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Abstract

We show that for every �xed � � � the following holds� If F is a union of n triangles	
all of whose angles are at least �	 then the complement of F has O
n� connected com�
ponents	 and the boundary of F consists of O
n log log n� straight segments 
where
the constants of proportionality depend on ��
 This latter complexity becomes linear
if all triangles are of roughly the same size or if they are all in�nite wedges
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� Introduction

The problem studied in this paper is to obtain sharp upper bounds on the combinato�
rial complexity of the union of n geometric 	gures in the plane
 This problem arises
in many applications
 For example� in motion planning for systems with two degrees
of freedom� one constructs the two�dimensional con	guration space of the system as
the complement of the union of n �forbidden regions
� each representing the space
of placements of the system in which a collision occurs between two speci	c system
and obstacle features �see ���� ���� for details�
 It has also been observed recently
that families of 	gures� with the property that the union of any subfamily has small
combinatorial complexity� have several additional useful properties
 For example�
they admit e�cient output�sensitive hidden surface removal algorithms �when these
	gures lie at various heights and are viewed from a point far below them� ����
 Also
one can obtain sharp bounds on the number of �k�sets
 in an arrangement of such
	gures ���� and an e�cient algorithm for �point�stabbing
 queries in a collection of
such 	gures �where one has to report all 	gures containing a query point� ����


The simplest example of a family with the above property is a collection of
half planes� each bounded by a line� or more generally by a pseudo�line
 A more
interesting example is a family of pseudodisks� i
e
 	gures with the property that the
boundaries of each pair of them intersect in at most two points
 It was shown in
���� that the boundary of the union of n pseudodisks consists of at most �n � ��
connected pieces of the boundaries of the given 	gures �a special case of this result
has also been obtained in ����
 Another case was studied in ���� and involved a family
of 	gures� each bounded between a portion of the x�axis and a curve lying above
the axis and delimited by two points on the axis� with the property that any pair
of these curves intersect in at most � points
 It was shown that the combinatorial
complexity of the union of n such 	gures is O�n��n��� where ��n� is the inverse
Ackermann�s function


As all these examples indicate� the property of having a union of small combi�
natorial complexity somehow seems to require that the boundaries of any pair of
the given 	gures intersect in a small number ���� or �� of points
 When the allowed
number of intersections becomes � or more� there are sets of n triangles whose union
has quadratic complexity
 However� one observes that to attain quadratic complex�
ity� it seems to be essential that the triangles be very narrow and many must have
an angle that tends to � as n increases


The purpose of this paper is to show that if this is not allowed� namely if we
are given a collection of triangles that are �fat�
 then indeed the combinatorial
complexity of their union is small


Statement of results� We call a triangle T ��fat� if each angle of T is at least
�
 By a �gure we mean a �closed� region in the plane� bounded by a closed Jordan
curve or by an unbounded Jordan arc


Let F be a 	nite family of 	gures
 A hole of F is a connected component of
the complement of the union of the 	gures of F 
 The number of holes of F will be
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denoted by H�F �

A point of the boundary of the union of a family F is called a corner of F if it

is a point of intersection between the boundaries of two 	gures in F 
 The boundary
complexity of F �denoted by BC�F �� will be the number of corners of F � note that
we do not count vertices �if any� of the 	gures of F as corners � their number is
usually small and presents no problems in the analysis
 An edge of F is a connected
portion of the boundary of the union of F contained in the boundary of a single
	gure between two adjacent corners


Our main results are the following theorems�

Theorem ��� For any �xed � � �� every family F of n ��fat triangles has O�n�
holes� with the constant of proportionality depending on ��

Using this theorem in combination with the Combination Lemma of Edelsbrun�
ner et al in the next section�� we will show in Section � the following�

Theorem ��� For any �xed � � �� the boundary complexity of every family F of
n ��fat triangles is O�n log log n� �again� the constant of proportionality depends on
��� On the other hand� there exist such families �even with � � ���� whose boundary
complexity is ��n��n���

In the special case when the triangles in our family all have roughly the same
size� the boundary complexity becomes linear �in the statement of the theorem�
diam�T � denotes the diameter of triangle T ��

Theorem ��� Let � � � and � � c � C be �xed numbers� Let F be a family of
n ��fat triangles� such that c � diam�T � � C for every triangle T � F � Then the
boundary complexity of F is O�n� �with the constant of proportionality depending on
� and on C�c�� The boundary complexity is also linear for a family of ��fat wedges
�regions bounded between a pair of rays with a common endpoint��

Related results have been recently obtained by Alt et al
 ���� where the complexity
of fat objects was 	rst considered
 They showed� among other results� that the
boundary complexity of the union of n ��fat double wedges is O�n�
 They have also
shown that the number of holes �and the boundary complexity� of the union of n
triangles� each of which is homothetic either to a 	xed triangle T or to the re�ection
of T � is linear
 These results are special cases of the results that we obtain in this
paper


� Preliminaries

In this section we review two basic results concerning arrangements of certain types
of 	gures� which will be needed in the subsequent analysis
 The 	rst result� adapted
from ���� is stated here in a more specialized form� which nevertheless follows easily
from the original version of ���
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Lemma ��� �Combination Lemma ���� Let F
 and F� be families of �gures� whose
boundaries are polygons with n
 and n� sides in total� Then

BC�F
 � F�� � BC�F
� � BC�F�� �O�n
 � n� �H�F
 � F����

The next lemma follows from a more general statement about pseudodisks� �����
���
 However� for the sake of completeness we present the simple proof for the special
case we need here �two 	gures are called homothetic� if one can be obtained from
the other by translation and scaling�


Lemma ��� For a family F of n pairwise homothetic triangles we have BC�F � �
�n�

Proof� Let us 	rst observe that the boundaries of two homothetic triangles cross
in at most two points
 Consider now a corner w of F � which is the intersection
of two edges e and e� of two of the triangles
 Each edge has one direction at the
corner in which the edge �disappears� locally into the respective other triangle
 Let
v and v� be the vertices incident to the edges in those distinguished directions
 Note
that either v or v� must be covered by the respective other triangle
 Indeed� in
order for v to lie outside� the edge e must create another boundary crossing� and
similarly for v�� thus� if both v and v� are not covered� we get at least three boundary
crossings� which is impossible
 If v is covered� the corner w is the last corner on e
in the direction towards v �since� by convexity� the whole portion between w and v
is covered�� an analogous statement holds for v�


We charge the corner to the pair �e� v�� if v lies in the other triangle� and to the
pair �e�� v��� otherwise
 We have seen that each such pair can be charged at most
once� and so the number of corners is at most twice the number of vertices� namely
�n
 �Note that this bound holds even if we also count in the boundary complexity
the triangle vertices on the boundary�


� Bounding the Number of Holes

In this section we prove Theorem �
�� that is� we show that a set of ��fat triangles
has at most a linear number of holes


Passing to canonical triangles� The 	rst step in the proof is to transform the
given collection F to another collection consisting of canonical triangles� so that
the number of holes in the new collection is not much di�erent than the number of
holes of F 
 Speci	cally� we have�

Lemma ��� �Canonization Lemma� For each � � � there exists a positive constant
c � c��� � O������ such that if F is a family of n ��fat triangles� then there exists
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families F
� � � � �Fc consisting of O�n� triangles in total� such that each Fi is a family
of ����fat homothetic triangles and

H�F � � H�F
 � � � � � Fc� �O�n��

The canonization is achieved by producing triangles which have edges from some
	xed 	nite set of directions D��� � f�� !�� �!�� � � � � �k� � ��!�g� where k� � d�	��e and
!� � �	�k�
 The set D��� has the property that every angle of at least ��� contains
a direction in D���


Lemma ��� Let � � �� Any ��fat triangle can be expressed as the union of three
������fat triangles T
� T�� T�� such that two of the sides of each Ti have directions
in D���� while the third is a side of T �

Proof� Let T be a ��fat triangle with vertices A�B�C and let O be the center of
its inscribed circle �which is also the intersection of the angle bisectors� see Figure ��

Hence each of the angles OAC� OBC is at least ���
 We can thus 	nd a point Q in
the triangle� such that the point O lies in the triangle ABQ� and the segments AQ
and BQ have directions inD���
 Such a point Q determines the triangle T
 � ABQ�
and T�� T� can be constructed in an analogous manner for the two other sides of T 


A

B

C

Q

O

Figure �� First stage of canonization

In the 	rst stage of canonization� we replace each triangle in F by three �semi�
canonical
 triangles as in the preceding lemma
 In a second stage we shrink each of
the new triangles until it becomes the union of two �fully canonical
 triangles
 This
is shown in the following lemma
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Lemma ��� �Shrinking Lemma� Let F be a family of n triangles� Let F � arise
from F by replacing each triangle T � ABC in F by the union of two triangles
ABX� AY C� such that X lies on AC and Y lies on AB �see Figure ��� Then

H�F � � H�F �� � �n�

A

B

C

X
Y

Figure �� Second stage of canonization

Proof� Since the union of F � is contained in the union of F � the only way in
which the number of holes of F might decrease as we pass from F to F � is when
a pair of holes are merged together to form a single hole
 Let us imagine that every
triangle ABC of F shrinks into the corresponding 	gure of F � by a continuous
deformation� during which the side BC is deformed into an outward�concave curve

� e
g
 in the manner depicted in Figure �


�




�

Figure �� Shrinking a triangle

During this shrinking process� two holes of F may be merged to form a new
hole only when a vertex of some other triangle is passed by 
 and appears on the
boundary of the union of the shrinking family of 	gures
 Each such event decreases
the number of holes by �� and we can charge this event to the newly appearing
vertex
 Note that this event is irreversible�once a vertex has appeared on the



Fat Triangles Determine Linearly Many Holes "

boundary of our family� it will never be covered again� so there are at most �n such
events during the entire shrinking process� so the number of holes could not have
decreased by more than �n


Now the proof of Lemma �
� is easy
 First we replace� using Lemma �
�� each
triangle of the original family F by the union of a triple of semi�canonical triangles�
each having two sides in the set of canonical directions
 Then we replace each semi�
canonical triangle ABC by a pair of triangles ABX� AY C as in Lemma �
�� so that
each side of the new triangles has a direction in a 	xed 	nite set of directions� and
one angle in each triangle is exactly !� �the angle at vertex B and C� respectively��
thus the 	nal triangles fall already into a constant number of families of homothetic
triangles�
 We can apply the shrinking of Lemma �
� once more to ensure that we
have a set of at most ��n triangles� where two angles are !�
 That is� the triangles
fall now in �k� � O����� homothetic classes
 Lemma �
� is easily seen to imply
that at most O�n� holes can be lost in both shrinking processes� since the number
of triangles �and so the number of vertices� is linear


Boundary complexity for a pair of homothetic families By the Canoniza�
tion Lemma �
�� it su�ces to bound the number of holes of a union of a constant
number of families� each consisting of homothetic !��fat triangles
 For simplicity of
exposition� we will continue to denote !� by �
 If F � F
 � � � � � Fc� then any corner
of F must be a corner of some family of the form Fi �Fj� for � � i� j � c �this also
includes corners that arise within a single family Fi�� thus

BC�F � �
X

i�j

BC�Fi � Fj��

Therefore Theorem �
� will be proved if we prove the following�

Lemma ��� Let � � � be �xed� Let F
 and F� be families of triangles� each con�
sisting of n ��fat homothetic triangles� Then BC�F
 � F�� � O�n� �with a constant
of proportionality that depends on ���

Proof� Let us put F � F
�F�
 We will bound the number of edges of the union
F of F 
 Let us call the edges of the union Fi of Fi the superedges of Fi� i � �� �
 If e
is an edge of F lying on a superedge s of a triangle T of Fi� we call s the supporting
superedge� T the supporting triangle� and Fi the supporting family of e


By Lemma �
�� we know that the boundary complexity of F
 and of F� is linear�
i
e
 the number of superedges is linear in n


Call an edge e of F trivial if e is the 	rst or the last edge of F along its supporting
superedge
 The number of trivial edges is therefore O�n�


Since edges of F have only six possible directions� it su�ces to bound the number
of nontrivial edges with one 	xed direction
 Fix such a direction d� and let e be a
nontrivial edge of F having direction d
 Suppose e is supported by the family F�

The edge e is adjacent to two edges f and f �� whose respective supporting triangles
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T and T � belong to the other family F
� and are thus homothetic
 Let s and s� be
the supporting superedges of f and f �� respectively


Call the pair �s� s�� an active pair of superedges� if they are connected by an edge
e as above� we will refer to e as an edge belonging to �s� s��


We claim that the number of active pairs is O�n�
 Indeed� the superedges of F

are non�intersecting and each active pair is visible from each other in direction d

The number of such visible pairs is linear� this can be seen by sweeping a line in
direction d across the plane� or by applying a graph planarity argument


The proof will therefore be 	nished if we prove the following�

Lemma ��� Let �s� s�� be an active pair of superedges	 then the number of non�
trivial edges belonging to �s� s�� is bounded by a constant �depending on ���

T

c

b

s
s�

c�

a�

T �

e


ei

ei�


em

E


Ei

Ei�


Em

E�




E�

i

E�

i�


E�

m

R

Figure �� Active pair

Proof� Let T and T � be the triangles supporting s and s�� respectively �see
Figure ��
 Consider all the edges belonging to the active pair �s� s��� which� by our
convention� are all assumed to have direction d� without loss of generality we assume
that d is horizontal and that T lies to the left of T � �see Figure ��
 Without loss of
generality� we may also assume that the corresponding holes of F lie below these
edges
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Let these edges be e
� � � � � em �in ascending order along s and s��
 Let b denote
the side of T parallel to s�� and let a� denote the side of T � parallel to s
 Without
loss of generality we may assume that the projection of s in direction d on the line
containing b is contained in b �and similarly for a� and s��


For each edge ei let us denote the intersections of its superedge with the edges b�
s� by Ei� E

�

i� respectively �see Figure �� these intersections exist by the assumption
just made and because each ei is non�trivial� and thus penetrates through both T
and T ��
 Consider the parallelogram E
EmE

�

mE
�



 The angle E
EmE
�


 is at least ��
and hence jE
E

�


j � 
 � jE
Emj� where 
 � � is a constant depending on �

Consider an edge ei and its supporting triangle Ti
 This triangle must contain

both points Ei and E�

i
 The key observation is that Ti can not intersect the segment
Ei�
E

�

i�
� simply because Ei�
E
�

i�
 is part of a superedge� and Ti belongs to the
same family as Ei�
E

�

i�


Since Ti is ��fat� it must contain the triangle R with base EiE

�

i and angles � at
the vertices Ei and E�

i� so R also does not intersect Ei�
E
�

i�

 This means that the
length of the segment EiEi�
 is at least a constant fraction �depending on �� of the
length of EiE

�

i� hence also of E
Em
 This implies that the number m of nontrivial
edges belonging to the active pair �s� s�� is bounded by a constant

Remark� A more detailed analysis in the previous lemma shows that the constant
claimed is O������
 That is� if we denote the cardinality of Fi by ni� then BC�F
 �
F�� � O�ni � nj �



��
minfni� njg�
 This gives a bound of O�cn���� � O�n���� for

H�F � �for the original family F �
 Summing up� we have at most O�n���� holes in
the union of n ��fat triangles
 This is probably not tight in terms of �� the best
lower bound we can derive is ��n���


In closing this section� we note that Lemma �
� has the following corollary�
which may be of independent interest
 Call a family of triangles c�oriented if the
orientations of the edges of the triangles are drawn from a 	xed set of c orientations�
see ���� ��� ��� ��� for several studies of c�oriented polygons


Corollary ��	 The boundary complexity of a family of n c�oriented triangles is
O�n�� where the constant of proportionality depends on c and the minimum angle
between any two of the c given orientations�

Remark� The weaker result of Alt et al
 ��� is also a special case of this corollary


� The Boundary Complexity of the Union of Fat

Triangles

In this section we analyze the boundary complexity of the union of n fat triangles

We rely on the results of the preceding section concerning the number of holes�
on the Combination Lemma �
�� and on a special way of decomposing the given
collection of triangles into subcollections� each having a union with small boundary
complexity
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Proof of Theorem ���� Let BC�n� denote the maximum possible boundary
complexity of a family of n ��fat triangles
 Let F be such a family
 Applying the
	rst canonization step in the proof of Theorem �
�� we replace F by a constant
number of subfamilies� each consisting of triangles that have two sides with 	xed
orientations
 By further re	ning this partitioning� we can also assume that within
each subfamily the orientations of the third edges of the triangles all lie within some
small angular interval� of length� say ��
 Note that the number of subfamilies is
still a constant� and that the overall union of all subfamilies is equal to the union
of F 
 We will show that the boundary complexity of the union of the triangles
in the i�th subfamily is O�ni log log ni�� where ni is the number of triangles in the
subfamily
 The Combination Lemma �
� then implies that the boundary complexity
of the union of all triangles is O�n log log n�� as asserted


Thus� from now on� we consider a single subfamily� which� for simplicity� we also
denote by F 
 By applying an appropriate a�ne transformation� we can assume
that each triangle is a right triangle with one horizontal edge and one vertical edge�
that these edges meet in the lower�left vertex of the triangle� and that the hypotenus
of the triangle has orientation between� say ��� and ��� degrees �so the triangle is
nearly isosceles�


Our 	rst step is to partition F into O�log n� subfamilies so that the boundary
complexity of each subfamily is almost linear in the number of triangles it contains


Lemma ��� If all triangles in F have the form assumed above� and meet a common
horizontal line� then BC�F� � O�n � ���n��� where ��n� is the inverse Ackermann
s
function�

Proof� Without loss of generality� assume the line is the x�axis
 For each triangle
T � F let T� denote its portion above the x�axis� and T� denote its portion below
the x�axis
 The boundary complexity of F is clearly bounded by the sum of the
boundary complexities of the union of the triangles T� and of the union of the
trapezoids T�
 The boundary complexity of the upper triangles T� is O�n�� if we
direct all edges towards the x�axis� then� as is easily seen� every corner is the last
corner �in this direction� for one of its two edges


As to the lower trapezoids T�� we 	rst decompose each T� into two interior�
disjoint portions� one being an axis�parallel rectangle and the other being a right�
nearly isosceles triangle with a horizontal edge and a vertical edge whose top vertex
lies on the x�axis� see Figure  


It su�ces to show that the boundary complexity of the union of the family F�

consisting of these new triangles is O�n � ���n��� because the boundary complexity
of the union of the rectangles is trivially linear and the Combination Lemma �
�
implies that merging the rectangles with the triangles of F� yields a joint boundary
complexity that is proportional to the complexity of F�
 We therefore restrict our
attention only to the union of F�

Claim �� A horizontal edge of a triangle T in F� can be incident to at most four
hole corners
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T�

T�

Figure  � A triangle cut by a horizontal line

Proof� Let e be the given edge� and let e� � XY be an interval along e that appears
on the boundary of the union� and is not the leftmost such interval along e
 The
left endpoint X of e� is the intersection of e with the hypotenus of another triangle
T �� and our assumption concerning e� implies that the vertical edge of T � also cuts
e
 See Figure �
 Let the top angles of T � T � be �� �� respectively� and let the length
of the vertical edge of T be h� let g denote the intersection e � T �


T

T �

e

Figure �� Two �interleaving� triangles

We have jej � h tan� and jgj � h tan��
 Thus jgj�jej � tan��� tan � is very
close to �� in particular it is greater than ���
 This shows that the interval e� is
unique� so that e can contain at most two intervals that bound holes� namely e� and
another leftmost interval
 This completes the proof of the claim

Claim �� The total number of hole corners that are incident to either a horizontal
edge or to a vertical edge is O�n�

Proof� Claim � implies that the number of hole corners along horizontal edges is
O�n�
 Let e be a vertical edge and let e� be an interval along e bounding a hole
 It
is easily veri	ed that the top endpoint of e� must be incident to a horizontal edge

The claim is now immediate


It therefore remains to consider only hole corners formed by intersections of two
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hypotenuses of the triangles of F�
 We order these corners in lexicographical order�
so that c
 	 c� if� for c
 � �x
� y
� and c� � �x�� y��� either x
 � x� or x
 � x� and
y
 � y�
 This is clearly a linear order


Our strategy is to transform this sequence of corners to a Davenport Schinzel
sequence of order � ��� ���� which will then yield the asserted bound on the boundary
complexity of F�
 �Recall that a Davenport Schinzel sequence of order � is a se�
quence that does not have any two equal adjacent elements� and does not contain as
a �not necessarily contiguous� subsequence an alternation a � � � b � � � a � � � b � � � a � � � b
of length � between any two distinct symbols a and b
� To this end� we divide each
hypotenus at its midpoint into two subsegments of equal length� which we refer to as
its top part and bottom part� respectively
 For each corner c consider the hypotenus
incident to c and appearing along the hole just below c� c is associated with the part
�top or bottom� of that hypotenus� to which it is incident
 See Figure "


T

c

top

bottom

Figure "� The corner c is associated with the bottom part of the triangle T

We proceed through the ordered sequence of corners and form a sequence U �
consisting of all associated appearances of the top or bottom hypotenus parts in the
order that the corresponding corners are encountered
 Thus U is composed of at
most �n distinct symbols

Claim �� The number of appearances of bottom parts in U is at most n� and the
number of pairs of equal consecutive elements in U is O�n�

Proof� We 	rst show that no bottom part of a hypotenus can appear twice in U 

Indeed� let T be a triangle with a hypotenus h and let c be a hole corner of the
kind we consider that is associated with the bottom part of h
 Thus there exists
another triangle T � whose hypotenus meets T at c and has a smaller slope than h

A calculation similar to that in the proof of Claim � shows that the next higher
appearance of h along a hole must already appear on its top part
 This establishes
the 	rst assertion of the claim


Next consider adjacent equal elements of U 
 Suppose a hypotenus h of some
triangle T appears twice consecutively in U 
 Thus h contains two subintervals e�
e� that bound holes
 But then the bottom endpoint c of the higher of these two
intervals must be incident to a vertical edge �otherwise c is incident to some other
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hypotenus h�� which necessarily appears in U between the two appearances of h�

The claim is thus an immediate consequence of Claim �


We can therefore delete from U all bottom appearances and then delete one of
each pair of equal consecutive elements
 The new sequence U� consists of only top
hypotenus parts �so it is composed of at most n distinct symbols�� has no pair of
equal adjacent elements� and satis	es jU j � jU�j�O�n�


We claim that U� is indeed a Davenport Schinzel sequence of order �
 That is�
we have to show that U� cannot contain an alternating subsequence of the form
a � � � b � � � a � � � b � � � a � � � b� where a and b are top parts of the hypotenuses of two
distinct respective triangles� T � R


Suppose to the contrary that such an alternation exists
 We distinguish between
two cases�

I� T and R intersect in at most two points
 This can happen in one of the four
schematic forms shown in Figure �


�i� �ii� �iii� �iv�
Figure �� Two triangles of F� intersecting in at most � points

Cases �i� and �iv� are easy� because they allow no alternation of a and b in U �
as is easily checked
 In case �ii� let us 	rst assume that a is the top part of the
hypotenus of the left triangle
 Note that all appearances of a between the 	rst and
last appearances of b correspond to corners that lie in the vertical strip spanned by
the right triangle R
 Let p and q be two subintervals of a that give rise to two such
appearances of a
 Then it is easily seen that there must exist another triangle Q that
cuts the hypotenus of T in some interval between p and q� see Figure �
 Denote the
top angles of triangles T � R� Q by �� ��� ���� respectively
 Let d� denote the length
of the vertical edge of R� let d� denote the vertical distance between the bottom
endpoint of p and the top endpoint of q� and let d denote the vertical distance from
the top endpoint of q to the x�axis� see Figure �


Simple trigonometric calculations show that

d tan��� � d� tan� � d� tan��

and
d� � d� � d �

which is clearly impossible� since all three angles �� ��� ��� are close to � �

This argument implies that� between the 	rst and last appearance in U� of the

hypotenus of the right triangle� there can be at most one appearance of the hypotenus
of the left triangle
 Thus the maximum length of an alternation between a and b in



��
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Figure �� Case I�ii� of the proof
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U� is  �in the form a � � � b � � � a � � � b � � � a�
 If a is the top part of the hypotenus of
the right triangle� the above analysis shows that the longest possible alternation is
now only a � � � b � � � a � � � b
 Exactly the same analysis applies in case �iii�


II� T and R intersect in four points
 This is depicted in Figure ��
 Again without
loss of generality we can assume that T is the triangle whose top vertex lies to the
left of that of R �otherwise� as above� the maximum possible alternation will be
shorter�


T

R b

a

Figure ��� Case II of the proof

Note that the second appearance of a in the alternation must be to the right
of the intersection point of the two hypotenuses� which implies that the two last
appearances of b in the alternation must occur below the horizontal edge of T 
 But
then� arguing as in the proof of Claim �� it is easy to show that the last occurrence
of a in the alternation must be at the bottom part of the hypotenus� contrary to
assumption
 Thus the alternation is impossible


Hence U� is indeed a Davenport Schinzel sequence of order � composed of at
most n distinct symbols� so its length is at most O�n � ���n�� ���
 This is also an
upper bound on the length of U � and this clearly completes the proof of the lemma


We now decompose F as follows
 We 	rst 	nd a horizontal line � with the
property that the number of triangles in F lying completely above � and the number
of triangles lying completely below � are both at most n��
 Let F
 denote the
subfamily of triangles of F intersecting �
 We apply the same procedure to the two
subfamilies of F consisting respectively of the triangles lying above � and of those
lying below �
 For each of these subfamilies we 	nd a �halving
 horizontal line as
above� and de	ne F� to be the collection of triangles in these subfamilies which
intersect one of these halving lines
 We are now left with four subfamilies� each
of which is next halved by a line� and F� consists of the remaining triangles that



��

intersect one of these lines
 Continuing in this fashion� we obtain a decomposition
of F into O�log n� subfamilies� F
�F�� � � �� and the preceding lemma is easily seen
to imply that the boundary complexity of each subfamily Fi is O�ni � ���ni��� where
ni � jFij


We now apply the Combination Lemma �
� in a tree�like fashion
 That is� we
merge the subfamilies Fi two at a time� then merge each of the resulting collections
two at a time� and so on� until all subfamilies are merged together
 At each step�
when merging two subfamilies G
� G� to form a combined subfamily G� we have

BC�G� � BC�G
� � BC�G�� �O�n
 � n�� �

where ni is the size of Gi� for i � �� �
 This is an immediate consequence of the
Combination Lemma and of the fact that the number of holes of G is O�n
 � n��

Since the depth of the tree representing these merges is O�log log n� and the sum of
the boundary complexities of the individual subfamilies Fi is O�n � ���n��� it follows
easily that BC�F� � O�n log log n�


To obtain the lower bound in Theorem �
�� take a collection of n line segments
whose lower envelope consists of ��n��n�� subsegments ����
 Flatten the collection
in the y�direction until all segments have almost horizontal slope
 Then replace each
segment e by an equilateral triangle lying above e and having e as one of its sides

It is easily checked that the boundary complexity of the union of these triangles is
��n��n��

Remark� By modifying the above lower bound construction� and exploiting the
special structure of the construction in ����� one can also obtain a collection of n
equilateral triangles� whose union has #�n� holes� so that no triangle appears more
than once along the boundary of any single hole� and yet the overall boundary
complexity is ��n��n��


Proof of Theorem ���� Recall that the theorem asserts that if F is a family
of n ��fat triangles with c � diam�T � � C for all T � F � then BC�F � � O�n�� with
the constant of proportionality depending on � and C�c
 Let F be such a family of
triangles
 We choose a real number D that satis	es the following two conditions�

�i� No square with side D is intersected by more than two sides of any triangle
from F 


�ii� The diameter of any triangle of F is at most a constant multiple of D


The existence of such a D is guaranteed by the assumptions on F � the constant

factor in condition �ii� is easily seen to be of the form
C

c
����� for an appropriate

function �

Let us cover the plane by a grid of squares with side length D
 By the choice of

D� every triangle of F intersects at most a constant number of squares of this grid

We claim that the boundary complexity of F inside each grid square is linear in
the number of triangles intersecting that square� and this will imply that the total
boundary complexity of F is O�n�
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Let us consider a 	xed square Q of the grid
 For each triangle T � F � at
most two sides of T intersect Q� hence there exists a wedge �angle� WT such that
Q �WT � Q � T 
 Let us consider the family

W � fWT � T � F � T � Q 
� �g�

The boundary complexity of W is an upper bound for the complexity of the part of
the boundary of F inside Q
 Adapting Theorem �
� to the special case of wedges�
it is easily seen that the family W has a linear number of holes
 We claim that
W can be partitioned into a constant number of subfamilies W
� � � � �Wc� each of
which has a linear boundary complexity
 Applying the Combination Lemma �
� �as
in the preceding proof� a constant number of times� we obtain a linear bound on
the boundary complexity of W
 �This part of the proof also establishes the second
assertion in Theorem �
� concerning the complexity of the union of fat wedges
�

We may assume that the apex angle of each wedge of W is at least � �this is
obvious for triangles having two sides intersecting Q� for triangles with only one
intersecting side� the choice of the apex and its angle are fairly arbitrary�
 It follows
that there exists a 	xed set of a constant number c � O����� of canonical orien�
tations �e
g
 ��� apart from each other� so that each wedge in W contains a ray
emerging from its apex and having one of these canonical orientations
 We thus
choose the decomposition W � W
 � � � � � W c so that for all wedges in the same
subfamily� the corresponding rays are all in the same �canonical� direction
 It is
well�known that the boundary complexity of each subfamilyW i of wedges is linear

Indeed� if the common ray direction is assumed to be the negative y�direction� the
boundary of the union of W i is the upper envelope of the collection of rays that
bound these wedges� and it is known that the complexity of such an envelope is
linear �see e
g
 � ��
 This 	nishes the proof of Theorem �
�


� Extensions� Applications� and Open Problems

We have so far shown that the union of n ��fat triangles has a linear number of holes
and that its boundary complexity is O�n log log n�� and can be ��n��n��
 In this
section we consider several extensions of these results� mention some applications�
and conclude with some open problems


Constructing the union of fat triangles� First we note that one can also
calculate e�ciently the union of such a family F 
 The following algorithm� adapted
from ����� can be used
 Partition F into two subfamilies of roughly n�� triangles
each
 Recursively calculate the union F
 of F
 and the union F� of F�
 Then
merge the two unions by the line sweeping procedure of Chazelle and Edelsbrunner
��� or of Mairson and Stol	 �� �
 This computes all k intersections between the
boundaries of F
 and of F� in time O�N logN � k�� where N is the overall size
of F
 and of F�
 But each such intersection is easily seen to be a corner of the
overall union of F � so by Theorem �
� we have that both N and k are bounded by



��

O�n log log n�
 This easily implies that we can construct the union of F from F

and F� in time O�n log n log log n�� so the overall running time of this algorithm is
O�n log� n log log n�
 We thus have

Theorem ��� One can calculate the union of n ��fat triangles in O�n log� n log log n�
time and O�n log log n� storage �where the constant of proportionality depends on ���

Remark� One should contrast the problem of explicit construction of the union of
a collection of 	gures to that of computing various measures of the union� such as its
area or the length of its boundary
 Such measures can be calculated e�ciently for
the case of axis�parallel rectangles� not necessarily ��fat ��"�
 However� such e�cient
procedures are not known for general non ��fat collections
 For ��fat collections they
are immediate by�products of the algorithm given above


Recently� after the original submission of the paper� Miller and Sharir ���� ob�
tained an improved randomized incremental algorithm for computing the union of
n fat triangles� using O�n � ���n� log n� expected time and storage


General 
fat� objects We can also extend our results to families of polygons�
which can be expressed as the union of a constant number of ��fat triangles
 Some
�fatness
 condition is clearly essential for such a result to hold� since one can form
a quadratic number of holes with very narrow objects
 Moreover� the following
example shows that even when the polygons appear to be fat in an intuitive sense�
they can still form quadratically many holes� so a stronger condition� such as imposed
above� has to be enforced


Example ��� There exists a family of n similar convex �gures �actually regular
polygons�� for each of which the ratio between the radii of the circumscribed and
inscribed circles is less than �� and which determine ��n�� holes�

Proof� We will construct a family of �n regular n�gons
 Let us choose a regular
n�gon A � A
A� � � � An
 On each of its sides� AiAi�
� choose n � � equidistant
points Bi�� � Ai� Bi�
� � � � � Bi�n�
� Bi�n � Ai�

 The 	rst half of our family consists of
n regular n�gons C
� C�� � � � � Cn� where Cj � B
�jB��j � � �Bn�j 
 The second half of the
family consists of n regular n�gons D
� � � � �Dn� where Di arises as a mirror image
of A� re�ected around the side AiAi�

 This family determines quadratically many
holes

Remarks� ��� This example is somewhat misleading� because we ignore here the
overall description complexity of the polygons Ci� Di �which is itself quadratic�

We include this example only to demonstrate that one needs to be careful in the
de	nition of fatness if one wishes to extend the results of this paper to more complex
	gures than triangles

��� The reason for the large complexity in this example is that the boundaries of
the convex 	gures intersect in many points per pair
 It remains to investigate what
happens if we consider a family of fat objects� such that the number of intersections
of boundaries of any pair is bounded by a constant
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Applications� As brie�y mentioned in the introduction� the fact that the bound�
ary complexity of a family of fat triangles is small has various combinatorial and
algorithmic consequences
 So far these applications were limited to the case of
pseudodisks and to a few other favorable cases mentioned in the introduction
 These
applications can now be extended to the case of fat triangles
 We list some of them
as corollaries of the bounds obtained in the preceding sections� and omit the proofs�
which are easily obtained by adapting the earlier proofs cited below


Corollary ��� Let T
� � � � � Tn be n ��fat triangles lying in three dimensional space
in arbitrary horizontal planes and viewed from a point at z � ��� Then one can
perform hidden surface removal for this scene in time O�n��� log n�log log n�
���k��
where k is the size of the resulting �visibility map��

Proof� See ����

Remark� Recently� after the original submission of this paper� this result has been
signi	cantly improved in ����
 The algorithm presented there is also based on the
results of this paper� and its running time is O��n log log n� k� log� n�


Corollary ��� Let T
� � � � � Tn be n ��fat triangles in the plane� and let k � n� � be
an integer� The number of intersection points of the boundaries of these triangles
which are covered by at most k other triangles is O�nk log log n

k
��

Proof� See ����


Corollary ��� Let T
� � � � � Tn be n ��fat triangles in the plane� One can preprocess
them by a randomized algorithm� whose expected running time is O�n log� n log log n��
into a data structure of size O�n log n log log n�� so that� given any query point z� all
k triangles containing z can be reported in �worst�case� time O��k � �� log n��

Proof� See ����

Remark� The bounds stated in the preceding theorems follow from the bound
O�n log log n� on the boundary complexity of a collection of fat triangles
 Since we
believe that this bound is not tight �see below�� we expect corresponding improve�
ments in the bounds of the preceding theorems
 We also note that the running time
of the algorithm of Corollary  
 can be slightly improved by the recent technique
of ���� mentioned above


Recently� the results of this paper have been applie in ���� to obtain e�cient
algotihms for motion planning among fat obstacles


Open problems� The main open problem that arises is to close the gap between
the upper and lower bounds on the maximumboundary complexity of a union of n ��
fat triangles
 We venture the conjecture that the correct bound is indeed O�n��n��

It is annoying that we were unable to prove this even in the special case of Lemma
�
�




��

Another problem is to calibrate the dependence of the constants of proportion�
ality in the various bounds obtained above in terms of �� so that sharp bounds can
be obtained also in cases where � does depend on n
 Some progress towards this
goal was recently achieved in �"�


Finally� it is challenging to extend the results of this paper to three dimensions

For example� can one show that the boundary complexity of the union of n arbitrary
cubes �or of �fat� simplices� in ��space is close to quadratic in n �as opposed to a
trivial cubic upper bound�$
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