Anhang

A Technischer Anhang

A.1 Das Mikrocontroller-Schaltgerät

Zur weitgehenden Automatisierung der verschiedenen Messungen und der Meßparameteraufnahme wurde ein mikrocontrollergesteuertes Schaltgerät entwickelt. Es ermöglicht das programmgesteuerte Umschalten von jeweils vier Meßkanaleingängen auf zwei Ausgänge, das Schalten von vier Schaltsteckdosen (220 V) zum Anschluß anderer Geräte, sowie vier weiterer Relais, die mit den eingebauten Spannungsquellen (24 V und 12 V) zum Ansteuern von Shuttern u.ä. verwendet werden können. Die Schaltzustände werden mit Leuchtdioden (LED) über den Meßkanalanschlüssen und in einem separaten Anzeigebereich der Frontplatte angezeigt. Zusätzlich bietet das Gerät jeweils acht digitale Ein- und Ausgänge. Die technischen Daten, die maximale Belastbarkeit der internen Spannungsquellen und Ausgänge, sowie die Gerätesicherungen sind in Tab.A.1 zusammengefaßt.

Meßkanäle	$2 \ge 4$ Eingänge
Schaltsteckdosen	$4 \ge ein/aus$
Shutterschalter $(24 V)$	$4 \ge ein/aus$
digitale Eingänge	8 Bit $(5 V)$
digitale Ausgänge	8 Bit $(5 V)$
Sicherungen	$3 \ge T 150 \mathrm{mA}$
Schaltsteckdosenstrom	max. $10 \mathrm{A}$
Shutterstrom $(24 V)$	max. 1 A
Relaisstrom $(12 V)$	max. 1 A
dig. Ausgangsstrom	max. $500 \mathrm{mA}$

Tab. A.1: Technische Daten des Schaltgerätes

In Abb.A.1 ist die Front- und Rückansicht mit den Anschlüssen und ihren Funktionen gezeigt. Der Aufbau des Schaltgerätes mit seinen einzelnen Baugruppen ist in Abb.A.2 in einer Gesamtansicht dargestellt.

Die Schaltvorgänge können von einem Computer (PC) durch Senden einfacher, selbstdefinierter Befehle im ASCII-Textformat zum Mikrocontroller des Gerätes ausgelöst werden. Als Schnittstelle dient dabei das serielle Port (RS-232).

In Abb.A.3 ist der vereinfachte Schaltplan des Schaltgerätes wiedergegeben, auf die Spannungsquellen und Anzeigeelemente wurde für eine bessere Übersichtlichkeit

Abb. A.1: Front- und Rückansicht des Mikrocontroller-Schaltgerätes

Abb. A.2: Gesamtansicht des Schaltgerätes mit den Baugruppen

Abb. A.3: Vereinfachter Schaltplan des Steuerteils des Schaltgerätes

verzichtet. Den Kern des Schaltgerätes bildet der Mikrocontroller¹, der auf einem 8-Bit Mikroprozessor² basiert und mit den vom Hersteller mitgelieferten Entwicklungsprogrammen in Basic [253] und Assembler [254, 255] programmiert werden kann. Der Mikrocontroller verfügt über zwei 8-Bit Digitalports, die im Schaltgerät jeweils mit einem Portexpander³ verbunden sind und pro Port das Ansteuern von vier Gruppen von 4-Bit Ports erlauben. Zusätzlich speichern die Portexpander den momentanen Schaltzustand am jeweiligen 4-Bit Port, so daß der Mikrocontroller entlastet wird. Bei einem 8-Bit Port des Mikrocontrollers sind alle vier 4-Bit Ports des nachgeschalteten Portexpanders über Treiber-ICs (ULN2803), die als Stomverstärker wirken, mit insgesamt 16 Reedrelais verbunden. Diese schalten die Meßkanäle, Shutter und über vier weitere Hochlastrelais die Schaltsteckdosen. Das andere 8-Bit Port des Mikrocontrollers ist gleichartig über den Portexpander, ein Treiber-IC, sowie acht Schutzwiderstände mit den Anschlüssen der jeweils acht digitalen Ein- und Ausgänge verbunden. Der Resetbaustein⁴, der links oben im Schaltplan (Abb.A.3) eingezeichnet ist, bewirkt beim Ausschalten des Gerätes einen kurzen Resetimpuls, während die Versorgungsspannung noch im Absinken ist. Das Rücksetzen der Variablenwerte und Zurückspringen

 $^{^1\}mathrm{C}\text{-}\mathrm{Control}$ Basic; Conrad Electronic GmbH, Hirschau.

 $^{^2\}mathrm{M68HC05};$ Motorola Inc., Arlington Heights, IL, USA.

³8243C; Intel Corporation, Santa Clara, CA, USA.

⁴TL7757C; Texas Instruments Inc., Dallas, TX, USA.

TelaisULbas - Editor Loss - Editor
Date Bearbeten Suchen ? define port1 byteport[1] 'Steckkontakt2 define port2 byteport[2] 'Steckkontakt1
define port1 byteport[1] 'Steckkontakt2 define port2 byteport[2] 'Steckkontakt1
define port2 huteport[2] 'Steckkontakt1
der zne por ce bycepor e[e]
define b1 byte 'Befehlsbyte
define b2 byte 'Befehlsbyte
define b3 byte 'Befehlsbyte
define b4 byte 'Leerbyte
define wert byte
11
not h1 Haupprogramm
aet b2 'einlesen über RS232
aet b3
get b4
input wert
if (b1=83 and b2=80 and b3=49) then gosub setport1
if (b1=83 and b2=80 and b3=50) then gosub setport2
if (b1=83 and b2=82 and b3=49) then gosub setrelais
if (b1=83 and b2=82 and b3=50) then qosub setrelais
if (b1=83 and b2=82 and b3=51) then gosub setrelais
if (b1=83 and b2=82 and b3=52) then gosub setrelais
deact port2
deact port1
goto loop
'Unterprogramme
#setport1 'Befehl "SP1_(Wert)"
port1 = wert
return
#setport2 'Befeh1 "SP2_(Wert)"
port2 = wert
return
#setrelais 'Befehi "SR(b3)_(Wert)"
portz = 128+4+03-49 'aktivieren des Ports (4-7)
port2 = 4+03-49 des Portexpander 105
purt2 = wert schreiben des wertes (Relais) —
port2 = wert+128 Gaktivieren des wertes
return bod

Abb. A.4: Das CC-Basic Steuerprogramm im Mikrocontroller

aus dem Mikrocontrollerprogramm verhindert die ansonsten erfolgende Zerstörung des Programms.

Im Folgenden wird kurz auf die im Mikrocontroller und im Computer ablaufenden Programme eingegangen.

Das mit der mitgelieferten C-Control Entwicklungsumgebung an einem Computer (PC) erstellte CC-Basic Programm (relais01) ist in Abb.A.4 gezeigt. Nachdem es über die serielle Schnittstelle (RS-232) übertragen wurde, befindet es sich dauerhaft in compilierter Form in einem externen Speicherbaustein (EEPROM) auf der Mikrocontrollerplatine. Nach dem Einschalten des Gerätes befindet sich der Mikrocontroller am Beginn der Schleife "loop" und wartet auf das Eintreffen von vier Bytes b1 bis b4 über die serielle Schnittstelle, sowie eines Zahlenwertes "wert". Falls die ersten drei Bytes mit den ASCII-Zeichenfolgen "SP1", "SP2", "SR1", "SR2", "SR3" oder "SR4" übereinstimmen, wird in die entsprechenden Unterroutinen verzweigt. Nach Rückkehr in die Schleife "loop" werden die beiden 8-Bit Ports des Mikrocontrollerbausteins mit dem Befehl "deact" in jedem Fall wieder hochohmig geschaltet, um eine mögliche Überlastung zu vermeiden.

Die Unterprogramme "setport1" und "setport2" schreiben direkt den gesandten Wert an das entsprechende 8-Bit Port des Mikrocontrollers. Sie dienen zu Test- und Versuchszwecken.

In der Unterroutine "setrelais" wird der mit Port 2 verbundene Portexpander programmiert, mit dem die Meßkanal- und Relaisschaltung durchgeführt wird. Wie aus dem Schaltplan (Abb.A.3) zu erkennen ist, ist A7 (Bit 7) des Ports mit dem Programmieranschluß (Prog), A6 (Bit 6) mit dem Chipselect-Anschluß (CS) und

翻 relaiskasten03.ipf	
<pre>// macro initcom() WDT /P=COM1 baud=9600, stopbits=1, databits=8, par end //</pre>	// Initialisierung der RS232-Verbindung rity=0, in=0, out=0, echo=0, terminalEOL=0
function steckdose(nr,ein) variable nr, ein variable nr2,relais2	// Steckdosenrelais 1-4 unabhängig // voneinander ein- und ausschalten
IF (NF70) nr2=2 [°] (nr-1) if (ein) nvar relais = relais relais = relais % nr2 relais2 = relais % nr2 relais2 = relais %% 15 execute"VDTWrite /Q \"SR1 "+num2str(relais2)+"\"" else	<pre>// Relaisnummer in Bitzahl konvertieren // einschalten, wenn ein = 1 // Variable relais ist global definiert // kein Schalten anderer Relais (% = OR) // löschen der Bits 4 bis 7 (%& = AND) // senden des Befehls zum Hikrocontroller</pre>
nvar relais = relais relais = relais && (%~nr2) relais2 = relais && 15 execute"UDTWrite /Q \"SR1 "+num2str(relais2)+"\"" endif endif sleep/s 0.1 end	// ausschalten, wenn ein = 0 // nur nr2 abschalten (%~ = NOT) // löschen der Bits 4 bis 7 (%& = AND) // senden des Befehls zum Mikrocontroller
//	// Kanal A 1-4 auswählen
if(ur<=4) if(ur==0) execute"UDTWrite /Q \"SR4 0\"" else	// Kanal A abschalten // senden des Befehls zum Mikrocontroller
<pre>nr2=2^(nr-1) execute"UDTWrite /Q \"SR4 "+num2str(nr2)+"\"" endif endif sleep/s 0.1</pre>	// Kanalnummer in Bitzahl konvertieren // senden des Befehls zum Mikrocontroller
ena //	

Abb. A.5: Kommentierter Auszug aus dem Igor Pro Steuerprogramm zur Kommunikation mit dem Mikrocontroller.

A0 bis A3 (Bit 0 bis 3) mit Port2 des Portexpanders verbunden. Das Port 2 des Portexpanders dient als Programmierport zur Auswahl der vier weiteren Datenports (Port 4 bis 7) und zur Ein- und Ausgabe der Werte.

Der Portexpander ist immer aktiv geschaltet, dazu ist der CS-Anschluß "low" gesetzt, was Bit 6 im Zustand "0" entspricht. In der ersten Programmzeile des Unterprogramms "setrelais" wird mit dem Wert 128 (Bit 7) der Prog-Anschluß auf "1" gesetzt. Das zu aktivierende Expanderport (Port 4 bis 7) wird durch Senden der Werte 0 bis 3 ausgewählt. Da das Byte b3 die ASCII-Zahlen der Textzeichen "1", "2", "3" und "4", also die Zahlen 49 bis 52 annehmen kann, muß davon der Wert 49 abgezogen werden, um die Werte 0 bis 3 an das Programmierport des Expanders zu senden. Wird dazu der Wert 4 (Bit 3 "high") addiert, ist das Port für einen Schreib-, ansonsten für eine Lesezugriff aktiviert. In der nächsten Zeile wird das gewählte Port durch Setzen des Prog-Anschlusses auf "0" aktiviert. In der folgenden Zeile wird der am gewählten Expanderport auszugebende Wert (0-15), der die Schaltzustände der angeschlossenen Relais bestimmt, an das Programmierport gelegt und in der folgenden Zeile durch Hochsetzen des Prog-Anschlusses auf "1" an das Ausgabeport verschoben. Der zweite Portexpander, der für die Ein- und Ausgabe digitaler Daten zuständig ist, kann auf analoge Weise programmiert werden.

Die Schaltvorgänge werden von einem Steuerprogramm ausgelöst, das auf einem PC installiert ist und auch die anderen Geräte der SMSC-Apparatur kontrolliert. In Abb.A.5 ist ein kleiner Auszug aus der Treiberdatei dargestellt, auf den das Programm zur Ansteuerung des Schaltgerätes zurückgreift. Wie das eigentliche Steuerprogramm

ist es in der Igor Pro
 Programmiersprache geschrieben. Die darin definierten Befehle "steckdose" und "setkanal" zeigen, wie aus dem Steuerprogramm heraus die Gerätesteckdosen und Meßkanaleingänge des Schaltgerätes angesteuert werden können. Im Befehl "initcom" werden die Datenübertragungsparameter zur Kommunikation mit dem Mikrocontroller des Schaltgerätes definiert. Eine genaue Beschreibung der Prozeduren würde über den Rahmen dieses Anhanges hinausgehen, da die Prozeduren aber am rechten Bildrand von Abb.A.5 ausführlich kommentiert sind, sollte ein Verständnis ihrer Arbeitsweise trotzdem möglich sein.

A.2 Filtereinstellungen des LIA EG&G 5210

Abb. A.6: Ausgangssignale mit Eingangsfiltern (Flat, BP, LP, Notch) ohne Sperrfilter "F" (50 Hz) und "2F" (100 Hz) (s. S.57).

Abb. A.7: Ausgangssignale mit Eingangsfiltern (Flat, BP, LP, Notch) mit Netzfrequenz-Sperrfilter "F" (50 Hz) (s. S.57).

Abb. A.8: Ausgangssignale mit Eingangsfilter (Flat, BP, LP, Notch) mit Netzfrequenz-Sperrfilter "2F" (100 Hz) (s. S.57).

Abb. A.9: Ausgangssignale mit Eingangsfilter (Flat, BP, LP, Notch) mit Sperrfilter "F" (50 Hz) und "2F" (100 Hz) (s. S.57).

B Meß- und Steuerprogramme

B.1 Das Auswerteprogramm i-Tiffer

Für die Auswertung der mit dem neuen SMSC-Versuchsaufbau und dem Programm i-Scan erhaltenen Meßdaten wurde das Programm i-Tiffer geschrieben. Der Name leitet sich von einer einfacheren Vorläuferversion zur direkten Umwandlung von Meßdaten in Tiff-Bilder ab, die während der vorhergehenden Arbeit[48] in Turbo Pascal für DOS programmiert wurde. Die jetzige Version (i-Tiffer_v2.3) läuft unter 32 Bit-Windows in der IGOR PRO Umgebung ab Version 3.16 und bietet neben der höheren Bildauflösung wesentlich mehr Möglichkeiten der Auswertung und bildlichen Darstellung.

Die wichtigste Anwendung von i-Tiffer ist die Bearbeitung der ortsaufgelösten Photostrom-, Transmissions- oder Reflexionsmessungen, wie sie in Abb.B.1 gezeigt ist. Nach dem Starten des Programms (Version 2.3) steht das rechte, graue Steuerfenster für das Ablesen der Meßparameter, die Änderung von Meßbereichsgrenzen und der Auswahl von Darstellungs- und Auswertemöglichkeiten zur Verfügung. Das Steuerfenster ist durch waagerechte Linien in fünf Segmente unterteilt, in denen Auswahlschalter, und Anzeigeelemente zusammengefaßt werden. Zu Beginn sind alle Anzeigefenster leer oder auf Null gesetzt. Mit dem Anklicken des Schalters "Laden" im obersten Segment kann eine Meßdatei von einem Datenträger gelesen werden. Wenn es sich um eine ortsaufgelöste Photostrommessung handelt, wird automatisch eine Abbildung der Photostromverteilung berechnet und wie in Abb.B.1(links) angezeigt. In den weißen Anzeigekästchen werden die Meßparameter der jetzt aktiven, neu geladenen Datei angezeigt.

Intern wird die geladene Meßdatei des i-Scan Programms dabei in eine Matrix der Photostromwerte (dateiname), eine Datei aus hundert Meßparameterwerten (dateiname__v)und eine Datei, die zugehörige Textzeichenketten beinhaltet (dateiname__s), zerlegt.

Mit dem Auwahlschalter "Datei" oberhalb des "laden"-Schalters, kann zu anderen schon geladenen Meßdateien gewechselt werden. Der momentan aktivierte Datensatz wird rechts daneben angezeigt. Nicht mehr benötigte Dateien können mit den Schaltern "löschen" und "alles weg" aus dem Speicher entfernt werden. In der Folge werden auch alle zur löschenden Datei zugehörigen Bildfenster geschlossen.

Im zweiten Segment werden das Datum und die Meßzeit angezeigt, sowie einige Zusatzinformationen, die vor der Messung manuell in das i-Scan Programm eingegeben wurden.

Abb. B.1: Das Programm i-Tiffer zur Auswertung von Dateien des Meßprogramms i-Scan; rechts: Hauptfenster bei Programmstart; links: Meßdatei als örtliche Abbildung der Photostromdichte dargestellt; mitte: Ausschnitt der Messung links mit leicht veränderter Farbskalierung.

Im dritten Segment werden die wichtigsten Meßparameter der aktiven Datei angezeigt. Neben den Abmessungen des Photostrombildes sind dies der Durchmesser des Laserspots, die Länge eines Schrittes während der Scanmessung, die Lichtintensität, die Probenfläche, die Meßbereiche von lock-in-Verstärker und Potentiostat, das Meßpotential, sowie der Bereich der Meßwerte des lock-in-internen Analog-Digital Wandlers und die daraus berechneten Photostromdichten. Wie im zweiten Segment werden diese Werte nur angezeigt und können nicht geändert werden. Wenn der Schalter "Meßparameter" angeklickt wird, werden alle hundert Variablenwerte des Meßdateikopfes in einem neuen Fenster angezeigt, die alle abgespeicherten Meßparameter der Meßdatei enthalten.

Darunter können im vierten Segment Änderungen vom Benutzer vorgenommen werden. So kann die Farbskala der Meßabbildungen aus einer Liste ausgewählt werden, die invers, mit umgekehrter Farbreihenfolge verwendet wird, wenn der Schalter "inv" aktiviert ist. Mit den Schaltern Skala und Maßstab werden die Photostromfarbskala und die Einheitslängenlinie im Bild ein- oder ausgeblendet. Das Bild wird bei einer Änderung sofort neu berechnet. In den Anzeigen der Meßbereichsgrenzen können die Werte für die ADC-Meßwerte oder Photostromdichten direkt eingegeben werden, die zugehörigen Stromdichten oder ADC-Spannungen werden berechnet und angezeigt, worauf das Photostrombild mit der veränderten Farbzuweisung der Meßwerte und der geänderten Beschriftung der Farbskala neu erstellt wird.

Abb. B.2: links: Ausschnitt des Photostrombildes aus Abb.B.1; rechts: 3D-Darstellung des Ausschnittes, um ca. 160° gedreht.

Im untersten Segment befinden sich fünf Schalter. Bei Anklicken von "Layout" wird die Abbildung der aktiven Datei in ein sogenanntes Layout, ein Fenster im DIN A4 Format, zusammen mit einer tabellarischen Auflistung der wichtigsten Meßparameter eingefügt. Diese Layoutseite dient als Druckvorstufe und ist zur schnellen Archivierung der beschrifteten Meßdateien nützlich. Mit"+ Layout" können weitere Abbildungen der Layoutseite zugefügt werden. Mit dem Schalter "Bild" können Abbildungen neu gezeichnet werden, mit Speichern werden sie als Bilddatei abgespeichert. Bei normalen 2D-Bildern werden IGOR-interne Speicherbefehle verwendet, besonders nützlich ist dieser Schalter aber bei dreidimensionalen Abbildungen wie in Abb.B.2, die nur über eine umfangreichere Befehlsfolge mit guter Auflösung abgespeichert werden können.

Der Schalter "Auslesen" öffnet ein neues Fenster (Abb.B.3 rechts), mit dem eine Vielzahl neuer Auswertemöglichkeiten zur Verfügung stehen.

Im obersten Teil sind zur besseren Orientierung wieder der Name und die Abmessungen der Meßdatei verzeichnet. Wird der Mauszeiger nun über die Photostromabbildung Abb.B.3 (links oben) bewegt, können die ständig aktualisierten Koordinaten dieser Position zusammen mit der lokalen Stromdichte und dem entsprechenden ADC-Meßwert ausgelesen werden.

Wird die linke Maustaste dabei gedrückt, werden die Koordinaten gespeichert und bei erneutem Klicken ein Verbindungspfeil zwischen beiden Positionen eingezeichnet. Einzelne Strecken im Meßbild können so leicht ausgemessen werden, da die Länge des Pfeils in Bildpunkten und Mikrometern, sowie sein Winkel relativ zur Waagerechten im dritten Segment ausgegeben werden. Mit den vier Steuertasten im untersten Segment kann diese Pfeillinie in Bildpunktschritten in alle vier Richtungen bewegt werden.

Wenn die Taste "Profil" gedrückt wird, wird das in Abb.B.3 (links unten) gezeigte Vorschaubild eingeblendet, das den Querschnitt des Photostrombildes entlang und in

Abb. B.3: Auswertung mit dem Fenster "Bild auslesen" (rechts); auszulesendes Photostrombild mit Positionspfeil eines Photostromprofils (links oben); Vorschaubild des Photostromprofils (links unten).

Richtung des Pfeiles, das Photostromprofil, anzeigt. Wenn er mit den vier Steuertasten bewegt wird, wird auch das Profil neu ausgelesen und gezeichnet. Im ditten Segment "Profil" kann außerdem die "Profilbreite" eingestellt werden. Der angezeigte Querschnitt wird über die eingestellte Anzahl einzelner Profile mit Bildpunktabstand gemittelt. Im Photostrombild werden diese Bereichsgrenzen seitlich des Profilpfeils als parallele Linien eingezeichnet.

Bei Aktivierung des Schalters "Kontrolle" verschwindet die Darstellung von Pfeil und Begrenzungslinien, und die tatsächlich für die Profildarstellung ausgelesenen Bildpunkte werden als kleine Rechtecke eingezeichnet. Um das momentane Profil in ein neues Fenster zu kopieren, kann auf den Schalter "kopieren" gedrückt werden. Dies ist besonders für das Auslesen mehrerer paralleler Profile nützlich, da das Vorschauprofil immer wieder mit dem gerade aktuellen Profil überschrieben wird.

Mit dem Schalter "markieren" im fünften Segment "Teilbereich extrahieren" kann von der Pfeil- auf eine Rechteckdarstellung umgeschaltet werden. Zwei gegenüberliegende, das Rechteck definierende Eckpunkte, werden genau wie die Endpunkte der Pfeillinie durch Bewegen des Mauszeigers und Anklicken der gewünschten Position ausgewählt. Wie der Pfeil kann auch das Rechteck mit den vier Steuertasten verschoben werden. Mit dem Drücken der Taste "kopieren" in diesem Segment wird der markierte Ausschnitt in eine neue Bildmatrix (dateiname_teil) kopiert. Die zugehörigen Meßparameter werden ebenfalls aus der zugrundeliegenden Meßdatei kopiert und es steht damit der gewählte Teilbereich wie eine eigenständige Messung für die völlig

Abb. B.4: Bestimmung der Probenfläche aus einer ortsaufgelösten Photostrommessung; rechts: Fenster "Bild auslesen" mit Schwellwerteinstellung 15% und Flächenanzeige; links oben: Photostromaufnahme mit Markierung zur Längenmessung; links unten: Vorschaubild mit weiß markierter Fläche außerhalb der Probe unterhalb des Schwellwertes.

unabhängige Auswertung zur Verfügung. Auf diese Weise wurden aus der ursprünglichen Meßdatei in Abb.B.1 (links) die Ausschnitte in Abb.B.1 (mitte) und Abb.B.2 erzeugt.

Die dreidimensionale Darstellung des Ausschnittes in Abb.B.2 (rechts) wurde nach Aktivieren der neuen Teildatei mit dem Befehl "3D-Plot", der in die IGOR PRO Menüzeile eingefügt wurde, berechnet. Zur Vermeidung geometrischer Verzerrungen nicht-quadratischer Bildausschnitte in dem quadratischen Graphen werden zusätzliche Linien mit der Stromdichte 0 eingefügt, so daß der rechteckige Meßbereich in der Mitte des quadratischen Graphen zu liegen kommt.

Die Probenfläche, wichtig als Bezugsfläche für ganzflächig beleuchtete Proben bei Messung der Photostrom-Spannungskennlinien, kann mit Prozeduren von i-Tiffer einfach bestimmt werden, die ebenfalls über das Fenster "Bild auslesen" zugänglich sind. Die zugehörigen Schalter und Anzeigen befinden sich im vierten Segment "Fläche messen" (Abb.B.4 rechts).

Gerade bei den meist nur wenige Millimeter großen Schichtgitterkristallproben mit ihrer unregelmäßigen Form ist die Bestimmung durch direkte Vermessung unmöglich und mit anderen Methoden aufwendig.

Bei den Photostromaufnahmen ganzer Proben ist die photoaktive Probenoberfläche von der inaktiven Randzone des Substrats meist deutlich trennbar. Es muß nur ein Schwellwert für den Photostrom definiert werden, ab dem der Meßpunkt als zur Probenfläche zugehörig angesehen wird, worauf die Anzahl der Punkte mit dem Quadrat der Scanschrittlänge multipliziert die Probenoberfläche ergibt.

Nach dem Anklicken von "Start" wird neben dem normalen Photostrombild (Abb.B.4 (links oben)) ein neues Vorschaufenster geöffnet (Abb.B.4 (links unten)). In diesem Bild ist allen Meßpunkten, deren Photostromdichte unterhalb des in Prozent des Maximalwertes angegebenen Schwellwertes liegen, die Farbe Weiß zugeordnet. Dazu muß der Schalter "Unterschwelle" aktiviert sein. Bei Änderung des Schwellwertes kann die Änderung des farbigen, der Probenfläche zugeordneten Bereichs verfolgt werden und der entsprechende Flächenwert in der Anzeige abgelesen werden. Mit dem Taster "kopieren" kann die gemessene Fläche für diese Messung vorübergehend im Speicher abgelegt werden, die Probenfläche wird dann mit den anderen Meßparametern zusammen angezeigt.

Wenn keine ortsaufgelösten Photostromaufnahmen oder Reflexionsmessungen vorliegen, können auch Videoaufnahmen einer Probe für die Oberflächenmessung verwendet werden. Die Bilddatei muß dafür in ein 8-Bit Tif-Bild (Graustufen) umgewandelt werden und muß ohne Veränderung der Skalierung einer Achse abgespeichert werden, so daß eine quadratische Abmessung der einzelnen Bildpunkte angenommen werden kann. Diese Bilder können mit "laden" im Hauptfenster wie normale Meßdateien eingelesen werden und werden wie diese als Falschfarbenbilder angezeigt. Ein genügender Kontrast zur Probenumgebung wird für die Flächenmessung im Fenster "Bild auslesen" vorausgesetzt. Je nach der Reflektivität der Probe relativ zu ihrer Umgebung muß der Schalter "Unterschwelle" aktiviert oder deaktiviert werden, um bei geeigneter Schwellwertwahl nur die Probe zu vermessen und der unberücksichtigten Umgebung im Vorschaubild eine weiße Farbe zuzuordnen.

Im Gegensatz zu den ortsaufgelösten Messungen ist die Größe eines Bildpunktes bei einer Videoaufnahme in der Regel nicht bekannt. Sie kann aber leicht durch die Vermessung des Videobildes analog der oben beschriebenen Vermessung von Photostrombildern mit einer Pfeillinie bestimmt werden. Wie in Abb.B.4 (oben) gezeigt, wird an einer mit einer Schiebelehre o.ä. gut meßbaren Stelle die Entfernung zweier Punkte am Probenrand mit der durch Anklicken erzeugten Pfeillinie ausgemessen. Der erhaltene Wert entspricht der Länge in Bildpunkten, da bei Videobildern zunächst eine Einheitsschrittlänge von 1 μ m vorgegeben ist. Indem die Linienlänge in Punkten durch die an der Probe gemessene Länge in Mikrometern geteilt wird, ist die Bildpunktlänge bestimmt. Sie kann nun im obersten Segment im Feld "Schritt" eingetragen werden. Damit ist das Verfahren für diese Probe kalibriert und der angezeigte Flächenwert im Segment "Fläche messen" entspricht der tatsächlichen Probenfläche.

Kennlinienmessungen, Messungen des Stromes in Abhängigkeit des in der Messung variierten Probenpotentials, werden automatisch in Form von Diagrammen dargestellt. Dabei wird vom Programm zwischen Photostromkennlinien und Dunkelstromkennlinien unterschieden. Gleichzeitig wird ein neues Fenster geöffnet, das dem Fenster zur Auswertung von ortsaufgelösten Messungen ähnelt, aber an die Kennlinienmessungen angepaßt wurde (Abb.B.5). Im dritten Segment werden die wichtigsten Meßparameter angezeigt, abweichend von dem vorher beschriebenen Hauptfenster tre-

Abb. B.5: Darstellung von Kennlinienmessungen; rechts: Fenster zur Auswertung von Kennlinien; links oben: Photostromkennlinie; links unten: Dunkelstromkennlinie.

ten die Potentialbereiche der Messung, der Potentialschritt und die Wartezeit nach jedem Potentialschritt vor der Strommessung auf. Die Stromdichte wird nicht angegeben, da zunächst in den Diagrammen nur die absoluten Meßströme angezeigt werden, und im vierten Segment erst die Bezugsfläche manuell ausgewählt werden muß.

Bei Dunkelstrommessungen kann nur die Probenfläche als Bezugsfläche gewählt werden. Sie muß aus ortsaufgelösten Messungen oder Videoaufnahmen bestimmt, vom Benutzer in die Anzeigefläche eingegeben werden.

Eine Photostromkennlinie kann unter Beleuchtung mit einem Laserspot oder der gesamten Probenfläche mit einer Halogenlampe gemessen werden. Die sich daraus ergebende Bezugsfläche muß im vierten Segment des Kennlinienfensters ausgewählt werden. Bei ganzflächiger Beleuchtung muß die Probenfläche manuell eingegeben werden, bei Messung mit dem Laserspot wird die Bezugsfläche automatisch aus dem abgespeicherten Laserspotdurchmesser berechnet.

Alle Datei- und Meßtypen, die mit i-Tiffer geladen und bearbeitet werden können, sind in Tab.B.1 zusammengefaßt. Die vom Meßprogramm erzeugten Dateien werden mit einer Nummer gekennzeichnet, dem ersten Meßparameter im Dateikopf, womit dem Programm i-Tiffer beim Einlesen der Typ und die möglichen Darstellungsformen mitgeteilt werden.

Bei ortsaufgelösten Messungen wird zwischen einzelnen Messungen und Teilmessungen von automatisierten Serien unterschieden, was für spätere Versionen eine weiter automatisierte Bearbeitung ermöglichen könnte. In der gegenwärtigen Version ist die Auswertung der Photostromaufnahmen im allgemeinen gleich.

In Form von Diagrammen werden potentialabhängige Strommessungen, Dunkelund Photostromkennlinien, sowie die wellenlängenabhängigen Aktionsspektren angezeigt. Außerdem können Klingenscanprofile zur Laserspotdurchmesserbestimmung ebenfalls geladen und als Diagramm mit Photostrom, bzw. normierter Lichtintensität über der Scanlänge in μ m dargestellt werden.

Daneben können auch Bilddateien im Tif-Format mit 8 Bit Auflösung (Graustufen) eingelesen werden. Dies können insbesondere Videoaufnahmen der Proben sein, die zur Flächenbestimmung verwendet werden, oder Videoaufnahmen des Laserspots, die von i-Tiffer automatisch stark vergrößert angezeigt werden, wodurch die Justierung der Meßapparatur erleichtert wird. Zusätzlich werden die Videoaufnahmen der Laserspots mit einer normierten Intensitätsskala in Prozent versehen.

Bozoichnung	Boschroibung	Typ-	Datei-	Moßdatoityp	
Dezeleinnung	Deschielbung	nr.	endung	mendatettyp	
Einzelmessung	einfache Photostrom-	131	.dat		
	aufnahme				
K-Rahmen	Meßserie mit dem	129	.dat		
	Kippschalterrahmen			Photostrom	
S-Rahmen	Meßserie mit dem	130	.dat	Transmissions	
	Schiebeschalterrahmen Transm		Reflevionshild		
FKS-Serie	Meßserie unter freier	135	.dat	Reflexionsond	
	Wahl der Koordinaten				
Potentialserie	Meßserie mit Variation	132	.dat		
	des Probenpotentials				
Photokennlinie	potentialabhängige	133	.dat		
	Photostrommessung				
Dunkelkennlinie	potentialabhängige	134	.dat		
	Dunkelstrommessung			Diagramm	
Aktionsspektrum	wellenlängenabhängige	136	.dat	Diagramm	
	Photostrommessung				
Spot-Scan	Klingenscanprofil für		$.\mathrm{spt}$		
	Laserspotdurchmesser				
Spot-Tif	Videoaufnahme eines		.tif		
	Laserspots			externe	
Bild-Tif	sonstige Tif-Bilder		.tif	Bilddatei	
	z.B. Probenaufnahmen				

Tab. B.1: Von i-Tiffer verarbeitete Datei- und Meßtypen.

B.2 Das Programm i-HPLC

Mit dem Programm i-HPLC können Meßdate
ien des HPLC-Meßstandes¹ am HMI eingelesen, ausgewertet und dargestellt werden. Es läuft in der Igor Pro
 Programmumgebung ab der Version 3.16.

Abb. B.6: Das Programm i-HPLC zur Auswertung von prn-Dateien des Waters 990 HPLC-Meßstandes beim Auslesen eines Spektrums. oben rechts: Startfenster; oben links: Darstellung einer HPLC-Meßdatei; unten rechts: Fenster zum Erstellen von Spektren und Chromatogrammen; unten links: aus der Meßdatei ausgelesenes Spektrum.

Die HPLC-Messungen werden mit dem Programm M990 durchgeführt. Nach dem Starten der Lösungsmittelpumpe und dem Einspritzen der Probenlösung werden die vom Photodiodenarray² gemessenen Absorptionsspektren nach dem Durchlaufen der Trennsäule in Abhängigkeit der Meßzeit gespeichert. Die ursprünglichen Meßdateien im dt3-Format müssen vom M990-Programm in prn-Dateien konvertiert werden. In diesem Format liegen die Daten als eine Reihe einzelner, kommentierter Spektren im Textformat vor. Diese prn-Dateien können von i-HPLC direkt eingelesen werden.

Nach dem Starten des Programms i-HPLC steht zunächst das in Abb.B.6 rechts oben gezeigte Fenster ("i-HPLC") zur Verfügung. Mit dem Knopf "Laden" kann eine

¹Waters 990; Waters Corp., Milford, MA, USA.

²Waters PDA 991; Waters Corp., Milford, MA, USA.

prn-Datei in den Speicher geladen werden, wobei sie in in eine Datenmatrix aus gemessener Absorption in Abhängigkeit der Wellenlänge und der Laufzeit nach dem Starten der Pumpe umgewandelt wird. Zusätzlich werden noch das Referenzspektrum ohne Beleuchtung (Dateiname__drk)und ein Referenzspektrum zur Berücksichtigung der relativen Empfindlichkeit des Spektrometers und der Lösungsmittelabsorption (Dateiname__ref) aus der Meßdatei ausgelesen und getrennt abgespeichert.

Die Meßdatei wird nach dem Laden wie in Abb.B.6 links oben als Falschfarbenbild angezeigt.

Im zweiten Feld unterhalb des "Laden"-Knopfes kann mit tmax und tmin der für Anzeige und Auswertung zu berücksichtigende Meßzeitbereich eingegrenzt werden. Wenn alle Produkte nur ein einem kleinen Intervall eintreffen, werden die Abbildungen dadurch übersichtlicher.

Darunter kann die Farbskala für die zweidimensionalen Darstellungen der Meßwerte ausgewählt werden.

Oftmals ist das vom Spektrometer gemessene Referenzspektrum sehr verrauscht und von sehr kleiner Signalstärke. Bei Wellenlängen größer 300 nm liegt die Abweichung der Empfindlichkeit bei 15 %, bei mehr als 400 nm nur noch bei 5 %. Es kann daher vorteilhaft sein, in der Rubrik "kalibrieren" vor dem Laden den Knopf Dateireferenz zu deaktivieren, das Referenzspektrum des Spektrometers wird dann nicht mehr berücksichtigt. Wird "interne Referenz" aktiviert, werden die Spektren der Meßdatei zur Normierung stattdessen durch ein im i-HPLC-Programm vorliegendes Referenzspektrum ("referenz__ref") geteilt. Dieses Referenzspektrum wurde aus einem vom Waters PDA 991 gemessenen Referenzspektrum durch starkes Glätten erhalten, wodurch das Rauschen vollständig entfernt wurde. Es können vom Benutzer eigene Referenzspektren verwendet werden, die etwa zu Beginn der Messung vor dem Eintreffen der ersten Probenfraktion erhalten wurden. Dazu muß dieses Spektrum nur unter dem Namen "referenz__ref" im Speicher abgelegt werden.

Wird im untersten Feld des Fensters "i-HPLC" der Knopf "Auslesen" gedrückt, so erscheint das unten rechts in Abb.B.6 gezeigte Fenster "Bild auslesen".

Im obersten Feld werden die Wellenlänge, die Laufzeit, die gemessene Absorption und die Bildpunktkoordinaten des unter dem Mauszeiger befindlichen Meßdateipunktes angezeigt.

Nach dem Drücken von "Spektrum" im Feld darunter wird ein Vorschaufenster geöffnet, in dem ein Spektrum aus der Meßpunktmatrix ausgelesen werden kann. Mit "Zeichnen" wird es in ein Anzeigefenster kopiert, in dem nacheinander mehrere ausgelesene Spektren abgelegt werden können. Dies ist in Abb.B.6 unten links gezeigt. Das Spektrum wurde bei einer Laufzeit von 2,877 min aus dem Bild darüber ausgelesen, wo es als schwarze Linie eingezeichnet ist. Es kann über mehrere benachbarte Spektren gemittelt werden, wozu die Eingabe "Profilbreite" verwendet werden kann.

Mit dem Taster "Chromatogramm" wird die bei einer festen Wellenlänge (senkrecht) gemessenen Absorption ausgelesen und angezeigt (Abb.B.7). In dieser Darstellung, dem Chromatogramm (Abb.B.7 links unten), können nacheinander zu verschiedenen Zeiten am Detektor eingetroffene Substanzen aufgefunden werden.

Außerdem können alle Bilder und Graphen nach Drücken von "Speichern" mit

Abb. B.7: Das Programm i-HPLC zur Auswertung von prn-Dateien des Waters 990 HPLC-Meßstandes beim Auslesen eines Chromatogramms.

oben rechts: Startfenster; oben links: Darstellung einer HPLC-Meßdatei; unten rechts: Fenster zum Erstellen von Spektren und Chromatogrammen; unten links: aus der Meßdatei ausgelesenes Chromatogramm.

voreingestellter Auflösung abgespeichert werden.

Meßdateiabbildungen können auch dreidimensional dargestellt und danach abgespeichert werden. Dazu stehen Auswahlfelder in der hier nicht gezeigten Menüleiste zur Verfügung.

B.3 Das Programm Polplot

Polplot wurde zur Auswertung von Meßdateien des Siemens Röntgendiffraktometers D500-5000 als Igor-Programm entwickelt, da das ursprüngliche DOS-Meßprogramm des Meßrechners nur eine umständliche Auswertung mit schlechter graphischer Darstellung erlaubt.

Abb. B.8: Bildschirmansicht des Polplot-Programms mit einer röntgendiffraktometrischen Texturmessung in stereographischer Projektion.

Diese Messungen wurden zur Untersuchung der Textur von Halbleiterdünnschichten auf Metallsubstrat durchgeführt. Dabei werden die Proben, wie im Abschnitt "Texturmessungen" ab S.67 dargestellt, in einem Vierkreisgoniometer mit dem Winkel ϕ um ihre Achse gedreht und mit dem Winkel ρ jeweils von 0° - 180° gekippt. Durch Messung der in Abhängigkeit der beiden Winkel an der Probe gebeugten Röntgenstrahlung können Aussagen über die räumliche Orientierung der Kristallschichten gemacht werden.

In Polplot können vom Meßprogramm im ASC-Format exportierte Dateien eingelesen werden, wenn in 90 einzelnen, von Textkommentaren unterbrochenen Blöcken jeweils 180 Daten abgelegt sind. Die verwendbaren Meßdateien enthalten die Kommentarzeile "Drive= Phi". In diesem Modus wurde ρ bei jeweils konstantem ϕ von 0° bis 180° variiert, worauf ϕ um 2° erhöht wurde und der nächste Datenblock aus ρ -abhängigen Werten folgt. Insgesamt wurde somit die Röntgenstreuung halbkugelförmig über der Probe vermessen.

Eine Bildschirmansicht des Programms ist in Abb.B.8 gezeigt. Nach dem Starten von Polplot steht das rechte Kontrollfenster in Abb.B.8 zur Verfügung.

Mit "Diffrac-Daten laden" kann, wie oben beschrieben, eine passende Meßdatei eingelesen werden, die von einem von Dr. Lilie (HMI) entwickelten Makro in eine Matrix einzelner (x,y,z)-Vektoren umgewandelt und angezeigt wird.

Zur weiteren Auswertung kann diese mit "in Matrix (ibw) konvertieren" in eine Matrix aus z- bzw. Intensitätswerten umgewandelt werden, was wesentlich verbesserte Möglichkeiten der Darstellung und Auswertung ermöglicht. Dazu wird eine Igorinterne Prozedur verwendet, die Konvertierung dauert ca. 4 min bei einem PC mit einer Taktfrequenz von 1,5 GHz.

Die gewonnene z-Matrix wird automatisch abgespeichert und kann später wieder mit "Matrix laden" eingeladen werden, so daß die Datenkonvertierung nur einmal durchgeführt werden muß.

Mit dem Menü "Messung" ausgewählte oder neu eingelesene Dateien werden in der stereographischen Projektion zweidimensional dargestellt (siehe Abb.B.8 links). Erklärungen zu dieser Darstellungsform stehen im Abschnitt "Texturmessungen" ab S.67.

Die normierte Intensität der gemessenen Röntgenstrahlung ist farbcodiert, der Winkel ϕ als Kreisskala eingezeichnet und der Kippwinkel ρ anhand der konzentrischen Kreise ablesbar.

Das Intensitätsintervall, dem die Farbskalwerte zugewiesen werden, kann mit "imagemax" und "Imagemin" eingegrenzt werden, wodurch der Farbkontrast verändert werden kann.

Schließlich ist auch die hier nicht gezeigte dreidimensinale Darstellung ("3D-Bild") der konvertierten Meßdaten möglich.

Symbolverzeichnis

α	Absorptionskoeffizient
A	Helmholtzenergie
A_{spot}	Fläche des Laserspots
B	Magnetfeld
b	Probenbreite (Hall/Leitfähigkeit)
b	Übergangsfunktion für Diffusion bei UME
d	Probendicke
d_{diam}	Probendurchmesser
d	Netzebenenabstand
D	Diffusionskonstante
δ	Diffusionsschichtdicke
E	elektrische Feldstärke
E	Energie
E_A	Akzeptorniveau
E_D	Donorniveau
$E_{F,e}^*$	Quasiferminiveau des Elektrons
$E_{F,h}^*$	Quasiferminiveau des Lochs
E_F	Ferminiveau
E_g	Bandlücke
E_L	Leitungsbandkante
E_V	Valenzbandkante
e_0	Elementarladung
η	Wirkungsgrad
F	Korrekturfaktoren bei Leitfähigkeitsmessungen
f(E)	Fermiverteilung
F	Faradaykonstante
FF	Füllfaktor
F_L	Lorentzkraft
F_{el}	elektrische Kraft
Ι	elektrischer Strom
Ι	Lichtintensität
I_m	Strom bei maximaler Leistung einer Solarzelle
I_{sc}	Kurzschlußstrom
I_{KS}	Ableitung des Meßsignals bei Klingenscan-Methode
I_{ph}	Photostrom
I_{ph}	über einen Flächenbereich gemittelter Photostrom
I_{Licht}	Lichtintensität
J	elektrische Stromdichte
J_{lim}	Grenzstromdichte
J_{ph}	Photostromdichte
J_{ph}	über einen Flächenbereich gemittelte Photostromdichte

k	Boltzmannkonstante
lsten	Schrittlänge bei ortsaufgelösten Messungen
λ	Wellenlänge
m_e^*	effektive Masse des Elektrons im Halbleiter
m_{h}^{*}	effektive Masse des Lochs im Halbleiter
μ	Mobilität
' μ _Η	Hallmobilität
μ_n	Mobilität der Elektronen
μ_n	Mobilität der Löcher
n	Zahl in chem. Reaktion umgesetzter Elektronen
n	Konzentration an Elektronen
n_i	intrinsische Ladungsträgerkonzentration
ν	kinematische Zähigkeit
N(E)	Zustandsdichte
NA	Akzeptorkonzentration
ND	Donatorkonzentration
N_I	effektive Zustandsdichte im Leitungsband
N_{V}	effektive Zustandsdichte im Valenzband
(µ)	Winkelgeschwindigkeit
<i>n</i>	Konzentration an Löchern
\mathcal{P}	differentielle Thermokraft
P_{KS}	Meßsignal (Leistung) Klingenscan-Methode
P_m	maximale Leistungsabgabe einer Solarzelle
ϕ	Drehwinkel bei Texturmessungen
ϕ	Austrittsarbeit des Elektrons
φ ΦP	Barrierenhöhe
r	Streufaktor
R	Widerstand
R _{II}	Hallkonstante
R _m	optimaler Lastwiderstand an einer Solarzelle
R_{π}	Widerstandsquotient nach van der Pauw
R_{r}	Parallelwiderstand
R_{c}	Serienwiderstand
0	spezifischer Widerstand
г 0	Kippwinkel bei Texturmessungen
r S	Abstand bei kollinearen Spitzen
σ	Leitfähigkeit
T	absolute Temperatur
- τ	Zeitkonstante des lock-in-Verstärkers
θ	Benetzungswinkel
θ	Einfalls- bzw. Glanzwinkel bei Röntgenbeugung
U	Spannung
U_H	Hallspannung
U_{K}	Kontaktspannung
~ 17	0 ^P 0

V_{oc}	Leerlaufspannung
V_m	Spannung einer Solarzelle bei maximaler Leistungsabgabe
U_{ph}	Photospannung
U_{th}	Thermospannung
Y	Quantenausbeute
\emptyset_{spot}	Laserspotdurchmesser

Symbol verzeichnis

Abkürzungsverzeichnis

ATR	"attenuated total reflection", abgeschwächte Totalreflektion
bmipy	bis-(1-Methyl-benzimidazolyl-2-yl)-2,6-pyridin)
CIS	Kupfer-Indiumdisulfid oder Kupfer-Indiumdiselenid
CITS	"current image tunneling spectroscopy",
	lichtunterstützte Tunnelstrom-Spektroskopie
CCSEM	"charge collection scanning electron microscopy",
	EBIC-Technik mit Raster-Elektronenmikroskop
CDTA	Cyclohexandiamintetraessigsäure
dcbpy	4,4'-Dicarboxy-2,2'-bipyrin
EBIC	"electron beam induced current", Elektronenstrahl-induzierter Strom
EDTA	Ethylendiamintetraessigsäure
FTIR	Fourier Transformations Infrarot
FTO	"fluorinated tin oxide", Fluor-dotiertes Zinnoxid, für p-leitendes Glas
HPLC	"high pressure liquid chromatography" oder
	"high performance liquid chromatography"
HMI	Hahn-Meitner-Institut Berlin
ITO	"indium tin oxide", Indium-Zinn-Mischoxid, für n-leitendes Glas
LIA	"lock-in amplifier", lock-in- oder frequenzselektiver Verstärker
LBIC	"light beam induced current", Lichtstrahl-induzierter Strom
N3	ältere Bezeichnung für den Sensibilisator Ru535 (siehe Ru535)
NHE	"normal hydrogen electrode", Normal-Wasserstoffelektrode
NTA	Nitrilotriessigsäure
NMR	"nuclear magnetic resonance", kernmagnetische Resonanz
PITC	"photoinduced tunneling current"
rpm	"rounds per minute", Umdrehungen pro Minute
REM	Raster-Elektronenmikroskop
RTM	Raster-Tunnelmikroskop
RTP	"rapid thermal process", schneller thermischer Prozeß (CIS-Herstellung)
Ru535	<i>cis</i> -Bis-(4,4'-dicarboxy-2,2'-bipyridyl)-bis-(isothiocyanato)ruthenium(II)
SCE	"saturated calomel electrode",
	Kalomelelektrode mit gesättigter KCl-Lösung $(0,241\mathrm{V}$ vs. NHE)
SECM	"scanning electrochemical microscopy"
SEM	"scanning electron microscope", siehe REM
SMSC	"scanning microscope for semiconductor characterization",
	optisches Raster-Mikroskop zur Halbleitercharakterisierung
SNOM	"scanning near field optical microscope", Nahfeldmikroskop
SPEM	"scanning photoelectrochemical microscopy"
SRH	Shockley-Reed-Hall-Mechanismus der Ladungsträgerrekombination
STM	"scanning tunneling microscope", siehe RTM
Tween80	ein Polyethoxysorbitanoleat (siehe $S.126$)
UV	ultravioletter Spektralbereich des Lichts

UME	Ultramikroelektrode
VIS	"visible", sichtbarer Spektralbereich des Lichts
vs.	"versus", gegen

Danksagung

Zum Schluß will ich mich bei allen bedanken, die Anteil an meiner Arbeit genommen haben oder mich in der einen oder anderen Weise unterstützt haben.

Besonderen Dank schulde ich ...

... Herrn Prof. Dr. H. Tributsch für das große Vertrauen in meine Vorstellungen von der neu aufzubauenden Apparatur und das lebendige Interesse an den bald damit durchgeführten ortsaufgelösten Messungen. Ohne seine immer freundliche Unterstützung wäre diese Arbeit sicher nicht möglich gewesen. Nicht zu vergessen seine vielen Anregungen, Vorschläge und die vielen sich unter seiner Mitwirkung entwickelnden Kooperationen, die mir in vielen Bereichen Ansätze zum Lernen und neue Erkenntnissen erschlossen haben.

... Herrn Prof. Dr. J. K. Dohrmann für die enge und fruchtbare Zusammenarbeit, besonders bei der Bearbeitung unserer gemeinsamen Veröffentlichungen, wo er sich auch unter schwierigen Umständen immer sehr engagiert und gleichermaßen gründlich zeigte.

... Iris Dorbandt, unserer guten Fee, die immer und allen hilft und das gleichzeitig, weis wo alles zu finden ist und auch noch für gute Stimmung sorgt.

... Dr. Sebastian Fiechter, dem stellvertretenden Arbeitsgruppenleiter, dem ich viele interessante Probenmaterialien und sehr anregende Gespräche, oft weit über sein Lieblingsgebiet der Kristalle und Mineralien hinaus, verdanke.

... Dr. Peter Bogdanoff, unserem stets lustig aufgelegten Laborleiter, für viele Tips, kleine Spontandiskussionen über fachliche Fragen und auch tatkräftige Hilfe, wie beim Basteln von Referenzelektroden.

... Dr. Volkmar Weiß, immer freundlicher, umgänglicher Pfadfinder, Schotten-Volkstänzer und Magneton-Sputterer, der an der neuen Anlage unter Leitung von Herrn Dr. Ellmer eine Unmenge von Zinkoxid- und Molybdänsulfidproben hergestellt hat. Es waren mehr davon für mich bestimmt, als ich am Ende untersuchen konnte.

... W. Winter und vielen anderen aus der Zentralen Fertigung, ohne deren schneller Hilfe bei der Ausführung unzähliger Fertigungsaufträge ("Wer denkt sich denn sowas aus ?"), oft unter Umgehung der normalen Warteschleife, die neue SMSC-Apparatur niemals fertig geworden wäre.

... Dr. Jochen Lilie, Abteilungsleiter und Experte für alles was mit Apple-Rechnern zu tun hat, für seine kompetente Hilfsbereitschaft in vielen Fragen der Gerätebestellung und bei den Anfangsschwierigkeiten mit dem Programm Igor Pro.

... Dr. habil. Ludwig Pohlmann, der trotz starker beruflicher Auslastung unsere gemeinsame Arbeit über die Musterbildung bei lichtinduzierter Platinabscheidung nicht aus den Augen verloren hat und sich immer Zeit für die Besprechungen seines mathematischen Modells und den damit verbundenen Simulationen genommen hat.

... Dr. Bernd Macht und Thomas Moehl für die Zusammenarbeit und Anregungen im Zusammenhang mit Injektionszellen, den ersten Proben, an denen ich das neu aufgebaute Gerät testen konnte.

... Axel Hagen, meinem angenehmen Laborgenossen und Diplomanden, der die UV-Tauglichkeit des Aufbaus an Titandioxid umfangreich getestet hat.

... Dr. C. D. Lokhande, mit dem die Untersuchungen neuer Pufferschichten für CIS-Zellen und die Benetzungswinkelmessungen durchgeführt wurden. Dieser neue Zelltyp gab Anlaß für eine wesentlich flexiblere Meßprogrammgestaltung und neue Wege bei der Probenkontaktierung, die sich später wiederholt bewährt haben.

... Dr. Ch.-H. Fischer für die freundliche Anleitung und Einweisung in die HPLC-Apparatur und die sich anschließenden fachlichen Diskussionen.

... Markus Thomalla, der später das Thema der HPLC-Messungen zur Farbstoffdegradation bei Injektionszellen für seine Diplomarbeit wieder aufgriff. Er hat vor allem an neuen Zellproben nach alkalischer Probenaufarbeitung, statt wie hier nach saurer, ebenfalls neue Produkte aufgefunden.

... Timo Jeranko, einem freundlichen Doktoranden, der ortsaufgelöste Messungen an Polymerzellen durchgeführt hat. Ihm danke ich besonders für die Entlastung bei Messungen für andere Mitarbeiter. Leider konnte ich ihm aus zeitlichen Gründen über die Einweisung in die Apparatur und unmittelbare Hilfen zu den Messungen hinaus, keine umfassendere Betreuung mehr zukommen lassen.

... A. El-Azhar, dem ich einige Wolframoxidproben für gemeinsame ortsaufgelöste Messungen unter UV-Belichtung verdanke [256].

... Dr. Shinji Koike, der den alten, verwaisten, spanischen SMSC-Versuchsaufbau noch eine Weile am Laufen hielt.

... Dr. Hendrik Schulenburg für Tips zu Festelektrolyten auf der Basis von Iod/Iodid in organischen Polymeren, die aber leider doch zu hochohmig für weitere Anwendungen in dieser Arbeit waren. Und vor allem für viel Spaß bei gemeinsamem Joggen durch die schöne Umgebung des HMI.

... Karin Regelin und Miriam Guerra aus dem Sekretariat, unseren Experten für

Formularistik, für die Hilfe bei der Bewältigung vieler nicht-wissenschaftlicher Probleme.

... Dr. Jan Elmiger, unserem Technologietransferbeauftragten, für die Beratung und Unterstützung bei den Anträgen für das Technologietransferprojekt zur Weiterentwicklung der SMSC-Apparatur, das hoffentlich in vollem Umfang nach Abschluß dieser Arbeit durchgeführt werden kann.

 \dots Dr. Yvonne Tomm, von der einige meiner Schichtgittere
inkristallproben stammen.

... Dr. Marinus Kunst, Dr. Frank Wünsch und Dr. Klaus Ellmer für gelegentliches hilfreiches Mitdenken bei kleineren Fachfragen.

... Detlef Jokisch für einige Mikrowellen-Photoleitfähigkeitsmessungen mit dem Phönikon Gerät an den ungeliebten Schichtgitter-Kristallen.

... der kleinen Iris (Herrmann) für ihr strahlendes Lächeln und allen anderen Mitarbeitern, Doktoranden, Diplomanden, Werkstudenten und Praktikanten für die freundliche Arbeitsatmosphäre, die mir die Arbeit am HMI immer leicht gemacht hat.

Danksagung

Veröffentlichungen

Artikel

- A. BARKSCHAT^{*}, L. POHLMANN, J. K. DOHRMANN AND H. TRIBUTSCH: Photoelectrochemically Induced Periodical Deposition Patterns of Platinum on p-InP. Part 1: Experiment and Observations, *Phys. Chem. Chem. Phys.* 5 (2003), 1259-1263
- L. POHLMANN^{*}, A. BARKSCHAT, J. K. DOHRMANN AND H. TRIBUTSCH: Photoelectrochemically Induced Periodical Deposition Patterns of Platinum on p-InP. Part 2: Kinetic Model, *Phys. Chem. Chem. Phys.* 5 (2003), 1264-1269
- A. BARKSCHAT^{*}, J. K. DOHRMANN AND H. TRIBUTSCH: Imaging Catalytic Activity of Platinum on p-InP for Photocathodical Hydrogen Evolution, *Sol. Energy Mater. Sol. Cells* 80 (2003), 391-403
- 4. A. BARKSCHAT^{*}, T. MOEHL, B. MACHT AND H. TRIBUTSCH: Stability and Reactivity of Sensitizer Molecules in Nanocrystalline (TiO₂, ZnO) Solar Cells, *Phys. Chem. Chem. Phys.*, eingereicht
- 5. A. BARKSCHAT, B. MACHT, M. TURRIÓN AND H. TRIBUTSCH^{*}: Photodegradation of cis-Ru^{II}(LH₂)₂(NCS)₂ in Dye Sensitization Solar Cells (TiO₂, ZnO) Solar Cells, *Sol. Energy Mater. Sol. Cells*, in Bearbeitung
- A. HAGEN, A. BARKSCHAT^{*}, J. K. DOHRMANN AND H. TRIBUTSCH: Imaging UV Photoactivity and Photocatalysis of TiO2-films, *Sol. Energy Mater. Sol. Cells* 77 (2003), 1-13
- 7. C. D. LOKHANDE^{*}, A. BARKSCHAT AND H. TRIBUTSCH: Contact Angle Measurements: An Empirical Diagnostic Method for Evaluation of Thin Film Solar Cell Absorbers (CuInS₂), *Sol. Energy Mater. Sol. Cells*, **79** (2003), 293-304
- B. MACHT, M. TURRIÓN, A. BARKSCHAT, P. SALVADOR, K. ELLMER AND H. TRI-BUTSCH^{*}: Patterns of Efficiency and Degradation in Dye Sensitization Solar Cells Measured with Imaging Techniques, *Sol. Energy Mater. Sol. Cells* **73** (2002), 163-173
- 9. M. THOMALLA, A. BARKSCHAT, CH.-H. FISCHER AND H. TRIBUTSCH^{*}: Chromatographic Studies of Photogeneration of RuL₂(NCS)₂ in Nanostructured Dye Sensitization Solar Cells, *Sol. Energy Mater. Sol. Cells*, in Bearbeitung

Poster

- 1. A. BARKSCHAT UND B. MACHT: Ortsaufgelöste Experimente an energieumwandelnden Systemen und ihre bildhafte Darstellung, *Industrietag*, HMI Berlin 30.6.1999
- 2. A. BARKSCHAT, B. MACHT, M. TURRIÓN, H. TRIBUTSCH: Kinetics of Degradation of Dye Sensitization Solar Cells *IPS-2000*, Snowmass Colorado 2000
- 3. B. MACHT, A. BARKSCHAT, K. ELLMER AND H. TRIBUTSCH: On the Interfacial Nature of Dye Sensitization Solar Cell Degradation, *IPS-14*, Sapporo Japan 2002

- 4. A. BARKSCHAT, A. M. CHAPARRO, B. MACHT, M. TURRIÓN, H. TRIBUTSCH: Images of Energy-converting Systems made with the SMSC
- 5. B. MACHT, M. TURRIÓN, A. BARKSCHAT, P. SALVADOR, H. TRIBUTSCH: Patterns of Efficiency and Degradation Measured with Imaging Techniques in Dye Sensitization Solar Cells *IPS-2000*, Snowmass Colorado 2000
- 6. S. KOIKE, B. MACHT, A. BARKSCHAT, T. MATSUDA, H. MATSUMOTO, P. SALVA-DOR UND H. TRIBUTSCH: Localized performance decline within dye sensitized solar cells, *IPS-2000*, Snowmass Colorado 2000

Lebenslauf

	Axel Barkschat		
	Wohnort:	Ringstraße 86a 12105 Berlin	
	geboren am:	13. 4. 1969	
	Familienstand:	ledig	
Schulausbildung			
August 1975 - Juni 1981	Ludwig-Heck-Grun	dschule in Berlin	
August 1981 - Juni 1988	Eckener-Oberschule in Berlin		
	Abschluß: Abitur		
Berufsausbildung			
September 1988 - Oktober 1989	Feinmechanikerausbildung bei der Siemens AG in Berlin		
Universität			
Oktober 1989 - Juni 1991	Physikstudium an o	der Freien Universität Berlin	
Oktober 1990 - August 1998	Chemiestudium an der Freien Universität Berlin		
	Abschluß: Diplom i	n Chemie	
Beruflicher Werdegang			
Oktober 1998 - April 2002	Wissenschaftlicher als Doktorand und am Hahn-Meitner-I	Mitarbeiter für Servicemessungen institut Berlin	

Lebenslauf

Abbildungsverzeichnis

Bänder, Zustandsdichte, Fermiverteilung und Ladungsträgerdichte	4
Direkter und indirekter Übergang, Absorptionskoeffizient	9
Energetische Lage wichtiger Halbleiter, Redoxelektrolyte und Metalle	10
Rekombinationsmechanismen von Elektronen und Löchern	11
Quasiferminiveaus in einem p-Halbleiter	14
Der pn-Kontakt	15
Der extern vorgespannte pn-Kontakt	16
Der Schottkykontakt	17
Ohmsche Metall-Halbleiterkontakte	19
Die Photoelektrochemische Zelle	21
Hell- und Dunkelkennlinie einer Solarzelle	26
Einfluß des Parallelwiderstandes auf die Kennlinie einer Solarzelle.	27
Einfluß des Serienwiderstandes auf die Kennlinie einer Solarzelle.	27
Meßanordnungen bei Leitfähigkeitsmessungen	30
Korrekturfaktor F nach van der Pauw	32
Messung der Hallspannung	33
Laserspot und Airyringe: Intensitätsprofil	38
Zur Definition des Laserspotdurchmessers	39
Intensitätsverteilung eines Laserspots	40
Effektiver Laserspotdurchmesser nach der Klingenscan-Methode	41
Aufbau des optischen Teils des SMSC	46
Detaillierter Aufbau des SMSC-Gerätes	47
Der optische Teils des SMSC-Gerätes	48
Bestimmung des Laserspotdurchmessers aus einem Videobild	54
Konturdiagramm eines Laserspots und errechneter Spotdurchmesser	55
Messung des Laserspotdurchmessers mit der Klingenscan-Methode	56
Apparatur zur Hall-/Leitfähigkeitsmessung	64
Meßkopf für Hall- und Leitfähigkeitsmessungen	65
Röntgendiffraktometer und Vierkreisgoniometer	68
Ewaldkonstruktion und Stereographische Projektion	69
Texturmessung in Stereographischer Projektion	70
Schematische Darstellung eines Chromatogramms	75
	Bänder, Zustandsdichte, Fermiverteilung und Ladungsträgerdichte Direkter und indirekter Übergang, Absorptionskoeffizient Energetische Lage wichtiger Halbleiter, Redoxelektrolyte und Metalle Rekombinationsmechanismen von Elektronen und Löchern Quasiferminiveaus in einem p-Halbleiter Der pn-Kontakt Der schottkykontakt Ohmsche Metall-Halbleiterkontakte Die Photoelektrochemische Zelle Hell- und Dunkelkennlinie einer Solarzelle Einfluß des Parallelwiderstandes auf die Kennlinie einer Solarzelle. Einfluß des Serienwiderstandes auf die Kennlinie einer Solarzelle.

91	Struktur von Mo(IV)- und W(IV)- Schichtgitterchalcogeniden	80
9.2	Struktur von Mo(IV)- und W(IV)- Schichtgitterchalcogeniden	81
9.3	Stapelfolgen bei MoS ₂	81
9.4	Das Seebeckmeßgerät zur Messung der Thermospannung	100
9.5	Diffusionskonstantenmessung von Trijodid	104
9.6	Probenhalterung bei Messungen im Elektrolyten	106
9.7	Neue Probenhalterung für Messungen im Elektrolyten	107
9.8	Halterung für Proben mit \emptyset 20 mm	108
9.0 9.9	Kratzer und Bruchkanten als Rekombinationszentren	111
9.10	Stabilität von p-WSee im Iod/Iodid-Elektrolyt	113
9.11	Photostromprofile zum Einfluß des Elektrolyten	114
9.12	Verlust der Photoaktivität nach Druckbelastung	115
9.12	Starke Anisotropie der Photoaktivität bei einem natürlichen MoS ₂ -Kristall	117
9.14	Stationäre Diffusionsgrenzstromdichten an Ultramikroelektroden	120
9.15	Diffusionsgrenzstromdichten an scheibenförmigen Ultramikroelektroden	120
9.16	Strukturformeln: Tween80 EDTA-Komplex	124
9.17	gespaltene Kristallprobe Behandlung mit Tween80 (Kennlinien)	125
9.18	gespaltene Kristallprobe, Behandlung mit Tween80	126
9.10	gespaltene Kristallprobe, Behandlung mit Tween80	120
9.10	Kennlinien einer EDTA-behandelten n-Wen-Kristallprobe	130
9.20	WSep-Kristall mit Stufen Photostrom 3D-Darstellung	131
9.21	Kristallstufen Photostromaufnahmen vor EDTA-Behandlung	133
9.22	Kristallstufen, Photostromaufnahmen nach EDTA-Behandlung	137
9.20	Quantenausbeuteprofile vor/nach EDTA-Behandlung	138
0.24	Kennlinien der n-WSes-Kristallprobe für hochauflösende Messungen	130
9.26	Schicht gemörserter Kristalle Platinkontakt	145
9.20	Schicht gemörserter Kristalle Platinkontakt	147
0.21	Schicht gemörserter Kristalle, Graphitkontakt	1/0
0.20	Dicker p-WSo-Film durch Aufwachsen auf der Ampulleninnenwand	151
9.30	Dicker p-WS ₂ -Film durch Aufwachsen auf der Ampulleninnenwand	155
0.31	Mechanisch gespannte WS ₂ -Dünnschicht auf Saphirsubstrat	158
0.32	WS ₂ -Schicht durch Sulfurieren von WO ₂ (7000 Å) auf Climmer	160
0.32	Sulfurierte Mo- und W-Bleche: photographische Aufnahme	162
0.34	p-MoSe-Schicht durch Sulfurieren von Molybdänblech: Kennlinien	163
9.35	Sulfurierte Mo- und W-Bleche: Photostromabbildung	164
0.36	Mit NaCl-Zusatz sulfurierte Mo-Bleche: Photostromabbildung	166
0.37	Textur einer WS ₂ -Schicht mit Kristalliten parallel zum Substrat	168
0.38	Textur einer MoS ₂ -Schicht: statistisch verteilte und orientierte Kristallite	171
9.30	Textur von MoS ₂ -Schichten: parallel und schräg orientierte Kristallite	172
9.40	Textur von Nob2 Schenten. paraller und Schlag orientierte Eristantie	173
5.10	Textul durch wallen von horybuah und wohranbiechen	110
10.1	Strukturformel des Sensibilisators Ru535.	179
10.2	Aufbau und Funktionsweise einer farbstoffsensibilisierten Injektionssolarzelle	e. 180
10.3	Energienive auschema der Ru535-sensibilisierten Ti $\mathrm{O}_2\text{-}\mathrm{Injektionssolarzelle.}$.	181
10.4	Meßrahmen zur automatischen Messung von kleinen Solarzellen	182
10.5	Meßrahmen zur automatischen Messung großer Solarzellen	183
10.6	TiO ₂ -Siebdruckzelle: Korrelation von Schichtdicke und Photoaktivität	185

10.7 Übersicht: Langzeitbelichtung eines Moduls mit simuliertem Sonnenlicht.	188
10.8 Platinschichtauflösung bei Lufteintritt während Langzeitbelichtung.	190
10.9 Lichtinduzierte Degradation bei Langzeitbelichtung durch Masken	193
10.10 Lokale lichtinduzierte Degradation und Degradation des Elektrolyten	195
10.11 Lichtinduzierte Degradation ohne Elektrolytdegradation	197
10.12 Lichtinduzierte Degradation nach 282 Tagen: 3D-Bild und Photostromprofile.	198
10.13 Photostrom profile einer maskenbelichteten Zelle und ihre Degradation. \therefore	199
10.14 Photostromabnahme proportional zur Lichtintensität mit Graukeilfilter	202
11.1 Schemetische Denstellung des UDI C Melleufhaus	207
11.1 Schematische Darstenung des HFLO-Medauldaus	207
11.2 Mischungspröhl des Eruenten	209
11.3 Darstenung einer HFLC-Messung mit I-HFLC	210 911
11.5 HPLC: Vergleich von Bu535 mit und ohne HaSO.	211 919
11.6 Vorgrößerter Vorlaufbereich der HPLC Messungen	212 914
11.7 Absorptionsspektren im Vorlaufbereich	214
11.8 Chromatogramme bei 515 nm 383 nm und 278 nm	210
11.0 Chromatogramm bei 220 nm	211
11.10 Lage der Peaks der Fraktionen mit Ru535 ähnlichem Snektrum	210 221
11 11 Verschiebung des Bu535-Spektrums mit dem Acetonitrilgehalt	221 222
11.12 Spektren der Fraktionen nach 0.8 min und 5.58 min	225
11 13 Bu535-Lösung mit Schwefelsäure und Natriumiodid	226
11.14 Infrarotspektrum des Niederschlages nach KI-Zugabe zu eth. Ru535-Lösung	229
11.15 Probenaufarbeitung: UV/VIS-Spektren der Produkte	231
12.1 Querschnitt einer CIS-Zelle (CuInS ₂) $\ldots \ldots \ldots$	240
12.2 Aufnahme eines CIS-Moduls, Positionen der Kontaktwinkelmessungen	241
12.3 Probenhalter für CIS-Module	242
12.4 Benetzungswinkelmessungen einer CIS-Schicht vor und nach KCN-Atzung	243
12.5 REM-Aufnahmen einer nach der KCN-Atzung angerauhten CIS-Schicht	245
12.6 Photostromaufnahmen eines CIS-Moduls mit isotropem Photostrom	246
12.7 Photostromaufnahmen eines CIS-Moduls mit anisotropem Photostrom	247
12.8 Vergleich der Photostrom-Spannungskennlinien der CIS-Module.	248
12.9 Wirkungsgrad der Zellen in Abhängigkeit vom Benetzungswinkel.	250
12.10 Voruntersuchung: CuInS ₂ mit In-, Zn-, Sn- und Mn-haltigen Losungen	253
12.11 Vergleich von In- und Mn-Behandlung der CIS-Schicht (Probe 26758)	255
12.12 Vergleich von In- und Mn-Behandlung der CIS-Schicht (Probe 26757)	255
12.13 In-Benandlung einer CIS-Schicht von unterschiedlicher Dauer.	257
12.14 In-Benandlung einer CIS-Schicht von unterschiedlicher Dauer.	257
A.1 Front- und Rückansicht des Mikrocontroller-Schaltgerätes	272
A.2 Gesamtansicht des Schaltgerätes mit den Baugruppen	272
A.3 Vereinfachter Schaltplan des Steuerteils des Schaltgerätes	273
A.4 Das CC-Basic Steuerprogramm im Mikrocontroller	274
A.5 Kommentierter Auszug aus dem Steuerprogramm	275
A.6 Filtereinstellungen des LIA 5210: Flat, BP, LP, Notch	277
A.7 Filtereinstellungen des LIA 5210: Flat, BP, LP, Notch mit F	277

A.8 A.9	Filtereinstellungen des LIA 5210: Flat, BP, LP, Notch mit 2F Filtereinstellungen des LIA 5210: Flat, BP, LP, Notch mit F und 2F	$\begin{array}{c} 278 \\ 278 \end{array}$
B.1	Das Programm i-Tiffer zur Auswertung von ortsaufgelösten Messungen	280
B.2	i-Tiffer: Bildausschnitt und 3D-Darstellung.	281
B.3	i-Tiffer: Auswertung mit "Bild auslesen" und Photostromprofile	282
B.4	i-Tiffer: Bestimmung der Probenfläche aus Photostromabbildung	283
B.5	i-Tiffer: Darstellung von Kennlinienmessungen.	285
B.6	Das Programm i-HPLC zur Auswertung von HPLC-Dateien.	287
B.7	i-HPLC: Auslesen von Chromatogrammen.	289
B.8	Das Programm Polplot	291