A Survey of compartmental modelling packages

Olga Kroupina and Rail Rojas
Free University of Berlin, Institute of Computer Science
Tokustr. 9, D-14195 Berlin, Germany
{krupina|rojas} @inf. fu-berlin.de

Technical Report B-04-08
June 8, 2004

Abstract

Computer simulations allow researchers to explore processes under-
lying neural functions. Biologically detailed simulations of single neu-
rons and neural networks are based on compartmental modelling. This
article describes seven well-known compartmental modelling packages
and compares their characteristics. The important aspects of selecting
a program are discussed.

1 Introduction

Recently, there has been a dramatic increase in the number of neurobiol-
ogists using computational methods as an aid to their empirical studies.
As more experimental data is accumulated, it becomes clear that detailed
physiological data alone is not enough to infer how neural circuits work. A
quantitative modelling approach helps to understand the functional conse-
quences of particular neural elements. Therefore, computer simulations are
an important tool for neuroscience research.

Biologically detailed simulations of single neurons and neural networks
are typically based on the approach of compartmental modelling; that is,
each cell is divided into many isopotential compartments, joined by conduc-
tances, and activated via simulated ion channels and current stimuli. Each
compartment is then modelled with equations describing electrical currents
[16]. The advantage of this approach is that it places no restrictions on the
membrane properties. The influence of the diversity of activated channels

can be taken into account by including additional equations describing the
channel dynamics. The mathematical result of this approach is a system of
ordinary differential equations, one for either a compartment or for an ionic
channel.

For modelling this on the computer, one needs to solve the equations
arising from model elements in parallel.

2 General versus special-purpose simulators

Before starting the modelling process everyone has a problem of selecting
the most suitable simulation system. The most important feature of each
package in the diversity of existing packages is what particular physiological
data can be simulated and how easily the model can be extended physi-
ologically to specific data sets. The physiological characteristics available
for modelling are the focus of attention for both authors when creating a
program and modelers when using it.

By learning the widespread packages one gets to know that they have a
general domain of application. The well-known packages, such as GENESIS
[3] and NEURON [7], were developed as an attempt to create a “general”
simulation system. That means that they must be capable of solving prob-
lems at many different levels of detail (i.e., parts of neurons to large neural
systems). The problems arising from that approach range from sub-cellular
components to whole networks of cells and systems-level models.

One can try to create the simulation for particular purpose. Dedicated
applications, if written well, would put the computational power and mem-
ory of the computer to optimal use.

However, general simulation systems can provide many important advan-
tages over dedicated code. A well-designed neural simulator can provide very
good performance, even when compared to dedicated code. Many advan-
tages result in a dramatic speedup in the process of building and expanding
models. Almost always, it takes much more time to build a model than to
learn the modelling techniques and actually simulate the problem.

In the first stage of simulation one needs time to learn how to use the
programs. Despite considerable efforts to improve the user interface, the
simulation system demand time to master the models. In case of the project
for more than one year I would recommend to spend time in learning the
packages as GENESIS [3] or NEURON [7].

The most important advantage of general simulation systems is their
extensibility. Firstly, it enables the user to add new elements to the simula-

tion without the requirement to rewrite all the existing code, as is often the
case with dedicated simulations. Secondly, previously developed and tested
elements can be used later in other simulations. This will save lots of time
developing new simulations.

As well as speeding up the development new simulations, using general
simulation systems can be made more accurate by implementing specially
developed methods and techniques. That includes new integration tech-
nologies or client-server architecture. Some “general” simulation systems
use new simulation-related technology like parallel computing.

As mentioned above, use of well-known packages gives one the possibility
to reuse previously designed simulations. It can be later developed into a
form of neural database, which not only represents structural information
about the nervous system, but does so in such a way that structural details
are functionally organized. For example, the NEURON User’s Group was
established to “share useful tips with other NEURON users, learn about the
latest revisions and program features”. SenseLab Project was created to
develop the models of neurons and neural systems, based on the model of the
olfactory pathway. It consists of a database for collecting and analysing the
neuroscientific information. The GENESIS users group, BABEL, maintains
a database of published simulations. Thus, since general simulation systems
have extensive user, and communication between those users results in the
accumulation of more and more information about the nervous system.

However, the general domain of nerve simulation is still too large for any
single program to optimally deal with every problem. In practice, programs
have their origin in the attempt to solve restricted classes of problems. The
packages for special kinds of problems exist along with “general” simula-
tion software and can be very effective in particular cases. For example,
the packages for simulation of single neurons and small networks have not
lost significance and can be useful for simulation models with a detailed
morphology of cells.

3 Important aspects of selecting a program

In the first step of discussing what package is appropriate for modelling, it is
important to define a problem of modelling and check whether the simulation
system’s scope is broad enough to handle the modelling project. In the
previous paragraph it was mentioned that the simulation system at first
could be characterized by the physiological elements possible to simulate.
All the packages I will describe can model passive membrane models, the

difficulties can arise whenever they are able to simulate ionic channels, and
extended gated channels depended on ionic concentrations, plasticity and
another point processes.

Most of the “general” simulation systems are extended on the domain
of simulation large neural networks, but they often require very large com-
putational resources from the high-powered computers because of the huge
number of variables included in the simulation. Most of the packages are
based on compartmental modelling, which is derived from cable theory by
replacing continuous equations with a set of ordinary differential equations.
Thus, it is possible to accurately simulate the morphology of a cell, whereas
the differential equations describing the process of simulation included also
the ionic and synaptic channels.

The portability of simulation systems plays an important role. These
are often Unix-based simulation packages designed to run also under X-
Windows. Problems can arise already in the phase of installation for users
with not enough IT-experience and then later in the process of its usage.
Not every simulation system developed for Unix can be successfully run on
any computer with a Unix system on it.

Along with this one should realize that most of the time spent on typical
models involves constructing and adjusting the simulation process. There-
fore, one of the next important features of a particular software is how the
user interface is organized. Very often each package has its own interpreted
scripting language, in which users define the components and running pa-
rameters of their simulations. Script interpreters offer a very flexible inter-
face; the simulation can be started both from the command prompt and by
reading the model description from scripting files. The advantage of pack-
ages with these features is that they allow interactive control the model.
But these packages require learning the script language and programming
skills. Another group of software reads the complete model description from
files but allows little interaction during run-time.

“General” simulation systems often do not provide a Graphical User
Interface (GUI) or have a very simple one and as a result they can’t visually
represent the simulation process. A wide spectrum of applications makes it
difficult to construct a GUI for each model. The complexity of the model
(sometimes thousands of compartments and channels in each cell) requires
flexible modes of specifying selections of single compartments or groups of
compartments for editing and display. GENESIS provides the possibility
to construct the user interface using a set of graphical modules, which are
the same as computational routines from the user’s point of view. So one
needs time and perseverance to build the appropriate interface along with

the simulation itself. NEURON provides a GUI only for primal research
by setting parameters, control of voltage and current stimuli, and graphical
presentation of the results as a function of time and position.

Programs developed for a particular task often have a user-friendly in-
terface. One can try to find between packages, which offer more accessible
user interfaces, this one supporting modelling the setting task.

Any simulation system assuredly should be user-extensible to allow the
incorporation of new modelling efforts. It depends on the following char-
acteristics: the modelling language, modular design, and open-ended code.
Most systems use an object-oriented approach, which enables the user to
easily add new modules to extend the system for a particular application.
The modular design means that there are libraries or databases of standard
simulation components, which can be chosen and used for quickly construct-
ing new simulations.

Of course, the available integration techniques are a significant property
of simulation systems. The methods for solving neural equations describing
circuit spread in the cells can range from explicit methods to highly implicit
methods. The explicit forward Fuler method is ease to implement and takes
less computational resources, but it can be unstable in some conditions. In
contrast, implicit methods take a lot of extra work but are more accurate and
more stable. Most “general” simulation systems use the implicit integration
method based on the one developed by Hines, which is most effective for
detailed cell models that contain many compartments. The adaptive step
size used in the numerical integration of the differential equations which
describe the model, can have an influence on speed and accuracy of the
calculations. The possibility for the user to define the step size of integration
and to interactively control it could be useful in some cases.

In the case of a model with a huge number of neurons, or with a compli-
cated structure of activated channels, the available computer resources can
restrict the choice of the simulation program. Recently developed architec-
tural techniques like client-server structure or parallel computing can be a
solution for this.

The client-server architecture involves the separation of the program
into two parts: an equation solver and a simulation controller. The equation
solver takes virtually all the computer time and the algorithms never change
within a class of problems. The simulation controller, which must manage
a large number of parameters, runs the simulation, displays the results, and
continuously changes during the investigation of the problem. It follows that
the separation of these parts into independent blocks would be effective in
using computer resources.

Some packages can be ported to “parallel” computers (computers with
many processors running simultaneously) that are supposed to give a huge
increase in speed over standard single-processor computer designs. Firstly,
they can increase execution speed, but there is a trade-off as increasing the
number of computing processors also increases the communication overhead
between these processors. Secondly, because the model is distributed over a
lot of processors’ memory, huge models can be implemented.

4 Compartmental modelling packages

In this section I will go through those simulation packages that are exten-
sively used by a wide groups of users, and compare their characteristics by
the discussed above.

4.1 NEURON

Detailed morphology: sections versus compartments. @ NEURON
was developed on the basis of the neural system CABLE for simulation
“nerve equations with cable geometry”. As a result, it has imitated the
basic characteristics of CABLE [5].

The most important feature of NEURON setting it apart from other sim-
ulation systems is that it can effectively deal with problems where “the cable
properties play a crucial role” [6]. Although NEURON assumes a spatial
discretization as a basis as all well-known simulation systems do. It does not
deal with “compartments”. The main component of NEURON is the “sec-
tion” of the continuous cable, anatomical and biophysical parameters being
the functions of the positions along the cable. Each section is ultimately
discretized into compartments (determined by the parameter nseg, which
specifies the number of nodes at which solutions are computed). Sections
are connected to form any kind of branched tree structure. The particular
approach used by NEURON is special insofar as the location of the voltage
is not at the edge of a segment but rather at its center and an extra voltage
node having zero area is located at the end of the section.

Most cellular properties depending on the position along the length of
a section are specified in terms of a continuous parameter ranging from
0 to 1 (normalized distance). Another strategy used by NEURON that
helps the user define which section is intended is the new “range” variables.
Properties are specified with the syntax rangevar(zmin:zmaz)=el:e2. The
position expressions must meet the constraint 0<=zmin<=zxmax<= 1 and
have values between el and e2.

The interpreter. The user interface has the same style as the previous
simulation system CABLE. Creating cable sections, specifying parameters
and controling of the simulation can be performed via a C-like interpreter
called HOC, which was extended by the addition of object-oriented syntax
that can be used to implement abstract data types and data encapsulation.
NEURON provides a built-in implementation of the microemacs text editor,
as well as it can accept HOC code in form of ASCII files.

Graphical User Interface. = The default graphical interface in NEURON,
which is developed as a public domain of a C++ class library, is suitable
for the primal research by setting parameters, control of voltage and current
stimuli, and graphical presentation of the results as a function of time and
position. For more general problems these operations could be effected by
writing the procedural statements to an interpreter.

A practical example. Here I will show how to construct the simple
neuron composed of a soma and two outgoing dendrite cables. Soma contains
the ionic channels with Hodgkin-Huxley dynamics, whereas the dendrite has
a passive channel. As a first step one should establish a model topology and
specify the morphological properties, as in the following HOC code:
create soma, dendrite[2]
for i=0,1 {connect dendrite[I](0),soma(1)}
forall Ra=35.4
soma {nseg=1
L=30 //length , micron
diam=30 //diam , micron
insert hh //hh channel
gnabar_hh=0.5%0.120 }
for i=0,1 dendrite[i] {nseg=5
L=100
diam=2
diam(0:1)=10:3
insert pas //passive channel
e_pas=-65 //equilibrium potential
g_pas=0.001
}
As was noticed above, the parts of neuron have a parameter nseg and all
parameters are functions of z, e.g. the position of connection (dendrites are
located on the left side of the soma). This example also demonstrates the

Iconify |1

File Edit Build Tools Graph Vector Mndwl | oress
euncont 3 e
N .
mooeld® 8 ||
re— || ctampry
F‘ at: soma(0.5)
Stop :
Continus til (ms) [F | ‘d 1Clamp{1]
Continus for ms) [| feme L) 2 =
| [a—
Single Step ‘nié;ﬂ) i
_“*q — et ty amp (nd) S m
) - 5
Tstop (ms) 15 E ittt Al
dt (ms) o025 ™| . |
I points plotteams | _{ [0 F| |
. |4 Quiet
Close

Figure 1: Run Control window of NEURON for executing and controlling
the simulation; setting up VClamp from PointManager window.

use of the range variables by the definition of the diameter a of dendrite’s
segments.

This code can be saved in the *.hoc file and later be loaded via the graph-
ical interface, which can be started as nrngui run library. The NEURON
Main Menu contains functions to load data with model descriptions, edit the
anatomical and biophysical parameters, and graphic control.

The Run Control Window that is shown in the Fig. 1 contains the menus
for controlling the simulation. In this window one can repeatedly call the
built-in single-step integration function and change the value of membrane
parameters during a run.

Now one needs to construct an electrode to inject a stimulating current
into the soma. From menu Point Processes, one can choose the required
stimuli (IClamp in this case) and set the parameters, as illustrated in Fig. 1.

The menu New Graph (from the directory MainMenu/Graph) enables to
build up the graphs for simulation control and save them later in PostScript
format. To create a voltage vs. time graph, one can select a voltage axis, in
which one can order to plot voltage at soma (0.5). The screenshot of this
experiment is shown in the Fig. 2.

After creating several graphs, you may want to save the windows you
have created (i.e., graphs and panels) to a file *.ses so that you can recall
them at a later time. One can choose the windows for saving (from menu
Main menu/Window) and then later open it (from menuFile/load session).

Graphx -0.5:55 y-92:52
Close Hide
1 40— '
v(.5)
soma.v{05)
0 | | \ |
[t 3 4 5 1
1
40
i
£
r ___‘_'_'_'_ !
80 —
' 1

Figure 2: Plotting graph of voltage with NEURON.

Changing the model parameters via a graphical interface will evoke gen-
erating appropriate hoc code, as it has happened for a stimuli:

objref stim
soma stim = new Iclamp(0.5)

The statement objref assigns point mechanisms (as synapses and elec-
trodes), which are described in terms of localized absolute current and con-
ductance. Point process elements are always referenced by any object ele-
ment (segment).

NEURON also allows the incorporation of standard density mechanisms,
which are described in terms of current and conductance per unit area;
examples include voltage-gated ion channels.

Moreover, users can define density mechanisms and point processes for
each individual model, which can be linked into NEURON using the model
description language NMODL [9]. Model equations written using NMODL
are independent on the numerical methods used to solve them and do not
require changing as the methods change or as the interface specification of
NEURON is changing. Model description files can be checked for consistency
of units using a unit checker program.

One of NEURON’s advantages is that enables the user to specify a 3D-
topology, which is useful when the model is based on the anatomical recon-
struction of data or if 3-D visualisation is principal. The approach keeps
the anatomical data in a list of “points”, from which one defines the area,
diameter, and resistance of each segment.

| CellBuild[0]
1| close Hide

 Bbout «, Topology <, Subsets <, y 4 Bi ics [conti Create
I Specify Strategy soma { ispecify 1

Ra
all
1 soma om

dend pas
i dend[1]
i dend[2] extracellular

hh

2
1]

kal

Hints '

Figure 3: Constructing and managing models of single neurons with Cell
Builder.

Cell Builder and Network Builder. One can use Cell Builder to enter
the specifications for the model cell without having to write any hoc code
oneself. It allows setting up branched pattern, assigning biophysical and
anatomical parameters for groups of sections (see Fig. 3).

Network Builder provides a GUI for setting up the architecture of a
network containing either artificial or “real” neurons and assigning their
properties and their connections (see Fig. 4) [11].

Integration methods. NEURON provides a choice between a first-
order fully implicit integration method (backward Euler) and a more ac-
curate second- order variant of the Crank-Nicholson time step [4]. Hines,
one of the NEURON authors, has presented and implemented the improve-
ments in computation speed for simulations of arbitrarily branched cables
with Hodgkin-Huxley kinetics. This improvement takes advantage of the
essentially tridiagonal character of the matrix equation for each branch of a
“tree” network and solves the equations as efficiently as for an unbranched
cable.

Operating system and available documentation. Initially devel-
oped in the Unix environment, NEURON was ported to Windows and
MacOS. The Unix/Linux distributions include full source code; the Win-
dows and MacOS distributions employ an identical computational engine,
GUI and NMODL definitions were implemented with hoc code. NEURON
is available free of charge from the NEURON web site, along with extensive

10

NetGUI[0] [<]
Cloze Hide

+ Locate
Sro-= Tar

W Source Mo Target selected on cell M1 from Source S0
W Targets
+ Target

ources E 1
Show all edges lf:\‘\

Wiz ght=

Dielays sama gy

Hos File >

axon dend
Create n

SpikePlot

Show Cell Map

Figure 4: Modelling networks with Network Builder.

documentation and tutorials, e.g. [8] [7] [10]. From this page one can sign
up to the NEURON User’s group, which is organized as a mailing list, for
getting announcements about program updates and sharing useful tips.

4.2 GENESIS

The GENESIS object-oriented approach. Because GENESIS was
created as “general” simulation system, it is based on the “object-oriented”
approach [13]. The extensibility and generality enable users to exchange
and reuse models and their components. GENESIS provides the basic com-
ponents as compartments, various types of channels which may be added,
axonal connections to synapses as “building blocks” which are used to con-
struct the simulation. Each element contains data fields of the values of
parameters used by the element. The elements are connected by a system of
links called “messages”. For example, the following code constructs soma-
like compartment and sets the parameters:

create neurtral /cell

create compartment /cell/soma

setfield /cell/soma Em {Erest}//volts

Rm {RM/area} //Ohms

Cm {CM*area} //Farads

Ra {RAxlength/xarea} //Ohms

To connect two compartments, a “primed“ compartment (dendrite) that

needs to send both its axial resistance and its membrane potential at the

11

previous step, it only needs to receive soma’s membrane potential to execute
the integration process.

addmsg cell/dend cell/soma RAXIAL Ra previous_state

addmsg cell/soma cell/dend AXIAL previous_state

Script language interpreter and graphical user interface. The
commands in the above example can be invoked either interactively from a
command prompt or from files containing simulation scripts. The user inter-
face incorporates the Script Language Interpreter (SLI), which is analogous
to the Unix shell commands and also conatins the built-in set of commands
for constructing and controlling simulations. Along with the simulation
elements there are also the graphical objects linking with the scripting lan-
guage.

That way, graphical objects constitute XODUS (the X-windows Output
and Display Utility for Simulations), that provides the graphical user inter-
face (GUI). For example, graphical ”windows” for simulation of a two-cell
network in a feedback configuration can be created as in Fig. 5. The simu-
lation contains two neurons, each of them is composed of two compartments
corresponding to a soma and a dendrite. A dendrite has synaptically acti-
vated channels while a soma contains ionic channels with Hodgkin-Huxley
dynamics. The advantage of this approach is that one can build the GUI
specially for each simulation model and then interactively change simulation
parameters; but it takes additional time to master the visualization process.

Operating system and implementation language. GENESIS and
its graphical interface are implemented in C and run on graphical work-
stations under Unix. There is also a parallel version of GENESIS (called
PGENESIS) that can be started on parallel computers and would be used
effectively for large network models with a large number of neurons [15].

GENESIS object libraries and extensibility. GENESIS object li-
braries include the spherical and cylindrical compartments from which the
physical structure of neurons is constructed, voltage and/or concentration-
activated channels, dendro-dendritic channels, and synaptically-activated
channels with synapses of several types including Hebbian and facilitating
synapses. In addition, there are objects for computing intracellular ionic
concentrations from channel currents, for modelling the diffusion of ions
within cells, and for allowing ligand gating of ion channels. There are also
a number of ”device objects” that may be interfaced to the simulation to

12

Figure 5: The GUI constructed with GENESIS shows a simulation of a
two-cell network in a feedback configuration.

13

provide various types of input to the simulation (pulse and spike generators,
voltage clamp circuitry, etc.).

The kinetics library supports kinetic-level modelling of biochemical path-
ways.

Extended objects can be created by using GENESIS script language.
One should notice, however, that a new element would be created from
existing GENESIS objects which have at least some of the same properties.
New fields, message definitions and actions may be added to the root element
before it is converted to an extended object.

GENESIS script libraries. For large simulation models GENESIS has
the ability to construct simulations using information from data files and
from pre-compiled GENESIS object libraries. The object libraries, which are
available within the GENESIS distribution, are the result of communication
between members of the GENESIS Users Group.

The channel library contains models for different types of potassium
channels, including several types of calcium-dependent channels, as well as
sodium channels. The available single-cell models include cerebral cortical
pyramidal cells, hippocampal pyramidal cells, cerebellar Purkinje cells, mi-
tral, granule, and tufted cells from the olfactory bulb, a hippocampal granule
cell model, a thalamic relay cell, and an Aplysia R15 bursting pacemaker
cell.

So, the cell reader allows building multi-compartmental neurons by read-
ing “cell parameters” from a cell descriptor file. The cell reader expects
to find the library of prototype elements in the neurokit/prototypes di-
rectory, and then builds the cell by making copies of them, replacing the
default parameter fields with values from the cell descriptor file (¢ ‘*.p’>?).
The Neurokit simulation, which can be found in the Scripts/neurokit di-
rectory, provides a graphical interface for the cell reader (see Fig. 6). Sim-
ulation in Neurokit is possible without knowledge of the GENESIS script
language.

This approach enables the user to construct networks connections after
defining all necessary elements in the “prototypes” library (as arrays of
definite kinds of cells) and then specify connections by synapses individually
or in groups. The commands available in GENESIS enable the user to
configure the parameters of connections in flexible ways.

Integration methods used in GENESIS. Integration methods pro-
vided by GENESIS vary from explicit methods, which require more compu-

14

_=10) xJ]

[webr
it | help | file | rncett | editcett | _ edit conpt [_edit chamel |
cell_un_contral

TS5 - s 128 che mae s none [a02t ||]

Figure 6: Neurokit simulation.

tational power, to more accurate implicit integration methods.

As a default method, GENESIS uses the exponential Euler method be-
cause of the form that have the equations typically encounter in the mod-
elling. Other explicit methods range from forward Euler different orders
of Adams-Bashforth methods (2nd, 3rd, 4th, 5th order). As the implicit
method GENESIS uses a version of Hines method [4], which was imple-
mented as a special object, hsolve. This object can be used in conjunction
with the backward FEuler and Crank-Nicholson methods only for elements
describing branched neuronal structures.

Special techniques to speed up GENESIS simulations. In addi-
tion to “parallel” computations possible with GENESIS and faster integra-
tion techniques, I found “table lookup” very useful. For example, using the
tabchannel object instead of hh_channel, the rate parameters can be spec-
ified by a table instead of fitting them into one of the three functional forms.
Of course, evaluation of the functional forms takes additional computational
time. In this way more general types of channels can be implemented.

Another element table may be used in many situations where there is
no GENESIS object that performs integration calculations. As an example
of simulated channels, implementing a “fast” gate, which has activation
dependent only on voltage, leads to speedup of calculations.

Using “multiple clocks” for elements whose behavior is described by vari-
ables that involve different time scales is also an important advantage. It
gives more control over factors which affect speedup and accuracy of the
simulation.

15

GENESIS distribution, documentation, and tutorials. = The distri-
bution code of GENESIS includes full the source code together with XODUS
and extensive tutorials and a manual with descriptions of basic elements and
simulation routines.

Although the source code is available with the distribution, users trying
to understand its logical structure will come across several shortcomings.
Details of implementation are hidden; algorithms and data structures are
closely related. The integration algorithms do not start with calling some
function, but rather directly from the object reference itself. It makes data
and algorithms more dependent on one another. Therefore, trying to write
elements of one’s own and integrate them with GENESIS elements is almost
impossible.

The authors of GENESIS have published “The Book of Genesis” [14],
which can be used both as documentation for GENESIS and as a text book
for modelling techniques designed as two parts. The first part consists of
the introduction into different neurobiology topics, which was illustrated
by appropriate GENESIS tutorials. The second part offers a user guide to
GENESIS and explain the basic features of GENESIS as well as the process
of creating a GENESIS simulation.

As mentioned above, many simulations, object libraries, documentation
material and tutorials were developed by GENESIS users. The GENESIS
User’s group, BABEL, contains mainly of researchers making serious use of
GENESIS. BABEL’s users have a right to have access to the BABEL direc-
tories and email newsgroup. It is used as a tool to exchange new simulations,
post questions and hints for setting up GENESIS simulations. Improvements
and new development are discussed by e-mails sent to all members.

The history of the GENESIS development. There is the preju-
dice among neurobiologists that GENESIS is most suitable for simulation of
single-cell models that has its origin in the well-known models first simulated
with GENESIS. The earliest GENESIS simulations were biologically realis-
tic large-scale simulations of cortical networks [22]. The De Schutter and
Bower [19], [20] cerebellar Purkinje cell model is typical of a large detailed
single-cell model, with 4550 compartments and 8021 ionic conductances.

Although GENESIS continues to be widely used for single-cell modelling
and for modelling small networks, in recent years it has become increasingly
popular to use GENESIS for large network models (which has become pos-
sible as a result of the latest developments in GENESIS).

16

4.3 SNNAP

SNNAP graphical interface. The SNNAP simulator can be a good
choice for modellers having little or no programming skills, because one
of the important and distinguishing features of SNNAP is a quite well-
developed graphical user interface (GUI). SNNAP provides editors embodied
into graphical interface editors for specifying the anatomical and biophys-
ical properties of neurons and the structure of networks, saving results of
simulation to files and control of simulation results [12].

When a modeller does not have much time for learning the simulation
techniques, SNNAP can be used as “a tool for the rapid development and
simulation of realistic models of single neurons and small neural networks”,
because along with ease of use it incorporates the common elements encoun-
tered in realistic neurobiological modelling.

Operating system. SNNAP was implemented as a Java application
and can run on any computer system. SNNAP is distributed as Java *. jar
files necessary to run the application and two subdirectories of tutorials and
examples. The installation of SNNAP requires a functional version of Java
on the user’s computer. One need only unzip the SNNAP data and put
them in the appropriate directory.

Modular organization of input files. The graphical editors of SNNAP
generate the input files, which have a hierarchical structure. All equations
describing ionic channels, neuronal coupling and inserting mechanisms to-
gether with parameters describing the process of simulation can be read with
appropriate SNNAP editors.

Of course, this feature allows creating libraries of SNNAP elements and
exchange of new models among collaborators.

Examples demonstrating modelling with the SNNAP graphical
user interface. The main SNNAP window contains buttons to open the
various functional windows to edit SNNAP parameters, edit model param-
eters and execute simulation (see Fig. 7).

The Hodgkin-Huxley model remains the basic formula most often chosen
by neuroscientists and can be used as a good example for demonstration.
The simulation can be loaded from the directory /Examples/hhModel by
opening the appropriate *.smu file. The results of the simulation are shown
in Fig. 8.

17

File Options Help

Figure 7: The main window of SNNAP.

Data Ouiput Report Help
enn VHH. Jefin)

@0

E

-0 |

0|

-0

o T omn | ofz | oMo ' opone | oohs | ooe ' o7 | ooog | ooos | oot

Figure 8: The SNNAP simulation window displays two action potentials.

18

SNNAP: Editor for *.wdg File i S

C/SHNAP'SNNAPS tutorial‘fuiorialExamplesthh...

| open | save |[saveas|| Em |

= P
Ggy=fE+R)m
#ibr
S Gvd-(Vf E)-'_Eff'BR)l
=

m = hhKm
R =
g = 6.0
p = 4.0
B =720
Browse Ok

Figure 9: Editor window provided by SNNAP for voltage-dependent cur-
rents.

Changing model parameters can be done from the “Formula Editor” win-
dow . In our example, editing Hodgkin-Huxley voltage-dependent current
can be implemented in the Editor for *.vdg files (Fig. 9).

The example /Examples/hhNetwork provides you with a small network
having a common architecture, for an easy introduction to SNNAP. Fig. 10
shows the behavior of a three-cell network while Fig. 11 presents the net-
work architecture. As basic elements, Hodgkin-Huxley neurons were used,
connections were made with Alpha Synapses.

Physiological data to be modelled with SNNAP. SNNAP is a
Simulator for Neural Networks and Action Potentials. SNNAP can sim-
ulate current flow using multicompartmental models of neurons [12]. The
compartments can contain voltage- and time-dependent channels (typically
Hodgkin-Huxley). The neurons can be connected with both electrical and
chemical synapses.

Additionally, it is possible to express different kinds of plasticity in chem-
ical synapses, as homo- and hetero-synaptic depression and facilitation. Ex-
amples of simulations of synaptic connections and synaptic placticity can
be found in the subdirectory /Examples/Synaptic_connections. Fig. 12
demonstrates the results of simulation of synaptic facilitation and heterosy-
naptic placticity. Heterosynaptic placticity can be implemented by including
a second messenger that modulates transmitter release.

19

R

5=
P[Hownn,_3.. =i Vlowon,_L. J={av)

(13

T
timssgim)

Figure 10: Results of a simulation with SNNAP of a three-neuron network.

ewon_1-cHeurar
bewron,_2_chewro
me—

Figure 11: The SNNAP GUI showing the architecture of a three-neuron
network.

20

m _
%

M

ML

Figure 12: Results of a simulation with SNNAP of synaptic facilitation and
heterosynaptic plasticity.

T f

(e
T

e o)

As a demonstration of relatively complex models, simulation of the
bursting model in Aplysia R15 cell, which is to be found in the directory
/Examples/H_H_type_neurons/R15, could be chosen. This model incorpo-
rates a voltage- and time-dependent conductances, an intracellular pool of
calcium, an intracellular pool of second messenger, and modulatory interac-
tions from the ion and second messenger pools and the membrane conduc-
tances. The model produces endogenous bursting activity. At time = 60
sec a modulator is applies via the treatment file. It modifies the electrical
activity of the neuron.

Moreover, SNNAP includes the possibility to simulate common experi-
mental techniques. For example, SNNAP can simulate injection of external
currents into multiple cells, removal of individual conductances to simulate
pharmacological agents, modulation of membrane currents via application
of modulatory transmitters and voltage-clamping cells. The simulations in
the directory /Example/HH_type_neuron/Biophysics_01 show the use of
voltage-clamping. The simulation shown in Fig. 13 simulates a voltage-
clamp experiment of squid giant axon as held at V= —60 mV and stepped
to V.= —10 mV and display the total membrane current (black), sodium
current (red) and potassium current (blue) that were elicited during the step
are illustrated.

Numerical integration method used in SNNAP. SNNAP uses for-
ward Euler method with a fixed time step for numerical integration of dif-
ferential equations arising in modelling. The forward-Euler rule is fast, but
it can be stable if the time step is too large. One should always remember
that the integration time step must be small enough to ensure stability of

21

Im=INa + Ik

0.5 mA/em?2

2ms

Vo=-10my

Vh=-60 mV

Figure 13: Voltage-clamping experiment with Hodgkin-Huxley model of a
squid axon implemented with SNNAP.

the fastest process (i.e., the smallest time constant). This problem is known
as the problem of stiffness.

The network of the three-cell oscillator that is included in the directory
/Examples/Neural_Networks shows the problem of instability by choosing
a time step of 1 ms. The results of instability are shown in Fig. 14.

4.4 Nodus

Nodus distribution, operating system, and programming language.
The Nodus simulator was implemented as a tool for simulation of the elec-
trical behavior of neurons and small networks. Users of Nodus are presumed
to have limited computer experience. All steps of working with Nodus can
be performed via a user-friendly graphical interface.

Nodus runs on Apple Macintosh computers. The distribution of Nodus
includes the compiled program, example files, and the manual. The source
code is not available because, as the authors emphasize, “the average Nodus
user is not a programmer” [18]. Nodus was written in Fortran.

Nodus user interface and modelling elements Model descriptions are
saved in the “simulation database”, which contains 3 different types of input
files: conductance definition files, neuron definition files, and (optionally)
network definition files, which are linked together in the model with the
“top” file. Each of these settings can be defined in a separate window [18].

Initial values, of parameters are saved in the simulation data file. That
enables the user to start the simulation with parameters obtained from a
previous simulation. These parameters can be viewed and changed during

22

8000 _Vie-J<(svh
60000 4
40000 3
20000 4
0000 7
20000
-40.000 4
-60.000 1
-80.000 7
0.000

2400 330 T 4do0

gooon _VD.-1<{sv}
60000 3
40000 4
20000 4

0000 §
-20.000 4
-40.000
-60.000 4
-30.000 1

0000 1800 24m 3300] 4000
time={fvr}

sooo0 VI J<isnt
60.000 5
400 4
20000 5

0000 4
20,000 4
-40.000 5
-60.000

-80.000 1

1600 2400 30 T 4do0

0.800 !
time={fr}

Figure 14: The simulation with SNNAP of a three-cell oscillator with time
step of 1 ms.

the simulation.

The modelling in Nodus is based on compartmental modelling. Neuron
definition files include information about morphological and anatomical pa-
rameters: size and cable parameters, connections and synaptic parameters.
In the compartment dialog windows, the user can then select via popup
menus one or several of the mechanisms to be inserted into the compart-
ment (Fig. 15). If no elements are selected, a compartment is passive [18].

The compartment structure was implemented as an approach what the
equivalent circuits of compartments are placed at their center. Standard
symmetric connections between compartments (end to front) and asymmet-
ric connections (center to front) are available. Neurons can contain ionic
currents, whose description is saved in the conductance definition files. For-
mulation of the equations describing voltage-gated channels is fairly easy,
because plotting of conductances, activation, and rate factors is provided.

Simulations of some of the standard electrophysiology experiments can
be set up. There can be different currents (constant, repetitive pulses,
ramps, sinus, noise) to be injected and added in any compartment. One
or two neurons can be voltage-clamped (Fig. 17).

The results of a simulation can be saved on disk and plotted on the
following axes: conductances, currents, and voltages (Fig. 16).

23

[[E=———-— Test-cell 7: compartment ¥4 =———
Name:|Synapse Structure type:[_dendrite] O Sphers
I]iameler: nm Length: pm ® Cylinder
Membrane capacitance:1.579 pF

Electrotonic length: 0.071 Time constant: 40.000 ms

Linkﬁgu: o eight Resist (k0)|
12 : 1 63661.97
é‘&w lon currents: |~ None
2 l:l El [LEIECRAT Connor Stevens Currs
Synapse #2:
3 l:l EI synapse #3;
a l:l ¥ EI Transmitter:
s[]]
s [] []

Figure 15: A Nodus window showing the construction of a compartment
that can be passive as well as have activated channels .

ms

13) 45 B0
-40
-50
G0
-0
a0
-an
n3 nh
180 15
160 :
140 10
120 0.5
100 ms
0o
&0 20
&0 05
40 0
20 ms
a . 15
14 T

Figure 16: Graphic output of simulation results: membrane potential,

synaptic conductances, synaptic currents (modelled with the Nodus sim-
ulator).

24

Uoltage clamps

Neuron #1:[_Test-cell 1

® All compartments) Compart:

Period 1: | 1000.00l{ms, from|-92.0 (to|-92.0 |mU, steps of{0.000 (mD
Period 2: (1000.00 |ms, from|-46.0 |to|-30.0 |ml, steps of|4.000 |ml

Period 3: (0.000 ms, from| to mll, steps of] ml
Period 4: |0.000 ms, from| to ml, steps of| mb
Period 5: (0.000 ms, from| to ml, steps of] ml

Neuron #2:_motused)

® All compartments) Compart:

[o) [cancel | [Delete voltage clamps)

Figure 17: Nodus dialog window used to set up voltage clamps.

Integration methods Two explicit integration methods are available for
simulations: an accurate Fehlberg method (fifth-order Runge-Kutta) and a
forward Euler method, both with variable time steps. These methods are
easier to implement, but in some cases the program can be slower than other
simulation systems, but Nodus was realized with the goal of ease of use.

4.5 SURF-HIPPO

The models to be constructed with SURF-HIPPO. The SURF-
HIPPO simulator is used to model cell models having a 3-dimensional ge-
ometry [2]. SURF-HIPPO allows construction of multiple cells from various
file formats (Neurolucida, NTS and others), which can describe complicated
dendritic trees in 3-dimensional space with distributed non-linearities and
synaptic contacts between cells. Cell geometries may also be defined directly
on the screen, using the mouse. A graphical user interface is provided, in-
cluding menus, 3D graphics of dendritic trees, and data plotting (Fig. 18).
Graphical output can be saved in the Postscript files. Data files may also
be saved for analysis with other programs [1].

Integration method. For integrating the circuit equations, Surf-Hippo
uses a variant of the Crank-Nicholson method implemented by Hines [4].
A major difference in the method used by Surf-Hippo is a variable time
step option, where step size is adjusted according to an estimate of the
linear truncation error for all state variables (e.g. node voltages, channel
particles). The adaptive time step can give much faster run times for typical
simulations, with the option of verifying selected results using the more

25

0.0

-7t

srar-amacetoe-3-303 723 5223: Volkage B

Figure 18: Graphical output with SURF-HIPPO.

conservative fixed time step integration [1].

Implementation language. SURF-HIPPO is a public domain package
written in Lisp and runs under Unix and Linux. The choice of Lisp is
convenient, because it has numerical performance similar to C or Fortran.
SURF-HIPPO is configured to run using the public domain CMU Common
Lisp and Garnet packages, which are integrated directly into the Lisp in-
terpreter. It provides complete access to all components of a simulation
directly from the SURF-HIPPO graphical interface. Another advantage of
Lisp is that all functions defined in the system may be executed from the
interpreter either individually or within scripts, which makes for a very flex-
ible working environment. New code (including bug fixes) may be compiled
and used as needed, without recompiling the entire executable [1].

That makes SURF-HIPPO very flexible. Knowledge of Lisp and pro-
gramming experience can considerably reduce the time needed to learn and
use SURF-HIPPO.

4.6 NeuronC

Basic features of NeuronC. NeuronC was developed as a “simulation
language” and based on the approach of “general” simulators, the concept
of a “language” in which elements of the model can be described and “run”
[21].

NeuronC contains a subset of the C programming language, with stan-
dard features such as variables, assignment statements, mathematical op-
erators, conditional and loop statements, and subroutines. NeuronC is an

26

interpreted language, similar to other simulation languages.

NeuronC was originally designed to perform experiments on vision, which
can contain real networks with a huge number of neurons. Therefore, the
main goal of simulating of such a network is to provide the possibility to
solve problems at many levels of detail. Consequently, the basic idea of
NeuronC is the same as for “general” simulation systems.

“However, NeuronC contains several special features: 1) it can construct
and run models as large as 50,000 compartments using a conventional work-
station, with run times on the order of hours (proportionately less for smaller
models); 2) the models can be constructed hierarchically as a set of “concep-
tual modules”, and this allows parameters and connections of a module or
entire neural circuit to be comprehended and easily altered; 3) the models
can contain two-dimensional light stimulus and photoreceptors, that allows
simulating a visual physiology experiment” [21].

Neural elements and their representation. = The network is organized
as a set of “conceptual modules”, each one “constructed” from lower-level
components. The most useful types of module seem to be familiar, such
as “membrane channel”, “synapse”, “dendrite”, “synaptic interconnected
pattern”, and “array of neurons”. Each module is simulated with an appro-
priate precompiled algorithm. New elements can be added in NeuronC by
setting the appropriate code and recompiling [21].

After a model’s neural elements have been specified, the NeuronC sim-
ulator translates them into a compartmental model. A “sphere” (usually
a soma) is translated into one compartment, which represents an isopoten-
tial region enclosed by a membrane (without axial resistance). In contrast,
NeuronC translates a “cable” into a series of isopotential compartments,
each representing a small patch of membrane and a small volume of cyto-
plasm [17]. The compartments and their resistive interconnections are cre-
ated from the neural circuit description by a cable-segmentation algorithm
[5].

NeuronC creates 2 levels of information, “high-” and “low-level”, to rep-
resent the neural circuit at different levels of abstraction. High-level data
structures store the information directly from the experiment description in
the input file. They describe stimulus, record, node, and neural element
(cable, sphere, synapse, sensory transduction element, etc.). At runtime,
this high-level information is translated by the simulator program to low-
level information, stored in different data structures. Low-level data struc-
tures store information specifically for use by the simulator during compu-

27

Figure 19: Morphology and connectivity of a 3-dimensional network con-
structed with NeuronC.

tation [21].

Integration methods. At the second level of abstraction, the functions
of the electronic circuits are simulated using a set of differential equations
evaluated with the appropriate numerical integration method, by default a
variation of the Crank-Nicholson implicit method, developed by Hines [4].
NeuronC also includes the backward Euler implicit method and the forward
Fuler explicit integration method.

Graphics. NeuronC can portray the morphology and connectivity of a
3-dimensional network with a “display” statement. This statement allows
selective display and exclusion of parts of a neural circuit (see Fig. 19).
NeuronC also can plot voltage, current as a function of time, and in addition
can parametrically graph any 2 variables (one as a function of the other).

Operation system. The distribution of NeuronC is provided with the
source code and runs on most UNIX systems.

4.7 HHSim

HHSim, in contrast with “general simulation systems”, such as GENESIS
and NEURON, which provide more modelling options for researchers, is
implemented for teaching purposes. It provides modelling a section of a

28

“oltage Feporting B

Figure 20: HHSim main window for controlling simulation results.

membrane with traditional Hodgkin-Huxley voltage-gated channels. HHSim
can be used as a good demonstrative tool in neurophysiology courses.

HHSim was written on Matlab. The installation of HHSim does not
require a Matlab licence and is distributed as an executable file. Executable
files for Windows, Unix and MacOs are available. The version with source
code is also available, requiring Matlab version 6 or higher.

Graphical User Interface. The main window of HHSim, which is il-
lustrated in Fig. 20, provides the ability to plot membrane voltage and
Hodgkin-Huxley gated parameters m, h, and n as default. The informa-
tion to be plotted, such as currents or conductances, can also be selected.
The data can be saved in Postscript format for printing or in ASCII data for
estimation. The program provides access to the channel’s Hodgkin-Huxley
parameters, membrane parameters, stimulus parameters, and ion concen-
trations (see Fig. 21). The Drugs window allows application of three drugs:
TTX, which inhibits the sodium current; TEA, which inhibits the potas-
sium current; and pronase, which eliminates sodium-channel inactivation
(see Fig. 22).

29

500 4400

400.0] 200

0100

52.0) S60.0;

st Sodium
Bl Celayed Rectifier
Bl User Channel

e |
(0)

(Q)

Figure 21: (a) HHSim Membrane window for adjusting of membrane param-
eters; (b) HHSim Channels window providing access to channel parameters.

% nitition

TEA (tetraethylammonium) - inhi K current

Figure 22: The HHSim Drugs window allows application of a few drugs.

30

GENESIS NEURON SNNAP Nodus NeuronC Surf- HHSim
Hippo

Oper. sys- Unix Unix, Win, any MacOs Unix Unix Unix, Win,

tem MacOs MacOs

Impl. lan- C C Java Fortran C Lisp Matlab

guage

User yes, for pro- no no no yes, for pro- yes no

extensions grammers grammers

Int. method explicit, im- implicit explicit explicit explicit, im- implicit no informa-
plicit plicit tion

Graphs of re- after for primal re- yes yes yes yes yes

sults programming search

Model defini- interpreter interpreter editors editors interpreter files GUI

tion

Tonic yes yes yes yes yes yes HH

channels

Synaptic yes yes yes yes yes yes no

channels

Networks yes yes yes limited yes yes no

Table 1: Important properties of compartmental modelling packages

5 Conclusions

In this paper we have examined seven simulation packages for biological

neural networks.

Table 1 summarizes the relevant information about the packages consid-
ered here. The characteristics given in this table have been proven useful.
Table 2 presents the “best” features that can play an important role by
choosing a program.

31

GENESIS | “general” simulation system; parameters are specified with
“table lookup”; multiple time scales; extensibility; parallel
computing

NEURON | “general” simulation system; numerical method developed
by Hines; properties are dependent on position in the section

SNNAP graphical interface; modular organization of input files; sim-
ulation of different types of plasticity and common experi-
mental techniques

Nodus graphical interface, no programming skills are neces-
sary;hierarchical structure of model definition files

NeuronC | extensibilty; simulation experiments on vision

Surf-Hippo | 3-dimensional models

HHSim educational software

Table 2: Best features of examined packages.

32

References

1]

[10]

[11]

[12]

L. Borg-Graham. Additional Efficient Computation of Branched Nerve
Equations: Adaptive Time Step and Ideal Voltage Clamp. Journal of
Computational Neuroscience, 8(3):209-226, 2000.

L. Borg-Graham. The Surf-Hippo Neuron Simulation System. 2003.

J. Bower and D. Beeman. The Book of Genesis: Ezxploring Realistic
Neural Models with the GEneral NEural SImulation System. Springer
TELOS, 1998.

M. Hines. Effecient computation of branched nerve equations.
J. Biomed. Comp., 15:69-76, 1984.

M. Hines. A program for simulation of nerve equations with branching
geometries. International Journal of Biomedical Computing, 24:33-68,
1989.

M. Hines. NEURON - A Program for Simulation of nerve Equations. In
F. Eeeckman, editor, Neural Systems: Analysis and Modelling, pages
127-136. Kluwer Academic Publishers, 1993.

M. Hines. The NEURON simulation program. In J. Skrzypek, editor,
Neural Network Simulation Environments. Kluwer Academic Publish-
ers, Norwell, Mass, 1993.

M. L. Hines and N. T. Carnevale. The NEURON Simulation Environ-
ment. Neural Computation, 9:1179-1209, 1997.

M. L. Hines and N. T. Carnevale. Expanding NEURON’s Repertoire of
Mechanisms with NMODL. Neural Computation, 12:995-1007, 2000.

M. L. Hines and N. T. Carnevale. NEURON: a tool for neuroscientists.
The Neuroscientist, 7:123-135, 2001.

M. L. Hines and N. T. Carnevale. The NEURON Simulation Envi-
ronment. In M. A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks. MIT Press, Cambridge, MA, 2 edition, 2002.

D. A. Baxter 1. Ziv and J. H. Byrne. Simulatipon for neural networks
and action potentials: Description and Application. J. Neurophysiol.,
71:294-308, 1994.

33

[13]

[14]

[21]

[22]

J. M. Bower, D. Beeman and M. Hucka. The GENESIS Simulation
System. In M.A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks. MIT Press, Cambridge,MA, 2002.

M. A. Wilson, U. S. Bhalla, J. D. Uhley and J. M. Bower. GENESIS:
A system for simulating neural networks. In Advances in Neural In-
formation Processing Systems, pages 348-353. Morgan Kaufman, San
Mateo, 1989.

M. Nelson and J. M. Bower. Simulating neurons and neuronal net-
works on parallel computers. In C. Koch and I. Segev, editors, Methods
in Neuronal Modeling, chapter 12, pages 397-438. MIT Press, Cam-
bridge, Mass, 1989.

W. Rall. Branching dendritic trees and motoneuron membrane resis-
tivity. Ezp. Neurol., 1:491-527, 1959.

W. Rall. Theoretical significance of dendritic tree for input-output
relation. In R.F.Reiss, editor, Neural Theory and Modelling, pages 73—
97. Standford University Press, Standford, 1964.

E. De Schutter. Nodus, A User Friendly Neuron Simulator for Mac-
intosh Computers. In F. Eeeckman, editor, Neural Systems: Analysis
and Modelling, pages 113-119. Kluwer Academic Publishers, 1993.

E. De Schutter and J. M. Bower. An active membrane model of the
cerebellar Purkinje cell. Simulation of current clamps in slice. J. Neu-
rophystol., 71:375-400, 1994.

E. De Schutter and J. M. Bower. An active membrane model of the
cerebellar Purkinje cell. Simulation of synaptic responces. J. Neuro-
physiol., 71:401-419, 1994.

R. G. Smith. NeuronC:a computational language for investigating func-
tional architecture of neural circuits. J. Neurosci. Methods, 43:83—-108,
1992.

M. Wilson and J. M. Bower. Simulating cerebral cortical networks:
oscillations and temporal interactions in a computer simulation of pir-
iform(olfactory) cortex. J. Neurophysiol., 67:981-995, 1992.

34

