0)

βα as computed with the interpolation method
is fairly insensitive to this choice.

Figure 12. Dipeptide example. (a) MFPT from β to α in φ-ψ space for τ = 5. The
red cloud to the right is the β-structure. (b) MFPT as a function of τ (dashed line) and
linear interpolation to τ = 0 (solid line). Green dashed line: reference computed via the
slowest ITS .
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In [14], it is demonstrated how to use the method presented herein for maximizing the population of
the α-conformation of alanine dipeptide based on the MSM used here.
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11. Conclusions

In this article, we have discussed an approach to overcome direct sampling issues of rare events
in molecular dynamics based on spatial discretization of the molecular state space. The strategy is to
define a discretization by subsets of state space, such that the sampling effort with respect to transitions
between the sets is much lower than the direct estimation of the rare events under consideration. That is,
without having to simulate rare events, we construct a so-called Markov State Model, a Markov chain
approximation to the original dynamics. Since the state space of the MSM is finite, we can then calculate
the properties of interest by simply solving linear systems of equations. Of course, it is crucial that these
properties of the MSM can be related to the rare event properties of the original process that we have not
been able to sample directly.

This is why we have analyzed the approximation quality of MSMs in the first part of the article. We
have used the interpretation of MSMs as projections of the transfer operator to: (1) derive conditions that
guarantee an accurate reproduction of the dynamics; and (2) show how to construct models based on a
core set discretization by leaving the state space partly undiscretized.

In the second part of the article, we have used the concept of MSM discretization to solve MD optimal
control problems in which one computes the optimal external force that drives the molecular system
to show an optimized behavior (maximal possible population in a conformation; minimal mean first
passage time to a certain conformation) under certain constraints. We have demonstrated that the spatial
discretization underlying an MSM turns the high-dimensional continuous optimal control problem into a
rather low-dimensional discrete optimal control problem of the same form that can be solved efficiently.
This result allows two different types of applications: (1) if one can construct an MSM for a molecular
system in equilibrium, then one can use it to compute optimal controls that extremize a given costs
criterion; (2) if an MSM can be computed based on transition probabilities between neighboring core
sets alone, then the rare event statistics for transitions between strongly separated metastable states
of the system can be computed from an associated optimal control problem that can be solved after
discretization using the pre-computed MSM.
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