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Abstract 

Background: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and 
biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of 
platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of 
platinum compounds remain largely unknown. 
Material and Methods: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by 
digital gene expression analysis. Based on data from preliminary experiments and recent literature, a 
total of 366 mRNAs were investigated using a Custom CodeSet from NanoString. All statistical analyses 
were calculated with the R i386 statistical programming environment. 
Results: CDC25A and PARP1 gene expression were correlated with lymph node spread, BRCA1 and TP73 
expression levels with higher IMIG stage. NTHL1 and XRCC3 expression was associated with TNM 
stage. CHECK1 as well as XRCC2 expression levels were correlated with tumour progression in the 
overall cohort of patients. CDKN2A and MLH1 gene expression influenced overall survival in this 
collective. In the adjuvant treated cohort only, CDKN2A, CHEK1 as well as ERCC1 were significantly 
associated with overall survival. Furthermore, TP73 expression was associated with progression in this 
subgroup. 
Conclusion: DNA-damage response plays a crucial role in response to platin-based chemotherapeutic 
regimes. In particular, CHEK1, XRCC2 and TP73 are strongly associated with tumour progression. 
ERCC1, MLH1, CDKN2A and most promising CHEK1 are prognostic markers for OS in MPM. TP73, 
CDKN2A, CHEK1 and ERCC1 seem to be also predictive markers in adjuvant treated MPMs. After a 
prospective validation, these markers may improve clinical and pathological practice, finally leading to a 
patients’ benefit by an enhanced clinical management. 

Key words: pleural mesothelioma, NanoString nCounter, digital gene expression analysis, DNA-damage 
repair, platin-based chemotherapy. 
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Introduction 
Malignant pleural mesothelioma (MPM) is a 

rare, predominantly asbestos-related and biologically 
highly aggressive tumour leading to a dismal 
prognosis [1, 2]. In the US, approximately 2500 new 
cases of mesothelioma are diagnosed each year and 
the incidence of mesothelioma is expected to decline 
steadily [1, 3, 4]. In contrast, the incidence of 
mesothelioma in Europe continues to rise. Its peak is 
expected in the next two decades and may account for 
as many as 250,000 European deaths in the next 35 
years [1, 2, 5-7]. 

Multimodality therapy consisting of 
chemotherapy, surgery and/or radiotherapy is 
centred on surgical resection in early stages. In clinical 
practice, the antifolate pemetrexed is used in 
combination with cisplatin [8] or carboplatin [9-12]. 
Cisplatin resulted in a response rate of merely 14% 
and a median survival of below 7 months [13]. 
Carboplatin resulted in similar response rates ranging 
from 6 to 16% [13, 14]. The reasons for the rather poor 
efficacy of platinum-compounds remain largely 
unknown. 

Platinum cytotoxicity is based on forming bulky 
DNA adducts by chemically altering DNA bases by 
covalent binding of platinum [12], leading to both 
DNA inter- and (1,2 or 1,3)-intra-strand cross-linking 
[15-22]. Platinum-compounds prevent normal cell 
replication and trigger apoptosis [17, 21, 23], unless 
adducts from genomic DNA are repaired [20]. Even a 
single DNA cross-link, if not repairable, can be lethal 
[24]. There are also several local treatment modalities 
that have been used such as gene therapy, zoledronic 
acid and photodynamic therapy [25-30]. 

Nucleotide excision repair (NER) is capable of 
removing numerous types of DNA helix-distorting 
lesions, which are induced by platinum [15, 16, 31]. 
The endonuclease excision repair 
cross-complementing 1 (ERCC1) performs an essential 
late step in the NER process, where it nicks the 
damaged DNA strand at the 5’ site of the 
helix-distorting lesion [31], and is the rate-limiting 
member of the NER pathway [15, 16, 20]. 

In contrast, mismatch repair (MMR) is one of the 
major DNA repair pathways, which is responsible for 
the repair of single-base or nucleotide mismatches 
and insertion-deletion loops that results from slippage 
during replication of repetitive sequences or during 
recombination [32-34]. The MutS homologue 2 
(MSH2) protein belongs to the MMR pathway and is 
crucially involved in the repair of DNA cross-links. 
MSH2 also recognizes and binds to platinum-induced 
DNA interstrand cross-links, thereby initiating their 
excision and repair [24] whilst building a 

MSH2/MSH6 heterodimer [35, 36]. Defects in DNA 
MMR have been shown to be a mechanism of 
resistance to cisplatin both in vivo and in vitro [15, 
37]. 

Base excision repair (BER) corrects small base 
alterations without distorting the DNA helix structure 
[38-40] by using two distinct ways. In the short patch 
pathway a single base replacement is performed by 
DNA polymerase b (POLB), DNA ligase3 and the 
X-ray cross complementing group 1 (XRCC1) protein, 
the latter as a scaffold protein to form the complex 
[41]. In the long patch pathway a DNA synthesis of 
multiple nucleotides (2–10 bases) occurs by the DNA 
pold/e, proliferating cell nuclear antigen (PCNA), the 
flap endonuclease 1 (FEN1) and DNA ligase1 [41]. 
Interestingly, BER components are also used to repair 
single-stranded DNA breaks (SSB), whereat XRCC1 
and poly (ADP-ribose) polymerase (PARP1) serve as 
SSB sensors [38, 42]. As DNA lesions occurring in 
mesothelioma are in majority single strand breaks, the 
BER pathway plays a crucial role in survival of these 
cells [43, 44]. Further important pathways are the 
recombination repair system (Homologous 
recombination repair (HR), Non-homologous 
end-joining (NHEJ) and Fanconi anemia (FA) 
pathway) and the downstream target cascade that 
contributes to HR, including RAD52, RAD54, RPA 
and Breast Cancer 1 and 2 (BRCA1/2) [38, 45, 46]. 
These are of high interest for the understanding of the 
resistance mechanism to platin-compounds. Although 
impaired DNA repair could promote mutagenesis, an 
intact HR repair system may increase resistance to 
radiotherapy and chemotherapy [47]. 

In consideration of these aspects we aimed to 
investigate the impact of DNA-damage response and 
repair key players on platin-compound based 
therapy. Therefore, we analysed twenty-four MPM 
patients, whereof twelve underwent adjuvant and 
twelve neoadjuvant treatments. The selection of 
targets was based on recent literature and preliminary 
results of our group.  

Material and Methods 
Study Cohort and Experimental Design 

For this exploratory mRNA study, twenty-four 
formalin-fixed paraffin-embedded (FFPE) tumour 
specimens were screened. Tumour classification was 
based on the WHO Classification Of Tumours 
guidelines (2004) [48] and TNM-staging was based on 
the UICC Classification of Malignant Tumours [49]. 
Those were confirmed by two experienced 
pathologists (JWO, KWS). The study included only 
MPM patients treated at the West German Cancer 
Centre or the West German Lung Centre between 
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2005 and 2009. All patients received platinum-based 
chemotherapy. Half of the collected samples were 
taken in an adjuvant and the other half in a 
neoadjuvant situation. The clinical stage was 
determined according to the criteria of the 
International Mesothelioma Interest Group (IMIG) 
tumour-node-metastasis staging system for MPM 
[50]. Radiologic response rate was assessed by 
modified Response Evaluation Criteria in Solid 
Tumors (modRECIST), which have been validated in 
MPM [51, 52]. Clinicopathological data including age, 
gender, histology and TNM are summarized in table 
1. Surveillance for this study was stopped on August 
31, 2014. Complete follow up was available for all 
patients with reported deaths in more than 96% 
(23/24). Progression under therapy was observed in 
approximately 80% (19/24) of patients. The 
retrospective study was approved by the Ethics 
Committee of the Medical Faculty of the University 
Duisburg-Essen (identifier: 14-5775-BO). The 
investigation conforms to the principles outlined in 
the declaration of Helsinki. 

RNA Isolation and RNA Quantity Assessment 
Three to five 10µm thick paraffin sections per 

sample were de-paraffinised using xylene prior to 
total RNA isolation including miRNAs. RNA was 
isolated by using the miRNeasy FFPE kit (Qiagen, 
Venlo, Netherlands) as recommended by the supplier 
except for proteinase K digestion performed 
overnight. Total RNA quantity was assessed using a 

Qubit flouormetric quantification system and Broad 
Range RNA Assay Kit (Thermo Fisher Scientific, MA, 
USA). 

CodeSet Design 
Based on preliminary experiments, recent 

literature and in silico predicted miRNA-targets, a 
total of 366 mRNAs (including reference genes) were 
investigated using a Custom CodeSet from 
NanoString. The nCounter standard chemistry was 
used and the preparation was carried out as 
recommended by the manufacturer. For each sample, 
200 ng total RNA were processed. The high-sensitivity 
protocol was chosen; the cartridge was measurement 
at 555 fields of view. 

NanoString Data Processing and Statistical 
Analysis 

All statistical analyses were calculated using the 
R i386 statistical programming environment (v3.2.3). 
A technical normalization of the counts was done by 
subtracting the mean counts plus two-times standard 
deviation from the CodeSet inherent negative 
controls. Afterwards, a biological normalization using 
the included reference genes was performed [53-55]. 
In brief, the gene expression stability measures (M) 
were calculated by using the NormFinder algorithm 
and all sample counts were normalized against the 
geometric mean of the normalization gene counts. 
ACTB, MAPK14 and TCEB1 were identified as most 
stable reference genes. 

Table 1. Overview of therapeutic scheme, clinicopathological parameters as well as clinical outcome for each patient 

Therapy-Concept Therapy-Regimen Age 
(Years) 

Gender T-Stage N-Status M-Status IMIG-Stage Time to 
Death 
(Months) 

Time to 
Progress 
(Months) 

Progression Outcome 

adjuvant CARBO+PEM 76 m 2 0 0 2 44,2 14,3 Yes Death 
adjuvant CARBO+PEM 80 m 3 2 0 3 13,0 6,9 Yes Death 
adjuvant CIS+PEM 51 m x x x x 8,0 6,2 Yes Death 
adjuvant CIS+PEM 52 m 2 2 0 3 9,3 5,5 Yes Death 
adjuvant CIS+PEM 56 m 3 0 1 4 43,2 5,5 No Death 
adjuvant CIS+PEM 61 m 2 2 1 4 3,1 1,2 Yes Death 
adjuvant CIS+PEM 65 m 2 2 0 3 8,8 4,9 Yes Death 
adjuvant CIS+PEM 68 f 2 0 1 4 3,7 3,5 No Death 
adjuvant CIS+PEM 70 m 1 2 0 3 14,5 6,7 Yes Death 
adjuvant CIS+PEM 73 m 2 0 0 2 18,0 4,8 Yes Death 
adjuvant CIS+PEM 75 m 3 0 0 3 21,7 6,4 Yes Death 
adjuvant CIS+PEM 77 m 2 0 0 2 5,6 3,8 Yes Death 
neoadjuvant CIS+CARBO+PEM 69 m 1 0 0 1 7,1 7,7 No Death 
neoadjuvant CIS+PEM 54 m 3 2 1 4 13,8 4,1 Yes Alive 
neoadjuvant CIS+PEM 56 m 2 0 0 2 37,0 23,1 Yes Death 
neoadjuvant CIS+PEM 58 m 3 1 0 3 18,5 9,3 Yes Death 
neoadjuvant CIS+PEM 58 m 2 0 0 2 6,7 2,8 Yes Death 
neoadjuvant CIS+PEM 61 m 3 0 0 3 25,2 11,6 Yes Death 
neoadjuvant CIS+PEM 62 m 2 2 0 3 41,5 34,7 Yes Death 
neoadjuvant CIS+PEM 62 m 2 0 0 2 29,9 10,1 Yes Death 
neoadjuvant CIS+PEM 62 m 2 2 0 3 4,4 4,0 Yes Death 
neoadjuvant CIS+PEM 69 m 3 0 0 3 42,6 40,8 No Death 
neoadjuvant CIS+PEM 69 f 2 0 0 2 27,3 9,7 Yes Death 
neoadjuvant CIS+PEM 73 m 4 2 0 4 24,0 5,9 No Death 
CARBO … Carboplatin; CIS … Cisplatin; PEM…Pemetrexed. 



 Journal of Cancer 2016, Vol. 7 

 
http://www.jcancer.org 

1918 

 

For dichotomous variables (e.g. gender) the 
Wilcoxon Mann-Whitney rank sum test was used. 
Correlations between mRNA-expression and 
TNM-criteria were tested by using the Spearman’s 
rank correlation test. Kaplan-Meier analysis was done 
for the assessment of associations between gene 
expression and progression-free survival (PFS) or 
overall survival (OS). Significant differences in PFS or 
OS between groups were verified by COXPH-model 
using Wald-test, likelihood-ratio test and Score 
(logrank) test. 

The level of statistical significance was defined 
as p≤0.05. 

Results 
Overall Expression of Targets 

The 366 analysed targets were narrowed down 
by their profile resulting in 30 members important for 
DNA-damage recognition and repair. In their overall 
expression, two markers stick out as they show a high 
expression of more than 2,500 median detected counts 
(AKT1: median counts 3513, range 1,804-7,493; 
PRDX5: median counts 2,873, range 417-10,850). 
Seven markers showed low expression less than 500 
counts in median (BRCA1, CDC25A, CDKN2A, 
MNAT1, NTHL1, TP73, XRCC2), in particular NTHL1 
(median: 37 counts; range 0-113) and XRCC2 (median: 
68 counts; range 0-194) show a basal to absent gene 
expression but still differences between the tumours 
were detected. The remaining 21 targets revealed 
medial count numbers, ranging from 500 to 2,500 
median counts. Median, mean and range of all 30 
markers are summarized in table 2 and results are 
graphically illustrated in figure 1. 

Correlation to Clinicopathological Data 
High mRNA levels of BRCA1 and TP73 were 

significantly correlated to higher IMIG-Stage 
(p=0.0067; p= 0.0284). Furthermore, a low CDC25A 
gene expression was correlated to lymph node 
invasion (p=0.0358). In contrast, high PARP1 
expression levels were significantly associated with 
lymph node spread (p=0.0078). 

Similarly, lower NTHL1 gene expression 
(p=0.0478) and higher XRCC3 gene expression levels 
were significantly associated with higher T-stage 
(p=0.0026). An increase of gene expression during 
platin-based chemotherapy was determined for 
H2AFX (p=0.0100), PCNA (p=0.0242) and XRCC1 
(p=0.0387). 

With increasing patients age, MSH2 (p=0.0267), 
RBX1 (p=0.0390) as well as XRCC1 (p=0.0030) 
expression decreased. No correlation between one of 
the investigated markers and the appearance of 

distant metastasis was found. No significant 
association to patient’s gender or storage duration of 
the analysed paraffin tissues was detected. 

Results are summarized and illustrated in 
figure 2. 

 

Table 2. Summary of median count number, mean count number 
and count range of each measured target. Of note, AKT1, PRDX5 
and TP53 show outstanding high, and BRCA1, CDC25A, CDKN2A, 
MNAT1, NTHL1, TP73 and XRCC2 a low to basal gene expression. 

  Median Mean Minimum Maximum 
AKT1 3,513 3,969 1,804 7,493 
ATM 1,920 1,921 758 3,128 
ATR 1,006 960 456 1,291 
BRCA1 480 479 0 900 
CCNH 739 925 206 2,066 
CDC25A 278 275 31 633 
CDK7 607 580 213 939 
CDKN2A 108 153 0 890 
CHEK1 830 887 332 1,654 
CHEK2 446 501 195 1,120 
ERCC1 1,191 1,164 639 1,965 
H2AFX 1,284 1,389 762 2,497 
MGMT 934 1,026 223 2,012 
MLH1 924 911 213 1,541 
MNAT1 127 155 0 388 
MSH2 834 871 427 2,021 
MYC 1,724 1,952 1,001 4,821 
NBN 1,091 1,110 470 1,696 
NTHL1 37 46 0 113 
OGG1 767 730 313 1,234 
PARP1 1,769 1,740 912 2,899 
PCNA 809 948 377 1,540 
PRDX5 2,694 2,996 1,043 5,678 
RAD52 1,013 1,045 320 1,915 
RBX1 1,817 1,985 938 3,551 
TP53 2,446 2,435 897 4,128 
TP73 327 347 0 943 
XRCC1 589 599 230 969 
XRCC2 68 84 0 194 
XRCC3 503 536 0 900 
 

 

Associations to Clinical Outcome 
In the overall cohort, associations between gene 

expression level and objective tumour progression 
were found for CHEK1 (p=0.0362) and XRCC2 
(p=0.0053). No associations with PFS were observed; 
nevertheless, CDKN2A (p=0.0387) as well as MLH1 
(p=0.0344) gene expression levels influenced OS 
independently. 

In the cohort of adjuvant treated patients, some 
predictive and prognostic markers were identified. 
Increased TP73 gene expression was significantly 
associated with progression of the tumour during 
therapy (p=0.0303). CDKN2A (p=0.0297) as well as 
CHEK1 (p=0.0162) and ERCC1 (p=0.0455) gene 
expression levels were significantly correlated to OS. 

Results are graphically illustrated in figure 3 and 
a list of all significant p-values is given in table 3. 
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Figure 1. The figure shows the distribution of NanoString mRNA counts over for each target. AKT1 as well as PRDX5 showed the strongest gene expression level. 
By the way, the disparities of PRDX5 are notable ranging between 1,000 and 5,800 counts. CDKN2A, MNAT1, NTHL1 and XRCC2 show the lowest mean 
expression levels. Interestingly, for both CDKN2A and XRCC2 the standard deviation clearly exceeds the median count number, indicating differences between the 
samples. 

 

 
Figure 2. In this figure boxplots regarding clinicopathological parameters are shown, including IMIG-stage (A+B), N-status (C+D) as well as TNM-stage (E+F). Both 
BRCA1 and TP73 show increasing gene expression with higher IMIG-stage. CDC25A gene expression decreases in lymph-metastatic tumours whereas PARP1 gene 
expression increases in those. Interestingly, strong XRCC3 gene expression was just found in pT2 or higher tumours. 
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Figure 3. Prognostic and predictive results are illustrated in the figure. The upper line (A-D) show results from the overall collective, the lower line (E-H) results 
from the adjuvant cohort only. In particular, CDKN2A, ERCC1 and CHEK1 seem to be predictive markers for platin-response in the adjuvant-treated patients, gaining 
a real survival benefit. 

 

Table 3. List of all significant p-values after Bonferroni-correction for multiple testing. For the adjuvant treated subgroup only, just 
predictive parameters as survival or progression were tested. 

 Gene Variable Test-Method p-Value Likelihood ratio test Wald test Score (logrank) test Z rho 
Overall 
Cohort 

CDC25A N-Status Spearman's rank correlation rho 0,0358 - - - - -0,6351 
PARP1 N-Status Spearman's rank correlation rho 0,0078 - - - - 0,7506 
BRCA1 IMIG-Stage Spearman's rank correlation rho 0,0078 - - - - 0,7505 
TP73 IMIG-Stage Spearman's rank correlation rho 0,0284 - - - - 0,6561 
NTHL1 TNM-Stage Spearman's rank correlation rho 0,0478 - - - - -0,6068 
XRCC3 TNM-Stage Spearman's rank correlation rho 0,0026 - - - - 0,8090 
CDK7 Age Spearman's rank correlation rho 0,0450 - - - - -0,4148 
MSH2  Age Spearman's rank correlation rho 0,0267 - - - - -0,4548 
OGG1 Age Spearman's rank correlation rho 0,0148 - - - - -0,4957 
PRDX5 Age Spearman's rank correlation rho 0,0301 - - - - -0,4461 
RBX1 Age Spearman's rank correlation rho 0,0390 - - - - -0,4261 
XRCC1 Age Spearman's rank correlation rho 0,0030 - - - - -0,5887 
H2AFX Therapy Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0100 - - - 2,5403 - 
MYC Therapy Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0205 - - - -2,3094 - 
PCNA Therapy Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0242 - - - 2,2517 - 
XRCC1 Therapy Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0387 - - - 2,0785 - 
CHEK1 Progression Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0362 - - - -2,0969 - 
XRCC2 Progression Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0053 - - - -2,6679 - 
- PFS Cox Proportional Hazard Model - - - - - - 
CDKN2A OS Cox Proportional Hazard Model - 0,0387 0,0263 0,0214 - - 
MLH1 OS Cox Proportional Hazard Model - 0,0344 0,0382 0,0401 - - 

Adjuvant 
Cohort 

TP73 Progression Exact Wilcoxon Mann-Whitney Rank Sum Test 0,0303 - - - 2,1483 - 
- PFS Cox Proportional Hazard Model - - - - - - 
CDKN2A OS Cox Proportional Hazard Model - 0,0297 0,0433 0,0460 - - 
CHEK1 OS Cox Proportional Hazard Model - 0,0162 0,0246 0,0283 - - 
ERCC1 OS Cox Proportional Hazard Model - 0,0455 0,0479 0,0458     
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Figure 4. Overview of the DNA-damage response pathway-network. After an initial stress signal (DNA-damage), ATR and ATM transmit these signals downstream 
over CHEK1/2 to BRCA1/2 and then distribute to the different pathways. Green Arrows indicate activating signals; red cross-marks indicate inhibitory signals. Blue 
bold lines indicate complexes. If a protein is involved in different independent complexes, different shades of bold-blue lines indicate the different complexes. 
Turquoise octagons indicate the different pathway end-points. 

 

Discussion 
We present a study focussing on a mRNA 

screening for DNA-damage response associated 
targets aiming to understand the mechanisms of 
platinum-based therapy-induced apoptosis and to 
identify possible predictive markers. 

An overview of the corresponding DNA-repair 
pathways is given in figure 4. 

Besides pemetrexed, platinum-compounds are 
standard chemotherapeutic agents for the treatment 
of MPM [24]. Besides, Platinum-containing regimens 
have a greater activity than non-platinum containing 
combinations in MPM [56].  

Several studies have investigated carboplatin 
and cisplatin as single-agent chemotherapy. Cisplatin 
resulted in a response rate of merely 14% and a 

median survival of below 8 months [13, 14]. 
Carboplatin resulted in similar response rates ranging 
from 6 to 16% [13, 14]. The reasons for the rather poor 
efficacy of platinum-compounds remain largely 
unknown. 

DNA-Damage Recognition and TP53 
Inhibitory Network 

DNA double-strand breaks (DSBs) and DNA 
replication stress activate the ATM signalling 
pathways, which transduce the signal to downstream 
ATR/CHEK1 pathway [57, 58]. CHEK1 directly 
activates TP53 and thereby triggers TP53-induced 
apoptosis and senescence in response to DNA 
damage. Previous studies showed that cells lacking 
CHEK1 were more sensitive to gemcitabine in a 
TP53-independent manner [58, 59]. To date, the role of 
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the ATM/CHEK2 pathway in cells treated with 
platin-containing compounds is unknown [58]. Our 
results confirm this relationship. CHEK1 was 
associated with both progression during therapy and 
OS in the adjuvant treated sub-cohort. Therefore, 
CHEK1 gene expression seems to be a strong 
predictive marker for patients’ response and outcome 
under platin-based chemotherapy. We recommend 
validation of this result in a larger prospective study 
to bring CHEK1 to a presumable clinical application.  

Of note, a direct inhibition of CHEK1 by small 
molecules already showed to promising results in 
vitro in breast cancer [60], in vivo in hepatic carcinoma 
[61] as well as in mesothelioma [62]. 

In contrast to other solid tumours, mutations of 
the TP53 gene are extremely rare in MPM, so other 
mechanisms such as deletion of the locus or 
methylation contribute to inactivation of TP53 [63-66]. 
For instance, overexpression of MDM2 can lead to a 
loss of TP53 regulatory function in cancer cells by 
increased proteasomal degradation of TP53 [67-72]. 
Gene amplification can lead to increased MDM2 
protein expression. However, many tumours present 
with high MDM2 protein levels without an increased 
gene copy number [73-77].  

In previous studies, we have demonstrated that 
MDM2 is overexpressed in approximately 20-30% of 
MPM and this finding was restricted to epitheloid 
MPM or the epithelioid components of biphasic MPM 
[78, 79]. Moreover, patients with MDM2-positive 
MPM presented with a significantly decreased OS 
compared to MDM2-negative MPM [78, 79]. The 
physiological inhibitor of MDM2 is P14/ARF and loss 
of P14/ARF activity may have a similar effect as loss 
of TP53 [80-83]. P14/ARF may control TP53 
transcription, represses TP53 degradation that is not 
MDM2-mediated and stimulates TP53 activity [84]. 
Additionally, loss of P14/ARF activity seems to occur 
in a reciprocal manner to TP53 loss and seems to be 
typical for tumours that are TP53 wild type [83]. In a 
previous study, we found CDKN2A (gene locus 
coding for P14/ARF) gene expression associated with 
OS and PFS in platinum-treated MPM patients [79]. In 
concordance, CDKN2A gene expression is 
significantly associated with OS in this cohort, and 
additionally in the adjuvant cohort only. This 
indicates that CDKN2A gene expression could be used 
as marker for platin-response prediction. 
Additionally, TP73 shows an increasing expression 
with increasing IMIG-stages and associates 
significantly with progression in pleural 
mesothelioma. 

Nucleotide Excision Repair (NER), Mismatch 
Repair (MMR) and Base Excision Repair (BER) 

The impact of ERCC1 expression on treatment 
response in MPM is discussed controversially. Recent 
studies have suggested that the expression levels of 
DNA-damage repair enzyme-related genes, including 
ERCC1 mRNA, are associated with an overall survival 
benefit during cisplatin-based chemotherapy in MPM 
[12, 37, 51]. Yet, investigation of ERCC1 protein levels 
in a phase II clinical trial revealed a significant 
correlation between negative ERCC1 status and long 
PFS in a cohort of 54 MPM patients undergoing 
treatment with cisplatin and vinorelbine [21]. Our 
findings are in line with these earlier studies, as 
ERCC1 gene expression level clearly impact the OS 
rate, but influence neither PFS nor progression. 

During the recombinational repair processing of 
interstrand cross-links, MSH2 cooperates with several 
components of DNA damage repair pathways, 
including ERCC1 [24]. MutL homologue 1 (MLH1) 
protein is also a key component in the MMR pathway 
being involved in mismatch strand excision and 
subsequent repair. In a previous study, we showed 
that MLH1 protein levels were associated with PFS 
[37]. Additionally, in the recent study MHL1 gene 
expression was found as a prominent marker for OS. 

As DNA lesions occurring in mesothelioma are 
in majority single strand breaks (SSBs), the BER 
pathway plays a crucial role in survival of these cells 
[43, 44]. Several studies have investigated BER family 
members in tumorigenesis and pathophysiology of 
MPM [41, 62, 85-90]. In particular, PARP1 was 
upregulated and activated in human mesothelial cells 
exposed to asbestos [87, 88]. PARP1 inhibition 
resulted in an accumulation of SSB lesions induced by 
direct asbestos exposure in human mesothelial cells 
[90]. Interestingly, beside its role in DNA repair, 
PARP1 has been found to induce apoptosis and cell 
death following asbestos exposure [87-89, 91]. In this 
study, the analysed tumour samples formed two 
distinct expression patterns with respect to PARP1 
gene expression levels. Interestingly, high PARP1 
expression associated with lymph node invasion. 

Recombination Repair System 
Homologue recombination (HR) and 

non-homologous end-joining (NHEJ) are of great 
importance, since DNA DSBs induce chromosomal 
deletions and translocations which are common in 
MPM [45, 92, 93]. Upregulation of various genes 
encoding HR protein members, including RAD50, 
RAD54L, RAD21, BRCA1 and BRCA2 could be 
detected by gene expression analysis in MPM [62, 94]. 
Our results indicate that a higher gene expression of 
BRCA1 is highly associated with increasing clinical 
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malignancy (indicated by higher IMIG-stage). 
Furthermore, a reduced XRCC2 gene expression, 
acting downstream of the MRN-complex [95], 
correlated with with progressive disease more often. 
Similarly, increased XRCC3 gene expression, forming 
a complex together with XRCC2, was observed in 
tumours showing higher TNM-stage. 

Cellular Response to Platin-Induced 
DNA-Damage 

DNA damage, e.g. induced by 
platin-compounds, is first recognized by ATM and 
ATR. This leads to a subsequent phosphorylation of 
histone H2AFX, activating the different downstream 
cascades of cellular DNA damage response [96, 97]. 
Deregulation of H2AFX expression and modification 
has been reported to be associated with a variety of 
human malignancies [98-103]. Surprisingly, studies 
exploring H2AFX expression in MPM are still lacking. 
In this study, we observed an increase of expression 
induced by platinum-based chemotherapy, leading to 
the assumption that activation of H2AFX expression 
plays a crucial role for early DNA damage response. 
Furthermore, PCNA and XRCC1, forming a central 
complex together with the DNA polymerase beta 
(POLB) in BER [41], show the same increase during 
therapy, indicating the activation of H2AFX 
downstream targets during the accumulation of DNA 
SSBs and DSBs. 

Conclusion 
DNA damage response plays a crucial role in 

response to platin-based chemotherapeutic regimes. 
In particular, CHEK1, XRCC2 and TP73 are strongly 
associated with tumour progression. Therefore, we 
suggest that these markers are used along with 
staging and restaging. MLH1, CHEK1, ERCC1 and 
most promising CDKN2A are prognostic markers for 
OS in MPM. Therefore, we suggest that these markers 
are at staging and upon diagnosis of MPM. TP73, 
CDKN2A, CHEK1 and ERCC1 seem to be also 
predictive markers in adjuvant treated MPMs. Those 
should be validated prospectively, hopefully finding 
their way into clinical and pathological practice, 
leading to an enhanced clinical management and 
improved clinical outcome. 
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