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ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its
moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior
protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T
(TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following my-
cobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral
and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine
the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intra-
tracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker
phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB.
Whereas airway-resident memory CD4� T cells displayed a mixture of effector and regulatory phenotype, airway-resident mem-
ory CD8� T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-
resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vacci-
nation strategies.

IMPORTANCE BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pul-
monary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are
required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infec-
tion route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the
mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mecha-
nisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous,
BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish
a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development.
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Since its introduction almost a century ago (1), live attenuated
Mycobacterium bovis Bacille Calmette-Guérin (BCG) remains

the only licensed vaccine against tuberculosis (TB) caused by the
intracellular pathogen Mycobacterium tuberculosis. Although
originally applied orally, today BCG is administered intradermally
in early childhood and effectively prevents extrapulmonary TB,
mainly disseminated miliary and meningeal forms in children (2).
However, BCG fails to confer sufficient protection against the
most common form of the disease, pulmonary TB. Thus, TB con-
tinues to cause significant global morbidity and mortality (3). The
development and implementation of new and more efficient vac-
cines is mandatory if TB morbidity and mortality are to be re-
duced by 90 and 95%, respectively, to achieve the 2035 goal of the
Stop TB Partnership (4, 5).

Induction of memory T cells has been shown to be essential for
protective TB vaccines (6). In mice, protection against an M. tu-
berculosis challenge following subcutaneous (s.c.) BCG vaccina-
tion is dependent on T helper type 1 (Th1) CD4� T cell responses
(7, 8). However, one of the shortcomings of s.c. BCG administra-
tion is the overall weak memory lymphocyte generation, which in
addition lacks the mucosal-homing chemokine receptors that al-
low migration to the lung (9). Hence, mucosal vaccination has
been suggested as a mimic of natural infection in order to improve
local immunity at the site of infection (10–12). Comprehensive
analyses of local immunity and correlates of protection in both the
lung airways and the parenchyma are essential for the rational
design of mucosal TB vaccination strategies using BCG (13, 14).
Airway luminal T cells have been found to be critical for protec-
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tion against TB (15). However, in-depth characterization of infil-
trating antigen-specific immune cell populations, in particular lo-
calization and function of tissue resident memory T (TRM) cell
subsets generated by mucosal vaccination, is still lacking.

Until recently, memory T cells were subdivided into two main
subsets (16). First, T cells expressing high levels of CD62L, termed
central memory T (TCM) cells, migrate to lymphoid organs in
response to L-selectin ligands, and second, low levels of CD62L
mark T effector memory T (TEM) cells, which recirculate between
blood and peripheral tissues, where they are thought to survey the
initial portals of infection (17). More recently, a third subset of
memory T cells, TRM cells, which permanently resides in nonlym-
phoid tissues, has been mostly described (18) as CD69� CD103�.
Because of their strategic location and rapid recall response, TRM

cells represent preferred cellular targets for efficacious vaccina-
tion. Whether mucosal BCG vaccination generates protective TRM

cells in the lung remains to be explored. Our study investigated the
hypothesis that an accumulation of Mycobacterium-specific lung-
resident T cells, some of them expressing the TRM phenotype,
underpins the improved protection against TB seen following the
mucosal administration of BCG.

RESULTS
Mucosal BCG vaccination confers superior protection against
M. tuberculosis infection. To investigate the role of lung-resident
T cells in immune protection against TB following BCG vaccina-
tion, we compared local (mucosal) BCG vaccination via the intra-
tracheal (i.t.) route to parenteral vaccination by s.c. administra-
tion of BCG. Sixty days after vaccination, mice were challenged
aerogenically with M. tuberculosis and the bacterial loads in their
lungs were determined at various time points postinfection (p.i.)
(Fig. 1A). Confirming recent studies (19, 20), we found that mu-

cosal BCG vaccination confers better protection against M. tuber-
culosis infection than parenteral s.c. BCG vaccination for at least
100 days (Fig. 1B and C).

Mucosal BCG vaccination generates a transient influx of
Mycobacterium-specific CD4� and CD8� T cells into the lung
parenchyma. To identify possible mechanisms of improved pro-
tection following i.t. BCG vaccination, we performed a histologi-
cal analysis of lung-infiltrating immune cells. Sixty days after mu-
cosal vaccination (immediately prior to infection), unperfused
lungs displayed greater cell infiltration and higher histological
scores than those of naive and s.c. BCG-vaccinated mice (Fig. 2A
and C, top). A large proportion of lung-infiltrating cells were
CD3� T cells, many of which were CD4� (Fig. 2A and C, bottom).
In contrast, 45 days after M. tuberculosis infection, there were no
significant differences in the total number of T cells among the
groups despite the lower histological scores of BCG-vaccinated
animals (Fig. 2B and C).

To determine whether lung-infiltrating T cells were located in
the lung parenchyma or the lung airways, we first removed the
bronchoalveolar lavage fluid (BALF) and performed flow cytom-
etry of the lung parenchyma tissue. Mucosal BCG vaccination
induced higher numbers of CD4� and CD8� T cells in the lung
parenchyma between days 22 and 45 following BCG vaccination
(Fig. 2D, top). Intriguingly, this increase proved to be transient, as
by day 60, the day of an M. tuberculosis challenge, there were no
significant differences in the total lung parenchyma-infiltrating T
cell numbers between the vaccination routes (Fig. 2D, top). At
that time point, approximately 100 BCG CFU were detected in the
lung (see Fig. S1A in the supplemental material). The majority of
lung-parenchyma-infiltrating T cells displayed a memory pheno-
type, and a proportion stained positive for major histocompati-
bility complex (MHC) peptide tetramers derived from dominant
mycobacterial antigens, namely, Ag85B-specific CD4� (Ag85B:
H-2I-Ab) and TB10.4-specific CD8� (TB10.4:H-2Kb) T cell sub-
populations (Fig. 2D, bottom; see Fig. S1B). However, apart from
a small number of persisting TB10.4�-specific CD8� T cells, the
overall numbers of antigen-specific CD4� and CD8� T cells were
comparable between the i.t. and s.c. BCG-vaccinated groups di-
rectly before an M. tuberculosis challenge (Fig. 2D, bottom) (21).
Furthermore, no significant differences in the numbers of lung
alveolar macrophages (AMs) (CD11chi CD11blo F4/80�), den-
dritic cells (DCs) (CD11chi CD11blo F4/80lo MHC class IIhi) or
neutrophils (CD11bhi Ly6Ghi) were observed over time between
the two routes of vaccination, which suggests that changes in the
myeloid compartment did not underlie increased protection (see
Fig. S1C). Collectively, these results suggest that mucosal BCG
vaccination drives a transient increase in Mycobacterium-specific
CD4� and CD8� T cell populations in the lung parenchyma that
recedes before a challenge.

I.t. BCG vaccination generates T cells seeding the lung air-
ways. To further determine the contribution of airway-resident
immune cells to improved vaccine-mediated protection, we
collected BALF and performed a comprehensive analysis of
airway-infiltrating cells in response to BCG vaccination and M. tu-
berculosis challenge. Analysis of the proportional changes in
lumen-resident cell types revealed a cellular composition skewed
toward resident lymphocytes following mucosal vaccination
(Fig. 3A; see Fig. S2A). Although the total cell numbers in the
BALF were comparable (see Fig. S2B), increased and decreased
frequencies in airway cell populations were also reflected in the
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FIG 1 Mucosal BCG vaccination confers improved protection against M. tu-
berculosis infection. (A) B6 mice were BCG vaccinated either i.t. or s.c.
Sixty days later, vaccinated and control groups were aerosol infected with a low
dose of virulent M. tuberculosis and the CFU counts in their lungs were deter-
mined at the time points indicated. (B, C) Individual log10 CFU counts per
lung (48) at day 45 p.i. (B) and mean log10 CFU counts per lung from two
pooled independent experiments � the standard error of the mean at the time
points indicated (n � 8 mice per group) (C). The statistical significance of
differences between the s.c. and i.t. BCG vaccination routes is shown. ****, P �
0.0001; **, P � 0.01; *, P � 0.05; n.d., not done (analysis of variance with
Tukey’s posttest for significance).
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total cell numbers (see Fig. S2C). In contrast to the kinetics of local
parenchymal T cell populations, we identified increased frequen-
cies and numbers of airway luminal T cells after i.t. BCG vaccina-
tion that persisted until the challenge (Fig. 3B). Influx of T cells
into the lung airways was detected at later experimental time points
than parenchymal infiltration and started around day 24 after vacci-
nation. Most strikingly, i.t. BCG vaccination led to a profound change
in the composition of lung-residing immune cells that was character-
ized by a numerical and proportional increase in T cells (Fig. 3B; see
Fig. S2A), many of which were specific for mycobacterial antigens by
tetramer staining (Fig. 3C; see Fig. S3). Additionally, CXCR3, a
chemokine receptor required for migration of T cells into the lung
airways and parenchyma (22), was highly expressed on antigen-
specific T cells after i.t. BCG vaccination (Fig. 3D), indicating recent
targeted migration to the lung airways.

TEM and TRM cells infiltrate the lung airways after i.t. BCG
vaccination. Because of the striking increase in the number of
luminal T cells following i.t. vaccination, we interrogated whether

airway-infiltrating T cells following i.t. BCG administration phe-
notypically resembled TEM (CD44hi CD62Llo CD69lo) and TRM

(CD44hi CD62Llo CD103� CD69�) cells. Particularly the TRM

population has been shown to confer protection against viral and
bacterial pulmonary infections (23, 24). We found that, indeed,
i.t. BCG vaccination recruited significantly higher frequencies and
absolute numbers of CD4� and CD8� TRM and TEM cells to the
airways than s.c. BCG vaccination (Fig. 4A and B). Similarly, char-
acterization of parenchymal T cells revealed higher numbers of
CD4� and CD8� TEM and TRM cells in i.t. BCG-vaccinated mice
(Fig. 4C). Collectively, our results demonstrate that i.t. BCG vac-
cination induces CD4� and CD8� TEM and TRM cell recruitment
to the lung airway spaces and the lung parenchyma.

Phenotypic characterization of airway-infiltrating T cells
generated by i.t. BCG vaccination. TRM cells vary in phenotype
and function, depending on the tissue they reside in (25–27). The
phenotype of TRM cells in lung airways following mucosal BCG
vaccination has not been characterized. Hence, we performed
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FIG 2 I.t. BCG vaccination causes transient influx of T cells into the lung parenchyma. Histological staining of lung sections from control and i.t. or s.c.
BCG-vaccinated mice 60 days after BCG immunization (A) and on day 45 after M. tuberculosis infection (B). Lung sections were stained with H&E (top) and IF
(bottom) for CD31 (red), CD3 (white), and CD4 (blue). (C) Histological scores (top) and numbers of CD4� T cells per 10 high-power fields (hpf) (bottom) at
designated time points after BCG vaccination (gray) and an M. tuberculosis challenge (black). Scale bar, 100 �m. Flow cytometric quantification of lung
parenchyma (D) TCR�� CD4� and CD8� T cells (top) and antigen-specific Ag85B:H-2I-Ab CD4� and TB10.4:H-2Kb CD8� T cells (bottom) at designated time
points after BCG vaccination (gray) and an M. tuberculosis challenge (black). Results are presented as mean values � the standard error of the mean from two
pooled independent experiments (n � 8 to 10 mice per group). The statistical significance of differences between s.c. and i.t. BCG immunizations is shown. ****,
P � 0.0001; ***, P � 0.001; **, P � 0.01; *, P � 0.05. (C, D) Analysis of variance with Tukey’s posttest for significance.
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transcriptional gene expression profiling of sorted BALF CD4�

and CD8� TEM and TRM cell subpopulations induced by i.t. BCG
vaccination with a Fluidigm Dynamic Array. The purity of the
different sorted cell populations was routinely assessed at 86 to
99% (see Fig. S4). Increased transcription levels of typical markers
associated with tissue residency of CD4� and CD8� TRM such as
Itgae (CD103) and Itga1 (VLA-1) were confirmed (Fig. 5A and B).
CD4� TRM cells displayed a regulatory profile, with high Foxp3
and Il10 mRNA expression (Fig. 5A and B). Additionally, CD4�

TRM cells expressed T-bet, as well as Foxp3, at the protein level
(Fig. 5C). Importantly, each marker was expressed by distinct sub-
populations, suggesting a heterogeneous population comprising
effector and regulatory T cells (28). Therefore, we concluded that
CD4� TRM cells, defined here as CD4� CD103� CD69� cells,

comprise a mixture of regulatory and effector T cells rather than
solely belonging to the TRM subset. On the other hand, CD8� TRM

cells expressed significantly higher levels of gamma interferon
(IFN-�) (Ifng), tumor necrosis factor alpha (TNF-�) (Tnfa), and
Cxcr6 (Fig. 5B) (29) and statistically insignificantly higher levels of
perforin (Prf1) and granzyme B (Gzmb) than their CD8� TEM

counterparts (Fig. 5A).
To further characterize the phenotypes of TEM and TRM cells

infiltrating the airways after i.t. BCG vaccination, we also assessed
interleukin-2 (IL-2) receptor alpha chain (CD25), IFN-�, and
CXCR3 protein expression levels. I.t. BCG vaccination generated
CD25- and CXCR3-expressing, IFN-�-producing CD8� TRM

cells, as well as CXCR3�-expressing, IFN-�-producing CD4�

airway-resident T cell subpopulations (Fig. 5D). Collectively,
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FIG 3 I.t. BCG vaccination generates T cells seeding the lung airways. (A) Pie charts illustrating the composition of BALF cell populations as proportions of the
total leukocytes from naive mice and mice at 60 days after BCG vaccination. (B) Flow cytometric quantification of total TCR�� CD4� and CD8� T cells in BALF
at the time points indicated after BCG vaccination (gray) and an M. tuberculosis challenge (black). (C, D) Quantification of total BALF TCR�� Ag85B:H-2I-Ab
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after BCG vaccination. Results are presented as pooled mean data � the standard error of the mean (B to D) or representative images (A) from two pooled
independent experiments (n � 6 to 8 mice per group). The statistical significance of differences between s.c. and i.t. BCG vaccinations is shown. ****, P � 0.0001;
***, P � 0.001; **, P � 0.01; *, P � 0.05. (B to D) Analysis of variance with Tukey’s posttest for significance.
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these data indicate that i.t. BCG vaccination induced airway-
resident T cells with a heightened ability to migrate to the lung and
produce the key protective proinflammatory cytokine IFN-�. Al-
though CD4� T cells could be categorized as TEM and TRM on the
basis of surface markers, transcriptional profiling revealed more
heterogeneous populations.

Mucosal transfer of airway-resident T cell populations con-
fers protection against TB. To determine the subset(s) of airway-
infiltrating T cells critical for improved protection after mucosal
vaccination, we adoptively transferred sorted airway T cell sub-
populations directly into the tracheas of naive C57BL/6 (B6) mice
1 day prior to an aerogenic M. tuberculosis challenge (Fig. 6A; see

Fig. S4 in the supplemental material). All of the transferred subsets
provided some degree of protection 28 days after the M. tubercu-
losis challenge (Fig. 6B). Intriguingly, transfer of as few as 3,500
sorted CD8� TRM cells into naive mice conferred the most pro-
found protection against a M. tuberculosis challenge, on a per-cell
basis (Fig. 6B). Transfer of CD8� TRM cells was associated with
significantly lower AM numbers, higher numbers of CD4� T cells,
and increased numbers of B cells in the lung 28 days after the
M. tuberculosis challenge (Fig. 6C). We also performed airway
CD4� and CD8� T cell depletion (Fig. S5; see Fig. S6). These
experiments yielded an opposite effect compared to the transfer of
different T cell subsets (Fig. 6C). Whereas the mucosal CD4� T
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cell depletion efficiency was around 90%, the CD8� T cell deple-
tion efficiency was only around 50% (data not shown). Because of
the low efficiency of CD8� T cell depletion, we could not draw any
definitive conclusions. Therefore, despite its great additive value
to the overall conclusion, we were not able to specifically delete
TRM cell populations from the airway.

Intriguingly, when the bacterial load in the whole lung was
determined without previously performing lavage, the transfer of
all airway T cell subsets reduced bacterial loads at equal levels and
the improved protective effect of CD8� TRM cells was lost
(Fig. 6D). These results suggest that i.t. BCG vaccination induces
(i) multiple subpopulations of local TRM cells that contribute to
protection against M. tuberculosis and (ii) compartmentalized
protective effects in lung airways but not in lung parenchyma.

Oral and i.n. vaccinations mimic i.t. BCG vaccination. Fi-
nally, although the i.t. BCG administration employed in our
model is a low-invasion intervention, it is unlikely to be broadly
applicable as a human vaccination strategy. Clinically more feasi-
ble intranasal (i.n.) and oral BCG vaccinations strikingly induced
infiltration of T cells into the lung parenchyma and airways very
similar to that induced by i.t. BCG vaccination, which was re-
flected in overall increased numbers of TEM and TRM cells
(Fig. 7A), as well as Mycobacterium-specific T cells expressing
CXCR3 (Fig. 7B and C; see Fig. S7). Together with published ob-
servations regarding improved M. tuberculosis control following
i.n. and oral BCG vaccinations (30, 31), our data indicate that
mucosal BCG vaccination promotes protection via potent induc-
tion of lung parenchyma- and airway-resident memory CD4� and
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FIG 5 Phenotypic characterization of lung-infiltrating T cells generated by i.t. BCG vaccination (A, B). B6 mice were BCG vaccinated i.t., and BALF T cell subsets
were sorted 60 days later by fluorescence-activated cell sorting gated as described in the legend to Fig. 4A. Sorted naive (TCR�� CD44lo CD62Lhi) BALF T cells
or splenic TEM cells (TCR�� CD44hi CD62Llo) from i.t. BCG-vaccinated mice 60 days after immunization were also used as controls. (A) Heat map showing gene
expression from sorted BALF T cell populations. Triplicates of 100 BALF CD4� and CD8� TEM and TRM cells from i.t. BCG-vaccinated mice were sorted.
Quantitative PCR was run with the data collection software (36 cycles) from Fluidigm. mRNA concentrations of all sorted T cell populations were normalized
to �-actin (NM_007393.4) expression. The color code indicates fold changes (2���CT) in transcripts relative to the appropriate internal control as indicated. (B)
Fold changes in the expression of selected genes of sorted BALF CD4� and CD8� TEM and TRM cells from i.t. BCG-vaccinated mice compared to the appropriate
internal control. Quantitative PCR was run with the data collection software (36 cycles) from Fluidigm as described for panel A. (C, D) BALF immune cell
phenotype measured by flow cytometry 60 days after i.t. BCG vaccination. (C) Representative flow cytometry of intracellular Foxp3 and T-bet expression by
sorted CD4� TRM cells. (D) Representative histograms of selected surface activation markers and IFN-� expression by CD4� and CD8� TEM and TRM cells.
Results are presented as pooled individual data points � the standard error of the mean (B), representative fluorescence-activated cell sorter plots (C), or
histograms (D) from two pooled independent experiments (n � 6 to 8 mice per group). The statistical significance of differences from the TRM cell subset (B) is
shown. ****, P � 0.0001; ***, P � 0.001; **, P � 0.01; *, P � 0.05. (B) Analysis of variance with Tukey’s posttest for significance.
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CD8� T cells, comprising mixed CD4� T cell populations and
CD8� TRM cells.

DISCUSSION

We describe an in-depth in vivo approach to dissection of the
immunological mechanisms associated with improved protec-
tion of mucosal BCG vaccination against pulmonary TB. We
conclude that lung-resident CD4� and CD8� T cells, comprising
CD8� TRM cells, are a main component underlying the enhanced
efficacy of mucosal BCG administration. Airway-resident CD4� T
cells comprised a mixture of T-bet� effector and Foxp3�-
expressing regulatory T cells. In contrast, airway-resident CD8� T
cells displayed prototypical TRM features and expressed IFN-� and
TNF-�, two major mediators of protective immunity against
M. tuberculosis.

It has been previously shown that transfer of total lung T cells
following i.n. but not s.c. vaccination with M. tuberculosis culture
filtrate proteins can protect against TB (15). Aerosol administra-
tion of an attenuated M. tuberculosis vaccine candidate, M. tuber-
culosis �sigH, has also been reported to be highly effective in pre-
venting TB in nonhuman primates via induction of local T cell
responses (19). These findings validate the superiority of mucosal
vaccination in generating a robust and effective T cell response
against M. tuberculosis. As the most striking effect of i.t. BCG vac-
cination we identified a prominent subpopulation of CD8� TRM

cells in the lung airways bearing the prototypic CD69� CD103�

surface phenotype associated with tissue sequestration (32, 33).
Many coexpressed the mucosal and lung-homing markers CD103
(Itgae) and VLA-1 (Itga1). CD69, an early leukocyte activation
marker, can interact with S1P1 and downregulate its expression,
leading to prolonged T cell retention and local memory formation
(34). CD103 on T cells binds to epithelial E-cadherin in diverse

organs such as the skin and gut (27). Our finding that CD103 is
surface expressed, especially by CD8� TRM cells in the lung fol-
lowing mycobacterial lung infection, extends its relevance to lung-
residing memory T cell responses. VLA-1, �1�1-integrin, is an
adhesion molecule known to be highly expressed by respiratory
virus-specific memory CD8� T cells in the airways, retaining them
in the lung through attachment to the extracellular matrix (35).
Our study is the first to ascribe protective relevance to intralumi-
nal T cells following mucosal BCG vaccination, which includes
CD8� TRM cells in the lung airways in the context of TB.

CD8� TRM cells have been implicated in protection following
viral infections (36), but their beneficial role following bacterial
infection is just being appreciated (37). Recent work has high-
lighted the potential of CD8� TRM to activate bystander NK and B
cells via IFN-�, TNF-�, and IL-2, in addition to their well-known
cytolytic role (24). Mucosal i.t. transfer of airway T cell popula-
tions into naive mice identified a crucial role for CD8� TRM cells
in conferring lung protection in our study. Intriguingly, when
BALF was collected from infected mice prior to CFU enumera-
tion, transferred CD8� TRM not only displayed superior protec-
tion against an M. tuberculosis challenge but also reduced the
number of AMs and increased the local CD4� T and B cell num-
bers. In contrast, when CFU counts in the complete lung (BALF
plus lung tissue) were determined, the protective capacity of
transferred CD8� TRM cells was lower. Thus, it is tempting to
speculate that cytolytic CD8� TRM cells limit the entry of M. tu-
berculosis into lung tissue by killing infected AMs in the lung air-
ways, constraining the cellular reservoir for M. tuberculosis. It is
also possible that CD8� TRM cells contribute to protective immu-
nity attained by i.t. BCG vaccination in the lung (i) by means of
killing infected AMs and (ii) by recruiting CD4� T cells to the site
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FIG 6 Mucosal transfer of airway-resident T cell populations confers protection against TB. (A) B6 mice were BCG vaccinated i.t., and BALF T cell subsets were
sorted 60 days later by fluorescence-activated cell sorting. BALF CD4� and CD8� TEM and TRM cells were sorted as depicted in Fig. 4A. The sorted T cell
population purity was assessed as �86%. From 0.25 � 104 to 4 � 104 sorted cells were i.t. transferred into naive B6 mice (B, D). The numbers of cells transferred
are indicated at the top. The following day, recipient mice were aerosol infected with M. tuberculosis and lung CFU counts were determined 28 days later. (B, D)
Bacterial CFU counts in lung tissue after BALF removal (B) and in airways and tissue without lavage (D). (C) Immune cellular composition in the lung
parenchyma 28 days p.i following i.t. transfer of sorted BALF T cell populations from i.t. BCG-vaccinated mice. Cell numbers are representative of one of two
experiments performed as described for panel B. The statistical significance of differences from the i.t. PBS control is shown. Results are presented as mean pooled
data � the standard error of the mean (B to D) from one representative (B, C) or two pooled independent experiments (D) (n � 3 mice per group [B, C] or
n � 6 to 8 mice per group [D]). ****, P � 0.0001; ***, P � 0.001; **, P � 0.01; *, P � 0.05. (B to D) Analysis of variance with Tukey’s posttest for significance.
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of M. tuberculosis infection. CD8� TRM cells’ killing abilities, as
well as their compartmentalized protective role, should be ad-
dressed in future studies.

Comprehensive transcriptional and flow cytometric analysis of
airway CD4� memory T cells identified a heterogeneous popula-
tion comprising Foxp3�- or T-bet�-expressing T cell subsets.
Further studies are needed to analyze the functional properties of
CD103� CD69� CD4� memory T cells that have been described
by others as most concordant to the CD4� TRM population (38).
In addition, enhanced IL-10 transcripts suggest diverse roles for
lung CD4� T cells besides the classical Th1 responses previously
considered correlates of protection. Although it was beyond the
scope of this study to dissect the underlying protective mecha-
nism, CD4� Foxp3� T-cell-derived IL-10 emerges as a strong can-
didate for ameliorating immunopathology (39) and at the same
time has been shown to promote the maturation of CD8� T cells
(40). The exact role of airway-resident CD4� T-cell-derived IL-10
and its functional impact on local anti-M. tuberculosis immunity
should be elucidated in future studies.

Further studies are required to dissect the mechanisms of pro-
tection induced by the transfer of total BALF. A minute number of
influenza virus-specific CD8� T cells in the airways was recently
shown to be sufficient to transfer protection against a subsequent
influenza virus infection (36). Therefore, it is possible that even
fewer than the 2,500 lung-resident T cells induced by BCG vacci-
nation that were transferred here could mediate protection after
mucosal transfer. Although it is beyond the scope of this study,

identifying the minimal number of T cells required to transfer
protection will be valuable additional information.

Some remaining questions need to be addressed in future stud-
ies to determine the role of live antigen in the lung following
mucosal BCG vaccination. Although the cellular analyses of the
lung revealed similar results with s.c. and i.t. BCG-vaccinated
mice, the presence of a low-grade ongoing infection in the lungs
hampers the use of CD44 as a memory marker, as CD44 is also a
marker of effector cells during ongoing infection. The crossover of
CD69 as both an early activation marker and a resident memory
marker requires further transfer experiments with T cell subpopu-
lations to address their long-term viability and recall responses in
the absence of antigen in order to validate them as “true” memory
populations. Because there are no singular defining markers for
TRM cells yet, particularly for the CD4� subset, in this study, we
chose to perform mRNA phenotyping of CD4 and CD8 T cells
infiltrating the airways postvaccination, which revealed heteroge-
neous expression of transcription factors and effector molecules
and confirmed their ability to mount a recall response to an infec-
tious challenge. Furthermore, it will also be important to deter-
mine the contribution of non-M. tuberculosis-specific memory T
cells (e.g., influenza virus-specific T cells) in mediating protection
after adoptive transfer. Although unspecific mechanisms for pro-
tection cannot be ruled out entirely, the fact that not all M. tuber-
culosis-specific T cell subsets protected equally well after adoptive
transfer suggests that non-M. tuberculosis-specific effects (41)
contribute little to protection against TB following vaccination.
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FIG 7 I.n. BCG vaccination mimics i.t. BCG vaccination. (A to C) BALF characterization at day 60 after BCG vaccination. (A) Quantification of BALF TCR��

CD4� and CD8� T cell and TEM and TRM cell numbers by flow cytometry. (B) Flow cytometry gating strategy for Ag85B:H-2I-Ab CD4� and TB10.4:H-2Kb

CD8� T cells pregated on TCR�� CD4� or CD8� T cells. (C) Representative histogram showing CXCR3 expression by Ag85B:H-2I-Ab CD4� and TB10.4:H-2Kb

CD8� T cells (left) and their percentage of expression by Ag85B:H-2I-Ab CD4� and TB10.4:H-2Kb CD8� T cells following BCG vaccination (49). Results are
presented as pooled mean data � the standard error of the mean (A, C), as representative fluorescence-activated cell sorter plots (B), or as histograms (C) from
two pooled independent experiments (n � 8).
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Nevertheless, only transfer of M. tuberculosis-unrelated memory T
cell subsets from the lung will definitively address the role of non-
cognate effects.

Taken together, our results highlight the value of better under-
standing the mechanisms underlying mucosal vaccination against
TB. Our findings emphasize that mucosal vaccination offers an
option for improving protective efficacy against TB either by BCG
or by second-generation vaccine candidates. We recommend that
optimization of mucosal vaccine administration should comple-
ment the design of novel vaccine candidates that either substitute
for or boost BCG immunization.

MATERIALS AND METHODS
Animals and bacteria. B6 mice were maintained under specific-
pathogen-free conditions. All experiments were conducted in accordance
with the requirements of and approval by the State Office for Health and
Social Services. M. tuberculosis strain H37Rv (ATCC no. 27294) and BCG
SSI 1331 (ATCC no. 35733) were grown by previously described protocols
(42). Prior to vaccination, vaccine stock vials were thawed and cells were
harvested and resuspended in phosphate-buffered saline (PBS). For CFU
enumeration, serial dilutions were performed and plated onto Middle-
brook 7H11 agar. Plates were incubated at 37°C for 3 to 4 weeks prior to
counting.

Immunizations and infection. B6 mice were immunized with 5 � 105

(i.t. and i.n.), 1 � 106 (s.c.), or 1 � 108 (oral) CFU (12, 31, 43). For i.t.
immunization, anesthetized mice (1:1:8 xylazine-ketamine-PBS) were in-
oculated in the oropharynx with 50 �l of bacteria (44). To determine
protective efficacy, mice were challenged via the aerosol route with
200 CFU of M. tuberculosis H37Rv 60 days postvaccination by using a
Glas-Col inhalation exposure system.

Histology and IF assay. Unperfused lungs from BCG-vaccinated or
M. tuberculosis-infected animals were fixed for 24 h in 4% (wt/vol) para-
formaldehyde and then dehydrated and embedded in paraffin for histo-
logical analysis. Two-micrometer sections were deparaffinized and
stained with hematoxylin and eosin (H&E). For immunofluorescence
(IF) assay, heat-induced antigen retrieval in citrate buffer (10 mM citric
acid, 0.05% Tween 20, pH 6.0) was performed prior to incubation with
anti-CD31 (clone SZ31; Dianova), anti-CD3 (clone M-20; Santa Cruz),
and anti-CD4 (clone 4SM95; eBioscience) antibodies.

Cell isolation. Intra-airway luminal cells were removed from the lung
by bronchial lavage as described previously (45). Supernatant was frozen
at �80°C until protein analysis, and the remaining cells were analyzed by
flow cytometry. Lungs were perfused with PBS through the left ventricle
and cut into small pieces, and single-cell suspensions were prepared by
mechanical dissociation through a 70-�m nylon mesh (46).

Flow cytometry, intracellular cytokine staining, and tetramer
staining. Identification of innate cell populations was performed with
antibodies against CD11b (M1/70), CD11c (HL3), Ly6G (1A8), Siglec-F
(E50-2440), F4/80 (BM8), and MHC class II (M5/114.15.2). Surface iden-
tification of T cells was performed with antibodies against T cell receptor
� (TCR�) (H57-597), CD4 (GK1.5), CD8 (53-6.7), CD44 (IM7), CD62L
(MEL-14), CD103 (M290), and CD69 (H1.2F3). For memory phenotyp-
ing, CXCR3 (CXCR3-173) and CD25 (PC61.5) antibodies were included.
DCs were characterized as CD11chi MHC-IIhi, AMs were characterized as
CD11chi Siglec-Fhi CD11blow-int autofluorescence positive, neutrophils
were characterized as Ly6Ghi CD11bhi, eosinophils were characterized as
CD11clow/� Siglec-Fhi, NK cells were characterized as TCR�-NK1.1�, and
CD4� and CD8� T cells were characterized as TCR�� CD4� or TCR��

CD8�. Intracellular staining for transcription factors Foxp3 (FJK-16s)
and T-bet (4B10) was performed with the Foxp3 staining buffer kit
(eBioscience). To determine IFN-� (4S.B3) cytokine levels, intracellular
staining was performed with the BD Cytofix/Cytoperm Fixation/permea-
bilization kit according to manufacturer’s instructions.

Ag85B:H-2I-Ab (280 to 294: FQDAYNAAGGHNAVF) tetramers were
provided by the National Institutes of Health tetramer facility, and

TB10.4:H-2Kb (4 to 11: IMYNYPAM) tetramers were prepared in house.
Tetramer staining was performed at room temperature for 1 h prior to
additional surface staining. Analysis was performed on an LSR II or Canto
II (Becton, Dickinson) flow cytometer. Data were analyzed with FlowJo
(TreeStar).

Mucosal T cell transfer. CD4� and CD8� TEM and TRM cells were
sorted from BALF collected from i.t. BCG-vaccinated mice 60 days post-
vaccination. B6 recipient mice were anesthetized and received 50 �l of a
cell suspension in PBS containing sorted T cell populations i.t. The spe-
cific cell numbers transferred are indicated in the figures.

Mucosal T cell depletion. B6 mice were BCG vaccinated i.t., and
2 days prior to a challenge, CD4 and CD8 T cell subsets were mucosally
depleted through i.t. administration of anti-CD4 (GK1.5), anti-CD8 (53-
6.7), or anti-control IgG (Ctrl). Two days following mucosal depletion,
depleted and untreated mice were aerosol infected with M. tuberculosis
and lung CFU counts were determined 28 days later.

Gene expression analysis. Gene expression was analyzed simultane-
ously with the 48.48 Dynamic Array Integrated Fluidic Circuits from Flui-
digm as previously described (47). Preamplification of genes by reverse
transcription and cDNA synthesis (18 cycles) was performed with the
Cells Direct one-Step qPCR kit (Life Technologies, Inc.) and TaqMan
gene expression assay mix (Applied Biosystems). Triplicates of 100 BALF
or lung parenchyma cells were sorted, and mRNA amounts were normal-
ized to �-actin (NM_007393.4) expression. Data represent fold changes
(2���CT) in transcripts relative to the appropriate internal control.

Statistical analyses. Statistical analyses were performed with Graph-
Pad Prism software (San Diego, CA). For in vivo experiments, data from
two independent experiments were pooled. P values of 	0.05 were con-
sidered statistically significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01686-16/-/DCSupplemental.
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Figure S3, EPS file, 1 MB.
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