Bildgebende elektrochemische Untersuchungen an Grenzflächen mit metallzentrierten Elektronenübertragungen

Dissertation

eingereicht am Fachbereich Biologie, Chemie und Pharmazie der Freien Universität Berlin von

Dipl.-Chem.

Axel Barkschat

Berlin 2003

Gutachter: Prof. Dr. H. Tributsch
 Gutachter: Prof. Dr. J. K. Dohrmann

Abgabe der Dissertation: 23.12.2003 Tag der Disputation: 28.4.2004 Für meine Mutter

und meinen Vater

Inhaltsverzeichnis

abstract	ix
Kurzzusammenfassung	xi
Einleitung	×iii

Theoretischer Teil

1	Hall	bleiter	3
	1.1	Grundbegriffe	3
	1.2	Direkte und indirekte Übergänge	8
	1.3	Rekombinationsmechanismen	11
	1.4	Der belichtete Halbleiter	13
	1.5	pn-Kontakte	14
	1.6	Metall-Halbleiterkontakte	17
	1.7	Halbleiter-Elektrolytkontakte	20
	1.8	Photoelektrochemische Zellen	21
	1.9	Die Quantenausbeute	22
2	Cha	rakterisierung von Solarzellen	25
3	Elek	trische Charakterisierung von Halbleitern	29
3	Elek 3.1	trische Charakterisierung von Halbleitern Grundlagen	29 29
3	Elek 3.1 3.2	t rische Charakterisierung von Halbleitern Grundlagen	29 29 30
3	Elek 3.1 3.2 3.3	trische Charakterisierung von Halbleitern Grundlagen Leitfähigkeitsmessung mit kollinearer Kontaktanordnung Leitfähigkeitsmessung nach van der Pauw	29 29 30 32
3	Elek 3.1 3.2 3.3 3.4	trische Charakterisierung von Halbleitern Grundlagen Leitfähigkeitsmessung mit kollinearer Kontaktanordnung Leitfähigkeitsmessung nach van der Pauw Hallmessungen	29 30 32 33
3	Elek 3.1 3.2 3.3 3.4 3.5	trische Charakterisierung von Halbleitern Grundlagen	29 30 32 33 35
3	Elek 3.1 3.2 3.3 3.4 3.5 Airy	trische Charakterisierung von Halbleitern Grundlagen Leitfähigkeitsmessung mit kollinearer Kontaktanordnung Leitfähigkeitsmessung nach van der Pauw Hallmessungen Seebeck-Messungen -Muster und Durchmesser des Laserspots	 29 30 32 33 35 37

5	Das SMSC-Gerät						
	5.1	Aufbau	45				

	5.2	Steuer- und Auswerteprogramme	49
	5.3	Bestimmung der Laserspot-Lichtintensität	50
	5.4	Bestimmung des Laserspotdurchmessers	51
	5.5	Filtereinstellungen des LIA (EG&G 5210)	57
	5.6	Weitere wichtige Meßparameter	58
	5.7	Ortsaufgelöste Photostromaufnahmen	59
	5.8	Photostrom/Spannungskennlinien	61
	5.9	Messung von Dunkelstromkennlinien	61
	5.10	Messung von Photostromspektren	62
6	Hall	und Leitfähigkeitsmessungen	63
	6.1	Probenkopf und neues Substrat	63
	6.2	Probenpräparation	64
	6.3	Durchführung der Messung	64
7	Text	urmessungen	67
8	HPL	C-Chromatographie	73

Ergebnisse und Diskussion

9	Schi	ichtgitterhalbleiterproben (WS2, WSe2, MoS2, MoSe2)	79
	9.1	Einleitung	79
	9.2	Struktur und Eigenschaften	79
	9.3	Literaturüberblick: Herstellung von Schichtgitterhalbleitern	85
		9.3.1 Einkristalle	85
		9.3.2 Polykristalline Schichten	87
		9.3.3 Dünnschichten	87
		9.3.4 Gepreßte Proben	90
	9.4	Literaturüberblick: Elektrochemische Messungen an Schichtgitterhalblei-	
		tern	90
		9.4.1 Chemische Passivierung durch Adsorption	93
		9.4.2 Chemische Passivierung durch Ätzung	94
	9.5	Herstellung und Charakterisierung der Probenmaterialien	96
		9.5.1 Herstellung	96
		9.5.2 Charakterisierung	99
	9.6	Der Iod/Iodid-Elektrolyt	102
		9.6.1 Bestimmung der Diffusionskonstante von Triiodid 1	102
		9.6.2 Bestimmung der Diffusionsgrenzströme bei SMSC-Messungen 1	104
	9.7	Probenpräparation	105
	9.8	SMSC-Messungen an Kristallproben	109
		9.8.1 Stabilität einer p-WSe ₂ -Probe im Iod/Iodid-Elektrolyten 1	113
		9.8.2 Messungen nach lokaler Druckbelastung	115

		9.8.3 Messungen an einer natürlichen $n-MoS_2$ -Kristallprobe	116
	9.9	Hohe Photostromdichten analog zu Ultramikroelektroden	118
	9.10	Chemische Oberflächenbehandlungen von WSe ₂	124
		9.10.1 Chemische Behandlung von WSe_2 mit Tween 80	125
		9.10.2 Chemische Behandlung von WSe ₂ mit EDTA	129
	9.11	Messungen mit μ m-Auflösung an p-WSe ₂ -Kristallstufen	130
		9.11.1 Messungen vor der EDTA-Behandlung	132
		9.11.2 Messungen nach der EDTA-Behandlung	135
		9.11.3 Der Kontrast hochauflösender Photostromabbildungen	141
	9.12	SMSC-Messungen an neuen Schichtgitterproben	143
		9.12.1 Schichten aus geklebten Kristalliten	144
		9.12.2 Kristallfilme von der Ampullenwand	150
	9.13	MoS_2 - und WS_2 -Dünnschichten durch Sulfurieren	156
		9.13.1 WS_2 -Dünnschichten auf Saphir-Substrat	156
		9.13.2 WS_2 -Dünnschichten auf Glimmer-Substrat (Muskovit)	158
		9.13.3 Sulfurierte Mo- und W-Bleche	160
	9.14	Texturmessungen an MoS_2 - und WS_2 -Schichten	168
		9.14.1 Textur von WS_2 aus sulfuriertem Wolframblech	168
		9.14.2 Textur von MoS_2 aus sulfuriertem Molybdänblech	170
		9.14.3 Textur von Molybdän- und Wolframblechen	173
	9.15	Zusammenfassung	174
10	Injek	ktionssolarzellen	177
10	Injek 10.1	ktionssolarzellen Einleitung	177 177
10	Injek 10.1 10.2	ktionssolarzellenEinleitungAufbauundFunktionsweise	177 177 179
10	Injek 10.1 10.2 10.3	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen	177 177 179 182
10	Injek 10.1 10.2 10.3 10.4	ctionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke	177 177 179 182 184
10	Injek 10.1 10.2 10.3 10.4 10.5	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen	 177 177 179 182 184 187
10	Injek 10.1 10.2 10.3 10.4 10.5	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft	 177 177 179 182 184 187 189
10	Injek 10.1 10.2 10.3 10.4 10.5	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft10.5.2Photodegradation in maskenbelichteten Bereichen	 177 179 182 184 187 189 192
10	Injek 10.1 10.2 10.3 10.4 10.5	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft10.5.2Photodegradation in maskenbelichteten Bereichen10.5.3Photodegradation proportional zur Lichtintensität	 177 177 179 182 184 187 189 192 201
10	Injek 10.1 10.2 10.3 10.4 10.5	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft10.5.2Photodegradation in maskenbelichteten Bereichen10.5.3Photodegradation proportional zur LichtintensitätZusammenfassung	 177 177 179 182 184 187 189 192 201 203
10	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft10.5.2Photodegradation in maskenbelichteten Bereichen10.5.3Photodegradation proportional zur LichtintensitätZusammenfassungC-Messungen zur Degradation von Injektionssolarzellen	 177 179 182 184 187 189 192 201 203 205
10 11	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1	ktionssolarzellenEinleitungAufbau und FunktionsweiseDurchführung der ortsaufgelösten MessungenDurchführung der ortsaufgelösten MessungenEinfluß der Titandioxid-SchichtdickeDegradationsuntersuchungen10.5.1Auflösung des Platinrückkontaktes bei Eindringen von Luft10.5.2Photodegradation in maskenbelichteten Bereichen10.5.3Photodegradation proportional zur LichtintensitätZusammenfassungEinleitung und Literaturüberblick	 177 179 182 184 187 189 192 201 203 205
10 11	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes	 177 179 182 184 187 189 192 201 203 205 206
10 11	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung Keinleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung	 177 179 182 184 187 189 192 201 203 205 206 207
10	 Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung Keinleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen	 177 179 182 184 187 189 192 201 203 205 206 207 208
10	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4 11.5	ktionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung Kendesungen zur Degradation von Injektionssolarzellen Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen Auswertung der Ergebnisse	 177 179 182 184 187 189 192 201 203 205 206 207 208 209
10	 Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4 11.5	ctionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung C-Messungen zur Degradation von Injektionssolarzellen Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen Auswertung der Ergebnisse 11.5.1 Übersicht über die HPLC-Messungen	 177 177 179 182 184 187 189 192 201 203 205 206 207 208 209 209
10	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4 11.5	ctionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung C-Messungen zur Degradation von Injektionssolarzellen Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen Auswertung der Ergebnisse 11.5.1 Übersicht über die HPLC-Messungen 11.5.2 Untersuchung des Vorlaufs	 177 179 182 184 187 189 192 201 203 205 206 207 208 209 204
10	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4 11.5	ctionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung C-Messungen zur Degradation von Injektionssolarzellen Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen Auswertung der Ergebnisse 11.5.1 Übersicht über die HPLC-Messungen 11.5.2 Untersuchung des Vorlaufs 11.5.3 Chromatogramme	 177 179 182 184 187 189 192 201 203 205 206 207 208 209 214 216
10	Injek 10.1 10.2 10.3 10.4 10.5 10.6 HPL 11.1 11.2 11.3 11.4 11.5	ctionssolarzellen Einleitung Aufbau und Funktionsweise Durchführung der ortsaufgelösten Messungen Einfluß der Titandioxid-Schichtdicke Degradationsuntersuchungen 10.5.1 Auflösung des Platinrückkontaktes bei Eindringen von Luft 10.5.2 Photodegradation in maskenbelichteten Bereichen 10.5.3 Photodegradation proportional zur Lichtintensität Zusammenfassung C-Messungen zur Degradation von Injektionssolarzellen Einleitung und Literaturüberblick Aufbau und Funktion des HPLC-Gerätes Proben und Probenvorbereitung Durchführung der HPLC-Messungen Auswertung der Ergebnisse 11.5.1 Übersicht über die HPLC-Messungen 11.5.2 Untersuchung des Vorlaufs 11.5.3 Chromatogramme 11.5.4 Der Einfluß des Lösungsmittels auf die Spektren	 177 179 182 184 187 189 192 201 203 205 206 207 208 209 214 216 220

	11.6	Untersuchungen zur Probenherstellung	225
		11.6.1 Untersuchung des Niederschlages	227
		11.6.2 Untersuchung der Photoreaktion	230
	11.7	Diskussion	232
	11.8	Zusammenfassung	235
12	Culr	nS ₂ -Dünnschichtsolarzellen	239
	12.1	Aufbau und Herstellung	239
	12.2	Benetzungswinkelmessungen an CIS-Schichten	240
		12.2.1 Experimenteller Teil	240
		12.2.2 Ergebnisse und Diskussion	243
		12.2.3 Zusammenfassung	251
	12.3	Untersuchungen neuer Pufferschichten	252
		12.3.1 Experimenteller Teil	252
		12.3.2 Ergebnisse und Diskussion	254
		12.3.3 Zusammenfassung	259
13	Zusa	ammenfassung und abschließende Diskussion	261

Anhang

Α	Tech	inischer Anhang	271
	A.1	Das Mikrocontroller-Schaltgerät	271
	A.2	Filtereinstellungen des LIA EG&G 5210	277
B	Meß	- und Steuerprogramme	279
	B.1	Das Auswerteprogramm i-Tiffer	279
	B.2	Das Programm i-HPLC	287
-	B.3	Das Programm Polplot	291
Syn	nbol	verzeichnis	293
Abk	kürzı	ungsverzeichnis	297
Dar	ıksa	gung	299
Ver	öffei	ntlichungen	303
Leb	ensl	auf	305
Abb	oildu	ngsverzeichnis	307
Lite	eratu	rverzeichnis	311

abstract

In order to obtain a deeper insight into the mechanisms of operation, the degradation of materials and the possibilities of chemical modification of solar materials still under development, a microscopic photocurrent-mapping technique was used and further developed. For these measurements, samples were selected for their importance in progressing photovoltaic research, and a new improved microscopic set-up (SMSC: scanning microscope for semiconductor characterization) for measurements under local illumination by a tiny laser spot was build up. The maximum resolution for measurements in electrolytes was $1 \,\mu$ m.

Surfaces of semiconducting, layer-type sulfides and selenides of tungsten and molybdenum, WS₂, WSe₂, MoS₂ and MoSe₂, usually exhibit an anisotropic distribution of photoacivity. By comparison with optical micrographs it was seen that this is due to charge carrier recombination at surface states in the vicinity of cracks or broken edges. At these locations, crystal faces perpendicular to the van der Waals plane with dangling bonds exist. Locally resolved images of the quantum efficiency on as-grown crystallite surfaces of the above materials demonstrate the recombination of photogenerated charge carriers at steps. By chemical surface treatment with Tween80, a polyethoxysorbitaneoleate, and ethylenediaminetetraacetic acid, the photoacitivity could be enhanced. An up to eightfold increase of the locally measured photocurrent was observed, especially in surface areas of previously low photoactivity. In search for samples with isotropic photoactivity stretched out over wider surface areas, a large number of differently prepared samples of the above layer-type semiconductors were examined by the use of the SMSC. Under this point of view, the most promising materials appeared to be polycrystalline films and layers of MoS₂ and WS₂ obtained from sulphurized molybdenum and tungsten sheets. The latter layers displayed a well expressed texture, as was found out by x-ray diffractometry.

In experiments with dye-sensitized solar cells based on TiO_2 and sensitized with Ru535-dye, mechanisms of degradation were in the focus of interest. In some cases the complete dissolution of the platinization of the back-contact was observed, which occured only under illumination and only in the presence of air (possibly oxygen). Under longterm-illuminination through round masks, the photodegradation in the illuminated areas and the degradation of the electrolyte could be examined separately. For these cells effects of dissolving platinization could be excluded. If a neutral filter with linearly decreasing optical density was used in the longterm-illumination experiment, a decrease of the photocurrent proportional to the intensity of the incoming light was observed. The photodegradation is assumed to result from instability of the semiconductor-sensitizer-system. In HPLC-analytical investigations a large number of different fractions of possible products were found. This result indicates a reaction of the Ru535-dye, but the experimental basis is so far not sufficient to draw a final conclusion.

It was shown for copper indium disulphide (CIS) solar cells, that simple contact angle measurements at CIS-layers prior to further processing can be used to evaluate their suitability for the production of efficient solar cells. Here, SMSC-measurements led to a better understanding and a different interpretation of the results compared to integral measurements of the solar cell performance. In CIS-cells a cadmium sulphide buffer layer is used to prevent shunts between the CIS-layer and the ITO-window material. For environmental aspects CdS is unfavourable and should be replaced. New buffer layers from chemical treatment with solutions containing different metals, especially indium and manganese, were formed and cells with high local photocurrents under short circuit conditions could be obtained.

Kurzzusammenfassung

An ausgewählten, in der Entwicklung befindlichen Solarmaterialien wurden bildgebende Messungen der lokalen Photoaktivität durchgeführt, um Einblicke in die Funktionsweise, Degradation und Möglichkeiten der gezielten Modifizierung zu erhalten. Zu diesem Zweck wurde ein optisches Raster-Laser-Mikroskop (SMSC: scanning microscope for semiconductor characterization) aufgebaut. Durch die Abbildung des lokalen Photostroms mit Auflösungen bis zu 1 μ m konnte in vielen Fällen ein anderes und besseres Verständnis der relevanten Prozesse gewonnen werden, wie es aus integralen Messungen nicht zugänglich gewesen wäre.

Bei den halbleitenden Sulfiden und Seleniden des Molybdäns und Wolframs vom Schichtgittertyp, WS₂, WSe₂, MoS₂ und MoSe₂, zeigte sich in den bildgebenden Messungen meist eine sehr anisotrope Photoaktivität. Im Vergleich mit optischen mikroskopischen Aufnahmen wurden senkrecht zu den van der Waalschen Ebenen liegende Flächen, etwa an Bruchkanten und Stufen, als Rekombinationszonen identifiziert. In Messungen mit einer Auflösung von $1\,\mu m$ wurde erstmals die Rekombination photogenerierter Ladungsträger an gewachsenen Kristallstufen in Photostromabbildungen gezeigt. Durch chemische Oberflächenbehandlung mit Tween80, einem Polyethoxysorbitanoleat, und Ethylendiamintetraessigsäure konnte die Photoaktivität an den Kristalloberflächen modifiziert werden. Besonders in zuvor wenig photoaktiven Zonen wurden bis zu achtfache Steigerungen beobachtet. Auf der Suche nach ausgedehnten und isotrop photoaktiven Schichten wurde eine Vielzahl verschiedener Schichtgitterhalbleiterproben mit dem SMSC-Gerät untersucht. Am vielversprechendsten erscheinen polykristalline Filme und auf Molybdän- und Wolframblechen durch Sulfurieren erhaltene Sulfidschichten. Diese Schichten zeigten in röntgendiffraktometrischen Messungen eine deutliche Textur.

An Injektionssolarzellen auf der Basis von TiO_2 und dem Sensibilisator Ru535 wurde das SMSC überwiegend für Degradationsuntersuchungen eingesetzt. So wurde die nur unter Belichtung und Lufteinwirkung ablaufende, vollständige Auflösung der Platinierung des Rückkontaktes beobachtet. Bei intakter Platinierung wurde in Langzeituntersuchungen mit Maskenbelichtung getrennt die Photodegradation im belichteten Bereich und eine Degradation des Elektrolyten untersucht. Die Belichtung durch einen Graukeilfilter unter linearer Abnahme der Lichtintensität führte zu einer proportionalen Abnahme der Photoaktivität. Diese Photodegradation wird als eine Folge der Instabilität des Halbleiter-Sensibilisator-Systems angesehen. In HPLC-Analysen von Farbstoffextrakten an Injektionszellen, die über einen Monat belichtetet wurden, wurde eine Vielzahl von Substanzfraktionen gefunden, die auf eine Reaktion des Farbstoffs hindeuten, aber noch nicht abschließend bewertet wurden.

Bei Kupferindiumdisulfidzellen (CIS) wurde gezeigt, daß sich Benetzungswinkelmessungen als Voruntersuchung der CIS-Schichten vor der Weiterprozessierung zu CIS-Solarzellen eignen. Die bildgebenden Photostrommessungen führten zu einem anderen Verständnis und einer besseren Bewertung der Benetzungswinkelmessungen. In Versuchen zur Herstellung neuer cadmiumfreier Pufferschichten wurden vielversprechende, hohe lokale Kurzschlußphotoströme gemessen. Kurzzusammenfassung

Einleitung

In der Photovoltaik wurde bisher der Schwerpunkt von kristallinen Siliziumsolarzellen gebildet, die bei gutem Wirkungsgrad gegenüber Degradation stabil sind. Wegen der relativ großen Menge nötigen Halbleitermaterials und des hohen Energiebedarfes bei ihrer Herstellung amortisieren sie sich aber erst nach Jahren finanziell und im Hinblick auf die Energiebilanz.

Andere Zelltypen aus den Bereichen der Dünnschichtsolarzellen und der elektrochemischen Photovoltaik haben daher in den vergangenen Jahren einen zunehmenden Stellenwert erreicht. Bei diesen Zelltypen gibt es aber noch Schwachpunkte und Möglichkeiten der Verbesserung durch weitere Forschung.

In dieser Arbeit wurden unter Einsatz eines neu aufgebauten optischen Raster-Lasermikroskops (SMSC: scanning microscope for semiconductor characterization) durch die ortsaufgelöst abgebildete Photoaktivität neue Einsichten in die Mechanismen der Funktion und Degradation verschiedener Zellsysteme gewonnen. Für die Untersuchungen wurden die zur Zeit wichtigsten in der Entwicklung befindlichen Solarmaterialien ausgewählt.

Ein wichtiges Kriterium bei photoelektrochemischen Zellen ist vor allem ihre chemische Stabilität, die eng mit der Widerstandsfähigkeit der Solarzelle gegenüber Degradation verbunden ist. Bei Materialien, bei denen ein schneller, metallzentrierter Elektronenübergang, möglichst unter Beteiligung nichtbindender d-Elektronen gegeben ist, wird die höchste Stabilität beobachtet.

Die Schichtgitterhalbleiterverbindungen WS_2 , WSe_2 , MoS_2 und $MoSe_2$ besitzen eine für einen hohen Solarzellwirkungsgrad fast optimale Bandlücke im sichtbaren Bereich des Lichtes. Wegen des direkten Elektronenüberganges, der mit hohen Absorptionkoeffizienten verbunden ist, eignen sich diese Materialien auch zum Einsatz in Dünnschichtsolarzellen. Insgesamt und wegen ihrer Umweltverträglichkeit und der guten Verfügbarkeit sind sie sehr vielversprechende Materialien zum Einsatz in konventionellen und elektrochemischen Solarzellen. Dabei ist ihre hohe chemische Stabilität wegen der metallzentrierten Elektronenübertragung in nichtbindenden d-Leitungsbändern ein wesentlicher Vorteil.

Ihrem praktischen Einsatz standen bisher Probleme mit hoher Ladungsträgerrekombination an den zu den van der Waalsschen Ebenen senkrechten Flächen entgegen, die an den Oberflächen von Kristallstallstufen und Bruchstellen gebildet werden. In der Vergangenheit wurde mit mäßigem Erfolg versucht, die Ladungsträgerrekombination durch chemische Oberflächenbehandlung zu minimieren. Dazu wurden meist Substanzen eingesetzt, die Chelatkomplexe bilden können, und die an den Rekombinationsflächen an freiliegenden Metallatomen adsorbieren sollen.

Unter den elektrochemischen Solarzellen haben die mit einem Rutheniumkomplex sensibilisierten Farbstoff- oder Injektionszellen auf der Basis von ${\rm TiO}_2$ die größte Bekanntheit erlangt. Hier sind es Schwierigkeiten, einen schnellen und verlustarmen Ladungstransfer zwischen Halbleiter und Elektrolyt aufrecht zu erhalten und eine

schnelle Regenerierung des nach der Elektroneninjektion positiv geladen zurückbleibenden Farbstoffmoleküls zu ermöglichen.

Damit verbunden ist die nach wie vor zweifelhafte Langzeitstabilität des Farbstoff-Halbleitersystems, obwohl dieses System aufgrund der schnellen metallzentrierten Elektronenübertragungen unter Beteiligung nichtbindender d-Elektronen eine vergleichsweise hohe Stabilität besitzt. Werden dagegen Farbstoffe eingesetzt, die keinen derartigen schnellen Elektronentransfer ermöglichen, wird eine Degradation schon nach Stunden oder wenigen Tagen beobachtet.

Für die Ru535-sensibilisierten Zellen wurde von Grätzel aufgrund von Stabilitätsuntersuchungen an Zellen mit geringem oder nicht spezifiziertem Wirkungsgrad, zum Teil unter Belichtung mit niedrigen Lichtintensitäten, eine Nutzbarkeit der Zellen über 20 Jahre postuliert. Diese Aussagen wurden aber aufgrund anderer Arbeiten in Zweifel gezogen [1, 2].

Ein wichtiges, seit kurzem auch kommerziell eingesetztes Schichtmaterial für Dünnschichtsolarzellen ist Kupferindiumdisulfid. Ein verbesserungsbedürftiger Schwachpunkt ist die wenig umweltverträgliche Verwendung einer Cadmiumsulfid-Pufferschicht in diesem Zelltyp. Ohne Pufferschicht würde wegen Strombrücken zwischen Schichtund Fenstermaterial nur ein sehr geringer Wirkungsgrad erreicht. Daher gibt es auch seit einiger Zeit Versuche, die Cadmiumsulfidschichten durch andere sulfidische oder oxydische Pufferschichten zu ersetzen. Bislang wurde dabei aber die Wirksamkeit der Cadmiumsulfidpufferschichten nicht erreicht. Wegen der relativ aufwendigen Herstellung der CIS-Solarzellen ist es für die kommerzielle Produktion wünschenswert, schon an den CIS-Schichten Voruntersuchungen durchführen zu können, um die Qualität der Schichten für die Herstellung effizienter CIS-Solarzellen abzuschätzen zu können.

In den vergangenen zwanzig Jahren gab es viele Versuche, chemische Vorgänge an Elektrodenoberflächen abzubilden. Sie gingen mit der in dieser Zeit schnell voranschreitenden Entwicklung der elektronischen Datenverarbeitung einher, die erst die erforderlichen Steuermechanismen und die Verarbeitung der Bilddaten ermöglichte. Dabei wurden unterschiedliche Ansätze verfolgt, die zur parallelen Entwicklung einer Reihe verschiedener Verfahren führten.

Durch das zeilenweise Entlangführen einer Ultramikroelektrode ($\emptyset \le 25 \,\mu m$) in unmittelbarer Nähe der Elektrodenoberfläche in einer Elektrolytlösung kann der lokale elektrochemische Ladungstransfer abgebildet werden (SECM: scanning electrochemical microscopy) [3, 4].

Lokale Photostromabbildungen werden durch Abscannen [5] der zu vermessenden Elektrode mit einem Laserstrahl (LBIC: laser (light) beam induced current) erhalten. Dazu werden Ablenkspiegel (SPEM: scanning photoelectrochemical microscopy) [6], Scantische zur Bewegung der Proben (photoelectrochemical imaging) [7, 8] oder mit besserer Auflösung Kombinationen von optischen Mikroskopen und Scantischen eingesetzt (SMSC: scanning microscope for semiconductor characterization) [9].

Bei EBIC-Techniken (EBIC: electron beam induced current) wird der Photostrom durch einen Elektronenstrahl induziert [10]. Dazu kann auch ein Raster-Elektronenmikroskop eingesetzt werden (CCSEM: charge collection scanning electron microscopy) [11, 12].

Durch die Beleuchtung der Umgebung der Elektrodenspitze eines Raster-Tunnel-Elektronenmikroskops (RTM) wird ein lokaler lichtinduzierter Tunnelstrom abbildbar (Photo-STM; CITS: current image tunneling spectroscopy) [13–17].

Der RTM-Technik eng verwandt ist die relativ neue Nahfeldmikroskopie (SNOM: scanning near field optical microscopy) [18], bei der anstelle einer Elektrodenspitze eine Glasfaser in unmittelbarer Nähe (ca. 100 nm) der Probe entlanggeführt wird. Durch eine sehr kleine Öffnung (\emptyset ca. 100 nm) in der metallbeschichteten Faserend-fläche wird Licht in das Halbleitermaterial eingekoppelt, wodurch auch Photoströme gemessen werden können. Bei Messungen im Elektrolyten wurden Auflösungen von $0.3 \,\mu$ m bis $0.1 \,\mu$ m erreicht [19]. Allerdings wird das Photostrombild bei der Nahfeldmikroskopie auch stark von der Oberflächentopographie beeinflußt.

Ziel der Arbeit

Das Ziel dieser Arbeit war es, mit ortsaufgelösten, bildgebenden Messungen der Photoaktivität schneller neue Einblicke in die Funktionsweise, die Degradation und die Möglichkeiten der chemischen Modifizierung verschiedener Halbleitermaterialien und Solarzellen zu erlangen. Die Materialien und Solarzellen wurden anhand ihrer Relevanz für die aktuelle Forschung in der Photovoltaik ausgewählt.

Um die Messungen durchführen zu können, war es vorgesehen, ein neues optisches Raster-Laser-Mikroskop (SMSC: scanning microscope for semiconductor characterization) aufzubauen und entsprechend den Erfordernissen weiterzuentwickeln.

Es war geplant, an den Schichtgitterhalbleitern $(WS_2, WSe_2, MoS_2 und MoSe_2)$ die Ladungsträgerrekombination lokal abzubilden und durch chemische Modifizierung der Halbleiteroberfläche die Photoaktivität zu steigern. Um dabei auch kombinatorische Methoden durch das lokale Aufbringen unterschiedlicher Substanzen anwenden zu können, sollten Proben mit einer weitgehend isotropen Photoaktivität und genügend großen Abmessungen präpariert und bildgebend mit dem SMSC vermessen werden.

Bei Injektionssolarzellen mit einem ${\rm TiO}_2$ -Halbleitersubstrat und einem Ru535-Sensibilisator bildete die Abbildung der Photoaktivität bei unterschiedlich präparierten Zellen und vor allem die Untersuchung verschiedener Arten der Degradation das Zentrum des Interesses. Durch lokale Langzeitbelichtung der Zellen und anschließende SMSC-Untersuchung, sollte die Photodegradation und ihre Abhängigkeit von der Lichtintensität von anderen Degradationsarten getrennt untersucht werden.

Mit lokaler chemischer Behandlung von Dünnschichten aus Kupferindiumdisulfid (CIS) mit metallhaltigen Lösungen sollte versucht werden, wirksame Pufferschichten für die Herstellung von CIS-Solarzellen aufzufinden, die das gegenwärtig verwendete Cadmiumsulfid ersetzen könnten. Wegen des relativ aufwendigen Verfahrens der Herstellung von CIS-Solarzellen besteht ein Interesse an einer Voruntersuchung der qualitativen Eignung der dafür verwendeten CIS-Schichten. Daher sollte geprüft werden, ob Benetzungswinkelmessungen an den CIS-Schichten dafür eingesetzt werden können. Einleitung