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Abstract

This paper investigates the length of the longest monotone subsequence of a set of
n points in R?. A sequence of points in R? is called monotone in R? if it is monotone
with respect to some order from Ry = {<,>}¢, with other words if it is monotone
in each dimension ¢ € {1,...,d}. The main result of this paper is the construction

1
of a set P which has no monotone subsequences of length larger then [n2¢=T ]. This
generalizes to higher dimensions the Erdos-Szekeres result that there is a 2-dimensional
set of n points which has monotone subsequences of length at most [y/n |.

1 Introduction

Erdos and Szekeres [4] proved that any sequence {a;} of n real numbers has a monotone
(increasing or decreasing) subsequence of length [/n ]. They pointed out that there exists
a sequence of n distinct real numbers which has monotone subsequences of length at most
[v/n ]. This is equivalent to the fact that there is a 2-dimensional set of n points which
has monotone subsequences of length at most [\/n |, because any one-dimensional sequence
{a;} can be seen as a 2-dimensional set {(i,a;) | ¢ € {1,...,n}} of n distinct points in
R?. Now considering a set S = {(a;,b;) | i € {1,...,n}} of n distinct points we can
easily find a monotone subsequence of length [\/n |: we can sort the elements of S with
respect to the increasing order of the first coordinate of the points; w.l.o.g. let this order be
a; < ap < ... < a,. The sequence {b;} has a monotone subsequence {b;,} of length [\/n ].
Thus the subsequence {(a;,,b;;)} of S of length [\/n] is monotone with respect to some order
o€ {(£,2)(5,2) h

This paper generalizes the Erdos-Szekeres result to higher dimensions. It investigates the
length of the longest monotone subsequence of a set of n points in R?. A sequence of points in
R? is called monotone in R? if it is monotone with respect to some order from Ry = {<, >}¢,
with other words if it is monotone in each dimension 7 € {1,...,d}. The main result of this
paper is the construction of a set P of n points which has no monotone subsequences of

length larger then [nzd%ﬂ Note that any set of n points in R? has a monotone subsequence

of length at least [nzd%ﬂ (see Section 3).
Siders investigates in [10] another possibility to generalize the Erdos-Szekeres result to
higher dimensions : he constructs a sequence of n points in d dimensions such that, when
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projected in a general direction, the sequence has no (one-dimensional) monotone subse-
quences of length \/n + d or more.

A consequence of the Erdos-Szekeres result is the existence of a partition of a set of n points
in the plane into O(y/n ) monotone subsequences. The best known algorithm for computing
such a partition runs in time O(n%?) [1]. A longest monotone increasing subsequence of a
sequence of n real numbers can be computed in time O(nlogn). Felsner and Wernisch give
in [5] an algorithm that computes maximum £ increasing subsequences in time O(knlogn).

Partitioning into monotone subsequences is a useful tool for various applications in the
plane. Matousek and Welzl give in [8] an algorithm for the halfspace range-counting problem
in the plane, using the Erdds-Szekeres result. This technique has also been applied in [2]
to solve some other geometric-searching problems, including ray shooting and intersection
searching.

The result of this paper shows that there are sets of points in R? with very short monotone
subsequences, thus partitioning into monotone subsequences in R? may not be a promising
tool for solving high dimensional geometric-searching problems. An interesting problem is
what is the expected size of the longest monotone subsequence of a set of d-dimensional
n points chosen at random from the unit cube [0, 1,]¢ under uniform distribution. In the
case of one-dimensional sequences Hammersley showed in [7] that the expected length of
a maximum increasing subsequence in a random permutation of {1,2,...,n} converges to
cy/n with increasing n, for some constant ¢. A simple proof that ¢ < 2 is given by Pilpel in
[9]. A review on the length of the longest increasing subsequence of n real numbers, which
covers results on random and pseudo-random sequences is given in [11]. For the case of
higher dimensions, Bollobds and Winkler proved in [3] that for n points, independent und
uniformly distributed on [0, 1]¢, the length of a longest subsequence which is monotone with
respect to the dominance order ! converges to cq-/n with increasing n, where ¢, is a constant
depending on d with limg_ .o, cq = €.

This paper is structured as follows. In Section 2 we introduce some basic notations and
definitions. Section 3 presents a simple algorithm which finds a monotone subsequence of
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length at least [n27-7] in a set of n points in R?. Finally, in Section 4 we construct a set P
1
of n points in R? with longest monotone subsequences of length [n2@-1].

2 Preliminaries

We define the set Ry = {<,>}? of reflexive partial orders on RY. TLet o € Ry, 0 =

(o(1),...,0(d)) with o(i) € {<,>},i € {1,...,d}. Consider two points in R%:

a = (al,...,ad)
b = (b,...,ba)

where a;,b; € R. We write as usual a 0b to mean that (a, b) is in the order o, which is defined
as follows:
aob <~ CLZO(Z)bZ\V/ZG{]_,,d}

where )
@i O(Z) bz - { a; 2 bz if O(Z) =

!The dominance order is the partial order << on R? such that a = (ay,...,aq) << b= (b1,...,by) if
and only if a; < b; foreach i =1,...,d.
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Analogously, we define the set Oy = {<,>}? of irreflexive partial orders on RY.
Definition 2.1 A sequence S = [ py,ps,...,p, | of distinct points from R? is monotone in
R¢ if and only if there is some order o € R, U Oy such that p; ops o ... o p, holds. We call
S to be monotone with respect to o.

Notation 2.1 Given o= (0(1),...,0(d)) € RqU O4 we denote by

a:(m,...,m)

=<, T =>and> = <.

where < = >,

v

Definition 2.2 Given two different strings * = [ 122 ...2, | and y = [ y1y2...y, | where
xj,y; € M C R, we say that string z is lexicographically less than string y if there exists
an integer ¢, 0 < ¢ <, such that x; = y; forall j =0,...7 —1 and 2; < ;.

Throughout this paper we say that a set P has a monotone subsequence & with respect
to some order o € R, if the set of all elements of S is a subset of P and the sequence S is
monotone with respect to o.

1
3 Finding a monotone subsequence of length [n2™1 |

In this section we present a simple algorithm which finds a monotone subsequence of length
1
at least [n2¢-7 ] in a set of n points in R?.

Notation 3.1 Let S = [p',p?,...,p" ] be a sequence of points, where p/ = (pl,p),...,pl) €
R?. We denote by S(i) for i € {1,...,d} the sequence S(i) = [ p},p?,...,p; | of the
coordinates in the i-th dimension of the points in S.

There is a "folklore” algorithm for finding a monotone subsequence of a sequence of n
reals in time O(nlogn) (see e.g. [6], [8]). We will iteratively use this algorithm in order to
find a monotone subsequence in a set P of n points in R?.

Let S; be the sequence of the n points ordered with respect to the increasing order of
the first coordinate of the points. Now the sequence S;(2) of the n coordinates in the 2-
nd dimension of S; has a monotone subsequence S5(2) of length fy(n) > [\/n |. Let S,
be the d-dimensional sequence corresponding to S5(2). Ss is a subsequence of S; which is
monotone with respect to the first 2 coordinates. Now having a subsequence S, (m > 2) of
P of length f,,(n) which is monotone with respect to the first m coordinates, we can find
as described above a subsequence S,, 1 of S, which is monotone with respect to the first
m + 1 coordinates and has length

Fur() 2 [V Fa(n) |

We repeat iteratively this procedure until we obtain the subsequence S; of P which is mono-
tone with respect to all d coordinates.
We have :

film) =n and fu(n) = [VFur(0) |

3



We proof by induction on n that f,,(n) > [ nam=T | holds using the following equation

[VIzl 1=1Vz] Ve>0z€R (1)

The base of induction is trivial since fi(n) = [m% | holds. For the induction step we assume
that f,(n) > [ nam=T | holds for some m > 1. Let x equal nF=T in (1). Then we have:

a0 = [V | = [Vinet=1 | = [ Wt | =[]

This implies that the length f;(n) of the subsequence Sy found by the procedure described
is at least [n2d-1].

4 Construction of a set with longest monotone subse-
1
quences of length [n2?-1]
The main result of this paper is the following theorem :

Theorem 4.1 There exists a set P C R? of n points which has no monotone subsequence
1
of length larger then [n2e-1].

Let us first investigate for simplicity the case n#7 € N. The proof for the general case
works analougously and will be discussed later.

We will construct P such that the coordinates in each dimension i € {1, ..., d} are pairwise
distinct, i.e. monotone subsequences of P will be monotone with respect to some order
o € O4. Note that in this case for two different points p # ¢ € P there exists exactly one
order o € Oy such that a o b holds.

A subsequence | sy, Sg,...,5 1,5, | is monotone with respect to o € O, if and only if
the subsequence [ s,,$,_1,...,892,51 | i monotone with respect to ©. Therefore, we can
restrict ourselves w.l.o.g. to the set Ly = {0 | 0 € Oy and o(1) = <} of orders. Note that
| Ly | =24 LyNLy=0and LyU Ly = Oy, where Ly = {6 | 0 € Lyg}. Consider some order
of the elements of Ly and let Ly be itself an ordered set Ly = [ 01,09, ...,001 ] of these
orders.

Idea : We consider the 29~ !-dimensional grid-cube G = {1,..., 3T 127" of side length

1
n27-T. There are n grid-points in G and we will assign to each grid-point

X =[21,%0, ., Ty oo vy Toa—i]

where z; € {1,..., md%l}, exactly one point in P. With other words we define a bijective
function ® : G — P. The set P C R? and the bijection ® : G — P will be defined such that
the following holds: For any p # ¢ € P with p o; ¢, where o; € Ly, the inequation z; < y;
should hold, where z; and y; are the i-th grid-coordinate of ®!(p) and ®1(g), respectively:
P lp) = X=[vy, . Tiy. ., Toi1]
(I)il(Q) = Y= [yla ey Yiy e ,de—l]
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1
Because there are at most n2?-T paarwise distinct i-th grid-coordinates there exists no sub-
1
sequence of P which is monotone with respect to o; and has length larger than n2?-T.

Throughout this paper we consider G and L, to be fixed. Now we present the details for
the proof of Theorem 4.1.

Definition 4.1 Given are two different grid-points of G = {1,.. ., nT }zd_1
X =[z1,29,...,29a-1] and Y = [y1, Yo, ..., Yga-1].
The distinguishing index ix.y € {1,...,297'} of X and Y is defined as
ixzy = min{i € {1,...,27" | z; # y;}.

Definition 4.2 Let ® : G — P be a bijective function. We say that (P, ®) has the distin-
guishing index property if for all X # Y € G with the distinguishing index ¢ = ix .y

X = [:Ulax?a"'7xiflaxiaxi+17'"7X2d—1]
Y = [z1,%9,. ., % 1,¥i, Yitl, - - -, Yod-1]
the following holds
>y — P(X) o PY) (3)

Lemma 4.1 Let (P, ®) have the distinguishing index property. Then

(®(X)o®(Y) and 0=0;€Ly) = (i=rixyy and z; <y;) (4)
(®(X)o®@(Y) and o=0;€Ly) = (i=1tixzey and z;>y;) (5)

Proof: There is exactly one order o € Oy such that ®(x) o ®(y) holds. In (4) and (5)
o € {0;,0;} is given. Because (P, ®) has the distinguishing index property, formula (2) and
(3) hold, and these imply o € {0iy,,0ixy }- Thus,

{Oivo_i} N {OiX;éY’ Oix;éy} 7£ 0

holds, which implies ¢ = 7 x2y.

If o = o; then x; < y; holds, because otherwise we have x; > y; and therefore by the
distinguishing index property o = ¢; holds, which is a contradiction with o = o;. Formula
(5) is proven analogously as above.

Q.E.D.

Lemma 4.2 Let (P, ®) have the distinguishing index property. Then P has no monotone
1
subsequence of length larger then n2d-1.



Proof: Let S be a subsequence of P of length | S | which is monotone with respect to some
order o € Q4. W.lo.g o=0; € Ly.

Let p # ¢ € S. Then either p 0; ¢ holds or ¢ 0; p. W.l.o.g. let p 0; ¢ hold. Because ®
is bijective there exists X,Y € G, X # Y with ®(X) = p and ®(Y) = ¢. By Lemma 4.1
we have i = ix»y and x; < y;. Therefore, all grid-coordinates x; in the i-th direction of the
grid-points X = ®!(p) for all p € S are pairwise distinct.

This implies

(S| =]{z=(2"'(D), : peS}] < ‘{xz : %E{l,...,nzd%l}}‘ — paa-T

which proves the lemma. Q.E.D.

It remains to show that there exists a set P C R? and a bijective function ® : G — P
such that (P, ®) has the distinguishing index property.
Let us motivate first the way we construct the set P and the function ® : G — P.

e As the coordinates in the j-th dimension of the points in P have be chosen to be pair-
wise distinct, their set P; = {p; | p = (p1,.-.,Pj,---,Pa) € P} can be set for simplicity
to equal {1,...,n}. Thus P will be choosen to be a subset of {1,...,n}%

e In order to define the bijective function ® : G — P we have to define appropriate
bijective functions ®; : G — P; = {1,...,n} which set all coordinates in the j-th
dimension of the points from P for j € {1,...,d}. For ® : G — P the following holds:

B(X) = (By(X),..., B;(X),..., 04(X) ).

e Obviously, the bijection (IDJ._1 : {1,...,n} — G transfers the natural linear order on
{1,...,n} to an order <; on the elements of G as follows:

(I)]_l(l) <j @;1(2) <j <j (I)]_l(n)

Thus, <; has the property X <; YV <= &,;(X) < @,(Y) and constructing ®; is
is the same as constructing <;.

To visualize the definition of <; consider the following table 7" in Figure 1 with the Lg4-
orders as the rows of the table. The column j of T" corresponds to the j-th dimension of the
d-dimensional points of P.

Definition 4.3 For j € {1,...,d} the total order <; on G is defined as follows. For two
distinct grid points X = [xq,...,2Zo-1] and Y = [y, ..., ysa—1] of G with the distinguishing
index ¢ =ix,y we have X <; YV <<= z; 0,(j) v

Because any X # Y € G have a distinguishing index the order <; is a total order on G.
Note that as 0;(1) = <Vi € {1,...,2971} the order <; on G corresponds to the lexicographic
order of the elements X = [z1, X, ..., Z-1] of G interpreted as strings.

Definition 4.4 Let X; <; Xy, <; ... <; X, be the lexicographically ordered elements
of G. Forany j € {1,...,d} let o; : {1,...,n} = {1,...,n} be the permutation induced by
the order <; defined in Definition 4.3 such that the following holds:

Xojn) <5 Xoyo <5 -0 <5 Xoyy <5 -0 <5 Xojm)-

Note that oy is the identity permutation.



1 2 3 j , d
or |(<,<,<, ... 0@ |...,<)
o2 |(<,<,<, .| o0y [---,>)
o |(<,>,<, ... 04 |...,>)
02d71(<,>,>, 02,171(]') ...,>)

Figure 1: Table with the Lg-orders

Construction of set P and bijection ¢ : ¢ — P:

Let X1 <1 Xy < ... <1 X, be the lexicographically ordered elements of
G. Let the bijections ®; : G — {1,...,n} which set the coordinates in the j-th
dimension of the points from P be defined as:

Qi( Xoyy ) = r forall re{l,...,n}
where o; is defined in Definition 4.4. Let
P(X) = (D(X),...,0;(X),...,P4(X)) €R

be the d-dimensional point corresponding to the grid-point X € G. The set P is
defined as follows :

P = {®(X),...,0(X,),...,0(X,) }.

Lemma 4.3 The tuple (P, ®) constructed above has the distinguishing index property.

Proof: Let X # Y be some grid-points of G and let 7 = ix.y be the distinguishing index
of X and Y :

X = [v1,29,...,%i_1,Xi, Xi41, . ., Xpa 1]
Y = [.7)1,372, s Ti—1, Y Yid, - - 7Y2d—1]
By Definition 4.2 z; # y;. W.l.o.g. assume z; < y; holds. The goal is to prove that
®(X) o; (Y) holds, i.e. ®;(X) 0,(j) ®,;(Y) holds for all dimensions j € {1,...,d}.
By the construction of ®;, Definition 4.3 and Definition 4.4 we have :
P;(X) < 2,;(YV) <= X <Y = =z;00) vy
(I)](Y) < q)J(X) S Y < X Ui Ol(]) T;

Because of x; < y; we have ®;(X) o0;(j) ®;(Y) for all j € {1,...,d}.
Q.ED.

In the following we illustrate the construction of the point set P for the case d = 3,n = 3%,
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Example 4.1 Consider the case d = 3,n = 3* = 81. Because of 297! = 4 and nwT =3
the grid-cube G is 4-dimensional, has length 3 and equals {1,2,3}%. Let the list Ls which
we illustrate in Figure 2 be defined as Ly =[ (<, <, <); (<, <, >); (<, >, <); (<, >,>) |

ox (<, |<|, >)

o3 |(<, |>|, <)

o (<, |>|, >)

Figure 2: Table with the Ls-orders

Figure 3 shows the lexicographically ordered grid-points [z, o, 3, 24] of G, where z; €
{1,2,3}. We have X; =[1,1,1,1], X, =[1,1,1,2],..., X9 = [1,1, 3, 3] and so on till Xg =
[3,3,3,3]. The arrow labeled by i € {1,2,3,4} indicates the direction in which the i-th
grid-coordinate grows. P and ® should be defined appropriately such that (P, ®) has the

[ 2,x2,x3,x4 ]

4
2
1
w3
[ 8,2,8,x4 ]
[ 1<,1 ] \ * e Xy

[ 1,2,x3,x4 ] o o o
2 @o . ® o
AN ) @

/2‘ — /III

Figure 3: The 4-dimensional grid-cube G of sidelength 3 in the case d = 3 and n = 3*

distinguishing index property. The bijection ®; : G — {1,2,...,81} (j € {1,2,3}) sets the
coordinates in the j-th dimension of the points in P. ®; : G — {1,2,...,81} is defined such
that ®,(X,) = r holds for all r € {1,2,...,81}.

For illustration we show now how to set the coordinates in the 2-nd dimension of the points
in P, with other words we define ®, : G — {1,2,...,81}. For this we consider two distinct
grid-points X = [21, o, x3, 4] and Y = [yy, Yo, y3, y4] of G. In order to have ®o(X) < Py(Y)
one of the following cases should occur :



a) ixxy = 1 and 21 <y, ( because o;(2

( (
b) ixxy =2 and 9 < yo ( because 0q(2
c ( (
(

ix+y = 3 and x3 > y3 ( because 03(2

)
)
)
d) ixzy =4 and x4 > y4 ( because 04(2) =

This implies because of X <o YV <= P5(X) < Py(Y) the definition of the order <,
on G and of the bijective function ®5 : G — P, = {1,2,...,81} which is illustrated in

Figure 4. T, is the second column of the table with the Lj-orders in Figure 2. We have
q)g(Xl) == 9, q)g(XQ) == 8, ceey (I)Q(Xg) =1 and so on till @Z(Xgl) =173.

T2 =(<.<,>,>)

A 2
1
< . 79 76 73
3 o« o e 80 77 74
> 25 22 19 e o , 817875
26 23 20 , e ee ~
2 272421 i « o .
/(< e o o 1 o o o
16 13 10 1 o o . / , e
17 14 11 / 2,0 A
2, 18 15 12 L e o e
J 30 33 36 o« o e
4, 7 41 29 32 35 e o e
Al 85 2 28 31 34
9 6 3

S
>

w

Figure 4: Setting the coordinates in the 2-nd dimension of the points in P

Analogously we define &3 : G — P3; = {1,2,...,81} which sets the coordinates in the 3-rd
dimension of the points in P.
Pisgiven by : P={(1,9,21),(2,8,20),...,(r,®o(r), ®3(r) ),...,(81,73,61) }.

Now, Lemma 4.2 and Lemma 4.3 imply Theorem 4.1 for the case n?@T € N. The general

1 —
case works as follows. Let m = [n2T |. Thus, n < m*> " holds. Now let P,, be a set of
m2'™ points in R? with longest monotone subsequence of length at most m, and which is

constructed as discussed above. Take any subset P C P, of n < m2~" points. P has also

no monotone subsequence of length larger then m = [nzd%l |. This completes the proof of
Theorem 4.1.
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