Contents

1	Intr	duction	8
	1.1	Signalling of cyclic adenosine monophosphate	9
	1.2	Protein kinase A (PKA) $\dots \dots \dots$	1
	1.3	A kinase anchoring proteins (AKAPs)	3
		1.3.1 Subcellular targeting of PKA by AKAPs 1	5
		1.3.2 Interaction of AKAPs and PKA type II	6
		1.3.3 AKAPs as scaffolding proteins	8
	1.4	Peptides as disruptors of PKA-anchoring	1
2	Mat	erials and Experimental procedures 24	4
	2.1	Material	4
		2.1.1 Chemicals, buffers	4
		2.1.2 Antibodies	7
		2.1.3 Peptides and proteins	7
		2.1.4 Bacterial hosts, eucaryotic cells, animals 2	8
		2.1.5 Apparatus and software	9
	2.2	Experimental procedures	2
		2.2.1 Molecular biology techniques	2
		2.2.2 Immunoblotting	4
		2.2.3 Immunoprecipitation	5
		2.2.4 Vesicle isolation and PKA activity measurements 3	5
		2.2.5 RII overlay	6
		2.2.6 Peptide synthesis	7
		2.2.7 Cell culture	7
		2.2.8 Patch-clamp	0
		2.2.9 Laser Scanning Confocal Microscopy 4	1
		2.2.10 Circular dichroism measurements 4	2
		2.2.11 Surface plasmon resonance measurements 4	2
	2.3	Algorithms and bioinformatics	3
3	Res 3.1	lts $4δ$ AKAP7 $δ$ -derived peptides bind RII subunits with high affinity 4	

	3.2	Determination of the secondary structure and of the ${\rm RII}\alpha$	
		binding affinity of the AKAP7 δ -derived peptides	. 52
	3.3	AKAP 7δ -derived peptides inhibit PKA-anchoring in a com-	
	2.4	petitive manner	. 55
	3.4	AKAP7 δ -derived peptides function as AKAP-PKA disruptors	F 0
	0.5		
	3.5	Determinants of high affinity PKA-anchoring	
	3.6	A bioinformatics-based approach to identify new AKAPs	
	3.7 3.8	The CN129 protein functions as AKAP in vitro Subcellular distribution of CN129	
	3.9	The CN129 protein is highly conserved	
	3.10	The structure of the CN129 protein	
	3.10	The structure of the CN129 protein	. 65
4	Disc	cussion	88
	4.1	AKAP 7δ -derived peptides are potent disruptors of PKA-RII	
		subunit anchoring	. 88
	4.2	Determinants of high affinity PKA-anchoring	. 91
	4.3	Combination of bioinformatics and peptide spot-synthesis to	
		identify new AKAPs	
	4.4	Characterisation of the AKAP function of the CN129 protein	. 96
5	Sun	nmary	100
6	\mathbf{Pub}	lications	102
A -		12	110
ΑĮ	pen	dix	113
A	Vec	tor map	114
В	Prog	gram source codes	115
\mathbf{C}	Dat	abase derived peptides probed for $\mathbf{RII}\alpha$ binding	124
D	\mathbf{Ack}	m nowledgements	160

List of Figures

1.1	Model of an AKAP	14
1.2	AKAPs target PKA to specific subcellular compartments	16
1.3	Molecular basis of the AKAP-PKA interaction	18
1.4	Involvement of AKAP7 α in the regulation of the L-type cal-	
	cium channel	20
1.5	Peptidic disruptors of the AKAP-PKA interaction mimic the	
	RII-binding domain of AKAPs	22
2.1	Scheme of the filter-algorithm	47
3.1	Substitution array of the AKAP7 δ RII-binding domain	51
3.2	AKAP 7δ -derived peptides display high affinity RII binding	
	and α -helical secondary structure	54
3.3	AKAP7 δ -derived peptides act as PKA-anchoring disruptors in	
	vitro.	57
3.4	AKAP 7δ -derived peptides detach PKA activity from AQP2-	
	bearing vesicles	58
3.5	AKAP7 δ -derived peptides act as PKA-anchoring disruptors in	
	$vivo$ abolishing β -adrenoceptor induced L-type Ca ²⁺ -channel	
	currents	61
3.6	AKAP 7δ -L314E peptide acts as PKA-anchoring disruptor in	
	vivo preventing AQP2 redistribution in IMCD-cells	62
3.7	Multiple sequence alignment of RII-binding domains of the	
	indicated AKAPs	64
3.8	Model of the interaction between the RII α dimer and AKAP-	
	derived peptides	67
3.9	Influence of amino acids flanking the RII-binding domain of	
	$AKAP7\delta$	68
3.10	1	
	to the AKAP-RII binding	69
	A bioinformatics approach to identify new AKAPs	73
3.12	All 829 of the 2572 peptides that bound RII α in the RII overlay	
	assav	74

LIST OF FIGURES

3.13	Peptide assay for competitive RII-binding	75
3.14	Mapping the RII-binding domain of CN129	78
3.15	Substitution array of the CN129 RII-binding domain	79
3.16	CN129 functions as AKAP in vitro	80
3.17	Subcellular distribution of CN129-CFP fusion protein in dif-	
	ferent cell lines	82
3.18	The amino acid sequence of human CN129 is highly conserved.	84
3.19	The NMR structure of the AKAP CN129	87
A.1	Vector map of human full length CN129-CFP	114
C.1	Database-derived peptides probed for RII-binding	159

Abbreviations

AC adenylyl cyclase

AKAP A kinase anchoring protein AMPA α -amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid

AQP2 aquaporin-2

 $\begin{array}{ll} {\rm ATP} & {\rm adenosine\ trisphosphate} \\ {\rm AVP} & {\rm arginine\text{-}vasopressin} \\ {\rm Ca^{2+}/CaM} & {\rm calcium/calmodulin} \end{array}$

cAMP cyclic 3'-5' adenosine monophosphate

CFP cyan fluorescent protein CRE cAMP response element

CREB cAMP response element binding protein

cDNA complementary DNA

cGMP cyclic 3'-5' guanosine monophosphate

dbcAMP dibutyryl cAMP

DMEM Dulbecco's modified eagle's medium

DMSO dimethylsulphoxide DNA deoxyribonucleic acid

dNTP deoxynucleotide trisphosphate

DTT dithiothreitol

EDTA ethylenediamine tetra-acetic acid EGTA ethylene glycol tetra-acetic acid

Epac exchange protein directly activated by cAMP

FCS foetal calf serum

FMP Leibniz-Institut für Molekulare Pharmakologie

GEF guanine nucleotide exchange factor

GFP green fluorescent protein GPCR G-protein coupled receptor

G-protein guanine nucleotide binding protein

GTP guanosine triphosphate

HEPES N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid

IBMX isobutylmethylxanthine

IB immuno-blot

Km Michealis-Menton constant

kb kilo base

 K_d equilibrium dissociation constant

kDa kilo Dalton KO knockout

LB lysogeny broth also Luria broth or Luria-Bertani

LR linker region

M molar

mRNA messenger RNA

msa multiple sequence alignment NMR nuclear magnetic resonance

PAGE polyacrylamide gel electrophoresis

PBS phosphate-buffered saline PCR polymerase chain reaction

PDB protein database PDE phosphodiesterase PKA protein kinase A PKC protein kinase C PLB phospholamban

PVDF polyvinylidene fluoride

RNA ribonucleic acid

rpm revolutions per minute
RT room temperature
SDS sodium dodecylsulfate
TAE tris/acetate/EDTA
TBS tris-buffered saline

TE tris/EDTA

TLC thin-layer cellulose

Ub ubiquitin

UCR upstream conserved region V2R vasopressin 2 receptor YFP vellow fluorescent protein

Physical units were abbreviated according to the SI-system or derived units thereof. Amino acids are abbreviated by their single letter code. Patterns are described by regular expressions where X represents any amino acid, square brackets enclose alternatives and sub-pattern might be separated by dashes for better visualisation. Swissprot identifiers are abbreviated by their prefix as the suffix indicates the organism which is '_HUMAN' (Homo sapiens) throughout this work.

Aim of this work

Protein kinase A (PKA) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with A kinase anchoring proteins (AKAPs). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with poor sequence homology. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RII α subunits with high affinity is AKAP7 δ (K_d value of 31 nM). The aim of this study was the development of peptides with high affinity to RII subunits of PKA as tools to disrupt AKAP-RII interactions and thus help to investigate the functional relevance of PKA compartmentalisation. A further aim of this work was to evaluate the determinants of the high affinity AKAP7 δ -RII binding and utilisation of the results for a rational approach to identify new AKAPs.