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Aim of this work

Protein kinase A (PKA) is tethered to subcellular compartments by direct
interaction of its regulatory subunits (RI or RII) with A kinase anchoring
proteins (AKAPs). AKAPs preferentially bind RII subunits via their RII-
binding domains. RII-binding domains form structurally conserved amphi-
pathic helices with poor sequence homology. Their binding affinities for RII
subunits differ greatly within the AKAP family. Amongst the AKAPs that
bind Rlla subunits with high affinity is AKAP7d (K, value of 31 nM). The
aim of this study was the development of peptides with high affinity to RII
subunits of PKA as tools to disrupt AKAP-RII interactions and thus help
to investigate the functional relevance of PKA compartmentalisation. A fur-
ther aim of this work was to evaluate the determinants of the high affinity
AKAP74-RII binding and utilisation of the results for a rational approach to
identify new AKAPs.



