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Weyl node with random vector potential
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We study Weyl semimetals in the presence of generic disorder, consisting of a random vector potential as
well as a random scalar potential. We derive renormalization group flow equations to second order in the
disorder strength. These flow equations predict a disorder-induced phase transition between a pseudoballistic
weak-disorder phase and a diffusive strong-disorder phase for a sufficiently strong random scalar potential or
for a pure three-component random vector potential. We verify these predictions using a numerical study of the
density of states near the Weyl point and of quantum transport properties at the Weyl point. In contrast, for a pure
single-component random vector potential, the diffusive strong-disorder phase is absent.
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Introduction. Weyl semimetals are semimetals with topo-
logically protected nondegenerate band touching points. Their
most prominent hallmarks include the “Fermi arc” surface
states and the chiral anomaly [1–3]. Experimental evidence
for these signatures has been reported for a wide range
of material systems [4–8]. The low-energy physics of elec-
trons in the vicinity of the band touching points, which
are referred to as “Weyl nodes,” is described by the Weyl
Hamiltonian

H0 = �vσ · k − σ0μ, (1)

where v is the Fermi velocity, σ = (σx,σy,σz) the vector of
Pauli matrices, σ0 the 2 × 2 unit matrix, k the reciprocal-space
distance to the Weyl point, and μ the chemical potential. While
for the specific Weyl semimetals that have been realized to date
the Fermi surface is typically small, but not pointlike, i.e., the
chemical potential μ is small but nonzero, a new generation
of “ideal” Weyl materials promises a Fermi energy pinned
exactly to the nodal point μ = 0 [9,10].

However, even for such “ideal” materials, the presence of
impurities and other forms of disorder is unavoidable in a
realistic sample. We here consider the case that the disorder is
sufficiently smooth, so that it does not couple different Weyl
nodes and may be described as an effective (matrix-valued)
potential U (r) added to the Weyl Hamiltonian (1). The disorder
physics at a Weyl node is very rich and well studied for
potential disorder U (r) ∝ σ0. Already in the 1980’s Fradkin
predicted the existence of a disorder-induced quantum phase
transition from a semimetallic to a diffusive metallic phase
with increasing disorder strength [11,12]. With the renewed
interest in Weyl materials, recently this paradigm has inspired
further theoretical studies(for a review, see Ref. [13]), includ-
ing field theory developments and the prediction of transport
properties [14–17], the study of critical exponents [18–21],
and the investigation of various shapes for effective impurity
potentials [22,23].

In this Rapid Communication, we aim at broadening the
scope of the above discussion by studying a Weyl node with
generic disorder U (r) with scalar and vector contributions,

U (r) = U0(r) +
∑

i=x,y,z

Ui(r)σi. (2)

Unlike the scalar component U0, the vector components
Ux,y,z break the effective time-reversal symmetry H0(k) =
σyH0(−k)∗σy of the Weyl Hamiltonian (1). This symmetry is,
however, an accidental symmetry of the Hamitonian (1), so that
we expect that a random vector potential occurs generically
in the effective low-energy description of a disordered Weyl
node. (Note that generic Weyl points do not occur at the
high-symmetry points of the Brillouin zone so that time-
reversal symmetry, even if present, does not impose constraints
on the Hamiltonian for a single Weyl node.) Furthermore,
time-reversal symmetry is broken in some recent material
realizations of Weyl semimetals, such as the compounds
YbMnBi2 or SrMnSb [24,25].

The occurrence of a diffusive phase for strong potential
disorder can be understood from inspection of the Hamiltonian
H0 + U0(r)σ0 with a slowly varying potential U0: A large
enough potential fluctuation can generate a carrier density at
the Weyl point by trapping wave packets on a length scale �

comparable to the correlation length ξ of the random potential.
At the same time, the stability of the semimetallic phase at
weak disorder follows essentially from the scaling dimension
of the disorder term U0(r): The potential energy (∝ �−3/2)
available to confine a wave packet at a length scale � � ξ

decreases faster than its kinetic energy (∝ �−1). Whereas the
scaling considerations at weak disorder directly carry over to
the vector case, the argument for a diffusive phase at strong
disorder does not: A slowly varying vector potential merely
shifts the location of the Weyl point, but has no effect on the
density of states or on the transport properties. Indeed, we
find that vector disorder comes with a richer phase diagram
than scalar disorder: For single-component vector disorder
[e.g., U (r) ∝ σx] we find no signs of a diffusive phase. On the
other hand, for vector disorder with two or three statistically
independent components, i.e., for the generic case, there is a
diffusive phase above a critical disorder strength. In this case,
the phenomenology is the same as in the potential disorder
case.

Our findings are independently based on three different
approaches: a scaling theory perturbative in the disorder
strength, numerical calculations of the density of states for
a lattice model, and transport calculations for a single Weyl
node. Below, the three approaches will be discussed separately.
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We remark that the self-consistent Born approximation, which
qualitatively (but not quantitatively) describes the effect of
potential disorder, is known to fail for vector disorder in
the two-dimensional Dirac problem [26], which is why
we abstain from using it for the three-dimensional Weyl
problem.

Scaling analysis. An understanding of the qualitative
features of a Weyl node with generic disorder can be obtained
by using a momentum shell renormalization group (RG)
approach. This method was applied to a Weyl node with
scalar disorder by Syzranov et al. [15]. The generalization
to the generic case is straightforward, and we focus on
the main ideas and results here. We consider an effective
Hamiltonian in which states with energy above a cutoff
|ε| > �v� have been integrated out. We assume the disorder
to be Gaussian with zero mean and with a correlation
function

〈Uμ(r)Uν(r′)〉 = δμνκμ

(�v)2

�
δ(r − r′), (3)

where μ,ν = 0,x,y,z and the κμ � 0 are the dimensionless
disorder strengths. Performing the disorder average and using
the replica trick [27], one arrives at an effective action S =
S0 + ∑

μ Sdis,μ with

S0 =
∑

a

∫
dq

(2π )3

dω

2π
ψ̄a(q,ω)[H0(q) − iω]ψa(q,ω),

where ψa are replicated fermion fields and Sdis,μ is an
elastic four-fermion interaction term proportional to κμ. Upon
integrating out the energies e−l� < |ε±|/�v < � in a one-
loop approximation and rescaling momenta q → elq and
frequencies ω → elzω with z = 1 + ∑

μ=0,x,y,z κμ/2π2, we
find the flow equations

∂lκ0 = −κ0 + κ0

π2

⎛
⎝κ0 +

∑
j=x,y,z

κj

⎞
⎠, (4)

∂lκi = −κi − κi

3π2

⎛
⎝κ0 + 2κi −

∑
j=x,y,z

κj

⎞
⎠, (5)

with i = x,y,z.
According to the flow equations (4) and (5) all weak

disorder is irrelevant, consistent with the general expectations
based on the scaling dimension of the disorder term. Although
the flow equations are valid up to second order in the disorder
strengths κμ only, it is instructive to analyze in which cases
they predict a transition to a strong-disorder phase. Here, an
important observation is that disorder types not present initially
will not be generated along the flow, so that we may gain a good
understanding by considering different numbers of disorder
components separately.

(i) If there is scalar disorder only (κi = 0), the flow
equation (4) reproduces the flow equation of Ref. [15], which
predicts a critical point at κ0 = κc ≡ π2. In contrast, the
flow equations predict no disorder-induced transition for pure
single-component vector disorder, such as the case of nonzero
κx with κy = κz = 0.

(ii) For scalar disorder along with a single vector component
κi , the processes mentioned above are mutually enhanced: The

presence of the scalar component κ0 makes the vector compo-
nent κi even more irrelevant, while the presence of the vector
component κi lowers the critical disorder strength for the scalar
component. For pure vector disorder with two components,
say, κx and κy , the relative difference s = (κx − κy)/(κx + κy)
satisfies the flow equation ∂ls = −s(1 − s2)(κx + κy)/3π2,
so that for strong disorder s rapidly approaches zero. This
motivates setting κx = κy = κxy , which has the flow equation
∂lκxy = −κxy . Without the second-order term, the third-order
term determines the presence of a critical point. While we
have not performed the corresponding two-loop calculations,
numerical results below give evidence for a diffusive phase in
this case.

(iii) For three or four disorder components, scalar disorder,
if present, will eventually dominate the flow to a diffusive
phase. For pure three-component vector disorder similar
arguments suggest that the intermediate flow is towards
the case κx = κy = κz ≡ κxyz, which has the flow equation
∂lκxyz = −κxyz + κ2

xyz/3π2, with a critical disorder strength
κxyz = 3κc.

Density of states. To complement the results of the scaling
analysis we calculate the density of states ν(ε) in a disordered
tight-binding model of a Weyl semimetal using the kernel
polynomial method [28]. The density of states ν(0) at the
nodal point serves as an order parameter for the semimetal-to-
diffusive metal transition [11,12,18]. We use a lattice version
of the Hamiltonian (1),

H0,lattice = �v

a
(σx sin akx + σy sin aky − σz cos akz), (6)

where a is the lattice constant. This Hamiltonian has eight
Weyl points at crystal momenta kηx,ηy ,ηz

= (π/2a)(1 + ηx,1 +
ηy,ηz), with ηx,y,z = ±1. We add Gaussian-distributed disor-
der of the form (2), with zero mean and with a correlation
function

〈Uμ(r)Uν(r′)〉 = δμνKμ

(�v)2

(2π )3/2ξ 2
e−|r−r′ |2/2ξ 2

, (7)

where ξ is the disorder correlation length and Kμ the
dimensionless disorder strength. (The dimensionless disorder
strength Kμ is similar to the dimensionless disorder strength
κμ in the scaling approach, but may differ quantitatively
because of the different short-distance regularizations in the
two approaches.) We choose ξ = 5a to suppress the internode
scattering rate, thus realizing effectively single-node physics,
compatible with the scaling approach above and the transport
calculations below [29]. Results for the density of states
ν(ε), normalized to a single Weyl node and averaged over
ten disorder realizations, are shown in the bottom panel
of Fig. 1. The density of states at the Weyl point ν(0) is
shown in the top panel of the same figure. The ν(0) data
qualitatively confirm the conclusions drawn from the flow
equations. In particular, adding a single-component vector
disorder to scalar potential disorder lowers the critical disorder
strength; the critical disorder strength for pure vector disorder
with Kx = Ky = Kz = Kxyz is higher than for purely scalar
disorder; no diffusive phase is seen for single-component pure
vector disorder. The numerical results further indicate that
vector disorder with two nonzero components Kx = Ky =
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FIG. 1. Top panel: Density of states ν(0) at the nodal point and per
Weyl node for various disorder types (K0,Kx,Ky,Kz) as a function
of disorder strength K , as indicated in the figure. Bottom panel:
ν(ε) vs energy ε for scalar disorder (left) and for two-component
vector disorder with Kx = Ky = Kxy (right). The disorder strengths
K0 or Kxy are 0, 4, 8, 12, 16 (bottom to top). The density of
states ν0(ε) = ε2/2π 2(�v)3 of the clean Hamiltonian (1) is shown
dashed. The numerical calculation was performed for a cube geometry
with linear size L = 200a. The number of random vectors used for
calculating the trace in the kernel polynomial method is 20 [28]. The
energy resolution at the nodal point is �ε 
 0.024�v/ξ . The data
represent an average over approximately ten disorder realizations.
The finite offset value for ν(0) that is observed even for K = 0 is a
finite-size effect.

Kxy drives the system into a diffusive phase for Kxy � 9,
corresponding to an instability deriving from higher-order
terms in the flow equation that are not captured in our one-loop
perturbative analysis.

The bottom panel of Fig. 1 compares the density of
states ν(ε) around the Weyl point ε = 0 for scalar disorder
(K0) and for pure two-component vector disorder (Kx =
Ky = Kxy). The disorder-induced increase of the density of
states at finite energy can be understood as the result of a
renormalization of the Fermi velocity, consistent with the
transport data that follow below. (An analytical assessment
of velocity renormalization would require the inclusion of
two-loop diagrams in the RG calculations, which is beyond
the scope of this Rapid Communication.) Around the critical
disorder strengths, we find a singularity in the density of states
(smoothed by the finite resolution of the kernel polynomial
method) that is much steeper for the two-component vector
case than for the scalar case (compare, e.g., the data for K0 = 4
and Kxy = 12). This difference is in qualitative agreement with
the prediction from a scaling ansatz around criticality, ν(ε) ∝
|ε|(3−z)/z [18], where z = 1 + ∑

μ Kμ/2π2, evaluated at the
critical disorder strength, is the dynamical critical exponent.

Thus, the larger
∑

μ Kμ at criticality, the sharper is the
singularity.

Quantum transport. Calculations of quantum transport
properties at the nodal point provide an alternative route
towards the observation of the disorder-induced phase tran-
sition. We consider a Weyl semimetal attached to ideal source
and drain leads, with dimensions L and W in the transport
and transverse directions, respectively. In the pseudoballistic
weak-disorder phase, one expects the same transport charac-
teristics as those of the clean Hamiltonian (1): conductance
G ∝ W 2/L2 and Fano factor F = F0 = 1

3 + 1
6 ln 2 ≈ 0.574

[14,30]. (The Fano factor is the ratio of the shot noise power
and the current—see, e.g., Ref. [31].) In contrast, in the
diffusive regime G is proportional to W 2/L, corresponding
to a finite conductivity σ , whereas F = 1

3 [32].
The transport calculations with a random vector potential

closely follow our previous calculations for a Weyl semimetal
with scalar disorder only [14]. We apply periodic or antiperi-
odic boundary conditions in the directions transverse to the
current flow. The conductance G (per Weyl node) and the
Fano factor F are calculated from the transmission matrix
t as G = (e2/h)tr t t†, F = 1 − tr(t t†)2/tr t t†. Anticipating a
scaling G ∝ W 2 we normalize the conductance to a cube
geometry, G = W 2Gcube/L

2. We take the sample width W

and the size M of the transmission matrix large enough that
our results for Gcube and F do not depend on these, nor
on the choice of the boundary conditions in the transverse
direction. In contrast to the density of states calculation above,
the fixed transport direction (z) requires us to distinguish the
longitudinal (z) and transverse (x,y) components of the vector
disorder.

Results for weak disorder are shown in Fig. 2. We
observe that F → F0 for large system size L and that Gcube

approaches a constant for large L, although our numerics
indicates that the asymptotic value for Gcube may differ
from the size-independent cube conductance of the clean
limit G0,cube = (1/2π ) ln 2 ≈ 0.11 [14,30]. This difference
is consistent with the possibility of an anisotropic disorder-
induced renormalization of the Fermi velocity v to smaller
values. Indeed, without disorder, an anisotropic change of
the velocities v → vi , i = x,y,z, was found to give Gcube =
G0,cubev

2
z /vxvy , consistent, e.g., with a decrease (increase)

of Gcube for single-component vector disorder with Kz �= 0
(Kx �= 0) below (above) G0,cube, whereas the Fano factor F

remained unaffected [33].
For large disorder strengths, we find that the pseudoballistic

transport characteristics are preserved for all disorder strengths
for single-component pure vector disorder (see Fig. 3, inset).
All other disorder types show a diffusive scaling G = σW 2/L,
σ being the bulk conductivity, and F → 1

3 above a critical
disorder strength. The main panel in Fig. 3 shows our
numerical results for the conductivity, obtained from the
relation σ−1 = W 2∂LG−1(L). The critical disorder strengths
obtained from the conductivity data are in good quantitative
agreement with those obtained from the density of states
calculations (see Fig. 1, top panel).

Conclusion. We have shown that the inclusion of a random
vector potential leads to a rich phase diagram for a disordered
Weyl node. Whereas weak disorder is always irrelevant, the
scaling equations and numerical data presented here indicate
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FIG. 2. Cube conductance Gcube and Fano factor F as a function
of sample size L for a single Weyl node with various types of
weak-disorder potentials in the pseudoballistic transport regime,
with disorder strengths (K0,Kx,Ky,Kz) as indicated in the figure.
Numerical data are from an average over at least ten disorder
realizations and over periodic and antiperiodic boundary conditions.
The asymptotic values G0,cube and F0 for transport in a clean, isotropic
Weyl node are denoted by dashed lines.

that for a random vector potential there is a disorder-induced
transition to the diffusive phase only if the number of
statistically independent components of the random vector
potential is two or more. Our transport data indicate that
the nature of the strong-disorder phase is a diffusive metal,
regardless of the disorder types present.

Although the critical points observed in this study all
separate a pseudoballistic from a diffusive phase, it is likely
that they belong to different universality classes. This is
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FIG. 3. Conductivity σ as a function of disorder strength K

for a single Weyl node with various types of disorder potentials
(K0,Kx,Ky,Kz) as indicated in the figure. The inset depicts cube
conductance Gcube as a function of sample size L. The data represent
an average over at least ten disorder realizations and over periodic
and antiperiodic boundary conditions. The finite offset value for σ

that is observed even for K = 0 is a finite-size effect.

plausible since the scalar disorder-induced critical point is
time-reversal symmetric while a more generic fixed point at
a finite amount of vector disorder breaks this fundamental
symmetry. Further evidence was given by the analytical and
numerical assessment of the dynamical critical exponent z. The
fact that the flow equations give correlation length exponents
ν = 1 for all disorder types must be regarded as an artifact of
the one-loop approximation [19]. Further work is required to
pin down these critical exponents.

Another interesting aspect of the vector disorder-induced
phase transitions pertains to rare region effects. For potential
disorder, it has been argued [34,35] that a nonzero (but
exponentially small) density of states at zero energy persists
for subcritical disorder strengths, caused by states trapped
in exceptionally strong potential fluctuations. While the
consequences of this claim are still under debate (see, e.g.,
Ref. [35]), we point out that the same type of argument
cannot be straightforwardly carried over to a pure vector
potential, since even a locally strong vector potential does
not trivially lead to a finite density of states at the nodal point.
It is an interesting question, whether a rare-region analysis
confirms the qualitative differences between single-component
and multicomponent vector disorder.

We close by pointing out the differences and similarities
with the case of a two-dimensional Dirac cone,

H̃ = �v(σxkx + σyky), (8)

with disorder as in Eq. (2), a problem that has received
enormous interest in the theoretical literature (see Ref. [36]
for an early study and [37] for a review). By power counting,
in two dimensions all disorder is marginal at the tree level.
In the clean case, Eq. (8) is a critical theory at a topological
transition tuned by a mass term Mσz that changes the Chern
number by one. Disorder of the potential or “mass” type, with
strengths K0 and Kz, is marginally relevant and irrelevant,
respectively. Any combination of vector disorders (∝σx or
σy) is a renormalization group fixed point, that moreover
affords an exact solution with multifractal wave functions.
Accordingly, the density of states scaling ν(ε) ∝ |ε|(2−z)/z is
valid for any vector disorder and not just around a critical
disorder strength as in the Weyl case. Moreover, by applying a
pseudogauge transformation in the quantum transport setup
at zero energy, it can be shown that pure vector disorder
does not affect any transport properties of (8) [38], quite
in contrast to our findings for the three-dimensional Weyl
case. Another difference between the two-dimensional and
three-dimensional cases is that if two of the three disorder
couplings K0, Kz, K⊥ ≡ Kx + Ky are nonzero initially, in the
two-dimensional case the remaining component gets generated
along the flow [38]. In contrast, the flow equation for the
three-dimensional Weyl case does not generate new coupling
constants.
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