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Abstract

For testing normality we investigate the power of several tests, first of all, the well
known test of Jarque and Bera (1980) and furthermore the tests of Kuiper (1960)
and Shapiro and Wilk (1965) as well as tests of Kolmogorov-Smirnov and Cramér-
von Mises type. The tests on normality are based, first, on independent random
variables (model I) and, second, on the residuals in the classical linear regression
(model II). We investigate the exact critical values of the Jarque-Bera test and the
Kolmogorov-Smirnov and Cramér-von Mises tests, in the latter case for the original
and standardized observations where the unknown parameters µ and σ have to
be estimated. The power comparison is carried out via Monte Carlo simulation
assuming the model of contaminated normal distributions with varying parameters
µ and σ and different proportions of contamination. It turns out that for the Jarque-
Bera test the approximation of critical values by the chi-square distribution does
not work very well. The test is superior in power to its competitors for symmetric
distributions with medium up to long tails and for slightly skewed distributions with
long tails. The power of the Jarque-Bera test is poor for distributions with short
tails, especially if the shape is bimodal, sometimes the test is even biased. In this
case a modification of the Cramér-von Mises test or the Shapiro-Wilk test may be
recommended.
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1 Introduction

Goodness-of-fit tests play an important role in statistical applications, espe-
cially in the case of testing univariate normality, see e.g. D’Agostinho and
Stephens (1986). Normality may be the most common assumption in apply-
ing statistical procedures as in the classical linear regression model where the
(unobserved) disturbance vector ε is assumed to be normally distributed. It
is well known that departures from normality may lead to substantially incor-
rect statements in the analysis of economic models. Thus, a test on normality
based on the (observable) regression residuals is an absolute ”must” in any
regression analysis. Here, we restrict our attention to the vector ε̂ of OLS
residuals which is given by ε̂ = (I − H) ε with H = X(X ′X)−1X ′, i.e. the
vector of residuals ε̂ is a linear transformation of the unobserved disturbance
vector ε. Therefore, tests of distributional assumptions on ε are based on ε̂.
One of the most famous tests for normality of regression residuals is the test
of Jarque and Bera (1980, 1987), which has gained great acceptance among
econometricians. The test statistic JB is a function of the measures of skewness
S and kurtosis K computed from the sample. Under normality, the theoretical
values of S and K are 0 and 3, respectively. The purpose of this paper is to
compare the Jarque-Bera test with other goodness-of-fit tests like the Shapiro-
Wilk test, the Kuiper test as well as with tests of Kolmogorov-Smirnov and
Cramér-von Mises type in varying sample situations. As pointed out by several
authors, see e.g. Jarque and Bera (1987) and Urzúa (1996), the Jarque-Bera
test behaves well in comparison with some other tests for normality discussed
in the literature if the alternatives to the normal distribution belong to the
Pearson family. For our power study we assume the model of contaminated
normal distributions (CN) for the components εi of disturbance vector ε, i.e.
εi ∼ F = (1 − p) N(µ1, σ

2
1) + p N(µ2, σ

2
2), i = 1, . . . , n, 0 ≤ p ≤ 1. This model

covers a broad range of distributions, symmetric and asymmetric ones, and can
also be used to describe ”small departures” from normality. The contaminated
normal distribution function F can be interpreted as follows: With probability
(1 − p), an observation comes from a normal distribution with mean µ1 and
variance σ2

1 and with probability p from a normal distribution with mean µ2

and variance σ2
2. Notice, that F is not the cdf of a normal distribution. In

section 2 we describe the two models and the hypotheses and give two data
examples, one concerning the first model (random sample) and one the second
model (linear regression). Section 3 presents all the tests mentioned above and
section 4 deals with a power comparison of the tests including a study on the
critical values of the Jarque-Bera test and the tests of Kolmogorov-Smirnov
and Cramér-von Mises type. The power comparison is carried out via Monte-
Carlo simulation. As a result, the Jarque-Bera test is, on the whole, the best
one among all tests considered but for special sample situations he doesn’t
work very well and other tests should be preferred. Section 5 gives a resumé
of the results and some hints for further studies.
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2 Model, Hypotheses and Data Examples

We consider two models, a random sample and the classical linear regression.

Model I (random sample):

Let be X1, . . . , Xn independent random variables with absolutely continuous
distributions function F . We wish to test

H0 : F (x) = Φ
(

x − µ

σ

)

for all x ∈ R

vs. the two sided alternative H1 : F (x) 6= Φ
(

x − µ

σ

)

for at least one x ∈ R,

where Φ is the cdf of the standard normal distribution and µ (−∞ < µ < ∞)
as well as σ (σ > 0) may be known or unknown. In the case of known µ and
σ we assume with any loss of generality µ = 0 and σ = 1. In the case of
unknown µ and σ the parameters are estimated by the sample mean x and
sample standard deviation s, respectively.

Model II (classical linear regression):

Let be y = Xβ + ε, where y is a (n, 1)-vector, X is a nonstochastic (n, k)-
matrix of rank k, β is the (k, 1)-vector of unknown parameters and ε is the
disturbance (n, 1)-vector whose components are assumed to be uncorrelated
and distributed with expectation zero and constant variance σ2.
Since the vector ε is unobservable, a test for normality generally is based on
sample residuals such as OLS residuals ε̂i which are given by ε̂ = (I − H)ε
with the so-called hat matrix H = X(X ′X)−1X ′. Note, that the components
ε̂i of ε̂ are not uncorrelated and do not have equal variances in general.

Now, let us present two real data examples to which the selected tests are
applied later on, example 1 for model I and example 2 for model II.

Example 1:

The first example refers to returns of the share index DAX. The DAX measures
the performance of the Prime Standards 30 largest German companies. The
data set contains 200 daily DAX returns (in percent) from June 18, 2002, until
March 31, 2003.

Example 2:

The dependency of corporate revenues on ad spending of leading U.S. adver-
tisers is subject of the second example. The following data set shows the total
U.S. ad spending and U.S. corporate revenue (in million dollars for 2001) of 50
large companies e.g. General Motors, Ford, Daimler-Chrysler, AT&T, IBM,
Hewlett-Packard, Sony, Walt Disney, Coca-Cola, PepsiCo and Unilever.
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Fig. 1. Histogram of daily DAX returns

Table 1
Data set U.S. advertisers 2001

Ad spend. Corp. rev. Ad spend. Corp. rev. Ad spend. Corp. rev.

430 2354 289 5528 449 3414

444 17522 664 74476 1137 39900

656 12356 884 6745 385 16726

1372 52550 3374 132399 552 7716

421 5804 881 14525 290 9452

339 37668 366 4557 2210 18215

543 19597 899 31725 479 3534

974 13154 778 53553 812 10131

397 5021 1103 34673 1310 21127

527 7842 994 35215 926 39888

410 12791 426 9382 1484 11315

903 7526 1086 32004 1462 64649

1985 72708 1618 20204 1283 19466

302 21760 422 6129 596 15980

289 3997 304 9328 1757 20970

746 15651 512 50098 312 1724

2408 108296 428 9363
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Fig. 2. Scatterplot of U.S. advertisers 2001

3 Goodness-of-fit tests

3.1 Jarque-Bera-test and its modification

The test statistic JB of Jarque-Bera is defined by

JB =
n

6
·
(

S2 +
(K − 3)2

4

)

where the sample skewness S = µ̂3/µ̂
3/2
2 is an estimator of β1 = µ3/µ

3/2
2 and

the sample kurtosis K = µ̂4/µ̂
2
2 an estimator of β2 = µ4/µ

2
2, µ2 and µ3 are the

theoretical second and third central moments, respectively, with its estimates

µ̂j =
1

n

n
∑

i=1

(xi − x)j, j = 2, 3, 4.

JB is asymptotically chi-squared distributed with two degrees of freedom be-
cause JB is just the sum of squares of two asymptotically independent stan-
dardized normals, see Bowman and Shenton (1975). That means: H0 has to
be rejected at level α if JB ≥ χ2

1−α, 2.
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In the more usual case of linear regression JB is calculated for the regression
residuals.

Urzúa (1996) introduced a modification of the Jarque-Bera test - we call it
JBU - by standardizing the skewness S and kurtosis K in the formula of JB
appropriately in the following way:

JBU =

(

S2

vS
+

(K − eK)2

vK

)

with vS =
6(n − 2)

(n + 1)(n + 3)
, eK =

3(n − 1)

n + 1
and vK =

24n(n − 2)(n − 3)

(n + 1)2(n + 3)(n + 5)
.

Notice, that JB and JBU are asymptotically equivalent, i.e.
H0 has to be rejected at level α if JBU ≥ χ2

1−α, 2.

3.2 Shapiro-Wilk test

The Shapiro-Wilk test is motivated by a probability plot in which we consider
the regression of the ordered observations on the expected values of the order
statistics from the hypothesized distribution. The test statistic is defined by

SW =

(

∑n
i=1 aiX(i)

)2

∑n
i=1(Xi − X)2

.

X = (X1, . . . , Xn) is a vector of random variables and X() the corresponding
ordered vector. X is the usual sample mean. The weights ai, i = 1, . . . , n,
are calculated like this. Y = (Y1, . . . , Yn) is a vector of random variables from
a normal distribution and Y() again the corresponding ordered vector. The
determination of ai requires the calculation of the vector of expectation values
and the covariance matrix of Y(): m′ = (m1, . . . , mn) where mi = E(Y(i)) and
V where vij = Cov(Y(i), Y(j)). The vector a of the weights ai yields as follows:
a′ = m′V −1[(m′V −1)(V −1m)]−1/2.

H0 has to be rejected, if SW ≤ wα.

For the components of the vector a we have ai = −an−i+1, they are tabulated
by Shapiro and Wilk (1965) for n ≤ 50, where critical values wα of SW are
given, too, see also Shapiro et al. (1968) and Shapiro and Francia (1972).
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3.3 Tests of Kolmogorov-Smirnov type

Now, let us consider nonparametric goodness-of-fit tests which are based on
the empirical distribution function.

(1) Kolmogorov-Smirnov test KS

As above, let be X(1), . . . , X(n) the order statistics of X1, . . . , Xn and let
Fn be the usual empirical distribution functions for the X-sample. Then
the Kolmogorov-Smirnov statistic KS is defined by

KS = sup
x

|Fn(x) − F0(x)|

In our case of testing normality we have F0(x) = Φ
(

x − µ

σ

)

.

The corresponding test rejects H0 if KS ≥ k1−α. Exact critical values
k1−α are reported by Büning and Trenkler (1994), where the asymptotic
null distribution of KS is given, too.

(2) Modified KS-test

The test statistic KS can be modified by introducing appropriate non-
negative weight functions W (F0(x)) in order to give different weights to
the difference |Fn(x) − F0(x)|, see Büning (2001). As a special case we

choose W (F0(x)) =
√

F0(x)(1 − F0(x))/n which is symmetric about the

center F0(x) = 0.5. This weight function was introduced by Anderson
and Darling (1952).
Then we can define a modification of KS by

KSW = sup
x

√
n |Fn(x) − F0(x)|

√

F0(x)(1 − F0(x))
.

Obviously, the denominator
√

F0(x)(1 − F0(x)) place high weight on the
upper and lower part of the underlying distribution.
The corresponding test rejects H0 if KSW ≥ k

(w)
1−α. Critical values k

(w)
1−α

are reported in table 2, page 9.

(3) Kuiper test

Let be D+ = supx(Fn(x) − F0(x)) and D− = supx(F0(x) − Fn(x)). Then
the statistic of Kuiper (1960) is defined by

KUI = D+ + D−.

It should be noted that the Kolmogorov-Smirnov statistic KS can be
written as KS = max(D+, D−).

H0 has to be rejected if KUI ≥ k
(u)
1−α. Critical values k

(u)
1−α are given in

table 2.
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3.4 Tests of Cramér-von Mises type

(1) Cramér-von Mises test

The Cramér-von Mises statistic CM is defined as follows:

CM = n ·
∫

∞

−∞

(Fn(x) − F0(x))2 f0(x) dx,

which can be written as

CM =
1

12n
+

n
∑

i=1

[

F0(x(i)) −
2i − 1

2n

]2

.

The test rejects H0 if CM ≥ c1−α. Approximate critical values c1−α can
be found in Anderson and Darling (1952).

(2) Modified CM-test

In the same manner as for the KS-test we can modify the CM-test by
introducing an appropriate weight function. Here, we choose the weight
function W (F0(x)) = F0(x)(1 − F0(x)), i.e.

CMW = n ·
∫

∞

−∞

(Fn(x) − F0(x))2

F0(x)(1 − F0(x))
f0(x) dx for F0(x) 6= 0, 1.

For computational simplification CMW can be written as

CMW − n − 1

n

n
∑

i=1

(2i − 1)(ln p(i) + ln(1 − p(n+1−i))) with p(i) = F0(x(i)).

The corresponding test rejects H0 if CMW ≥ c
(w)
1−α. Critical values c

(w)
1−α

are reported in table 2.

In the following table critical values of the test statistics KSW, CMW and
KUI are presented for selected sample sizes and α = 0.05. The critical values
were obtained by Monte Carlo simulation (100 000 replications). The suffix
” S” indicates a test based on standardized observations. For example, KSS
is the abbreviation for the corresponding KS test. For further information see
subsection 4.1.2, page 12.

Critical values of the KSW-test can also be found e.g. in Canner (1975).

For a comprehensive study of tests based on the empirical distribution func-
tion, see Stephens (1974).
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Table 2
Critical values of tests for various sample sizes n, α = 0.05

Tests n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

JB 2.5347 3.7677 5.0037 5.4479 5.7275 5.8246

JBU 7.4374 6.8559 6.5940 6.3381 6.1678 6.0378

KS 0.4101 0.2936 0.1886 0.1338 0.0951 0.0603

KSS 0.2615 0.1920 0.1243 0.0890 0.0635 0.0403

KSW 2.0236 1.4369 0.9165 0.6451 0.4544 0.2869

KSWS 0.8535 0.8049 0.6637 0.5266 0.4007 0.2697

KUI 0.5142 0.3719 0.2401 0.1715 0.1217 0.0774

KUIS 0.4318 0.3166 0.2049 0.1469 0.1046 0.0665

CM 0.4584 0.4534 0.4601 0.4567 0.4627 0.4598

CMS 0.1193 0.1230 0.1241 0.1253 0.1258 0.1265

CMW 2.5265 2.4737 2.4868 2.4695 2.5280 2.4814

CMWS 0.6905 0.7176 0.7380 0.7460 0.7479 0.7506

SW 0.8451 0.9040 0.9486 0.9642 0.9727 0.9795

3.5 Applications

Now, let us test the hypothesis of normality for the data in example 1 and
example 2 by applying all the tests above. We get the following results:

Table 3
Testing normality for DAX data (short tails)

Results of testing normality
(Example 1: daily DAX returns)

Test JB JBU KS KSW KUIP CM CMW SW

Statistik 5.1218∗ 5.1388 0.0460 0.2050 0.0751 0.0801 0.6071 0.9827

p-Wert 0.062 0.072 0.38 0.22 0.49 0.21 0.22 0.015

asymp. p 0.077

∗ S = 0.3433 and K = 2.6216

Table 4
Testing normality for advertising data (residuals)

Results of testing normality
(Example 2: residuals of U.S. corporate revenues on U.S. ad spending)

Test JB JBU KS KSW KUIP CM CMW SW

Statistik 3.9716∗ 5.6718 0.1386 0.4726 0.2257 0.1666 0.9099 0.9594

p-Wert 0.071 0.062 0.017 0.115 0.015 0.014 0.019 0.084

asymp. p 0.137

∗ S = 0.4600 and K = 4.0296
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Obviously, the results for the eight tests are extremely different. In example
1 the Kuiper test has the greatest p-value of 49% and the Shapiro-Wilk test
the smallest one with 1.5%, it is the only test which rejects at the 5% level.
The differences of the p-values in example 2 are not so considerable as in the
first example, but now, half of the tests reject at the 5% level. Thus, a power
comparison of all the tests becomes important, it is carried out in section 4.2.

4 Power study

4.1 Critical values of some tests

4.1.1 Exact critical values of JB for models I and II

For model I and II let us compare the asymptotic critical values of the Jarque-
Bera test JB with the exact ones calculated by simulation for sample sizes
n = 10, 20, 50, 100, 200 and 500 and varying levels 0.01, 0.02, 0.05, 0.1 and 0.2.
In model II we consider the cases of one, three and six independent regression
variables assuming different distribution functions such as uniform, normal
and exponential. Table 5 displays the critical values of JB for model I.

Table 5
Critical values of JB-test (random sample)

Critical values of Jarque-Bera test
(random sample)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n → ∞
0.01 5.738 9.458 12.331 12.296 11.750 10.601 9.210

0.02 4.274 6.583 8.721 9.089 8.788 8.349 7.824

0.05 2.535 3.768 5.004 5.448 5.728 5.825 5.991

0.10 1.618 2.335 3.192 3.643 4.081 4.324 4.605

0.20 1.126 1.556 2.122 2.474 2.748 2.985 3.219

From table 5 we can state the JB-test based on asymptotical critical values
is conservative for α ≥ 0.05, and that considerably for small sample sizes;
for α < 0.05, the pattern is not so clear. As an example: For α = 0.01, the
approximation by the Chi-square distribution is better for n = 20 than for
n = 200, of course, a surprising result. In general, the approximation by the
Chi-squared distribution does not work well even not for large sample sizes, the
speed of convergence is very slow. Thus, approximate critical values χ2

1−α for
the JB-test should be used cautiously in empirical studies and for a meaningful
power comparison exact critical values have to be used.
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Figure 3 presents the graphs of the exact and asymptotic distribution of the
JB-statistic. Obviously, the approximation becomes more precise with increas-
ing sample sizes.

Fig. 3. Simulated and asympototic distribution of the JB-test in comparison

Now, let us consider model II. Table 6 lists critical values of JB with three
independent regression variables from a standard normal distribution. We re-
strict our presentation to this case because our simulation has shown that the
pattern of critical values is nearly the same for one, three and six variables as
well as for other distributions mentioned above.

Table 6
Critical values of JB-test (residuals)

Critical values of Jarque-Bera test
(residuals of a regression with three independent variables)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

0.01 4.8219 9.6598 12.1265 12.2825 11.7110 10.6732

0.02 3.7038 6.6847 8.4769 8.8522 8.7956 8.4148

0.05 2.3291 3.8649 4.9556 5.4183 5.6596 5.8275

0.10 1.4789 2.3681 3.1673 3.6801 4.0355 4.3096

0.20 1.0713 1.5682 2.1243 2.4857 2.7626 2.9967
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From table 5 and 6 we see that for all levels the differences between the critical
values in model I and II are negligible for n ≥ 50, the pattern in model II is
nearly the same as in model I.

4.1.2 Exact critical values of KS and CM for original and standardized data

We study critical values of the KS-test and CM-test for the original data and
for the standardized observations where the unknown parameters µ and σ of
the normal distribution function are estimated by the arithmetic mean x and
the empirical standard deviation sx, i.e. zi = (xi − x)/sx. We again consider
sample sizes n = 10, 20, 50, 100, 200 and 500, but here only the usual levels
α = 0.01, 0.05 and 0.10.

Table 7
Critical values of KS- and CM-test

Critical values of KS
(original data)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

0.01 0.4898 0.3494 0.2248 0.1600 0.1142 0.0725

0.05 0.4101 0.2936 0.1886 0.1338 0.0951 0.0603

0.10 0.3701 0.2640 0.1699 0.1204 0.0857 0.0543

Critical values of KS
(standardized data)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

0.01 0.3043 0.2224 0.1445 0.1035 0.0738 0.0470

0.05 0.2615 0.1920 0.1243 0.0890 0.0635 0.0403

0.10 0.2414 0.1761 0.1143 0.0817 0.0582 0.0369

Critical values of CM
(original data)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

0.01 0.7143 0.7147 0.7341 0.7448 0.7376 0.7445

0.05 0.4584 0.4534 0.4601 0.4567 0.4627 0.4598

0.10 0.3469 0.3439 0.3487 0.3454 0.3494 0.3458

Critical values of CM
(standardized data)

α n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

0.01 0.1687 0.1733 0.1754 0.1767 0.1780 0.1779

0.05 0.1193 0.1230 0.1241 0.1253 0.1258 0.1265

0.10 0.0989 0.1015 0.1024 0.1034 0.1033 0.1036

From table 7 we can state that for the tests KS and CM there is a great
difference between the critical values of original and standardized data. If we
have to estimate the unknown parameters µ and σ and apply, however, both
tests by using critical values of KS and CM based on original data then the
tests are extremely conservative. The same is true for the modifications KSW

12



and CMW of KS and CM, respectively.
Figure 4 illustrates the great difference between the distributions of KS, CM
(original data) and KSS, CMS (standardized data).

Fig. 4. Distributions of KS, KSS, CM, CMS (n = 50)

4.2 Power comparison

We investigate via Monte Carlo simulation (10 000 replications) the power of
all the tests presented in section 3. To conduct the simulation study we select
the model of contaminated normal CN for H1, the distribution function F of
which can be given in the following form, see section 1:
F = (1 − p) N(µ1, σ

2
1) + p N(µ2, σ

2
2) with 0 ≤ p ≤ 1.

Without any loss of generality we assume µ1 = 0 and σ2
1 = 1. Furthermore, we

choose µ2 = 0, 1, 2, 3, 4, σ2 = 1, 2, 3, 4, 6 and p = 0.01, 0.05, 0.20, 0.35, 0.50, 0.65,
0.80, 0.90, 0.95, 0.99. The choice of such parameters guarantees a broad range
of distributions, unimodal and bimodal ones, symmetric distributions with
short up to very long tails and asymmetric ones with different strength of
skewness. For all the tests we use exact critical values. In the simulation the
tests of Kolmogorov-Smirnov and Cramér- von Mises type are carried out on
a basis of standardized observations.
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At first, comparing the JB-test and JBU-test we can state that the difference
in power of the tests is very small, in 93% of the cases the difference is less
than 1%, the JB-test seems to be a little bit more efficient than JBU. The
power of JBU is never higher than 2% in comparison to JB, but in some cases
lower than 10%. Because of the small power differences between JB and JBU
we omit JBU from the following power presentations.

Figures 5 to 12 display the power of the seven tests JB, KS, KSW, KUI, CM,
CMW and SW from section 3 by selecting different values of µ2, σ2 and p.
Different sample sizes are chosen in order to produce graphs for a visible power
comparison. In the bottom of the figures the corresponding density functions
of CN are plotted in comparison to the standard normal density. At first, we
consider the case of random sample with original data and then the case of
regression variables.

The values of the corresponding parameters of skewness β1 and kurtosis β2

are given in the following tables 8 and 9.

Table 8
Skewness and kurtosis for various CN distributions, part 1

Skewness S and kurtosis K

Fig. µ2 p σ2 = 1 σ2 = 2 σ2 = 3 σ2 = 4 σ2 = 6

5 0 0.10 β1 = 0 β1 = 0 β1 = 0 β1 = 0 β1 = 0
β2 = 3 β2 = 4.44 β2 = 8.33 β2 = 12.72 β2 = 19.33

6 0 0.50 β1 = 0 β1 = 0 β1 = 0 β1 = 0 β1 = 0
β2 = 3 β2 = 4.08 β2 = 4.92 β2 = 5.34 β2 = 5.68

7 0 0.80 β1 = 0 β1 = 0 β1 = 0 β1 = 0 β1 = 0
β2 = 3 β2 = 3.37 β2 = 3.56 β2 = 3.64 β2 = 3.7

8 3 0.50 β1 = 0 β1 = 0.65 β1 = 0.92 β1 = 0.96 β1 = 0.83
β2 = 2.04 β2 = 2.85 β2 = 3.72 β2 = 4.37 β2 = 5.11

Figures 5 to 8 are concerned with power curves as functions of σ2 for different
values of p and µ2 = 0 (symmetric case) and µ2 = 3 (asymmetric case for
σ2 6= 1 ). Of course, with increasing values of σ2 the kurtosis β2 increases, for
p = 0.1 much more than for p = 0.5 and 0.8. In the symmetric cases (Figures
5 to 7), we see that for small values of p the JB-test is the best one, the power
of JB, however, decreases with increasing p where β2 increases slower. For
great values of p the Kuiper test and CMW-test are superior, the Shapiro-
Wilk test is, in general, not a powerful test in comparison to the others. In
the asymmetric case with p = 0.5, µ2 = 3 and σ2 6= 1 (Figure 8), where the
skewness β1 is smaller than 1, JB and KSW have lowest power, both tests
are even biased for the symmetric case, where the kurtosis is equal to 2.04,
smaller than that of the standard normal distribution (β2 = 3).
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Fig. 5. Power of the tests (symmetric case 1, random sample)

Fig. 6. Power of the tests (symmetric case 2, random sample)
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Fig. 7. Power of the tests (symmetric case 3, random sample)

Fig. 8. Power of the tests (asymmetric case 1, random sample)
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Fig. 9. Power of the tests (asymmetric case 2, random sample)

Figures 9 and 10 present power curves as functions of µ2, again, the kurtosis is
much greater for p = 0.05 than for p = 0.5. In Figure 11 the power is plotted
as a function of p with decreasing kurtosis.

Table 9
Skewness and kurtosis for various CN distributions, part 2

Skewness S and kurtosis K

Fig. σ2 p µ2 = 0 µ2 = 1 µ2 = 2 µ2 = 3 µ2 = 4

9 4 0.05 β1 = 0 β1 = 0.9 β1 = 1.71 β1 = 2.35 β1 = 2.84
β2 = 13.47 β2 = 14.12 β2 = 15.75 β2 = 17.65 β2 = 19.24

10 1 0.50 β1 = 0 β1 = 0 β1 = 0 β1 = 0 β1 = 0
β2 = 3 β2 = 2.92 β2 = 2.5 β2 = 2.04 β2 = 1.72

Fig. µ2 σ2 p = 0.05 p = 0.20 p = 0.5 p = 0.8 p = 0.95

11 0 4 β1 = 0 β1 = 0 β1 = 0 β1 = 0 β1 = 0
β2 = 13.47 β2 = 9.75 β2 = 5.34 β2 = 3.64 β2 = 3.14

Figure 9 shows that the JB-test is the the best one for small p = 0.05 even in
the asymmetric case but the power loss is dramatic for p = 0.5 (Figure 10),
a distribution which is symmetric and bimodal with small values of β2 (JB is
biased). Here, the SW- and CMW-tests are the winner. For fixed µ2 = 0 and
σ2 = 4 (Figure 11) the JB-test behaves very well for values of p smaller, say,
0.25, but with increasing values of p, the power of JB decreases rapidly, the
same is true for the other tests.
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Fig. 10. Power of the tests (symmetric case 4, random sample)

Fig. 11. Power of the tests (symmetric case 5, random sample)
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Further results on the power of tests on normality can be found in chapter 7
of Thode (2002). At this point it should be noted that the kurtosis β2 is not
a suitable measure for tailweight, a discussion of this problem ”what does β2

really measure?” can be found in chapter 3.3 of Büning (1991) where measures
of tailweight are given, e.g. the measure

T =
x0.975 − x0.025

x0.875 − x0.125

where xp is the p-quantile of the distribution function F . Table 10 presents
values of β2 and T for symmetric contaminated normal distributions (CN)
with µ2 = 0 and σ2 = 3 varying values of p (see figures 5 to 7).

Table 10
Values of kurtosis β2 and tail measure T for symmetric CN

p 0 0.1 0.2 0.3 0.4 0.5 0.8

β2 3.00 8.33 7.56 6.53 5.64 4.94 3.56
T 1.70 1.99 2.42 2.56 2.47 2.28 1.84

We see that with increasing proportion p of contamination the kurtosis β2

decreases whereas the tailweight T is, at first, increasing and then decreasing.
That means, CN has, e.g., longer tails for p = 0.2 than for p = 0.1, the
kurtosis, however, is smaller for p = 0.2 than for p = 0.1.

Now, let us study the power of the tests in the case of regression variables.
As already mentioned above we considered the cases of one, three and six
independent regression variables assuming different distribution functions such
as uniform, normal and exponential. It might be a surprising result that the
pattern of the power curves of the tests in each sample situation (various
numbers of variables and various distribution functions) is always nearly the
same. Thus, we restrict the illustration to the case of three standard normally
distributed regression variables, the power curves are given in Figure 12 for
the symmetric case with µ2 = 0 and p = 0.5 and varying σ2. Obviously, the
JB-test behaves well, but the CMW-, KUI- and the KS-tests are superior with
increasing σ2.

For further studies of tests on normality in the linear regression model, see
e.g. Huang and Bolch (1974) and White and MacDonald (1980).

We assumed independent regression variables. The question arises how robust
are the tests above if the regression variables are correlated, an important
problem for testing normality in regression analysis. A first study, assuming
an autoregressive process of order one for the error terms with ρ = −0.5,
shows that the influence on the critical values and therefore on the power of
the tests is considerable. This is, however, another topic.
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Fig. 12. Power of the tests (symmetric case, three N(0,1)-regression variables)

5 Conclusions and Outlook

As an overall result of our power study we can state:

• The asymptotic JB-test is conservative for α = 0.05, 0.10, the approxima-
tion by the Chi-square distribution does not work well.

• There are no remarkable differences between the critical values of the tests
in model I with random samples and in model II with regression variables
for n ≥ 50.

• The modified version JBU of JB introduced by Urzúa (1996) means no
improvement of power of the classical test.

• The nonparametric tests, KS and CM, as well as its modifications KSW
and CMW, are very conservative in the case of estimating µ and σ if we use
the critical values for the original data.

• The power values for each of the tests are nearly the same for random
samples (model I) and for regression variables (model II).

• The JB-test behaves well (it is often even the best one) for symmetric distri-
butions with medium up to long tails and for slightly skewed distributions
with long tails.

• The power of the JB-test is poor for distributions with short tails, espe-
cially if the shape is bimodal, sometimes JB is even biased. In this case the
modification of CM, CMW, or the Shapiro-Wilk test may be recommended.
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Two further problems by testing normality in regression analysis are of the-
oretical and practical importance, the case of autocorrelated error terms as
already mentioned above and the case of heteroscedastic error terms. The in-
fluence of autocorrelation on the critical values and the power of the tests
seems to be strong as first studies show. Thus, generalized least square es-
timator (GLS) is more appropriate for the regression parameters instead of
the ordinary least square (OLS). For the case of heteroscedasticity of the error
terms similar studies have to be done, too. For studies of serial correlation and
heteroscedasticity of regression residuals, see e.g. Jarque and Bera (1980).
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Büning, H., Trenkler, G., 1994. Nichtparametrische statistische Methoden.
Walter de Gruyter, Berlin.

Canner, P., 1975. A simulation study of one- and two-sample Kolmogorov-
Smirnov statistics with a particular weight function. Journal of the Ameri-
can Statistical Association 70, 209–211.

D’Agostinho, R., Stephens, M., 1986. Goodness-of-fit-techniques. Marcel
Dekker, New York.

Huang, C., Bolch, B., 1974. On the testing of regression disturbances for nor-
mality. Journal of the American Statistical Association 69, 330–335.

Jarque, C., Bera, A., 1980. Efficient tests for normality homoscedasticity and
serial independence of regression residuals. Econometric Letters 6, 255–259.

Jarque, C., Bera, A., 1987. A test for normality of observations and regression
residuals. International Statistical Review 55, 163–172.

Kuiper, N., 1960. Tests concerning random points on a circle. Nederl. Akad.
Wetensch. Proc., Ser. A 63, 38–47.

Shapiro, S., Francia, R., 1972. An approximate analysis of variance test for
normality. Journal of the American Statistical Association 67, 215–216.

Shapiro, S., Wilk, M., 1965. An analysis of variance test for normality (com-
plete samples). Biometrika 52, 591–611.

Shapiro, S., Wilk, M., Chen, H., 1968. A comparative study of various tests for
normality. Journal of the American Statistical Association 63, 1343–1372.

Stephens, M., 1974. Edf statistics for goodness of fit and some comparisons.

21



Journal of the American Statistical Association 69, 730–737.
Thode, C.T., 2002. Testing normality. Marcel Dekker, New York.
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