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Zusammenfassung

Kardiovaskuläre Erkrankungen zählen weiterhin zu den Haupttodesursachen

weltweit. Trotz umfangreicher Forschungsbemühungen ist eine umfassende

Behandlung, insbesondere eines kongestiven Herzversagens (congestive heart

failure, CHF), zur Zeit nicht möglich da molekulare sowie zelluläre Mechanismen

für deren Entstehung noch nicht vollständig geklärt wurden. In diesem Kontext

bieten mathematische Modelle die Möglichkeit molekularen Mechanismen und

metabolische Veränderungen unter hämodynamischer Stresssituationen und

veränderter Substratversorgung des Herzen zu analysieren und die Entwicklung

neuer Therapien zu unterstützen.

Die vorliegende Arbeit präsentiert eine umfangreiche metabolische Netzwerk-

rekonstruktion des humanen Kardiomyozyten (CardioNet) und beschreibt einen

systembiologischen Ansatz zur Analyse der Effizienz des kardialen Metabolismus.

Das rekonstruierte Netzwerk besteht aus 1793 metabolischen Reaktionen, darunter

560 Transportprozesse, die sich auf 6 verschiedene Kompartimente verteilen. Mit

Hilfe dieses Models ist es möglich 368 verschiedene metabolische Funktionen des

Kardiomyozyten zu simulieren.

In dieser Arbeit wird analysiert, inwiefern eine variable Substratversorgung von

Glukose, Laktat, Fettsäuren und Ketonkörpern die Effizienz des kardialen

Metabolismus beeinflussen könnte. Dabei wird ein im Rahmen dieser Arbeit

entwickeltes Konzept verwendet, das ausgehend von der jeweiligen Substratver-

sorgung Flussverteilungen ableitet und einen entsprechenden Effizienzwert

ermittelt. Das entwickelte Effizienzmaß(Ci+), basiert auf der Annahme, dass

zelluläre Funktionen optimiert werden und der Verbrauch von exogenen und

endogenen Substraten sowie Sauerstoff auch bei veränderten

Umgebungsbedingungen möglichst minimal ist. Insgesamt wurden mehr als

400000 Einzelsimulationen unter Verwendung einer metabolischen Zielfunktion

des humanen Kardiomyozyten, basierend auf experimentellen Ergebnissen,

durchgeführt. Anhand von Simulationen kann gezeigt werden, dass eine

balancierte Substratkombination aus allen betrachteten Substanzklassen eine

höhere Effizienz des kardialen Stoffwechsels ermöglicht als unter Verwendung nur

einzelner Substrate.

Abschließend kann festgestellt werden, dass mit CardioNet ein funktionelles und

valides Netzwerk des humanen Kardiomyozyten vorgestellt wird. Darüberhinaus

ermöglicht der in dieser Arbeit präsentierte mathematische Ansatz



weiterführende theoretische Studien des kardialen Metabolismus und Analysen

der kardialen Effizienz.



Abstract

Cardiovascular diseases are still among the main causes of death worldwide.

Yet in spite of enormous and broad efforts to develop treatments, in particular, for

congestive heart failure no such cures are currently available, because underlying

molecular and cellular mechanism are still not completely understood.

This thesis presents a comprehensive metabolic network reconstruction of the

human cardiomyocyte and establishes a concept to analyse cardiac efficiency in

nutritional stress. The reconstructed network comprises of 1793 metabolic

reactions, including 560 transport processes in six compartments. The network

is capable to accomplish a set of 368 metabolic functions of the cardiomyocyte.

This study aims to analyse how variations in the substrate supply of glucose,

lactate, fatty acids and ketone bodies may influence the efficiency of cardiac per-

formance. A concept is developed to estimate flux distributions in varied substrate

availability and determine cardiac efficiency. This measure of cardiac efficiency

(Ci+) is based on the assumption that cellular functions are optimized and given

exogenous and endogenous resources (substrates, oxygen) are used at minimal

cost.

In total more than 400 000 simulations of altered substrate supply have been

performed, while applying a metabolic target function of the human cardiomyocyte

based on experimental data, including the formation of ATP, production of NADPH

and important membrane lipids such as ceramide, cardiolipin and sphingomyelin.

In conclusion, CardioNet is a functionally and validated metabolic network of the

human cardiomyocyte. The presented mathematical approach enables theoretical

studies of the cardiomyocyte metabolism and analysis of cardiac efficiency.





1 Introduction

Cardiovascular diseases (CVD) are among the main causes of death worldwide

[1], in particular myocardial infarction and stroke. Major risk factors for

development of cardiovascular diseases have been identified as tobacco abuse,

physical inactivity, unhealthy diet and genetic predisposition.

Frequently, CVD results in the development of congestive heart failure (CHF),

in particular hypertension, myocardial ischemia and infarction [2], diabetes and

cardiomyopathies are known precipitants. In the progress of CHF the heart

initially undergoes compensatory mechanisms, including myocardial hypertrophy

and cardiac remodelling to maintain cardiac output. These adaptations are

characterized by signal transduction mechanisms and alterations in cardiac

energy metabolism by increased expression of embryonic genes [3, 4].

Despite enormous and broad efforts to unveil the underlying mechanisms for the

development of CHF, there is still no treatment available. A complete understand-

ing of molecular mechanisms and metabolic changes in cardiomyocytes during

nutritional and hemodynamic stress might lead to better treatment and prevention

of heart failure, thus eventually decreasing the death rate.

In this context, systems biology enables to analyse cardiac metabolism and to

identify potential drug targets, thus perturbate in-silico studies prior time-consuming

and expensive animal studies [5]. Systems biology is an integrative research field

aiming to investigate complex biological systems by analysing their behaviour at

all levels of cellular organization in different environments. Advances in high-

throughput technology offer to integrate large sets of data collected from genome

sequencing (genomics), gene expression levels (transcriptomics, e.g. microarrays)

and protein levels (proteomics) or determination of present metabolites

(metabolomics). These advances enable to define mathematical and computa-

tional models of biological networks in order to test and design hypothesis-driven

experiments. A necessary prerequisite to study molecular mechanisms and

metabolic changes in cardiomyocytes is to reconstruct a complete network of the

cardiomyocyte. This network may contribute to elucidate the underlying biological
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1 Introduction

processes perturbed in cardiac diseases.

The rationale arises from previously reported comprehensive network

reconstructions of biological systems, which revealed new biological insight into

metabolic changes in altered extra- and intracellular conditions [6–10].

In general, network reconstructions can be divided into two approaches: a data-

driven or bottom-up approach compared to a hypothesis-driven or top-down

approach. Both methods aim to reconstruct functional and complete networks of

the respective biological system to enable mathematical predictions of the system’s

behaviour. Taking the advantage of high-throughput technology, recent mathe-

matical approaches [5, 11] enable to integrate gene expression information from

high-throughput technologies, e.g. microarrays, to reconstruct networks which are

consistent with the given gene expression state.

However, fully automated network reconstructions have been shown to lack

functionality and consistency to cover important cellular processes [6]. One known

limitation of automated reconstructions is the quality of applied high-throughput

data and the variable annotation resources [12, 13]. This enhances the need

of combining automated reconstruction methods with human-supervised curation.

In the recent past different tools [14–16] and resources have been developed to

aid researchers to integrate multiple data with varying levels of evidence. These

resources provide information about metabolic reactions [17–19], compounds [20,

21], thermodynamics [22] as well as gene and protein alignment from different

tissues and cell types [23–26]. Together this enables the reconstruction and com-

parison of specific cellular networks even of higher organisms. Work in the field of

cardiology has uncovered many interactions between metabolic energy provision

and cardiac contraction following the hypothesis of energy depletion in the failing

heart. This concept was first proposed in 1939 by Herrman and Decherd [27, 28]

based on their observation of depleted creatine content in the failing myocardium.

However, the impact of nutritional stress on cardiac efficiency has never been

systematically analysed for a large set of substrates, neither for the intact nor

diseased heart.

This thesis presents a comprehensive metabolic network reconstruction of the

human cardiomyocyte and establishes a concept to analyse cardiac efficiency in

nutritional stress. The following sections of this introduction provide the biological

and mathematical background for modelling cardiac metabolism.
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1.1 Cardiac metabolism and substrate utilisation

Figure 1.1: A. Under normal physiological conditions, fatty acids are the preferred

substrates followed by glucose. Unlike other tissues, cardiac metabolism is

able to shift the substrate preference according to substrate availability and

cardiac workload.

B. Increased lactate availability as observed with physical activity will

enhance substrate uptake.

1.1 Cardiac metabolism and substrate utilisation

To understand the mechanism underlying pathological conditions, it is

important to first consider the intact cardiac metabolism.

The heart is a functional syncytium of highly specialised cells (cardiomyocytes)

responsible for cardiac contraction. Even under normal physiological conditions,

cardiomyocytes have to fulfil a wide range of metabolic functions, serving cellu-

lar integrity and energy demands to maintain contractile activity for the cardiac

cycle. Optimal cardiomyocyte function depends on a critical balance of energy

production (e.g. ATP), replenishment and biosynthesis of macromolecules (e.g.

protein, membrane lipids). Consequently, it is hypothesized that an imbalance of

energy production and use on the cellular level due to changes in energy substrate

metabolism may explain the development of CHF [29, 30]. This imbalance may

increase the susceptibility of cardiac metabolism under stress, such as ischemia

or increased work load.

Among all human organs, the heart is very unique in terms of its substrate

utilisation preference. Metabolic functions greatly depend on the availability of

oxygen and external substrates, including fatty acids, glucose, lactate, pyruvate

5



1 Introduction

and amino acids [31]. However, the contribution of each substrate for a metabolic

process greatly depends its extracellular availability, on the cellular state (cell

cycle), oxygen supply and endocrine conditions [32, 33].

The energy for cardiac contraction is mostly derived from oxidative

phosphorylation of ADP to ATP. Therefore, ATP turnover and myocardial

oxygen consumption are commonly used to estimate cardiac metabolic activity

and determine cardiac efficiency. One definition of cardiac efficiency is the ratio of

cardiac work (pressure-volume area) and myocardial oxygen consumption, which

directly reflects the relation between mV̇O2 and oxidative phosphorylation. Hence,

alterations in cardiac energy-substrate metabolism, e.g. nutrient supplies, may

affect cardiac efficiency.

Under normal physiological conditions, in particular in the fasted state when

fatty acid plasma levels are high, fatty acids are the preferred substrates followed

by glucose. Therefore, the β-oxidation of fatty acids derives 60% to 90% of the

ATP production, while glucose and lactate contribute up to 40% (see Figure 1.1).

However, unlike in other tissues, cardiac metabolism is able to shift the substrate

preference, according to the substrates’ availability in the blood stream and cardiac

workload. A switch from predominately fatty acid oxidation to increased oxidation of

carbohydrates, in particular glucose, is observed under hypoxic and hypertrophic

conditions, but can also occur under normal physical activity.

Depending on the substrate class (lipids, carbohydrates, amino acids),

myocardial oxygen consumption (mV̇O2) and ATP yield differ [34]. Due to its

anatomical localisation, the adult heart receives an optimal oxygen supply, which

enables a highly oxygen demanding degradation of long-chain fatty acids.

Therefore, substrate oxidation can become a limiting factor for cardiac function

in the event of nutritional deprivation, impaired substrate oxidation or decreased

oxygen supply. Influenced by these intrinsic and extrinsic environmental condi-

tions, the heart might utilise carbohydrates to a greater extent to make efficient

use of the given substrate and oxygen supply. In this context, experiments in

the working heart ex vivo showed that a short-term increase in workload shifts

substrate preference towards increased oxidation of endogenous glucose from

glycogen degradation, lactate and exogenous glucose [34].

Furthermore, with increased contractile activity of skeletal muscles, lactate

concentration increases in the blood, thus initiating enhanced uptake and

oxidation of lactate due to a better supply (see Figure 1.1). Likewise, glucose

is increasingly utilised under continuous hemodynamic stress. These changes in

6



1.2 Stress response mechanisms and fetal gene profile

cardiac substrate oxidation are accompanied with altered oxygen consumption,

thus either impaired or improved cardiac efficiency. In fact, experiments in the

working heart in vivo showed profound shifts in glucose and fatty acid oxidation

[35]. This study demonstrated an increased cardiac performance with glucose (up

to 40%) compared with fatty acids as the main energy-providing substrate for a

limited oxygen supply.

Further adaptations to metabolic stress influence the fatty acid composition of

myocardial membrane phospholipids, which is known to alter with dietary fatty acid

availability and oxygen supply [36, 37]. Another structural adaptation to hypoxia

was shown to be associated with increased incorporation of long-chain omega-3

polyunsaturated fatty acids (e.g. eicosapentaenoic acid, docosahexaenoic acid),

which mostly derived from dietary essential α-linoleic acid (C18:3 n-3, ALA) [36,

38]. These mechanisms seem to offer protection from oxidative damage, thus

have beneficial effects against the risk of primary cardiac arrest [39, 40]. In the

event of hypoxia, remodelling processes are initiated resulting in a shift in substrate

preference from predominately fatty acid to glucose utilisation. In addition, the

expression of genes is enhanced, which are specific for the fetal heart. Together

these adaptation mechanisms enable cardiac metabolism to react promptly and

flexibly to changing environmental conditions.

1.2 Stress response mechanisms and fetal gene

profile

The initial response of cardiac metabolism during continuous stress is

regulated by different factors, including transcriptional down regulation of adult

gene transcripts. In particular, genes encoding for metabolic enzymes involved

in fatty acid metabolism [41, 42], especially in the fatty acid β-oxidation, are down

regulated. It is important to consider that in contrast to the rodent heart, the human

heart does not show a switch to fetal isogenes [41], it rather shows a down or up

regulation of genes resulting in a fetal metabolic gene profile.

Changes on the transcription level involve metabolic genes, including the glucose

transporter GLUT1, pyruvate dehydrogenase kinase 2 (PDK2), glycogen synthase

(GS), carnitine palmitoyl transferase I (CPT-1), medium chain acyl-CoA dehydro-

genase (MCAD) and acetyl-CoA carboxylase (ACC). Decreased PDK2 enzyme

levels result in decreased inhibition of the pyruvate dehydrogenase complex and

7



1 Introduction

lead to enhanced carbohydrate oxidation, especially glucose and lactate.

Recent investigations have shown that the transcription levels in the failing and

fetal heart [41, 43, 44] correspond to each other. Therefore, studies of the

fetal heart enable implications for the failing heart. Studies of substrate utilisation

in the fetal heart demonstrated an increased reliance of cardiac metabolism on

carbohydrate utilisation in contrast to the non-failing adult heart. This is in concor-

dance with studies in the failing heart showing a decreased fatty acid utilisation in

favour of glucose. To understand the difference between adult and fetal heart, it is

necessary to consider that in utero the heart is exposed to a reduced amount

of oxygen compared to postnatal conditions. Therefore, the ability to efficiently

oxidise fatty acids is likewise reduced. Hemodynamic changes 24h after birth

cause a shifting from predominately glucose oxidation to fatty acid β-oxidation [45]

due to increased oxygen supply.

In contrast to other organs, the fetal and adult heart has little capacity for short-

term energy storage such as glycogen, which enables bypassing of any shortage

of substrates. Therefore, cardiac metabolism is strongly dependent on constant

nutritional supply and close regulation of energy demand with energy production to

maintain cardiac function. In this context, recent findings of studies in the fetal heart

demonstrated the lack of compensatory mechanisms of cardiac metabolism in an

environment with impaired fatty acid utilisation and deprivation of carbohydrate

utilisation. In fact, a reduction of glycogen synthase level and activity during the

early phase of cardiac development was associated with high death rate in an

animal study [46, 47]. Due to congenital heart defects, 90% of the animals die

prenatally.

Although there is evidence for increased glucose utilisation in heart failure [48–

50], recent findings indicate an increased development of insulin-resistance and

decline in glucose oxidation in advanced heart failure [41, 51]. In this context,

recent studies demonstrated the importance of insulin for cardiac metabolism and

proposed that accumulation of non-oxidative metabolic intermediates and reactive

oxygen-species may affect cardiac fatty acid and carbohydrate oxidation [52].

1.3 Regulators of cardiac metabolism

In addition to oxygen and substrate supply, there are further modulators such

as nuclear-receptor transcription factors which are activated by lipid metabolites.

Among these transcription factors, the most widely studied are the peroxisome

8



1.3 Regulators of cardiac metabolism

proliferator-activated receptor α (PPAR-α) family, including three isoforms:

PPAR-α, PPAR-β and PPAR-γ.

Especially the fatty acid metabolism is highly regulated by PPAR-α and its

coactivator PPAR-γ 1 (PGC-1), which control both fatty acid uptake and oxidation.

PGC-1 promotes mitochondrial biogenesis and activation of PPAR-α, resulting in

an increase of CPT-1 expression and activity.

Additionally, CPT-1 mediates the mitochondrial transport of fatty acids and by

that regulates fatty acid β-oxidation. The activity of CPT-1 is regulated by

cytosolic malonyl-CoA, which promotes inhibition of the enzyme [53].

Consequently, increasing the cytosolic level of malonyl-CoA results in inhibition

of fatty acid β-oxidation. The level of cytosolic malonyl-CoA is regulated by the

enzymatic activity of Malonyl-CoA decarboxylase and Acetyl-CoA carboxylase

(ACC). PPAR-α is a known transcriptional regulator of Malonyl-CoA decarboxy-

lase (MCD) [54]. Consequently, activation of PPAR-α increases the formation of

acetyl-CoA through ACC activity, thus enhances the biosynthesis of fatty acids.

This interplay of fatty acid biosynthesis and degradation is of particular importance

in the impaired myocardium and in reduced carbohydrate supply.

Investigations on potential therapeutic targets to treat heart failure focus on

changes in metabolic signalling mediated by these transcription factors and

changes in creatine kinase activity. Furthermore, the inhibition of myocardial fatty

acid oxidation has been of interest in order to improve left ventricular pump

function [55]. The underlying hypothesis is that failure or maladaptations of cardiac

metabolism are related to impaired myocardial energy metabolism, thus leading to

heart failure. Therefore, calculated influence of cardiac metabolism might correct

these maladaptations, increase cardiac efficiency and hence cardiac performance.

Among investigated pharmacological agents are (1) partial inhibitors of fatty acid

β-oxidation or (2) agents which reduce the free fatty acid concentration in plasma.

However, recent investigations found evidence that a certain level of fatty acid

utilisation is required to maintain cardiac function in acute pressure overload [56].

Under experimental conditions, cardiac dysfunction increased under long-term

reduction of lipoprotein fatty acid uptake despite a compensatory increase in

glucose utilisation [56, 57]. Hence, initially beneficial effects of reduced fatty acid

oxidation might result in the opposite.

The complexity of metabolism and cellular systems in general makes it difficult to

study the cardiac efficiency under normal and diseased conditions in order to find

balanced substrate combinations. Furthermore, experimental studies of cellular
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systems and animal models are time consuming, expensive and are often limited

to a small number of analysed parameters due to the work effort. Here, mathe-

matical modelling and approaches in the field of systems biology offer to detect

and understand cardiac adaptations and maladaptations on different stress factors

instead of focusing only on single failing components.

1.4 Mathematical modelling of biological systems

Mathematical modelling of biological systems aims to study how related

components cause specific behaviours of a system and how systems interact

with and relate towards its environment. This enables to predict the behaviour of

systems under different defined conditions and give rise to modify the systems

behaviour by identifying causative factors. The resulting concepts aim to

enhance the understanding of biological systems and to design hypothesis-driven

experimental studies.

Models can be classified by different criteria: (1) qualitative or quantitative, (2)

deterministic or stochastic and (3) discrete or continuous. Furthermore,

processes can be described as either reversible or irreversible, depending on

whether a process can proceed in either forward or backward direction or only

in one direction. These criteria are used to describe biological models and help to

make comparisons.

1. Qualitative or quantitative models describe relations on a nominal scale

between the observed variables by using, e.g. partial derivatives. These

definitions of qualitative relations may describe a function as being in either posi-

tive or negative relation with a variable over a specific region if the partial derivative

itself, with respect to the variable, is positive or negative over the entire region [58].

Such models investigate if a certain condition or behaviour is possible or not. On

the other hand a quantitative model assigns intervals, ratios or ordinal values

on model elements and their interactions. In biological systems these values are

often functional parameters, such as concentrations, specific activities or kinetic

parameters (e.g. Km values). Quantitative models aim to make reliable predictions

for biological systems, thus it is essential to integrate a large number of biological

parameters into the model and mathematical computations.

10



1.4 Mathematical modelling of biological systems

Figure 1.2: Different types of networks have to be distinguished: linear networks

or non-linear dynamic models, such as dynamic networks, Boolean

networks or Bayesian networks.

A. Example of a graph representing a linear or non-linear model

describing the dynamics of a biological system.

B. Boolean network describing a gene regulatory network with

activating and inactivation connections between components A to E.

C.Bayesian network describing the probabilistic relationships between α1

and α2 to cause a certain response (RS).

2. Deterministic or stochastic models follow the concept that any state or

event of a given system follows specific laws which make the outcome predictable.

Applying these laws enables to predict any other state. An example for

deterministic modelling is the kinetic modelling of biochemical reactions. Here,

based on the law of mass action, the assumption is made that the reaction rate

v at a certain time point t and space can be expressed as a unique fraction of

the concentrations of all substances at this point in time and space. By contrast,

indeterministic processes are considered as stochastic, which evolve according

to probabilistic laws to define probabilistic models of reaction kinetics [59]. One

example for a stochastic process is the Bernoulli process, which describes a finite

or infinite sequence of binary random variables as being either 0 or 1.

3. Discrete or continuous models are based on difference equations on a

discrete time scale or ordinary differential equations (ODE) on a continuous time

scale. These concepts are applied to dynamical systems, which change over

time. Examples of discrete models are the Ricker model (1954) and Beverton-Holt

model (1981) [60], which describe the expected number of individuals in a given

generation.
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Table 1.1: Mathematical models in biological systems.

Type Biological system Reference

Linear network

genome-scale metabolic networks
•homo sapiens global network [61]

hepatocyte [6]
•microorganisms E. coli K-12 MG1655 [10]

Plasmodium falciparum [5]
Boolean network

genetic regulatory networks (GRN)
•homo sapiens neuron [62]

T-helper GRN [63]
•microorganisms yeast [64]

Dynamic network

kinetic modelling glucose metabolism
•homo sapiens erythrocyte [65]

[66]
hepatocyte [67]

dynamic causal modelling (DCM) neural responses [68]
recurrent artificial neural network neural network [69]

Bayesian networks

saccadic responses [70]
neural network [71]

Models are often represented by networks or graphs which describe the

interconnections of elements within a model. In such graphs molecules are

depicted by nodes, points or vertices and the reactions are depicted by lines or

edges (see Figure 1.2). Here, different types of networks have to be distinguished:

linear networks or non-linear dynamic models, such as dynamic networks, Boolean

networks or bayesian networks. In Table 1.1 these network types are summarised

and examples for different mathematical models are given.

The relation between components in a linear network are based on linear

equations, while Boolean networks assign to each connection a Boolean value

such as 0 or 1 and true or false, which corresponds to an on or off state in a

biological system (see Figure 1.2-B). A Bayesian network describes the

probabilistic relationship between variables and their conditional dependencies.

Recent studies have used the Bayesian inference to mathematically describe

sensory causes and the learning causal regularities in the sensorium (see

Figure 1.2-C, [72, 73]).
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1.4 Mathematical modelling of biological systems

Finally, dynamic networks describe the dynamics of a biological system in a

continuous, deterministic approach through ODE, while systems employing on a

discrete time scale are modelled through difference equations. Among mathe-

matical modelling of biological systems, deterministic kinetic models are of great

importance. These models aim to define ODEs, which describe the kinetics of

enzymatic reactions (see Table 1.1). In general, biochemical kinetics are based on

the mass action law [74] which states that the reaction rate v is proportional to the

concentration of reactants ([S]).

Based on this concept, the rate of enzymatic reactions can be determined by

assuming a quasi-equilibrium state between free enzyme (E) and the enzyme-

substrate complex (ES) as proposed by Michaelis and Menten [75, 76]. The

Michaelis-Menten equation describes a state when the enzyme is completely

saturated with substrate and a maximal rate (Vmax) for the reaction is reached:

v = kcat · [E]
[S]

[S] + Km
=

Vmax · [S]
[S] + Km

(1.1)

The Michaelis constant (Km) describes the substrate concentrations yield at

half-maximal reaction rate, while the turnover number kcat describes the ratio of

maximal velocity of the total enzyme concentration.

Based on these concepts, it is possible to define dynamic biochemical processes

such as accumulation of substrates or substrate inhibition. Furthermore, kinetic

models enable to make time dependent predictions about substrate changes for

variable environmental conditions. However, depending on the scale and

complexity of the cellular systems, these models require the incorporation of

multiple and often unknown parameters. This makes it difficult to define large-

scale kinetic models.

1.4.1 Linear modelling

An alternative to dynamic modelling is offered by linear modelling. Here, complex

reactions of biological systems are described by linear equations in which stoichio-

metric coefficients denote the proportion of each substance S involved in n network

reactions (see Figure 1.3-A). The system dynamic where a substance S changes
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A B

Figure 1.3: A. Example of a reaction network with m metabolites (j=1,2,...,m) and

n reactions (i=1,2,...,n). Each metabolite S is assigned to a metabolic

reaction with a specific flux rate v. Dashed lines indicate system

boundaries.

B. Stoichiometric matrix with stoichiometric coefficients of the given metabolic

network.

with a rate v is described by the system equations:

dSj

dt
=

n
∑

i=1

(cij · vi) for j=1,2,...m (1.2)

where c denotes for the stoichiometric coefficients of the respective metabolite j

in the reaction i. Together all stoichiometries are represented by the stoichiometric

matrix N (see Figure 1.3-B). The stoichiometric matrix denotes for m rows and

n columns representing n network reactions with vi variables (i=1,2,...n) and m

participating substances. The system of linear equations reads as follows:

c11 · v1 + c12 · v2 + ...c1i · vi = S1 (1.3)

c11 · v1 + c12 · v2 + ...c1i · vi = S1 (1.4)
... (1.5)

cm1 · vi + cm2 · vi + ...cmi · vmi = Sm (1.6)

In summary, a metabolic system can be described by different vectors: (1) a

vector S of concentration values, (2) a vector v of reaction rates, (3) a parameter

vector and (4) the stoichiometric matrix N. In case the system is in a steady-state,

we further consider a vector containing the steady-state fluxes. The rates of change
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1.5 Mathematical optimisation and systems biology

of a molecular substance S can then be described by:

dS
dt

= N · v = 0 (1.7)

where v defines the flux vector v through a specific reaction n.

1.5 Mathematical optimisation and systems biology

Mathematical optimisation deals with finding an optimal solution of a defined

problem from a given set of available alternatives with respect to certain criteria.

The objective of each optimisation problem is to find optimal solutions for a vector x

in a given problem either to find the minimal usage of resources (e.g. cost function)

or to identify a maximal coverage from a given set of resources. The general form

for an optimisation problem to minimize or maximize an objective function is:

minimize/ maximize
x∈Rn

f(x) (1.8)

x ∈ M (1.9)

where M ∈ Rn is the feasible region and f(x) the objective function. The feasible

region M is further defined by constraints and predominantly describes a closed

aggregate or convex region. The feasible region M applies if constraints gi(x) are

constant with the form:

gi(x) ≤ ci, i=1,2,...,k. (1.10)

However, M can be unlimited or non-convex, which may lead to the problem

becoming infeasible.

In biological systems the concept of optimality plays an important role. This

concept is based on the assumption that in any environment with restricted or

limited access to resources, e.g. nutritional supply, each biological system has

to make efficient use of the given resources [77]. Here the objective function

represents cellular functions reflecting the synthesis of important precursors for

cellular building blocks such as membrane lipids and proteins or formation of
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energy-rich phosphates, in particular ATP. As a consequence, optimisation

problems for biological systems are not only defined with respect to known intrinsic

factors representing the robustness and versatility of the respective system. More-

over extrinsic factors such as adaptations to environmental conditions or limited

access to resources affect the definition of the optimisation problem. Therefore,

assumptions or side-constraints about the internal structure of the biological sys-

tem and its surrounding external environment have to be made.

Constraint-based modelling of biological systems uses stoichiometric

information about biological processes to define a mathematical model. This

requires the definition of physicochemical and environmental constraints (gi(x))

to define the system boundaries. In the past different approaches have been

developed to enable optimality based simulations. In flux balance analysis (FBA)

it is assumed that a given system is in a steady state. Depending on the scope

of the study FBA enables to predict flux distributions with respect to the applied

constraints. In the recent past it has been shown that this method is capable of ac-

curate predictions for intracellular metabolic flux states in microorganisms [9, 10]

and human cells such as erythrocytes [77]. Taking together optimisation-based

modelling of cellular systems enables to simulate metabolic responses in condi-

tions of restricted substrate supply or inhibition of enzymatic reactions observed in

diabetes, starvation and cardiovascular diseases [9, 11, 14, 77].
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1.6 Statement of problem

1.6 Statement of problem

The objective of this thesis is to reconstruct the metabolic network of the human

cardiomyocyte and determine how nutritional stress may affect cardiac efficiency.

To approach this question, gene expression information and data from

biochemical and molecular studies are integrated to reconstruct the cellular

network in a combined bottom-up and top-down approach. In this context,

linear optimisation problems are applied according to the flux balance principle

to test the consistency and capability of the model to achieve known metabolic and

physiological functions of the cardiomyocyte.

On the basis of this comprehensive network, the metabolic efficiency of

cardiomyocytes to maintain mechanisms, which are directly or indirectly involved in

cardiac contraction, are studied in varied substrate availability. For this purpose a

metabolic target function of the human cardiomyocyte is defined and the capability

of nine different substrates to maintain this function is tested.

The following questions are examined:

1. How is the efficiency of cardiac metabolism to be measured with respect to

each substrate?

2. Are the calculated flux estimations in concordance with experimental results?

3. What is the contribution of each substrate to the ATP formation?

4. Is there a glycogen turnover and what is the contribution of glycogenolysis to

the predefined metabolic target function, in particular ATP formation?

1.7 Thesis content

The following chapters 2 and 3 summarise materials and methods in-depth which

were used for the network reconstruction and mathematical computations.

Chapter 4.1 presents the network reconstruction and testing for functionality as well

as validation of the network. Chapter 4.2 specifies and outlines the mathematical

approach implemented for simulations of variable substrate supply and evaluation

of metabolic efficiency. Chapter 4.3 summarizes the computational results.

The text of Chapter 4.3, in parts, contains material as it appears in

A. Karlstaedt, D. Fliegner, G. Kararigas, H. Sanchez Ruderisch, V. Regitz-Zagrosek,

H.G. Holzhütter. CardioNet: A human metabolic network suited for the study of
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cardiomyocyte metabolism, BMC Systems Biology, 2012(6):114. I was the primary

author of this publication and the co-authors participated and directed the research

which forms the basis for Chapter 4.3.
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2 Materials

This chapter presents available metabolic network reconstructions and

summarizes database resources, software and experimental parameters which

were used for the network reconstruction and mathematical computations.

2.1 Consulted metabolic networks

2.1.1 Recon 1: The global human network

Recon 1 [8] is a comprehensive genome-scale metabolic reconstruction of the

global human network. The model was reconstructed with a bottom-up approach

by using genomic and bibliomic data. Recon 1 accounts for 2766 metabolites and

3311 metabolic as well as transport reactions. Metabolites are assigned to either

the extracellular environment or to seven intracellular compartments:

cytoplasm, mitochondrion, nucleus, endoplasmic reticulum, Golgi apparatus,

lysosome and peroxisome. Additionally, confidence scores are provided for

biological evidence obtained for genes, proteins and reactions. The network has

been validated through simulation of 288 metabolic functions [8].

2.1.2 HepatoNet 1: The metabolic network of the human

hepatocyte

HepatoNet 1 [6] is a manually curated and functional model of the human

hepatocyte metabolism. This network comprises 777 metabolites and 2539

reactions, including 1466 transport reactions. The model is fully compartmental-

ized with six intracellular (cytosol, mitochondrion, endoplasmic reticulum and Golgi

apparatus, lysosome, nucleus, peroxisome) and two extracellular compartments

(bile canaliculus, sinusoidal space). The network has been validated through

simulation of 319 metabolic objectives and tested for functionality through

simulation of 123 physiological functions known for the human hepatocyte.
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2.2 Experimental data

2.2.1 High-throughput data: Transcriptomic data

An important tool for investigating transcriptional activity in biological samples

is the high-throughput profiling of gene expressions. Among others microarray

technology enables to investigate a large set of samples and analyse different

biological states from various organisms. We obtained these datasets by access-

ing the “Gene Expression Omnibus” (GEO) database [26, 78] (see Table 2.3).

GDS181

An approach to investigate gene expression profiles from 91 human and mouse

samples of different tissues, organs and cell lines from mostly normal

physiological state has been published by Su et al [79]. This dataset is part of

the BioGPS database [80] and gives a comprehensive description of the normal

mammalian transcriptome. The samples were labelled and hybridized to either

human (U95A) or mouse (U74A) high-density oligonucleotide arrays. The primary

image analysis was performed by using the genechip 3.2 (Affymetrix, Santa Clara,

CA). Based on the absence and presence call provided by the genechip software

package and additional PCR-validation of oligonucleotide array data, an average

difference (AD) value of 200 was defined. Gene expression values above this

threshold were considered present [79].

GSE1145

In this study changes in cardiac transcription profiles during heart failure in

humans were investigated. Myocardial tissue samples were collected from

patients undergoing cardiac transplantation. The causes of heart failure differed

between patients including idiopathic dilated cardiomyopathy, ischemic

cardiomyopathy and hypertrophic cardiomyopathy. The control samples were

collected from organ donors whose hearts could not be used for transplantation.

The samples were labelled and hybridized to human (U95A and U133) high-density

oligonucleotide arrays. This dataseries is part of the CardioGenomics database

[81].
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Table 2.1: Substrate utilisation in the isolated working

rat heart.

Exp. Substrate vO2
vs

1 Glucose 4.280 ± 0.860 0.758 ± 0.123
2.1 Lactate 4.710 ± 0.590 1.410 ± 0.137
2.2 Glucose

4.70 ± 0.51
0.369 ± 0.088

Lactate 1.220 ± 0.223
3.1 Oleate 4.940 ± 0.530 0.176 ± 0.330
3.2 Glucose

4.360 ± 0.920
0.643 ± 0.133

Oleate 0.115 ± 0.037
4.1 Acetate 4.280 ± 0.035 1.677 ± 0.223
4.2 Glucose

4.690 ± 0.223
0.251 ± 0.086

Acetate 1.391 ± 0.174
5.1 Acetoacetate 4.200 ± 0.223 0.645 ± 0.107
5.2 Glucose

4.950 ± 0.390
0.486 ± 0.053

Acetoacetate 0.979 ± 0.166

Flux rates for vO2 and vs are given in mmol · h−1
· (g dry wt.) −1 . vO2 indicates

oxygen demand; vm, substrate uptake rate.

2.2.2 Metabolic parameters

Taegtmeyer, H et al 1980 [82] In this study a new improved perfusion

system is presented for the Langendorff mode in the isolated working rat heart.

The oxygen demand and substrate utilisation were determined while monitoring the

cardiac output. In total, uptake rates for six different substrates (glucose, oleate,

lactate, acetate, acetoacetate and β-hydroxybutyrate) were measured while work-

load and cardiac output were estimated during the perfusion experiment (see

Table 2.1). Most substrates were determined by using enzymatic methods

(glucose, lactate,acetoacetate and β-hydroxybutyrate). Oleate and acetate utili-

sation were measured by measuring the [1-14C] oleate level and the [1-14C]acetate

level in the perfusate, respectively.

Hatch, GM et al 1994 [83] The objective of this study was to investigate the

cardiolipin biosynthesis pathway in the heart and determine rate-limiting steps.

For this purpose the level of incorporated radioactive tracers ([32P]Pi and [U-14C]-

glycerol) was measured in the isolated working rat heart to estimate the

synthesis rate of cardiolipin, phosphatidylcholine, phosphatidylethanolamine and

sphingomyeline (see Table 2.2).
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Table 2.2: Substrate biosynthesis and degradation

rates in the heart.

Dobrzyn et.al. 2010 [84] vt

Phosphatidylcholine 2.98E-006
Phosphatidylethanolamine 2.00E-006
Sphingomyelin 1.94E-008
Cardiolipin 5.69E-008
Ceramide 1.58E-009

Goodwin et.al. 1995 [85] vt

Glycogenolysis 1.50E-003 ± 0.18E-003
Glycogen synthesis 0.17E-003 ± 0.04E-003
Glycolytic flux

Total 5.09E-003 ± 0.70E-003
From exogenous glucose 3.59E-003 ± 0.63E-003

Wu, F et.al. 2008 [86] vt

ATP Hydrolysis 21.6

Substrate biosynthesis and degradation rates (vt) are given in mmol · min−1
· (g

dry wt.) −1 except for ATP Hydrolysis, which is given in mmol · min−1
· (l cell) −1.

Dobrzyn et al 2010 [84] Using an ob/ ob; SCD1−/− mouse model, the

hypothesis is tested that lack of SCD1 could improve steatosis and left ventricle

function in leptin deficiency. For this purpose, different parameters of cardiac lipid

metabolism were determined such as total lipid synthesis and cardiac free fatty

acid level and ceramide level. In addition, the incorporation of palmitic acid into

ceramide was determined by using a radioactive tracer ([14C]palmitic acid) (see

Table 2.2).

Goodwin et al 1995 [85] In this study the effect of glucagon and insulin on

cardiac glycogen synthesis and degradation was investigated. The experiments

were performed on isolated working rat hearts by using a Langendorff mode. The

glycogenolysis and glycogen synthesis rates were determined by measuring the

incorporation of radioactive labels ([U-14C] glucose, see Table 2.2).

Wu, F et al 2008 [86] In this study, a 31Phosphate-magnetic resonance

spectroscopy (31P-MRS) was performed on dog hearts at different cardiac work-

loads. For each condition, concentrations of creatinephosphate, ATP levels and

myocardial blood flow were determined. In combination with a model of cardiac
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energy metabolism, predictions of the ATP hydrolysis potential, cytoplasmic free Pi

and ADP concentrations as a function of oxygen consumption were estimated.
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2.3 Consulted databases

Table 2.3

Database Link Reference

Genes and Genome

UniGene http://www.ncbi.nlm.nih.gov/unigene [23]
NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/gene [87]
Ensembl http://www.ensembl.org/index.html [25]
BioMart project http://www.biomart.org/ [88]
Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ [26, 78]

Proteins

Reactome http://www.reactome.org [89]
UniProt Knowledgebase http://www.uniprot.org [24]

Enzymes

BRENDA http://www.brenda-enzymes.info/ [17]
KEGG http://www.genome.jp/kegg/ [18]
MetaCyc http://metacyc.org/ [90]

Metabolites

LIPID MAPS http://www.lipidmaps.org/ [20]
HMDB http://www.hmdb.ca/ [21]
PubChem http://pubchem.ncbi.nlm.nih.gov/ [91]

Transporter

TCDB http://www.tcdb.org/ [19]
TransportDB http://www.membranetransport.org/ [92]
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2.4 Software

Table 2.4

Software Description Resource

CPLEX 10.1 commercial mathematical
solver for linear programming,
mixed integer programming,
quadratic programming and
quadratically constrained
programming problems

IBM ILOG Incorporation

FASIMU Flux Balance Analysis simula-
tion software

Hoope A., 2011 [16]

Metannogen Software to manage informa-
tion for metabolic networks re-
construction

Gille C., 2007 [93]

PSQL object-relational database
system

The PostgreSQL Global

Development Group

R Project software environment for R Foundation for
statistical computing Statistical Computing
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3 Methods

This chapter presents methods and general strategies for metabolic network

reconstructions and summarises computational methods for functional testing and

validation of such models.

The methodology of network reconstructions can be divided into two different

types: a top-down and a bottom-up approach. In a top-down approach, high-

throughput molecular biology data such as gene expression information and

proteomic information is used to identify network components. This process is

supported by statistical and computational methods. It is an advantage of the

top-down approach that no prior knowledge of a biological system is required

to perform a reconstruction. Thus, unbiased analysis of biological systems is

possible and discovery of new biological features is more likely. In contrast, a

bottom-up approach place emphasis on manual curation of biological evidence

obtained from scientific literature and genome annotation. This approach is mainly

hypothesis-driven and focuses on specific aspects of molecular cell biology such

as metabolism, transcription regulation or signalling.

Depending on the scope of the study, experimental evidence, such as genome or

gene expression information, has to be evaluated regarding which reactions are to

be included. This is of great importance for network reconstructions

taking into account the maturation state of a cellular system, because a selection of

potential reactions has to be done which reflect different biological features as

found between f.exp., myeloid progenitor cells compared to monocytes or fetal

cardiomyocytes compared to adult cardiomyocytes.

Irrespective of the approach which is eventually adopted, the integration of data

from multiple resources and different levels of evidence is required. This includes

high-throughput genome data, multiple types of experimental data and bibliomic

information. There are a number of public databases available providing genomic

and molecular information about different organisms and tissues, including human

cells. Among these are resources providing information about metabolic reactions

and compounds such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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[18], Reactome [89] and HumanCyc [94]. While other databases focus on gene

and protein alignment such as PRIDE [95], Uniprot Knowledgebase (UniprotKB,

[24]) or Ensembl [25]. Together these databases offer researchers a good basis to

perform reconstructions of cell and tissue type specific human networks.

The following sections summarise a general protocol and tools for the reconstruc-

tion of cellular networks and present computational methods for testing models for

their functionality and consistency.

3.1 Methods for a metabolic network reconstruction

In the recent past, different protocols have been introduced for the

reconstruction of cellular networks [11, 15, 96]. All these protocols share a

basic concept: an initial set of genes is obtained from genome annotation or high-

throughput data and assigned to enzymes which carry enzymatic reactions. Each

identified enzyme is than evaluated regarding its biochemical

characteristics such as subcellular localisation, required cofactors and metabolic

activity. For this purpose specialised databases such as the Braunschweig

Enzyme Database (BRENDA)[17] and KEGG [18] are consulted or evidence from

experimental data and scientific literature is collected. The generated reaction

scheme is than further evaluated regarding consistency and admissibility of its

contents. In summary the general strategy for a comprehensive model

reconstruction requires the following steps:

1. Definition of a preliminary reaction list

2. Extension of composed reaction list by missing reactions and metabolites

3. Generating the mathematical representation of the network

4. Evaluation, validation and consistency check of the reconstructed network

These steps form the backbone of each reconstruction and should be regarded

as guidance, whether a top-down or a bottom-up approach was chosen.

However, to reconstruct a functional and valid model of a cellular system is it

essential to iterate each of the given steps multiple times to include all wanted

biological processes. In case missing reactions are identified then the whole

process starts again from the beginning including constant re-evaluation.
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3.1.1 Reaction list

Irrespective of the chosen approach, either top-down or bottom-up, the initial

step aims to generate a preliminary reaction list. For this purpose it is

necessary to collect genomic, bibliomic or high-throughput data which are specific

for the respective organism or cell type. This list will form a preliminary network

functioning as a starting point for further data integration. Previous investigations

mostly started with a fully annotated genome [10, 61] which can be automatically

generated by using databases providing genomic sequence information such as

UniGene [23], NCBI Entrez Gene [87] or Ensembl [25].

The obtained gene information is subsequently linked to the encoded enzymatic

function. Finally this allows to automatically or to manually determine which

reactions are carried out by these enzymes and by which stoichiometries. In this

context, databases such as BRENDA [17], KEGG [18], MetaCyc [90] or

TransportDB [92] provide metabolic information to generate these network

reactions.

3.1.2 Extension of composed reaction list

The composed reaction list requires further manual curation and careful

revision to create a reliable network for mathematical simulations of cellular or

tissue-specific behaviour. In this step the focus is on the verification and

reconciliation of collected information about metabolites, enzymes and reactions

from literature or experimental evidence. The collected meta-information can be

stored in a network database to support the curation process and further revision.

Additional information about every incorporated metabolite should be obtained

including charge, stoichiometric formula and identifier. The charge balance of

reactions has to be ensured and checked. The subcellular localisation of each

reaction should be determined as well as the reaction directionality.

This process can be supported by external database and methods to determine

∆G values in order to set the directionality, such as the group contribution method

[97, 98].
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3.1.3 Generating the mathematical representation of the

network

Following the manual curation and revision, the network has to be converted into

a format enabling mathematical computations. The file format syntax is dependent

on the respective mathematical solver and characteristic of the model (e.g. non-

linear, linear). The most common file formats used by solvers such as CPLEX [99]

and LINDO API [100] are the Mathematical Programming System (MPS) format,

the Linear Programming (LP) format and the Math Program Instructions (MPI) for-

mat. It is possible to use programs written in a standard programming language

such as Perl or Python to convert the drafted network into the required file format.

In the recent past tools have been developed to provide platforms for direct

use of a reconstructed network to solve optimisation problems with different FBA

algorithms. For example, the openCOBRA project [101] and the CellNetAnalyzer

[102] provide a toolbox for use in Matlab, while FASIMU [16] is a command line

oriented software. These software packages enable the incorporation of a recon-

structed network in a plain reaction scheme, Extensible Markup Language (XML)

format or Systems Biology Markup Language (SBML) format. In the past, SBML

developed into a standard representation format for communicating and storing

mathematical models of biological systems. Together with software packages

such as Metannogen [93] or the SQL database system, it is possible to generate

biological networks and directly link the respective knowledge-base with

mathematical computations through the SBML file format.

3.1.4 Evaluation, validation and consistency check of the

reconstructed network

It is important to evaluate the network capability to fulfil tissue or organism

specific biological functions in order to seek functionality and consistency of the

reconstruction. Each function is incorporated as an objective function into the

optimisation problem and flux distributions are predicted for the respective

cellular state. These objectives might represent certain important cellular

processes such as ATP formation, detoxification or protein synthesis. However,

the set of biological functions is based on the scope of the respective study, thus

it might be limited and has to be carefully defined. Therefore, it is necessary to

ensure the production of included metabolites and further evaluate
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3.2 Methods for analysing network states and estimation of stationary fluxes

network reactions for (1) dead-ends, (2) incorrect directionality or (3) isolated

reactions. The constraints and system boundaries for the network have to be

defined and evaluated for feasible solutions while applying a set of biological

functions.

3.2 Methods for analysing network states and

estimation of stationary fluxes

This section presents computational methods which are widely used to

determine flux distributions in metabolic networks and analyse cellular states.

3.2.1 Flux Balance Analysis

Flux Balance Analysis (FBA) is a linear programming (LP) based method for flux

prediction and analysis of biological system. In contrast to kinetic modelling, no

enzymatic kinetic data is included to calculate flux distributions. A linear program-

ming problem is defined to find optimal solutions for corresponding network states.

In FBA it is proposed that all internal fluxes fulfil the steady-state condition with

respect to all metabolites and applied constraints. The linear optimisation problem

is then solved to find optimal solutions while maximising or minimizing an objective

function f(v). The general LP in FBA reads as follows:

maximize/ minimize f(v) =
r

∑

i=1

ci · vi (3.1)

subject to N · v = 0, (3.2)

vmin,i ≤ vi ≤ vmax,i (3.3)

where v ∈ Rn is the flux vector and N is the m × n stoichiometric matrix of the

network, with m metabolites and n reactions. The objective function is represented

by a linear combination of metabolic fluxes vi with the coefficient ci represent-

ing weights. The lower and upper bounds on each reaction are represented by

vmin,i and vmax,i, respectively. Objective functions match cellular functions such as

ATP formation, maximisation of biomass or minimisation of external substrate up-

take. However, each function depends on the scope of the study, thus might be

incomplete. All possible flux distributions for a given network in a steady-state
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Figure 3.1: A. Example for a reaction network with m metabolites (j=1,2,...,m) and n

reactions (i=1,2,...,n). Each metabolite S is assigned to a metabolic

reaction with a specific flux rate v. Dashed lines indicate system boundaries.

B. Stoichiometric matrix with stoichiometric coefficients of the given metabolic

network.

C. The steady-state flux cone.

condition define a polyhedral cone or the steady-state flux cone (see Figure 3.1).

3.2.2 Flux Variability Analysis

In some cases, linear problems have more than one optimal solution [103, 104].

Most solvers, e.g. CPLEX, terminate as soon as an optimal solution to an

optimisation problem is found. Especially, CPLEX does not automatically pro-

vide methods to find alternate optimal solutions. However, a recently developed

method, the Flux Variability Analysis (FVA), aims to estimate alternative optima

for different network states [105, 106]. Using FVA it is possible to determine

the robustness of a metabolic network and possibly identify network redundancy.

The existence of such alternative reaction sets could compromise predictions for

network states regarding:
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3.2 Methods for analysing network states and estimation of stationary fluxes

1. optimal flux distributions for different biological states,

2. estimated substrate requirement or biosynthesis of different metabolites and

3. process optimisation.

In the FVA approach as proposed by Mahadevan et al [105] the optimality

condition is relaxed for calculating the maximal and minimal values of all fluxes.

The objective function f(v) is to be constrained as above 95% of the optimal

achievable growth rate zobj. The linear optimisation problem reads as follows:

maximize/ minimize vi (3.4)

subject to N · v = 0, (3.5)

f(v) ≥ 0.95 · zobj (3.6)

0 ≤ vi ≤ vmax,i (3.7)

where v (i=1,2, ... n) denotes for all network reactions and N describes the

stoichiometric matrix.

3.2.3 Flux Coupling Analysis

The Flux Coupling Analysis (FCA) aims to identify (1) coupled and (2) blocked

reactions in metabolic networks [107] while assuming steady-state condition. Here,

a linear fractional programming is employed to compare calculated flux ratios for

every pair of metabolic fluxes within a network.

Blocked reactions are defined as fluxes whose maximum and minimum values

equal zero, thus blocked reactions are incapable of carrying any flux in the given

scenario. The linear optimisation problem reads as follows:

maximize vi (3.8)

subject to N · v = 0, (3.9)

vuptake,i ≤ vuptake-max,i for all transport reactions (3.10)

vi ≥ 0 (3.11)

where N denotes for the stoichiometric matrix and v for the flux through reaction

i. In this approach reversible reactions are expressed as two separate irreversible
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reactions. In the FCA method all reversible reactions are split into a forward and a

backward reaction, which are constrained to carry a non-negative flux.

It is further possible to differentiate three types of coupled reactions with this

method: reactions are (i) directional, (ii) partial or (iii) fully coupled. Here, fully

coupled reactions are fixed fluxes where a flux v1 has the samel value as v2 and

vice versa. The identification of coupled reactions can either occur by a (1) non-

linear optimisation problem or through variable transformation by a (2) linear op-

timisation problem. In the nonlinear optimisation problem, upper and lower limits

of flux ratios for every flux pair in the network are calculated. However, this non-

linear problem can be transformed into a linear problem by setting a constrained

reference flux v̂2 to 1 and normalizing flux v1 to v where v̂ = v · t. By applying this

variable transformation a linear problem is obtained which reads as follows:

maximize/ minimize v̂1 (3.12)

subject to N · v = 0, (3.13)

v̂2 ≥ 0, (3.14)

v̂uptake,i ≤ vuptake-max,i · t for all transport reactions, (3.15)

v̂i ≥ 0, (3.16)

t ≥ 0 (3.17)

By comparing the calculated flux ratios it is possible to decide how reactions

are coupled. Consequently, the amount of linear optimisation problems to be

solved increases with this method, which requires a large computing capacity in

dependence on the network. Since in large-scale networks the identification of

blocked reactions can support the reconstruction process, another method has

been developed to aid this [108]. Network pruning aims to create a smaller sub-

network which contains no dead ends and blocked reactions, thereby generating

a network in which all reactions are coupled. The resulting sub-network can then

be analysed regarding consistency and functionality to model the respective cellu-

lar system. However, the set of blocked reactions should be evaluated regarding

(1) missing links to other network reactions, (2) missing transport reactions or (3)

missing metabolites. The revision process can be supported by bibliomic data and

may lead to reintegration of reactions into the network. Both approaches, FCA and

network pruning, are functions included in the FASIMU software package.
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3.3 Integration of gene expression data into

mathematical modelling

3.3.1 Functional annotation of gene expression data

Microarray technology is a hybridization technique for the simultaneous monitor-

ing of expression levels of thousands of genes or detection of variations in a gene

sequence. DNA microarrays consist of a glass slide on to which DNA molecules

are fixed at specific locations (spots). A single microarray may contain thousands of

spots which in turn contain copies of identical DNA molecules which should equally

correspond to an administrated probe. Most widely used DNA microarrays are

cDNA arrays, oligonucleotide arrays and single nucleotide

polymorphism (SNP) arrays.

Administrated nucleic acid samples (target) are then hybridised to the probes on

the array by forming complementary nucleotide base pairs. After washing off of

non-specific bonding sequences, fluorescently labelled target sequences bind to a

probe sequence which generates a signal. The signal intensity varies depending

on the amount of target sample bound to a specific probe. The signal validity in

Affymetrix oligo-chip design is judged by a comparison of perfect match (PM) to

mismatch (MM) pairs to identify spot artefacts. By analysing the relation of PM to

MM differences it is possible to calculate a single expression value for a specific

probe. However, it is important to note that cross-hybridization may influence the

signal validity, thus alternative statistical analysis such as comparison of adjacent

probes have been developed.

In order to integrate the gene expression information from microarrays into

mathematical computations, each probe has to be linked to a gene. Based on

this information encoded enzymes can be identified and integrated into network

reconstructions.

The annotation of gene expression information in the current study is guided by

the following protocol [6]:

1. Collection of probeset identifier from the dataset and obtaining information on

the microarray platform type

2. Annotation of probesets from the given microarray platform to Ensembl

transcripts (ENST, ENSMUST) by filtering the Ensembl database.

3. Each transcript is linked to an ENSMBL gene identifier. These identifiers are
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species specific (e.g. ENSG for homo sapiens, ENSMUSG for mus muscu-

lus), thus enable to clearly identify each gene.

4. Collected ENSMBL gene identifier should further be linked to additional gene

annotation databases such as NCBI, entrez gene or unigene. This enables a

good coverage of the dataset and increases the possibility of retrieving anno-

tation for every given probeset.

5. Linking each gene identifier to a protein and, if available, enzyme classifica-

tion number (EC number) by using UniProt, KEGG or Vega 1

The entire process can be automatically performed through script-based

accessing of the Ensembl database by using the Perl-API. Furthermore, Ensembl

Biomart [88] provides a comprehensive data mining tool which efficiently links

information from different databases. However, manual linking of genes to

enzymes might be required for a complete and comprehensive annotation. Results

can be stored as either plain text file or in a database to enable later integration of

data and amplification of generated gene annotation. Depending on the scope of

the study, it might be important to define each expression state as either present,

absent or marginal through f.exp. Boolean values.

3.3.2 Shlomi approach

Recently Shlomi et al. introduced a new method of defining a reaction list

by integrating tissue-specific gene- and protein-expression data with an existing

reconstructed metabolic network [11]. By using the global human metabolic net-

work [8] it was possible to identify tissue-specific metabolic activities in ten different

human tissues. This algorithm aims to integrated gene expression data with linear

optimisation problem as follows:

1http://vega.sanger.ac.uk/index.html
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maximize
∑

iǫRH

(y+i + y−i ) +
∑

iǫRL

y+i (3.18)

subject to N · v = 0 (3.19)

vmin ≤ v ≤ vmax (3.20)

vi + y+i (vmin,i − ε) ≥ vmin,i, iǫRH (3.21)

vi + y−i (vmax,i − ε) ≥ vmax,i, iǫRH (3.22)

vmin,i(1-y+i ) ≤ vmax,i(1 - y+i ), iǫRL (3.23)

vǫRm (3.24)

y+i , y
−

i , ǫ[0,1] (3.25)

with the flux vector v and the stoichiometric matrix N. Stationary flux

distributions are determined while maximising the number of reactions whose

activity is consistent with their corresponding gene expression state. These states

are expressed as Boolean values as 1, -1 and 0 to account for highly, lowly and

moderately expressed genes, respectively. In this approach, highly expressed

reactions are considered to be active (y+) if the carried flux is greater than a

threshold ε (see equation 3.21 and 3.22). The resulting subsets of reactions are

considered as highly expressed (RH) and lowly expressed (RL). The objective of

the linear optimisation problem is to maximize the amount of highly expressed

(RH), active reactions and lowly expressed (RL), inactive reactions. Such drafted

sub networks could act as a good starting point for further tissue-specific network

reconstruction.

3.4 Statistical analysis

Statistical analysis was performed by using the statistical package provided by

R Statistics. All values were tested for a normal distribution and a t-Test was per-

formed. A p-value less than 0.05 was considered as statistically significant.

For graphical presentation boxplots were used, which present the numerical data

through specific observations: the smallest observation (data minimum), lower

quartile or 25th percentile (Q1), median or 50th percentile (Q2), upper quartile

or 75th percentile (Q3) and largest observation (data maximum). The median,

lower and upper quartiles represent the middle 50% of the data and are plotted
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through a box which length represents the interquantile distance. The variability

of the underlying data can be described by the distance between upper and lower

quartile. Further, the median is displayed as a band inside the plotted box and is

a non-parametric method. The median is obtained by sorting values of a given

observation from its lowest value to its highest value and picking the middle one.

In particular the median is used in observations with skewed distributions or to

reduce the importance of extreme values (outliers), which would affect the mean

value of an observation. However, in case 50% of the values are equal to 0, the

median cannot be used. Instead, the arithmetic mean enables to measure the

central tendency of a sample. The whiskers of the boxplot display the lowest and

highest data points within 1.5 interquantile range of the lower and upper quartile,

respectively. Any outliers in a sample which were not included in this range were

plotted as single values above or below the whiskers of the boxplot.
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4 Results

This chapter presents the reconstruction process for the fully compartmentalized

network of the human cardiomyocyte - CardioNet. Furthermore, an overview of the

validation and functional testing of the drafted network is given. Subsquently, the

reconstructed network is compared to previously reported mitochondrial models of

the cardiomyocyte and a genome-scale reconstruction of the human heart. Finally,

an approach to determine the cardiac efficiency in varied substrate supplies is

presented and flux distributions determined.

4.1 Reconstruction of the human cardiomyocyte

network: CardioNet

A genome-scale network aims to represent all cellular functions in order to form a

reliable basis for further computational simulations of cellular behaviour.

These cellular functions include metabolic reactions such as those from interme-

diary metabolism. Metabolic reactions can be divided into two different types:

(1) anabolic and (2) catabolic reactions. Anabolic reactions comprise for the

synthesis of building blocks such as fatty acids, amino acids and nucleic acids,

while catabolic pathways break down molecules into smaller units or monomers.

These monomers again can act as substrates in anabolic reactions or are excreted

from the cell. Together these pathways function as the engine of a cell to either

maintain cellular integrity or enable cellular growth.

However, proteins are not only involved in metabolic reactions.

Moreover proteins participate in the formation of cellular membranes. They form

transport and signalling systems such as ion-carriers or hormonal receptors and

enable important cellular functions such as muscular contractions. In order to

fully understand a specific cell type it is important to incorporate the entire pro-

cess of protein synthesis and regulation into a cellular model. However, this would

require a comprehensive description of the DNA and RNA replication, repair and
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recombination system. Furthermore, the complex transcriptional regulatory

processes which control the expression of genes have to be included into a fully

genome-scale network. Although huge efforts have been undertaken to fully

reconstruct these transcriptional regulatory processes, not all details for a

comprehensive network reconstruction are yet available.

This thesis does not aim not to give a fully reconstruction of the transcriptional

regulatory processes of the human cardiomyocyte. Instead, the stated objective is

to include metabolic reactions to form a basis for further studies of cardiomyocyte

metabolism and physiological functions of the human heart.

4.1.1 Definition of a preliminary reaction list

First, a tissue specific set of metabolic reactions was identified by applying the

algorithm by Shlomi et al [11] as described in Chapter 3.3.2. This approach aims

to integrate gene expression data with linear optimisation problem. A stationary

flux distribution is determined while maximizing the number of reactions whose

activity is consistent with their gene expression state. Gene expression information

in normal human heart tissue samples was obtained from two different datasets,

the Geo Dataset (GDS) GDS181 [79] and the Geo Series (GSE) GSE1145, which

are publicly available from the GEO database [26] (see Chapter 2.2.1).

A gene was considered to be expressed if the expression value for the respective

transcript was equal to or greater than a threshold value of 100 or the Affymetrix

Call indicated a present (P) expression. Each expression type was assigned a

Boolean value of 1 or 0 representing either present or absent expression,

respectively.

By using the Ensembl Homo sapiens database [25] and KEGG orthology records

(KO, [18]), Affymetrix probeset identifier indicating present expression were

assigned to reactions of the global reconstruction of the human metabolic

network - Recon1 [8]. The optimisation problem based on the Shlomi et al

approach [11] was solved to find a steady-state flux distribution while satisfying,

first, the steady-state condition of all internal fluxes and second, maximizing the

number of reactions carrying a flux which is consistent with the respective gene

expression state. The resulting flux distribution reflected the tissue specific

metabolic activity in human heart based on the gene expression state under

normal physiological conditions. This subnetwork comprised 972 reactions for

which corresponding reactions in KEGG were identified based on the Enzyme
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Commission (EC). All obtained reactions were integrated into a preliminary net-

work which formed the basis for our network reconstruction. For a complete list of

annotated gene expression data see Additional file 1 of the SEM.

4.1.2 Extension of composed reaction list by missing reactions

and metabolites

The reaction list was extended by including KEGG reactions [18], which are

annotated as present in human heart tissue, but were not part of the initial

subnetwork. All reactions were evaluated and analysed for tissue specificity and

subcellular localisation according to evidence from scientific literature and

databases such as the BRENDA [17], KEGG [18] and UniProtKB [24].

Only reactions with evidence for occurrence in human cardiomyocyte or human

heart tissue (keywords: heart muscle, myocardium, cardiac tissue) were included.

In case no evidence was found for occurrence in humans, information from other

mammalian species and human orthologous genes was obtained allowing

inference of the reaction.

At the current state the synthesis of biopolymers such as DNA and RNA is not

part of the metabolic network, therefore no reactions were considered in the net-

work reconstruction which are localised in the nucleus, e.g. DNA transcription and

translation. Instead the objectives of the metabolic network were restrained to the

production of building blocks, e.g. amino acids and nucleotides. Any changes in

enzyme activity or occurrence, such as in heart failure, have to be included as

additional constraints into the optimisation problem.

In addition, missing metabolites were integrated by using the Human Metabolome

Database (HMDB) [21] and Lipid Maps Classification System [20]. Here, a

special focus was given to fatty acids, glycerolipids, glycerophospholipids and

sphingolipids. In order to describe the variable composition of lipoprotein

particles such as LDL particles, nine generic metabolites were defined

following the concept of pooled metabolites as described in previous investigations

[6]. Instead of including every possible composition of the respective particles

these pooled metabolites were used. For each metabolite the chemical formula,

IUPAC name and additional external database cross-references were obtained

such as CAS-identifier, HMDB identifier or KEGG compound identifier where

available (see Additional file 2 of the SEM for a complete list of metabolites).

The system boundaries were set by including further information on transport
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Table 4.1: Overview of the metabolic network of the human cardiomyocyte:

CardioNet.

Compartments Reactions Transporters Metabolites Genes Literature

references

N 6 1793 560 728 951 363

reactions from the Transport Classification Database (TCD) [19], Reactome

database [89] and another metabolic network of the human hepatocyte,

HepatoNet1 [6], providing a large set of manually curated transport processes.

Here, transport processes were only included in case evidence for occurrence in

human cardiomyocytes was found. The following types of transport processes

were included:

1. ATP-dependent transporters (e.g. ABC family for transport of long-chain and

very long-chain fatty acids)

2. Secondary transport processes (e.g. SLC25 family for amino acid transport)

and

3. Simple diffusion processes.

The resulting network totals 1793 reactions, including 560 transport reactions

and 728 metabolites assigned to 6 sub-cellular localisations: external, cytosol,

mitochondrion, lysosome, peroxisome and microsome (see Table 4.1).

This determination was based on experimental evidence (protein localisation,

targeting sequences and subcellular fractionation) and indirect physiological or bio-

chemical evidence as reported in scientific literature. In the absence of

information, reactions were assigned to the cytosol. The microsome refers to a

combination of three different compartments: endoplasmic reticulum (ER), Golgi

apparatus and microsome. This simplification was used as the communication

among endoplasmic reticulum, Golgi apparatus and microsome is mediated by

vesicular transport processes which can be only inadequately included in the FBA

methodology. In addition, recent studies demonstrated the experimental difficulty

of proteomic profiling of the microsomes [109, 110] which would lead to missing

transport processes between these compartments. In the modelling of complex

biological systems it is often beneficial to set the directionality of reactions within

a network. According to the second law of thermodynamics the spontaneity of a
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reaction is defined by its change in Gibbs energy (∆G) with. However, for large-

scale networks it is often difficult to obtain these parameters for every single

reaction. The group contribution method [97, 98] allows estimating Gibbs

energies. This method decomposes compound structures from a given set of

reactions according to a basic set of groups.

The directionality of included network reactions was set according to Jankowski

et.al.[98] or evidence from literature where available (see Additional file 3 of the

SEM for a complete list of references and ∆G values).

4.1.3 Generating the mathematical representation of the

network

All reactions and different levels of evidence were documented during the network

reconstruction process by using the Java-based Metannogen software [93]. At a

later point the network and all meta-information, including metabolomic, transcrip-

tomic and bibliomic data was stored in a PostgreSQL database (see Figure 4.1).

This database functions as the knowledge-base for the network and enables sub-

sequent integration of experimental data into mathematical computations.

Furthermore, a plain SBML representation of the network was generated for

the following computational simulations and to make the network available to the

scientific community (see Additional file 4 of the SEM). As mentioned earlier the

SBML file format developed into a standard format for models within the systems

biology community. Various mathematical software enable to incorporate SBML

models and perform further computations. The linear programming files for all

optimisation problems were generated by using FASIMU [16] and later computed

with CPLEX [99].

4.1.4 Evaluation, validation and consistency check of the

reconstructed network

The consistency and full functionality of the metabolic network was ensured by

performing an extensive testing of physiological functions based on knowledge

of the cardiac metabolism by using FBA. For each function linear optimisation

problems were defined, which tested the biosynthesis of phospholipids (e.g.

cardiolipin), conversion of amino acids into citric acid cycle intermediates by trans-

amination or oxidative deamination as well as nucleotide synthesis (see Table 4.2).
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CrossreferencesAnnotations

CardioNet

Parameter

- experimentally determined
  metabolic Flux rates
- Gibbs energies

- Chemical reactions
- Reaction compounds
- Subcellular localisation
- System boundaries

- Ensembl Genomes
- UniProt Knowledgebase
- Unigene
- Entrez/ NCBI
- KEGG Orthology

- Gene expression data (GDS181; GSE1145)
- Literature references
- EC number references
- KEGG reaction references
- Metabolome (LipidMapa; PubChem; HDMB)

Figure 4.1: Schematic overview of the PostgreSQL database. Boxes illustrate properties

represented by the database.

In total more than 400 single objective functions were defined.

The simulations were performed while restricting the import of metabolites to 27

compounds present in the plasma. This set included oxygen, glucose,

lactate, ketone bodies (acetoacetate, (R)-3- hydroxybutanoate), essential amino

and fatty acids as well as vitamins, while the release of intermediates was re-

stricted to metabolic end products, e.g. lactate and glutamine (see Appendix,

Table 1 or Additional file 5 of the SEM for applied constraints and Additional file

6 of the SEM for calculated flux distributions). In case the network failed to ful-

fil a required function, related reactions and metabolites were critically evaluated.

Particular emphasis was given to ensuring the generation of each metabolite

through direct synthesis or uptake from the extracellular space. In case a

metabolite could not be produced, precursors of the metabolite were checked

regarding their synthesis and the directionality of the reactions involved revised.

Additionally, the network was checked for any blocked reactions through FCA

and network pruning. In case included reactions were not capable of carrying any

non-zero flux, these candidates were critically evaluated regarding

(i) missing metabolites, (ii) inaccurate systems boundaries or (iii) directionality

of related reactions. It is important to mention, that every linear optimisation

problem being applied is depend upon the imposed constraints including exchange

of metabolites, steady-state assumption and fixed flux rates such as ATP formation

or biosynthesis rates of biomolecules.

During this testing process, primary missing intracellular transport reactions and

incomplete pathways (e.g. lipid metabolism) were revealed, which required further
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manual literature review to complete the network functionality. These reactions

were revised and eventually the metabolic network expanded based on additional

evidence for occurrence in the human cardiomyocyte from experimental studies.
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Table 4.2: Metabolic and physiological functions tested for the metabolic network.

Classification Metabolic function Cellular function Reference

1. Carbohydrates

• Monosaccharides Glucose and fructose metabolism Energy production [111, 112]

Glycogen formation short-term energy storage [113]

Ribose metabolism Energy production [114, 115]

Formation of ribonucleotides

2. Carboxylic acids Degradation of ketone bodies Energy production during fasting and dia-

betes

[116, 117]

3. Lipids

• Cholesterol De novo synthesis (cytosol, peroxisome) Membrane synthesis [118, 119]

• Fatty acids Formation of (semi)-essential fatty acids Membrane synthesis [120, 121]

β-oxidation of (non)-essential fatty acids Energy production [48, 122,

123]

• Triacylglycerides De novo synthesis/ degradation of Mono-,

Di- and Triacylglycerides

Membrane synthesis [124, 125]

• Phospholipids De novo synthesis/ degradation of: Membrane formation [39, 40,

124, 126–

128]

Phosphatidylserines

Phosphatidylcholines

Lysophosphatidylcholines

Phosphatidylethanolamines

continues on next page
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Table 4.2 – continued from previous page

Classification Metabolic function Cellular function Reference

Phosphatidylinositol

Sphingomyelin

Cardiolipin

• Sphingolipids Ceramides Membrane formation, apoptosis [84]

4. Proteins

• Amino acids Formation of (non)-essential amino acids Precursors of cellular proteins, nucleic

acids,glutathione and thioredoxin

[129, 130]

Degradation of (non)-essential amino acids Amino acid homoeostasis, anaplerotic reac-

tions of TCA cycle

[131]

Glutamine formation Ammonia detoxification, Protein de novo

synthesis

[132]

• Tripeptide De novo synthesis of Glutathione Prevention of cellular damage due to ROS [133]

• Polyamines Formation/ degradation of Prutescine and

Spermidine

Cell growth and division [134, 135]

• Proteins De novo synthesis of: Myosin, Titin, α-

Sarcoglycan, Tropomyosin, Troponin T

Contractile apparatus, enabling muscular

contraction

[136, 137]

De novo synthesis of Thioredoxin Prevention of cellular damage due to ROS [129, 130]

5. Nucleic acids

• Nucleobases De novo synthesis/ degradation of purine

and pyrimidine nucleotides

Precursors of nucleosides, deoxyribonul-

ceotides and ribonucleotides

[138, 139]

Salvage of purine and pyrimidine nu-

cleotides

Maintaining energy state [140]

continues on next page4
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Table 4.2 – continued from previous page

Classification Metabolic function Cellular function Reference

De novo synthesis/ rephosphorylation of:

nucleosides (ATP, CTP, GTP, TTP, UTP)

Energy production for muscular contraction [139, 141–

143]

NADH, NADPH Energy production and providing redox-

state

[144, 145]

4
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4.1.5 Comparison to other heart models

Recently, two mitochondrial network reconstructions [61, 146] and one genome-

scale reconstruction of the human heart [147] have been reported. The recon-

structed network of the cardiomyocyte was compared to these networks.

All studies used different types of evidence during the reconstruction process, such

as transcriptomic, metabolomic and proteomic data. However, in contrast to both

mitochondrial networks [61, 146] and this study, the genome-scale reconstruction

of the human heart [147] does not provide any cross-references for included reac-

tions from experimental studies, databases or scientific literature.

A large alignment between CardioNet and both mitochondrial networks were

found, with 90.48% and 92.49% of the mitochondrial network reactions being

represented in CardioNet (see Table 4.3). Absent reactions included the heme

biosynthesis pathway and the conversion of L-arginine into L-ornithine by arginase-

II. The current network reconstruction is based on evidence in the normal

human cardiomyocyte, thus reactions (e.g. arginase-II) belonging to genes, which

are not expressed normally, were not included in the model.

Further, previous studies reported an absent expression of arginase-II in the

normal human cardiomyocyte [148] with up-regulation only during pathological

states such as heart failure [149]. In order to perform simulations of pathological

conditions, additional reactions such as arginase-II have to be included to reflect

the changed gene expression.

The analysis revealed that 228 additional mitochondrial reactions have been

considered in the network reconstruction, which is not part of the previous

mitochondrial network reconstructions. These additional reactions include the

metabolism of 26 fatty acids and the biosynthesis of important phospholipids such

as cardiolipin, phosphatidylserine and phosphatidylcholine. Furthermore, the

metabolism of amino acids has been reconstructed to a greater extent,

for example, by including the synthesis of non-essential amino acids (e.g. glycine),

which is not part of both mitochondrial networks.

Finally, CardioNet was compared to a genome-scale reconstruction of the

human heart [147]. For the comparison the ”Human heart partial” network was

used as provided in the supplemental material (Human_heart_partial.xml, [147]).

Only cytosolic reactions and exchange reactions with the extracellular space are

considered in this model. The fatty acid metabolism is represented in the

human heart model to a greater extent compared to both mitochondrial networks
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Table 4.3: Comparison of cardiac metabolic networks.

CardioNet Smith AC Vo TD Zhao Y

2011,[146] 2004, [61] 2011,[147]

Reactions, total 1793 253 189 2803
Compartments

cytosol 745 - 45 1850
mitochondrion 257 164 74 -
lysosome 147 - - -
peroxisome 48 - - -
microsome 36 - - -

Transport reactions 560 89 70 953
extracellular 120 - - 496

Metabolites 728 245 148 1494

CardioNet

included reactions, N 234 171 395
included reactions, % 92.49% 90.48% 14.09%

[61, 146]. However, important phospholipids such as cardiolipin and the cholesterol

biosynthesis in the peroxisome are missing. The localisation of citric acid cycle

compounds such as fumarate and succinate is restricted to the cytosol and does

not involve the mitochondrion. A functional testing of the human heart model

has been performed for the same physiological functions of the cardiomyocyte as

presented earlier in this chapter (see Table 4.2). Of the 110 functions tested 53

had no feasible solution, this included important cellular functions such as the

citric acid cycle (see Additional file 7 of the SEM for a complete overview of all

tested functions). These findings are in concordance with previous studies

showing that fully automatic network reconstructions based on Recon1 not

necessarily lead to a functional network [6, 150].

The comparison revealed that significantly more metabolic reactions of the

mitochondrion were considered in the metabolic network reconstruction of the

cardiomyocyte compared to previously reported mitochondrial reconstructions.

Most strikingly, it was demonstrated that CardioNet is able to accomplish

essential cellular functions while the genome-scale human heart model failed to

fulfil all required objectives.
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4.2 The determination of cardiac efficiency in varied substrate supplies

4.2 The determination of cardiac efficiency in varied

substrate supplies

This section presents the developed approach to determine the cardiac

efficiency in conditions of varied substrate availability and defines a metabolic

target function for the cardiomyocyte.

4.2.1 Approach

The objective was to determine the efficiency of cardiac metabolism in varied sub-

strate supplies. The difficulty here is to define input and output variables which

are used to analyse this efficiency. Cardiomyocytes have to maintain an adequate

energy formation, notably ATP synthesis, together with a multitude of metabolic

functions including abundance of contractile proteins, membrane integrity and pro-

tection against reactive oxygen species. Irrespective of the external substrate sup-

ply and composition, these functions should be maintained in order to preserve

cellular integrity. Simulations should not only reflect the combinatory complexity of

potential substrates, but also take into account a comprehensive set of metabolic

functions to describe real cellular conditions as closely as possible.

Cardiac efficiency can be determined by the ratio of cardiac work (pressure-

volume-area) and myocardial oxygen requirement (mV̇O2). This definition directly

reflects the relation between mV̇O2 and oxidative phosphorylation of ADP to ATP. In

order to enable cardiac contraction, energy-delivering substrates such as glucose

and fatty acids have to be oxidised by the heart. Any intrinsic or extrinsic changes

in the substrate metabolism directly affect cardiac performance. This rationale

arises from previous experimental studies showing preserved or altered cardiac

performance in dependence on external substrate supply in the normal and failing

heart [30, 35, 82].

In this study the efficiency of cardiac metabolism is defined by the myocardial

oxygen consumption and the requirement of endogenous and exogenous

substrates. It is further assumed that cardiomyocyte metabolism follows the

principle of optimality, thus cellular functions are preserved while making

minimal use of given resources. Based on these assumptions, cardiac efficiency

is considered high if applied metabolic functions are maintained while making use

of available substrates and oxygen at minimum cost. In following sections the

developed approach to simulate altered substrate availability and the concept to
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determine cardiac efficiency is presented.

The standard form for linear programming problems as used in flux balance

analysis is:

minimize
v∈Rn

f(v) (4.1)

subject to N · v = 0, (4.2)

vmin,i ≤ vi ≤ vmax,i, for i=1,2, ... n (4.3)

where f(v) is the objective function, v ∈ Rn is the flux vector and N describes the

m × n stoichiometric matrix. The lower and upper bounds on each reaction are

represented by vmin,i and vmax,i, respectively.

Experiments using the perfused isolated heart (e.g. Langendorff mode) showed

that the relationship between measured uptake rates of substrates directly reflected

the ratio of these substrates in the perfusion medium [82]. Therefore, the higher

the share of substrate n in the external medium, the higher its share in the total

substrate uptake space (vs). The total substrate uptake flux (vs) is defined as a

linear combination of the external uptake rates vm (m=1,2,...,ns) for each oxidized

substrate n. The substrate availability in the external space is reflected by the

coefficient βm with

ns
∑

m=1

βm = 1, 0 ≤ βm ≤ 1. (4.4)

The resulting substrate uptake rate for each simulated substrate composition i

(i=1,2,...,ni) reads, as follows:

vmi = (βmi · vs). (4.5)

Systematical variation of βm enables to simulate all possible substrate relations,

thus providing the testing of substrate combinations which so far have not been

considered in experimental studies. This concept was applied to the metabolic

network of the human cardiomyocyte, CardioNet, which is described later in more

detail. Flux distributions were determined for the formation of (1) ATP and

(2) important cellular components which have to be accomplished by the
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4.2 The determination of cardiac efficiency in varied substrate supplies

cardiomyocyte to maintain cellular integrity and cardiac contractility. Both of these

functions form the basis for the metabolic target function (vt), which aims to

reflect important metabolic functions of the cardiomyocyte such as contractility,

membrane integrity and protection against reactive oxygen species.

vt =

nt
∑

r=1

vr. (4.6)

The metabolic target function (vt) is a linear combination of selected metabolic

flux rates vr. To test this approach, a (1) simplified metabolic target function was de-

fined, which is limited to the requirement of energy formation, in

particular ATP. Cardiac contraction is mediated by the actin-myosin complex through

ATP

hydrolysis. Therefore, a rate for ATP hydrolysis (vATPase) was demanded to reflect

this important function and include ATP formation in the analysis. The simplified

metabolic target function reads as follows:

vt = vATPase (4.7)

However, cellular functions cannot be limited to the simple assumption of

energy production. Therefore, an extended metabolic target function (vt) was

defined as a linear combination of ATP formation and synthesis of important

membrane lipids: ceramide (vcer), cardiolipin (vcl), phosphatidylcholine (vpc),

phosphatidylethanolamine (vpe) and sphingomyelin (vsm). The extended metabolic

target function reads as follows:

vt = vATPase + vcer + vcl + vpc + vpe + vsm (4.8)

Changes in fatty acid composition or content are known to reflect dietary supply

and are associated with cellular damage [36, 37]. Therefore, acyl-chain

compositions of every phospholipid and its percentage in the entire phospholipid

fraction were included in the metabolic target function under normal dietary

conditions. For each phospholipid species specific flux rates with respect to

reported fatty acid composition of membrane lipids from normal human heart

tissue [151, 152] were calculated. Each phospholipid species consists of a linear

combination of specific acyl-chain compositions based on occurrence and reported

range.
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Figure 4.2: A. Approximation of cardiomyocyte volume (Vmyo) using the volume definition

of a cylinder.

B. Cardiomyocytes in the bright-field microscope (Picture taken by Shokufeh

Mahmoodzadeh, Charité - Universitätsmedizin Berlin).

Another important aspect of cellular metabolism is the availability of endogenous

short-term energy store such as glycogen and defence mechanisms against re-

active oxygen species. To reflect these aspects, a limited cardiac glycogen store

was assumed which could either (i) be resynthesized or (ii) degraded during the

simulations. Hence, endogenous derived glucose could contribute to metabolic

reactions. The maximal flux rate of glycogen degradation was set to experimen-

tally determined values while the glycogen synthesis remained unrestricted. As in

the case of glycogen turnover, a basal NADPH formation was demanded in order to

reflect potential defence mechanisms against reactive oxygen species which have

to be maintained irrespective of the external substrate supply.

All included metabolic flux rates vr were obtained from experimental studies as

given in Section 2.2.2 and Table 4.4. To consider flux rates from different sources,

we decided to relate all parameters to the cell volume of a single cardiomyocyte.

The unitary dimension for all included and calculated flux rates in this study is:

mmol · min−1 · (l cell)−1. Given the roughly cylindrical cell shape of cardiomyocytes

in cardiac tissue (see Figure 4.2), the cell volume (Vmyo) was approximated as

follows:

Vmyo =
π

4
· d2
· l, (4.9)

Vmyo = 2.16e-11 l (4.10)

with a diameter (d) of 14 µm and length (l) of 140 µm [3, 4].

In summary, the objective of the linear programming problem is defined as

finding the minimal total substrate uptake rate (vs) and oxygen demand (vO2
) while
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4.2 The determination of cardiac efficiency in varied substrate supplies

accomplishing the metabolic target function and fulfilling all applied constraints.

f(v) = (vs + vO2
) (4.11)

The modified optimization problem according to the flux-minimization principle

for each simulated substrate composition i reads, as follows:

minimize f(v) (4.12)

subject to N · v = 0, (4.13)

vmin,j ≤ v ≤ vmax,j, (4.14)

vt =

nt
∑

r=1

vr, (4.15)

vm = (βm · vs). (4.16)

4.2.2 Efficiency measure

To evaluate the cardiac efficiency and determine optimal substrate

combinations, an efficiency measure was determined for each combination based

on different input criteria q. These criteria were used to compare simulated external

substrate availability with the worst-case and best-case solution to obtain a ratio

measure of efficiency.

The following criteria qj (j=1,2,...,nj) were applied: the oxygen demand (vO2
,

q1), total substrate uptake rate (vs, q2) and endogenous glucose derived from

glycogenolysis (vGL, q3). An optimal substrate combination should not only meet

a minimal distance to the best achieved solution, but also a maximal distance to

the worst achieved solution for each criterion. This takes into account that one

solution could show minimal requirement of substrates while the oxygen demand

and glycogenolysis increases.

The efficiency measure was calculated for every simulated substrate

composition i (i=1,2,...,ni) as a Euclidean distance by, first, determining the best-

case (q+

j ) and worst-case solution (q−

j ) from all simulations for each criterion as the

minimal and maximal uptake rate, respectively. Secondly, the distances between

actual flux rate (qji) to the best-case (q+

j ) and worst-case solution (q−

j ) were calcu-
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lated.

Si+ =

√

√

√

√

nj
∑

j=1

(qij − q+

j )
2 ∀ i = 1,...,ni, (4.17)

Si− =

√

√

√

√

nj
∑

j=1

(qij − q−

j )
2 ∀ i = 1,...,ni. (4.18)

The relative distance for each solution to the best-case solution is defined as the

efficiency index Ci+ for the considered substrate combination:

Ci+ =
Si−

Si+ + Si−
(4.19)

with a maximal theoretical efficiency value Ci+ equal to 1. All substrate

compositions with the highest overall match and efficiency values Ci+ close to 1

were considered as optimal solutions for the chosen metabolic objective. Further,

the efficiency measure was tested for two criteria (q1,q2) showing several com-

mon relationship types. For each function we generated a dataset with an equal

data size (n=2000, see Figure 4.3). These datasets showed either a (i) linear,

(ii) exponential, (iii) quadratic or (iv) sinusoidal relationship between criteria q1 and

q2. For each sample we determined the efficiency to demonstrate the behaviour

of the measure. Figure 4.3 illustrates the calculated efficiency measure for each

function type. For instance, a linear relationship between applied criteria q1 and q2

results in a corresponding linear representation of the efficiency measure.

The sample minimum corresponds to an efficiency Ci+ score approaching 1.

Similarly, an exponential relationship receives Ci+ scores showing a progressive

proportionality in which sample minima and maxima equal maximal and minimal

efficiency score, respectively. In a quadratic relation between criteria, calculated

efficiency scores degrade and progress in an inversely proportionate manner to

the sample. Here, the maximal efficiency score is less than 1.0, in contrast to a

linear or exponential function type. Similarly, in a sinusoidal relationship the effi-

ciency scores degrade and progress inversely. For a pair of criteria q1 and q2, if

one criterion is a quadratic or sinusoidal function of the other criterion, then the

same efficiency score can be received by more than one pair. For these noise-

less (i.e, R2 = 1.0) samples with equal size, the efficiency measure makes it easy

to interpret and compare indices across and within function types given the data

ranges are equal. It is important to note that a cut-off for optimal data points has to
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4.2 The determination of cardiac efficiency in varied substrate supplies

be set. However, with this method it is not possible to determine a border indicating

the efficient behaviour of a given dataset.

4.2.3 Alternate optima

Presumed a problem is feasible and a value for the objective can be calculated,

then the solution for v (see equation 4.13) is not necessarily unique. Multiple

solutions might occur to solve the problem and cause degeneration of the flux

distribution. In order to identify alternate flux solutions that can equally satisfy

the problem, i.e. yield the same optimal solution, additional simulations were

performed. The mixed-integer linear problem (MILP) was resolved after adding

a constraint (z∗) for a single flux of the original flux distribution which was set to

either 1.01-fold (z∗
1
) or 0.99-fold (z∗

2
) of its original calculated flux value (v0). This

additional constraining was repeated for one flux after the other and the optimisa-

tion problem resolved.

z∗1 = 1.01 · v0, (4.20)

z∗2 = 0.99 · v0. (4.21)

The modified optimisation problem reads as follows:

minimize f(v) (4.22)

subject to N · v = 0, (4.23)

vmin,j ≤ v ≤ vmax,j, (4.24)

vt =

nt
∑

r=1

vr, (4.25)

vm = (βm · vs), (4.26)

z∗1, z
∗

2. (4.27)

In case no feasible solution could be found, the respective original flux solution

is dependent on one or more fixed fluxes of the target function and cannot be

varied. Each feasible solution yielding the same optimum as the original solution

was assigned to further statistical analysis (see Additional file 12 of the SEM).

In case the variance is equal to zero the respective flux is uniquely defined. On
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Figure 4.3: A to D. Plots representing the characteristic efficiency measure (Ci+) for

common function types. For each plot, datasets with the size n=2000 were

generated. The following functions are presented: (A) f(x) = m·x+n, (B)

f(x)=x2, (C) f(x)=ex and (D) f(x)=sin(π· x). The panels A.1 to D.1 refer to ap-

plied criteria q1 and q2, while panels A.2 to D.2 refer to calculated efficiency

measures (Ci+).
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4.2 The determination of cardiac efficiency in varied substrate supplies

the other hand, a non-zero flux value indicates an unequivocal definition of the

respective flux. These fluxes may vary without affecting the optimal behaviour of

the metabolic network, based on the capability of the network to compensate these

variations.

The optimisation problem was repeated for substrate combinations which were

identified with the highest or lowest efficiency value while satisfying (1) a base-

line ATP consumption rate and (2) a target function of the cardiomyocyte (see

Additional file 12 of the SEM for calculated flux values). Based on the variance

analysis for all four examples, no significant difference was found between the

solutions. About one third of the fluxes cannot be changed without violating the

demanded target function, thus leading to infeasibility of the problem.
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Table 4.4: Metabolic target function of the cardiomyocyte. Flux rates are given in mmol ·

min−1· (l cell)−1.

Acyl-Composition vr Ref.

Cardiolipin (vcl)

C18:2, C18:2, C18:2, C18:2 3.38E-004 [83]
C20:3, C18:2, C18:2, C18:2 2.56E-004
C20:4, C18:2, C18:2, C18:2 2.46E-004
C18:2, C18:1, C18:1, C18:1 1.72E-004
C16:0, C16:1 2.51E-002 [83]
C18:0, C18:1 1.59E-002

Phosphatidylcholine (vpc) C20:4, C22:4 3.39E-003
C18:2, C20:4 6.59E-003
C18:2, C20:3 4.07E-003
C18:2, C20:2 3.68E-003
C20:3, C20:4 3.77E-003
C16:0, C16:1 2.99E-003 [83]
C18:0, C18:1 1.84E-002
C20:4, C22:4 5.37E-003

Phosphatidylethanolamine (vpe) C18:2, C20:4 5.41E-003
C18:2, C20:3 6.29E-004
C18:2, C20:2 7.27E-004 [83]
C22:5, C22:6 3.85E-003
C20:3, C20:4 5.20E-003

Sphingomyelin (vsm) C18:1, C16:0 2.02E-004 [83]
C18:0, C18:1 1.03E-004

Ceramide (vcer) C16:0, C18:0 4.60E-006 [84]
C18:0, C18:0 4.60E-006

vATPase - 21.6 [86]
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4.3 Computational results

This section summarizes the computational results from simulations of varied

substrate availability. The cardiac efficiency is determined for each substrate

composition while demanding a simplified and extended metabolic target function.

Finally, predicted flux distributions are evaluated with respect to experimentally

observed substrate and oxygen demands.

4.3.1 Efficiency of ATP formation in varied substrate

availability

The dephosphorylation of ATP through myosin light chain kinase is an impor-

tant step in the cross-bridge cycle to generate cardiac contraction [136, 137].

However, currently this dynamic process is not described in the reconstructed

metabolic network of the human cardiomyocyte. Therefore, a simplified metabolic

target functions was defined by demanding a baseline ATP consumption rate

(vATPase) of 21.6 mmol · min−1· (l cell)−1 [86] to reflect this important cardiac func-

tions.

vt = vATPase (4.28)

The oxidation of available substrates m should provide sufficient ATP synthesis

to enable this ATP consumption rate (vATPase). These alternative energy-delivering

substrates included glucose, oleate, acetoacetate and lactate, which can be taken

up and oxidised by cardiomyocytes to generate ATP. The external uptake rate for

each substrate is expressed by vm (m=1,2,...,ns) and described as follows:

vm = βm · vs (4.29)

where the coefficient β (0 ≤ βm ≤ 1) denotes the relative share of the respective

substrate m in the total substrate uptake flux vs (see Chapter 4.2.1).

The coefficient β was modified on a fine grid of values between 0 and 1. The

network boundaries were restricted to the import of the investigated substrates,

cofactors (choline, ethanolamine) and oxygen while only the export of degrada-

tion products such as glutamine and NH3 was allowed (see Appendix, Table 2 or

Additional file 5 of the SEM for all applied constraints).

In total, 176 851 flux minimisation computations were performed, while
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Table 4.5: Baseline ATP consumption.

βGlucose βOleate βAcetoacetate βLactate vO2
vs Ci+

0.00 1.00 0.00 0.00 4.1101 0.1626 0.6849
1.00 0.00 0.00 0.00 3.6007 0.6005 0.6576
0.00 0.00 1.00 0.00 3.9269 0.9806 0.2791
0.00 0.00 0.00 1.00 3.8124 1.2701 0.2091

0.79 0.21 0.00 0.00 3.8534 0.3823 0.7334
0.42 0.37 0.09 0.12 3.9830 0.3154 0.7000
0.33 0.19 0.43 0.05 3.9420 0.4536 0.6500
0.20 0.16 0.26 0.38 3.9485 0.5292 0.6000
0.46 0.03 0.46 0.05 3.7757 0.6847 0.5500
0.17 0.09 0.01 0.73 3.8880 0.7020 0.5000
0.20 0.04 0.41 0.35 3.8534 0.7841 0.4500
0.16 0.03 0.33 0.48 3.8448 0.8575 0.4000
0.06 0.05 0.03 0.86 3.8794 0.8942 0.3600
0.02 0.02 0.52 0.44 3.9010 0.9677 0.3000
0.07 0.00 0.07 0.86 3.7930 1.1556 0.2500
0.00 0.00 0.13 0.87 3.8297 1.2247 0.2070

All data is ranked by the calculated efficiency in descending order and given fully for exclusive
utilisation of each substrate. Results for altered substrate availability are listed by the achieved
efficiency with a value of: 0.25, 0.3,0.36, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65 and 0.7. Rates for oxygen
requirement (vO2 ) and total substrate uptake rates (vs) are given in mmol · min-1

· (l cell)-1. For
all results, see Additional file 8 of the SEM.

minimising the sum of external uptake fluxes without restricting the oxygen

supply (see Additional file 8 of the SEM for predicted flux values).

Each simulated substrate composition for glucose, oleate, acetoacetate and

lactate meets the energy demand to enable the predefined ATP consumption rate

(vATPase). Nonetheless, oxygen and substrate demands differed clearly between

substrate combinations as presented in Figure 4.4. A minimal oxygen requirement

for all simulations was vO2
= 3.6007 mmol · min−1· (l cell)−1 and only reached in

exclusive utilisation of glucose, as can be seen in Table 4.5 and Figure 4.5.

Simulating exclusive utilisation of oleate resulted in an increased oxygen

uptake to a maximum of vO2
= 4.1101 mmol · min−1· (l cell)−1, while only a

minimal total substrate uptake rate was required (vs=0.162 mmol ·min−1· (l cell)−1).

For each simulation an efficiency measure (Ci+) was calculated based on two

input criteria: (1) the oxygen demand and (2) the total substrate uptake rate. As

illustrated in Figure 4.5, this measure enables to compare a given oxygen and

total substrate demand to the best and worst achieved values within the total set

of simulations. On the basis of Ci+, the optimal substrate composition should
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Figure 4.4: Illustration of total substrate uptake rate (vs) and oxygen demand (vO2
) for

a fixed glucose supply with (A) β = 0.25 and (B) β = 0.75. The panels A.1

and B.1 refer to the oxygen demand (vO2
) for the given glucose proportion,

while panels A.2 and B.2 refer to the total substrate uptake rate (vs). The

optimal substrate composition (*) is marked for each panel: (A) vGlucose= 25%,

vOleate= 64%, vAcetoacetate= 0%, vLactate= 11%, (B) vGlucose= 75%, vOleate= 25%,

vAcetoacetate= 0%, vLactate= 0%.
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Figure 4.5: Illustration of oxygen (vO2
) and total substrate uptake rates (vs) for exclu-

sive utilisation of glucose (N), oleate (+), acetoacetate (•) and lactate (�).

Calculated distances for each criterion were visualized for acetoacetate, with

dotted lines indicating distances to minimal and maximal oxygen uptake rates

and straight lines to respective minimal and maximal total substrate uptake

rates. Additional markers indicate theoretical values for best (green circle)

and worst (red circle) solution. The efficiency index Ci+ is defined as the

relative distance for each solution to the best-case solution: Ci+ =
S

i−

S
i+
+S

i−
.

satisfy the metabolic target function, while requiring as little oxygen and substrates

as possible, thus enabling an efficient cardiac metabolic performance.

In the extreme situation in which only one substrate is exclusively oxidised,

glucose and oleate were almost identical efficient in terms of oxygen and total

substrate demand according to our selected efficiency measure (Ci+; Table 4.5,

Figure 4.5). Simulating more physiological situations in which all four substrates

could be utilised revealed that a combination of oleate and glucose in the

percentage of 21% and 79%, respectively, provided an optimal nutritional supply

for the cardiomyocyte (Ci+ 0.7334; see Table 4.5).

By contrast, the least efficient substrate supplies according to Ci+ include lactate.

Especially sole lactate utilisation required a maximal total substrate uptake rate

(vs) of 1.2701 mmol · min−1· (l cell)−1, thus 7.84-fold higher than in case of oleate

utilisation. We determined the lowest efficiency for a total substrate combination of

13% acetoacetate and 87% lactate (Ci+= 0.2070, see Table 4.5).

To identify alternate flux solutions that can equally satisfy the problem, i.e. yield

the same optimal solution, additional computations (see Chapter 4.2.3) were
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performed. The optimisation problem was repeated for substrate combinations

with the highest and lowest calculated efficiency. Here, four alternative distributions

yielding the same optimal solution were determined for the substrate

combination achieving the highest calculated efficiency (79% oleate,

21% glucose). The calculated distributions showed no significant difference from

the original distribution (F= 135, Pr(>F) <2e-16, p≤0.001) and 90.70% of the fluxes

were unique, thus the variance (s) equals zero (see Additional file 9 of the SEM for

a complete overview of all calculated alternate flux values).

Furthermore, 11 alternative distributions were identified for the least efficient

substrate combination showing no significant difference from the original

distribution (F= 135, Pr(>F) <2e-16, p≤0.001) and 74.41% unique flux solutions

(s=0). The largest variance (s=0.24) was found for flux rates of creatine and

phosphocreatine transport into the mitochondrion as well as cytosolic and

mitochondrial creatine kinase. However, all fluxes representing the external

substrate and oxygen uptake were found with unique solutions.

4.3.2 Validation of calculated efficiency

To validate the theoretical observations, computations were performed by

applying substrate compositions as determined in a recent experimental study [82]

(see Chapter 2.2.2), which investigated the utilisation of glucose, lactate, oleate,

acetate and ketone bodies (acetoacetate, (R)-3-hydroxybutanoate) in dependence

on workload and insulin to improve the perfusion system for the isolated rat heart.

Again the simplified metabolic target function with a baseline ATP consumption

rate (vATPase) of 21.6 mmol · min−1· (l cell)−1 [86] was included in the optimisation

problems. The network boundaries were set as given in Appendix Table 3.

The computational results, summarised in Table 4.6 and Figure 4.6, show that

calculated flux rates are in good concordance with experimentally determined

uptake rates and correspond in many cases. Compared to the experiment,

the oxygen demand is underestimated in all simulations but in sole acetate oxida-

tion. Moreover, the total substrate uptake rate is increased in simulations for sole

utilisation of acetoacetate and in combined utilisation of acetate and glucose. Here,

the ratio of calculated oxygen demand to total substrate uptake rate shows the

greatest deviation from experimentally obtained values.

To further compare these estimations with the experiment, efficiency measures

were determined for each substrate composition as described above. As depicted
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Figure 4.6: Comparing calculated cardiac efficiency (Ci+) under experimental

conditions [82] to theoretical simulations of altered substrate supply.

in Figure 4.6, the calculated efficiency indices were almost identical except for

simulations of lactate oxidation. Here, the required oxygen and substrate

demand to satisfy the baseline ATP consumption rate obtained a more favourable

relation as the calculated oxygen demand in sole oleate utilisation was clearly

underestimated. Furthermore, the oxygen and substrate demand increased to

a maximum (Ci+= 0; see Table 4.6, Figure 4.6) in simulations of sole acetate

utilisation. This explains the differences between calculated efficiency indices. In

agreement with these simulations, oxidation of glucose and oleate showed to be

more efficient in terms of oxygen demand and total substrate uptake rate.

The comparison of experimental results in the oxidation of acetoacetate with the

computed ones is limited due to reduced cardiac work during the

perfusion experiment and altered substrate application. The applied

optimisation problems consider direct presence of acetoacetate and glucose, while

in the experiment, glucose was added at a later time in the perfusion. The data,

summarized in Table 4.6, show that sole utilisation of acetoacetate is less

efficient than glucose or oleate oxidation, but demonstrate that oxygen and sub-

strate uptake rates are more favourable than in the case of acetate and lactate.
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Table 4.6: Simulation of experimental substrate supply and comparison by

calculated efficiency Ci+ .

Simulation Experiment

Exp. Substrate β m vO2
vs vO2

/vs Ci+ vO2
vs vO2

/vs Ci+

1 Glucose 1.00 3.60 0.60 6.00 0.83 4.28 0.55 7.84 0.78
2.1 Lactate 1.00 3.81 1.17 3.25 0.60 4.71 1.41 3.34 0.21

2.2
Glucose 0.23

3.73 0.96 3.89 0.69 4.70 1.59 2.96 0.15
Lactate 0.77

3.1 Oleate 1.00 4.11 0.16 25.37 0.82 4.94 0.18 28.07 0.67

3.2
Glucose 0.54

4.02 0.24 16.75 0.85 4.36 0.21 20.57 0.91
Oleate 0.46

4.1 Acetate 1.00 4.8 2.4 2 0 4.28 1.68 2.55 0.31

4.2
Glucose 0.05

4.6 2.11 2.19 0.14 4.69 1.46 3.21 0.2
Acetate 0.95

5.1 Acetoacetate 1.00 3.93 0.98 4.00 0.65 4.20 0.53 7.89 0.59

5.2
Glucose 0.26

3.81 0.86 4.41 0.71 4.95 1.01 4.91 0.37
Acetoacetate 0.74

Flux rates for vO2 and vs are given in mmol · min −1
· (l cell)−1. vO2 indicates oxygen demand; vs, total substrate uptake

rate; Ci+ , calculated efficiency.

4.3.3 Extending the metabolic target function and cardiac

efficiency

Cardiomyocytes have to maintain an adequate ATP synthesis together with a

multitude of metabolic functions including abundance of contractile proteins,

membrane integrity and protection against reactive oxygen species. To reflect

these metabolic features of the human cardiomyocyte, an extended metabolic

target function (vt) was defined by including not only the formation of ATP and

important membrane lipids: ceramide (cer), cardiolipin (cl), phosphatidylcholine

(pc), phosphatidylethanolamine (pe) and sphingomyelin (sm) (see Chapter 4.2)

but also of NADPH.

vt = vATPase + vcer + vcl + vpc + vpe + vsm (4.30)

The corresponding metabolic flux rates were obtained from experimentally

determined synthesis rates of membrane lipids from tracer studies [83, 153]. To

take into account possible short-term storage of energy, the synthesis of glycogen

was allowed during simulations while restricting the degradation of glycogen to a

maximal rate (vGL;max = 0.216 mmol · min−1· (l cell)−1) as determined in previous

investigations [154].
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The myocardial defence mechanisms against hypoxia are mostly represented

by NADPH to maintain reduced glutathione. To consider this aspect, an initial

simulation was performed to determine the basal NADPH formation in the case of

unrestricted substrate supply. The cytosolic and microsomal glucose-6-phosphate

dehydrogenase rate (G6PDH) assigned a rate of 2.13e-05 mmol min−1· (l cell)−1

and 3.05e-03 mmol · min−1· (l cell)−1, respectively, but no flux was found for the

NADPH producing isocitrate dehydrogenase. The rate of cytosolic G6PDH was

0.08% of the hexokinase flux rate distribution. An overall NADPH production rate

of 1.42e-05 mmol ·min−1· (l cell)−1 was determined and included in the simulations

as a minimal required rate of NADPH synthesis in addition to the metabolic target

function.

In order to simulate varied substrate availability that corresponds more to

physiological conditions, the set of available substrates (m=9) was extended by

including saturated, medium-chain unsaturated and long-chain unsaturated fatty

acids. The network boundaries were restricted to the import of the investigated

substrates, cofactors (Choline, Ethanolamine) and oxygen. Only the export of

degradation products such as glutamine, NH3 and urate was allowed (see

Appendix, Table 4 and Additional file 5 of the SEM for all applied constraints).

In total, 218 618 computations were performed simulating altered supply of

9 different substrates (ns=9). As expected, no solutions were found in the case of

absent α-linoleate and docosahexaenoate supply, thus these fatty acids are

required as precursors of the biosynthesis of certain phospholipid species in the

metabolic network and cannot be replaced by any other substrate [155]. For each

simulation, the efficiency (Ci+) was calculated to identify optimal substrate combi-

nations based on three criteria: (i) oxygen demand (vO2
), (ii) total substrate uptake

rate (vs) and (iii) endogenous glucose derived from glycogen turnover (vGL).

The highest efficiency scores were calculated for substrate combinations with a

major share of fatty acids and glucose, as presented in Table 4.7.

Especially a substrate combination of 90% glucose, 5% of palmitate and 1.667% of

α-linoleate, eicosapentaenoate and docosahexaenoate showed to be more

favourable than any other substrate combination (vO2
=6.9154 mmol · min−1· (l

cell)−1; vs=4.8859 mmol · min−1· (l cell)−1; Ci+=0.8438). As expected, the

efficiency (Ci+) was directly proportional to an increasing share of glucose and fatty

acids (Figure 4.7-A) and inversely proportional to an increasing share of aceto-

acetate and lactate (Figure 4.7-A).

In fact, a substrate combination of 95% acetoacetate and 5% fatty acids with a
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share of 0.83% palmitate, 0.83% α-linoleate and 3.33% docosahexaenoate

resulted to be least efficient to fulfil the demanded metabolic target function (see

Table 4.7). A maximal oxygen demand (vO2
=48.421 mmol · min−1· (l cell)−1) was

estimated in predominately utilisation of acetoacetate (95%) supplemented by

oleate (0.83%), α-linoleate (0.83%) and docosahexaenoate (3.33%).

Similarly, a maximal total substrate supply (vs= 10.2332 mmol · min−1 · (l cell)−1)

was calculated for a substrate combination of 45% acetoacetate, 35% lactate,

15% glucose, 1.67% oleate, 0.8% α-linoleate and 2.5% docosahexaenoate (see

Additional file 10 of the SEM).

Again the optimisation problem was repeated to identify alternative flux

solutions in substrate combinations with the highest and lowest calculated

efficiency as described (see Table 4.7). Here, 202 alternative distributions were

identified with 71.92% unique flux solutions (variance s=0) achieving the

same objective for the substrate combination with the highest calculated efficiency

(see Additional file 9 of the SEM). None of thel alternative distributions showed any

significant difference to the original distribution (F=462, Pr(>F) <2e-16, p≤0.001).

Similarly, 216 alternative distributions with 56.96% unique flux solutions were

found for the substrate combination with the lowest calculated efficiency. The cal-

culated distributions showed no significant difference from the original distribution

(F=278, Pr(>F) <2e-16, p≤0.001). The largest variance (s=29.83) was again found

for flux rates of creatine and phosphocreatine transport into the mitochondrion as

well as cytosolic and mitochondrial creatine kinase. In addition, variable flux rates

were found for β-oxidation of fatty acids and ATP:nucleoside-diphoshate phospho-

transferase. Each flux representing the glycogenolysis, external substrate and

oxygen uptake was unique (s=0) in all simulations.
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total substrate uptake flux by efficiency score Ci+ greater than 0.8. The bold
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Figure 4.8: A. Exogenous utilisation of fatty acids and contribution to ATP production by

fatty acid β-oxidation.

B. Steady-state rates of ATP production from fatty acid β-oxidation. Data are

expressed as boxplots.

4.3.4 Contribution of fatty acids to ATP formation

The data, as illustrated in Figure 4.7-B, shows that the variability of substrate

combinations with a large efficiency index (Ci+ ≥0.8) increased with the advanced

objective function. The mean share (βx̄) of glucose, fatty acids, acetoacetate and

lactate was 0.231, 0.311, 0.221, and 0.237, respectively. The data,

summarised in Figure 4.7-A, show for all fatty acids a similar pattern of calculated

efficiency. Nonetheless, the contribution to ATP production differed

between saturated, monounsaturated and polyunsaturated fatty acids. The mean

rates of fatty acid utilisation and rates of ATP produced by fatty acid utilisation are

summarised in Figure 4.8.

The ATP formation rate by fatty acid β-oxidation was calculated by assuming

120, 136, 134, 132, 142 and 156 moles of ATP derived from full oxidation of

palmitate, stearate, oleate, α-linoleate, eicosapentaenoate and docosahexaenoate,

respectively. The vast majority of palmitate, stearate and oleate contributed to

phospholipid biosynthesis, while polyunsaturated fatty acids were mostly degraded

via β-oxidation. As illustrated in Figure 4.8-A, α-linoleate was not degraded by

β-oxidation, it therefore contributed fully to phospholipid biosynthesis.

Additionally, degradation of docosahexaenoate and eicosapentaenoate through

β-oxidation yielded a maximal ATP production (Figure 4.8-B) and this contribution

rose up to 99.1% and 98.82% of utilised docosahexaenoate and

eicosapentaenoate, respectively.
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glycolysis and oxidative phosphorylation.

B. Steady-state rates of aerobic and anaerobic ATP production from glucose

utilisation derived from exogenous glucose and glycogenolysis. Data are

expressed as boxplots. ∗ significant difference between endogenous and

exogenous glucose. p<0.05 (unpaired t-test).

4.3.5 Glycogen turnover

Glycogenolysis and glycogen synthesis occurred simultaneously throughout the

simulations. In case of excessive glucose supply, which was not needed to fulfil

the target function, glycogen was synthesized at a maximal rate of 0.887 mmol ·

min−1· (l cell)−1. Rates of exogenous glucose entering glycolysis were significantly

greater than those from endogenous glycogen degradation (Figure 4.9-A; p≤0.05).

Following this, a large proportion of exogenous glucose was oxidised by oxidative

phosphorylation and was also significantly greater than those from endogenous

glycogen degradation (vexo=0.437 ± 0.766 mmol · min−1· (l cell)−1; vendo=0.091 ±

0.189 mmol · min−1· (l cell)−1 ; p≤0.05).

In fact oxidative phosphorylation contributed most to cellular ATP production

from exogenous and endogenous glucose utilisation (Figure 4.9-B), with glycogen

accounting for 34.41% of ATP production (when glucose accounted for 50% of

the total substrate uptake rate). The percentage of ATP production deriving from

endogenous glucose oxidation by oxidative phosphorylation increased to 80.16%

in a glucose share of less than 10% of the total substrate uptake rate. These re-

sults are supported by previous findings [156] showing a contribution of glycogen

up to 41% of the total ATP production under experimental conditions.
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Table 4.7: Results for simulations of varied substrate availability of glucose, acetoactate, lactate and 6 different fatty aicids: palmitate,

stearate, oleate, α-linoleate, eicosapentaenoate and docosahexaenoate.

βGlucose βPalmitate βStearate βOleate βα-Linoleate βEPA βDHA βAcetoacetate βLactate vO2 vs vGL vGS Ci+

0.9000 0.0500 0.0000 0.0000 0.0167 0.0167 0.0167 0.0000 0.0000 6.9154 4.8859 0.0000 0.4027 0.8438
0.2500 0.0000 0.0000 0.0000 0.2083 0.0000 0.0417 0.0000 0.5000 4.0502 0.4093 0.1450 0.0000 0.8000
0.4500 0.0417 0.0000 0.0000 0.0417 0.0000 0.1667 0.3000 0.0000 11.4761 2.0466 0.0000 0.0000 0.7500
0.2500 0.0250 0.0000 0.0500 0.0250 0.0250 0.0250 0.5500 0.0500 14.9112 3.2573 0.0000 0.0690 0.7000
0.0000 0.0250 0.0000 0.0250 0.0250 0.0000 0.0750 0.1000 0.7500 17.3465 3.4111 0.0098 0.0000 0.6500
0.2500 0.0167 0.0167 0.0000 0.0167 0.0167 0.0333 0.6500 0.0000 20.2825 4.8859 0.0000 0.1150 0.6000
0.0500 0.0000 0.0333 0.0000 0.0167 0.0333 0.0167 0.4500 0.4000 22.5428 4.8859 0.0000 0.0103 0.5500
0.1500 0.0000 0.2250 0.0750 0.0750 0.0000 0.0750 0.1500 0.2500 25.2571 10.2332 0.0000 0.4532 0.5000
0.4000 0.0000 0.0167 0.0000 0.0083 0.0083 0.0167 0.3500 0.2000 27.6323 9.7718 0.0000 0.3434 0.4500
0.3000 0.0000 0.0000 0.0083 0.0083 0.0000 0.0333 0.0500 0.6000 29.8822 10.2332 0.0000 0.2629 0.4000
0.2500 0.0167 0.0083 0.0000 0.0083 0.0000 0.0167 0.3000 0.4000 32.3227 10.2332 0.0000 0.2266 0.3500
0.2500 0.0083 0.0083 0.0000 0.0083 0.0000 0.0250 0.5000 0.2000 34.8810 10.2332 0.0000 0.2266 0.3000
0.2000 0.0000 0.0250 0.0000 0.0083 0.0083 0.0083 0.7500 0.0000 37.2907 9.7718 0.0000 0.1757 0.2500
0.0000 0.0000 0.0083 0.0083 0.0083 0.0083 0.0167 0.3000 0.6500 38.8292 9.7718 0.2160 0.0000 0.2000
0.0000 0.0083 0.0083 0.0083 0.0083 0.0000 0.0167 0.4000 0.5500 41.2341 10.2332 0.2160 0.0000 0.1500
0.0000 0.0167 0.0000 0.0000 0.0083 0.0167 0.0083 0.9500 0.0000 44.3334 9.7718 0.0000 0.0029 0.1000
0.0000 0.0000 0.0083 0.0000 0.0083 0.0000 0.0333 0.9000 0.0500 47.5569 10.2332 0.0120 0.0000 0.0500
0.0000 0.0083 0.0000 0.0000 0.0083 0.0000 0.0333 0.9500 0.0000 47.9063 10.2332 0.2160 0.0000 0.0100

Results are ranked by the calculated efficiency Ci+ in descending order and given for maximal and minimal calculated efficiency values. Further results are shown for each efficiency
value of 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 and 0.65. Rates for oxygen requirement (vO2 ), total substrate uptake rates (vs), glycogenolysis (vvGL) and glycogen synthesis (vGS) are
given in mmol · min-1

· (l cell)-1. For a complete overview of all results, please see Additional file 10. GL indicates glycogenolysis; GS, glycogen synthesis; EPA, eicosapentaenoate;
and DHA, docosahexaenoate
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5 Discussion

This thesis aimed to present a comprehensive reconstruction of the human

cardiomyocyte that accomplish a large set of metabolic and physiological

functions to study cardiac metabolism. A basic approach has been developed to

simulate a varying substrate supply and to analyse cardiac efficiency

under nutritional stress. Calculated flux distributions are in compliance with an

experimental study of the isolated working heart. Finally, optimal substrate

compositions have been proposed for the cardiomyocyte to meet important

cellular functions and maintain cardiac performance.

Metabolic network reconstruction

The reconstructed metabolic network of the human cardiomyocyte is based on

previous human network reconstructions [6, 8, 96] by integrating gene expres-

sion data and available experimental evidence of metabolic reactions reported

for cardiomyocytes. Using linear optimisation approaches, the ability of the net-

work has been ensured to achieve a wide range of metabolic target reactions

required for maintaining the structural and functional integrity of the cell [77, 108].

The consistency and functionality of CardioNet is a clear advantage compared to

a previous automated reconstructed genome-scale network of the human heart

[147], which lacks functionality.

CardioNet allows for an additional 228 mitochondrial reactions compared to two

mitochondrial networks of the human cardiomyocyte reported previously [61, 146].

The metabolism of 26 distinct fatty acids is included to a greater extent, taking into

consideration of variable acyl-chain composition of important phospholipids such

as cardiolipin, phosphatidylserine and phosphatidylcholine.

The present reconstruction can serve as a reliable basis for the integration and

analysis of different types of data to study important metabolic processes of the

human cardiomyocyte. The estimation of flux rates from tracer kinetic data [157,

158] or prediction of flux changes inferred from changes in gene expression level
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of metabolic enzymes [159] under pathological conditions are only a few examples

of possible applications.

Optimisation-based concept of cardiac efficiency in varied

substrate availability

Under normal physiological conditions, cardiomyocytes metabolise a wide range

of substrates including fatty acids, glucose, lactate, pyruvate, ketone

bodies and amino acids to meet the ATP demand for muscle contraction and

further cellular mechanisms [31]. The rate of substrate utilisation is dependent

on (i) substrate availability, (ii) requirement of ATP production for maintenance of

cardiac contraction, (iii) oxygen supply and (iv) hormonal level of various hormones

directly influencing substrate uptake, e.g. insulin and glucagon. By examining how

variations in the relative proportions of glucose, fatty acids, lactate and ketone

bodies may affect cardiac efficiency interesting results emerged.

Linear optimisation problems were defined with the objective to minimize the total

substrate and oxygen demand, while the substrate availability was constrained and

a metabolic target function of the cardiomyocyte was demanded. By calculating

a Euclidean based-distance measure (Ci+), optimal substrate combinations were

identified based on the criteria: (i) oxygen demand, (ii) total substrate uptake rate

and (iii) rate of endogenous glucose derived from glycogenolysis. On the basis of

Ci+, predominant oxidation of fatty acids (79%) supplemented by glucose (21%)

were most effective in maintaining the required ATP production.

Additionally, in sole oleate utilisation, total substrate requirement and oxygen

consumption were more favourable compared to sole utilisation of glucose,

lactate and acetoacetate. By contrast, predominant utilisation of lactate and

acetoacetate were least efficient in maintaing ATP production. These findings are

supported by previous studies [82, 160] documenting reduced cardiac

performance in a predominately supply of ketone bodies. In diabetic conditions with

increased concentration of ketone bodies, cardiac activity improved with

additional fatty acid supply, indicating the inadequacy of ketone bodies to efficiently

maintain ATP production.

To further validate the theoretical observations, substrate proportions were

simulated as presented in a previous study of the isolated working rat heart [82] and

compared to calculated efficiency measures derived from experimental

measurements. Applied substrates were ranked equally according to the
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calculated efficiency Ci+ based on experimental and simulated data. During the

experiment, cardiac performance declined in a sole ketogenic environment (aceto-

acetate, (R)-3-hydroxybutanoate), while a mixture of glucose and acetoacetate

seemed to reverse this effect.

Similar efficiency measures were calculated for ketone body utilisation during

simulations and with experimental values, supporting these previous findings. In

addition, acetate showed the worst relation of oxygen demand to total substrate re-

quirement in meeting the metabolic target, both in results from simulations and

experimental measurements. Nonetheless, no decline in cardiac performance

during the actual experiment has been reported. By contrast, lactate was less

efficient in the experimental setting.

Differences between calculated and experimentally determined flux rates may be

caused by the constraints applied, in particular by the simplified metabolic target

function, possibly observational error in the experiment and substrate interactions,

which cannot be considered by FBA simulations.

Determination of cardiac efficiency while demanding an

extended metabolic target function

The simplified target function was extended by demanding the formation not

only of ATP and of NADPH, but also of important membrane lipids: ceramide,

cardiolipin, phosphatidylcholine, phosphatidylethanolamine and sphingomyelin.

The fraction of fatty acids in the set of importable substrates was enlarged to in-

clude this broader set of lipids in the simulations. These modifications involved the

consideration of saturated (palmitate, stearate), monounsaturated (oleate), long

chain poly-unsaturated omega-6 (α-linoleate) and omega-3 (eicosapentaenoic acid,

docosahexanoic acid) fatty acids.

Although long chain poly-unsaturated fatty acids (PUFA) predominately serve

as membrane lipids [36, 39, 40], there is evidence for occurrence of Acyl-CoA

dehydrogenase 9 (ACAD-9) in human cardiomyocytes [161]. ACAD-9 catalyses

the initial step of mitochondrial fatty acid β-oxidation. Moreover, a previous study

showed enzymatic activity for ACAD-9 with long-chain unsaturated acyl-CoA as

substrate (e.g.:C22:6-CoA) [162]. This is in concordance with another study [163]

measuring rates of fatty acid β-oxidation for palmitate and docosahexaenoate.

Hence, it is reasonable to consider fatty acid -oxidation of PUFA for a systematic

analysis of substrate utilisation in cardiomyocytes.
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5 Discussion

A physiological simulation of cardiomyocyte metabolism was ensured by

demanding flux rates as reported in previous experimental studies of membrane

lipids [83, 153] and integrating the fatty acid composition of phospholipids as

reported by investigations in human heart tissue [151, 152]. Further, another

important aspect of cardiac metabolism is defence mechanisms against hypoxia,

which is mostly effected by NADPH to maintain reduced glutathione.

To include this process, an additional computation was performed to determine

the basal NADPH formation rate by the G6PDH, the rate limiting enzyme of

oxidative pentose phosphate pathway, in the case of unrestricted substrate sup-

ply. This estimated basal rate of NADPH production (1.42e-05 mmol · min-1· (l

cell)-1) was applied as minimal requirement to maintain cellular protection against

reactive oxygen species (ROS).

Additionally, cardiac short-term storage of energy, in particular glycogen was

considered, which could act as a potential precursor of sn-glycerol, a known

intermediate for phospholipid biosynthesis and ATP production. The synthesis

of glycogen was not restricted while the glycogen degradation was limited to a

maximal rate as has been determined in previous investigations [154].

Glycogen turnover and contribution of substrates to ATP

formation

As shown in the present study, glycogen synthesis and glycogenolysis occurred

simultaneously throughout the simulations, which is consistent with previous

studies [154, 156] documenting the same pattern. In case the available glucose

was not needed to fulfil the metabolic target function, glycogen was synthesized

with a maximal rate of 0.887 mmol · min-1· (l cell)-1.

The vast majority of glucose utilised during simulations derived from

exogenous uptake, indicating that endogenous glycogenolysis was only utilised in

a decreased glucose supply. Both external and endogenous glucose substantially

contributed to ATP production by oxidative phosphorylation. Previously, Henning

et. al. [156] demonstrated that glycogen accounted for 41% of synthesized ATP in

predominately glucose oxidation.

In agreement with these experimental findings, computations show a glycogen

contribution to ATP synthesis from glucose oxidation, which is dependent on an

exogenous glucose supply. In case glucose accounts for 50% of the total sub-

strate uptake rate, 34.41% of the ATP production from oxidative phosphorylation is
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related to glycogen. Consequently, this contribution increased to 80.16% in case

of decreased glucose supply ( 25% of the total substrate uptake rate).

To ensure unique solutions for calculated flux rates, additional simulations were

performed. Depending on the complexity of the target function, up to 90.70% fluxes

with unique solutions were found, which included fluxes representing glycogeno-

lysis and external substrate and oxygen uptake for every tested substrate

combination. None of the identified alternate flux solutions showed significant

difference from the original. Hence the efficiency analysis of substrate

combinations is not compromised by this small variability.

Implications for substrate utilisation to improve cardiac

efficiency

This is the first study examining the efficiency of a large set of substrates using

simulations. Computations showed that a balanced utilisation of different substrate

classes (fatty acids, carbohydrates) is associated with higher cardiac efficiency

compared to sole utilisation of single substrates.

Here, predominant utilisation of fatty acids (βm̄= 0.311), especially long-chain

unsaturated fatty acids, supplemented by glucose (βm̄= 0.231), acetoacetate (βm̄=

0.221) and lactate (βm̄= 0.237) was more favourable. Moreover, utilisation of

predominantly saturated and C18 polyunsaturated fatty acids yielded higher

efficiency Ci+ than a greater share of long-chain omega-3 poly-unsaturated fatty

acids.

This is supported by a recent study [164] of isolated muscle fibers from

diabetic hearts, where an increase of mitochondrial uncoupling was measured

during exposure to fatty acid. The induced ROS production in cardiomyocyte mito-

chondria led to an activation of multiple adaptive mechanisms by which

oxidative damage can be prevented. The ambivalent role of long-chain omega-

3 poly-unsaturated fatty acids is supported by findings from other studies [39, 40]

that showed beneficial metabolic effects in myocardial protection against oxidative

damage by incorporation of long-chain omega-3 poly-unsaturated fatty acids into

mitochondrial membrane phospholipids such as cardiolipin.

The presented results indicate that a switch from fatty acid utilisation to

predominant glucose utilisation in situations with increased workload would not

decrease the efficiency of cardiac metabolism. This is emphasised by a high

efficiency (Ci+= 0.8438) for a combination of 90% glucose, 5% palmitate,
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1.67% α-linoleate, 1.67% eicosapentaenoate and 1.67% docosahexaenoate.

Further, computations revealed that polyunsaturated fatty acids contributed

mostly to ATP production via β-oxidation, while the vast majority of palmitate,

stearate and oleate were used for phospholipid biosynthesis. In fact, up to 99.1% of

utilised docosahexaenoate and 98.82% of utilised eicosapentaenoate contributed

towards ATP production, respectively. In addition, α-linoleate was not degraded

through β-oxidation, but served as substrate in the biosynthesis of phospholipid.

By contrast, predominant utilisation of acetoacetate was least efficient in

computations applying the extended metabolic target function. Here, the

oxygen demand and mitochondrial oxygen consumption were greater than with any

other substrate combination, thus, possibly increasing the flux through complex I of

the mitochondrial oxidative phosphorylation, which is considered a main source of

cellular ROS.

These observations suggest that under metabolic conditions with increased

acetoacetate levels, e.g. diabetes, cardiac contractility is affected by decreased

ATP formation and increased ROS formation, which is linked to mitochondrial

dysfunction [165, 166]. Nonetheless, it is beyond the scope of this study to

further analyse these mechanisms, but the presented network reconstruction might

contribute towards further investigation by incorporation of gene expression level

information of metabolic enzymes mediated by PPAR-α.
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6 Conclusions

The motivation for this thesis was to develop a comprehensive reconstruction of

the human cardiomyocyte. This model can be used to enable studies of cardiac

metabolism under normal and pathological conditions, thereby enabling hypothesis-

driven experimental studies. The present study benefits from previous large-scale

network reconstructions in humans [6, 8], which provided the methodological

basis and strategies. It was aimed to integrate all cellular processes involved in

anabolic and catabolic reactions in cardiomyocytes. However, since the mecha-

nism of the entire transcriptional and translational process in cellular systems is still

not known to enable a full stoichiometric representation, none of these processes

were included. Nonetheless, it is intended to expand the network reconstruction

by adding further cellular functions such as signalling pathways, DNA transcription

and translation and its regulation in the future.

The comparison of CardioNet to existing mitochondrial networks of the

cardiomyocyte illustrated the need to reconstruct reactions which are only present

during heart failure or myocardial hypertrophy in order to enable simulations of

these pathological conditions. It is expected that sufficient information of

components and biological reactions will become available through experimental

studies, such as proteome or gene expression studies in animal models and from

human heart tissues. Therefore, further extensions of the network can be obtained

and integration with other cellular process should be possible.

The presented approach enables to evaluate cardiac efficiency and to identify

optimal substrate compositions to ensure a supply of energy-rich phosphates and

cellular integrity. Proteomic data and experimentally determined flux rates will

presumably improve estimations for different cellular conditions. Together with an

extended metabolic network for cardiomyocyte under heart failure and

myocardial hypertrophy, these estimations could make an important contribution

to unveiling unanswered questions of cardiac metabolism.

In summary, this study provides a comprehensive reconstruction of the metabolic

network of the human cardiomyocyte (CardioNet) to study metabolic and

81



6 Conclusions

physiological functions of the cardiomyocyte. The evaluation of metabolic

efficiency in substrate supply and utilisation necessitates consideration of

oxygen and substrate demand and of endogenous glucose deriving from

glycogenolysis. In aerobic conditions predominant utilisation of saturated and

long-chain unsaturated fatty acids supplemented by glucose proved to be more

favourable for efficient cardiac metabolism than utilisation of acetoacetate or

lactate. In conclusion, CardioNet can serve as a reliable basis to study

cardiomyocyte metabolism.
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Appendix

1 Tables

Table 1: Constraints for the exchange of metabolites with the external (ext) and cytosolic
(cyto) space.

Reaction: mi,ext
vi
←→ mi,cyto

Identifier Metabolite (mi) Constraint

CC00237 Oxygen 0 ≤ vi ≤ +∞

CC00244 NH3 −∞ ≤ vi ≤ 0

CC00287 Glutamine −∞ ≤ vi ≤ 0

CC00260 Glucose 0 ≤ vi ≤ +∞

CC00397 L-Lactate 0 ≤ vi ≤ +∞

CC00881 (R)3-Hydroxybutanoate 0 ≤ vi ≤ +∞

CC00379 Acetoacetate 0 ≤ vi ≤ +∞

CC01016 α-Linoleate 0 ≤ vi ≤ +∞

CC01977 Linolenate 0 ≤ vi ≤ +∞

CC00031 Docosahexaenoic acid 0 ≤ vi ≤ +∞

CC02174 LDL 0 ≤ vi ≤ +∞

CC00554 L-Isoleucine 0 ≤ vi ≤ +∞

CC00273 L-Lysine 0 ≤ vi ≤ +∞

CC00295 L-Methionine 0 ≤ vi ≤ +∞

CC00300 L-Tryptophan 0 ≤ vi ≤ +∞

CC00301 L-Phenylalanine 0 ≤ vi ≤ +∞

CC00341 L-Leucine 0 ≤ vi ≤ +∞

CC00353 L-Histidine 0 ≤ vi ≤ +∞

CC00394 L-Valine 0 ≤ vi ≤ +∞

CC00399 L-Threonine 0 ≤ vi ≤ +∞

CC00400 Ethanolamine 0 ≤ vi ≤ +∞

continues on next page
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Table 1 – continued from previous page

Identifier Metabolite (mi) Constraint

CC00452 Riboflavin 0 ≤ vi ≤ +∞

CC00488 Pyridoxine 0 ≤ vi ≤ +∞

CC00332 Choline 0 ≤ vi ≤ +∞

CC00369 Nicotinamide 0 ≤ vi ≤ +∞

CC00616 Folate 0 ≤ vi ≤ +∞

CC00788 Pantothenate 0 ≤ vi ≤ +∞

Table 2: Constraints for simulations of varied substrate availability with base line ATP
consumption rate.

Reaction: mi,ext
vi
←→ mi,cyto

Identifier Metabolite (mi) Constraint

CC00237 Oxygen 0 ≤ vi ≤ +∞

CC00244 NH3 −∞ ≤ vi ≤ 0
CC00287 Glutamine −∞ ≤ vi ≤ 0
CC00260 Glucose 0 ≤ vi ≤ +∞

CC00730 Oleate 0 ≤ vi ≤ +∞

CC00397 L-Lactate 0 ≤ vi ≤ +∞

CC00379 Acetoacetate 0 ≤ vi ≤ +∞

Abbreviations used in the table for compartments are as following: ext, external; cyto,
cytosol.
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Table 3: Constraints for simulations of varied substrate availability as under
experimental conditions [82]

Reaction: mi,ext
vi
←→ mi,cyto

Identifier Metabolite (mi) Constraint

CC00237 Oxygen 0 ≤ vi ≤ +∞

CC00244 NH3 −∞ ≤ vi ≤ 0
CC00287 Glutamine −∞ ≤ vi ≤ 0
CC00260 Glucose 0 ≤ vi ≤ +∞

CC00397 L-Lactate 0 ≤ vi ≤ +∞

CC00881 (R)3-Hydroxybutanoate 0 ≤ vi ≤ +∞

CC00379 Acetoacetate 0 ≤ vi ≤ +∞

CC00262 Acetate 0 ≤ vi ≤ +∞

CC00730 Oleate 0 ≤ vi ≤ +∞

Abbreviations used in the table for compartments are as following: ext, external; cyto, cytosol.

Table 4: Constraints for simulations of varied substrate availability (9 substrates) while
satisfying the extended metabolic target function.

Reaction: mi,ext
vi
←→ mi,cyto

Identifier Metabolite (mi) Constraint

CC00237 Oxygen 0 ≤ vi ≤ +∞

CC00244 NH3 −∞ ≤ vi ≤ 0
CC00287 Glutamine −∞ ≤ vi ≤ 0
CC00530 Urate −∞ ≤ vi ≤ 0
CC00260 Glucose 0 ≤ vi ≤ +∞

CC00397 L-Lactate 0 ≤ vi ≤ +∞

CC00379 Acetoacetate 0 ≤ vi ≤ +∞

CC00446 Palmitate 0 ≤ vi ≤ +∞

CC01013 Stearate 0 ≤ vi ≤ +∞

CC00730 Oleate 0 ≤ vi ≤ +∞

CC01016 α-Linoleate 0 ≤ vi ≤ +∞

CC00025 Eicosapentaenoic acid 0 ≤ vi ≤ +∞

CC00031 Docosahexaenoic acid 0 ≤ vi ≤ +∞

CC00332 Choline 0 ≤ vi ≤ +∞

CC00400 Ethanolamine 0 ≤ vi ≤ +∞

Abbreviations used in the table for compartments are as following: ext, external; cyto, cytosol.
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2 Overview of supplemental electronic material

Additional file 1: Gene expression annotation.

The identification of human heart tissue specific reactions requires a tissue

specific gene expression profile. Gene expression samples have been obtained

from different gene expression data available from Gene Expression Omnibus,

including GDS181 and GSE1145. This table provides gene expression

information annotated to metabolic reactions of the cardiomyocyte network. Each

reaction identifier refers to a compartment localisation of the respective metabolic

reaction. Furthermore, each entry in the table provides information about

annotated Ensemble Gene ID, Geo Dataset ID, Geo Sample ID, Probeset ID, Gene

ID, gene expression value and detection call. The information of gene expression

status can be obtained from the column “Detection call”. Each expression is either

categorized as present (P), absent (A) or M (marginal). Genes were considered as

expressed for gene expression values with a cut-off greater than 100.

Format: XLS Size: 8.4MB

Additional file 2: Metabolites of the metabolic network.

Metabolites listed in this table occur in the metabolic network. For each entry a

unique network identifier is given and provided with information of metabolite title,

title synonym, metabolite sum formula and assigned compartment. Additionally

cross-references to other databases are given and refer to the following databases:

UniProtKB (UniProtKB entry), KEGG (Compound ID), Lipid Maps (LM ID), Pub

Chem (CID) and Human Metabolome Database (HMDB ID). Abbreviations used

in the table for compartments are as following, ext: external, cyto: cytosol, mito:

mitochondrion, lyso: lysosome, peroxy: peroxisome and micro: microsome.

Format: XLS Size: 142KB

Additional file 3: References.

During the network reconstruction additional evidence for occurrence of metabolic

reactions in the cardiomyocyte were obtained from previously reported studies.

This table gives a full list of cross-references to PubMed identifier (PMID)

providing evidence for included reactions of the metabolic network. Furthermore,

directionality of reactions was set according to Gibbs energy (∆G, kJ/mol) and is

provided with this table.

Format: XLS Size: 40KB
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Additional file 4: Metabolic network of the human cardiomyocyte in SBML

format.

Format: SBML Size: 982KB

Additional file 5: Definition and overview of objectives and constraints for

simulation of metabolic and physiological functions of the cardiomyocyte.

To ensure consistency and full functionality of the metabolic network, a critical

testing of physiological functions was performed based on knowledge of the

cardiac metabolism by using flux balance analysis. The table lists all objectives and

applied constraints as used in the optimization problem. Furthermore,

constraints as used in functional pruning of the network are given. Abbreviations

for constraints as used in simulations with FASIMU software are as follows: (+),

secretion of the metabolite is allowed or the metabolite is product; (-), uptake of

the metabolite is allowed or metabolite is substrate and (=), secretion and uptake

of the metabolite is allowed or metabolites are either product or substrate.

Format: XLS Size: 125KB

Additional file 6: Flux distributions of metabolic and physiological functions

of cardiomyocyte.

To ensure consistency and full functionality of the metabolic network, a critical

testing of physiological functions was performed based on knowledge of the

cardiac metabolism by using flux balance analysis. Abbreviations for

compartments: ext - external, cyto - cytosol, mito - mitochondrion, lyso - lysosome,

peroxy - peroxisome, micro - microsome.

Format: XLS Size: 1.86MB

Additional file 7: Testing functionality of Human heart model.

A comparison of the metabolic network to a previously reported genome-scale

reconstruction of the human heart [147] was performed. The presented

physiological functions of the cardiomyocyte (see Additional file 5) were applied

to test the functionality of the partial network of the human heart and compare the

performance of both networks. From 110 tested functions 53 were found to have

no feasible solution, this included important cellular functions such as the citric acid

cycle.

Format: XLS Size: 34KB
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Additional file 8: Predicted metabolic fluxes of substrate uptake and

oxygen demand for ATP expenditure in varied substrate availability.

Simulations of varied substrate availability were performed for four selected

substrates, including glucose, oleate, acetoacetate and lactate while demanding

a baseline ATP consumption rate (vATPase) of 21.6 mmol · min-1· (l cell)-1. This

table lists uptake rates for oxygen, glucose, oleate, acetoacetate, lactate and the

resulting total substrate uptake rate for each simulated substrate composition.

Efficiency indices (Ci+) were separately calculated for each simulation.

Format: CSV Size: 26.7MB

Additional file 9: Alternate optima.

To identify alternate flux solutions that can equally satisfy the problem, i.e. yield the

same optimal solution, additional simulations were performed. The MILP was re-

solved after adding a constraint (z*) for a single flux of the original flux

distribution which was set to either 1.01-fold (z∗
1
) or 0.99-fold (z∗

2
) of its original

calculated flux value (v0).

The optimization problem was repeated with substrate combinations which were

identified with the highest or lowest efficiency value while satisfying (1) a baseline

ATP consumption rate and (2) a target function of the cardiomyocyte. This table

includes all calculated flux solutions yielding the same optimal solution as with the

original optimization problem. Furthermore, an overview is given of alternate flux

solutions for fluxes representing external substrate and oxygen uptake. Statistical

significance between flux solutions for the analysis of alternate flux solutions was

determined by use of 1-way ANOVA.

Format: XLS Size: 2.65MB

Additional file 10: Predicted metabolic fluxes of substrate uptake and

oxygen demand for fulfilling the metabolic target function in varied substrate

availability.

Simulations of varied substrate availability were performed for nine selected

substrates, including glucose, palmitate, stearate, oleate, α-linoleate,

eicosapentaenoate, docosahexaenoate, acetoacetate and lactate. During the

simulations, an ATP expenditure (vATPase) of 21.6 mmol · min-1· (l cell)-1 and a

metabolic target flux were demanded, as specified in Additional file 6. Uptake

rates for all nine substrates, the resulting total substrate uptake rate and oxygen

consumption rate for all simulated substrate compositions which fulfilled the

metabolic objective are given. Furthermore solutions for glycogen synthesis and
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glycogenolysis as determined during simulations are shown.

Format: CSV Size: 24.2MB
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