
JacORB � A Java Object Request Broker

Gerald Brose

brose�inf�fu�berlin�de

Technical Report B ����

April ����

Abstract

This document describes the architecture� design and implementation of
JacORB� a free and portable object request broker written in Java� JacORB
is a partial implementation of CORBA� the OMG	s Common Object Request
Broker Architecture� The current version as of this writing is
���

Freie Universit�at Berlin
Institut f�ur Informatik
Takustra
e ��
D������ Berlin� Germany

Contents

� Introduction �

� CORBA �

��� A CORBA introduction �

��� Object Request Broker Architectures �

� A JacORB Overview �

��� JacORB design rationale �

��� JacORB architecture �

����� Stubs and Skeletons �

����� Concurrency �

����� Names and Object References �

����� The Java language mapping �

� JacORB Design ��

��� The IDL compiler �

��� The Generator ��

����� Stubs ��

����� Skeletons ��

��� The JacORB Runtime ��

����� Interoperability ��

����� Object References ��

����� Concurrency ��

����� TypeCodes ��

� Object Services �	

��� Naming ��

��� Events �

� CONTENTS

 Future work ��

��� Limitations ��

��� Further Development ��

Chapter �

Introduction

JacORB is a free� implementation of OMG CORBA and was developed at Freie Univer�
sit�at Berlin� It has been used for developing CORBA applications as well as for teaching
CORBA�

While not providing the entire funcionality of CORBA ��
 with respect to dynamic
invocations� JacORB supports most of CORBA	s static invocation features and allows
multi�threaded clients and servers to be written in Java�GJS���� It o�ers CORBA inter�
operability by implementing CORBA	s Internet Inter�ORB Protocol �IIOP� and includes
an implementation of a name and an event service� There is no native code in JacORB� so
it can be used directly on any platform for which a Java virtual machine implementation
is available� Full source code and a number of examples are included in the JacORB
distribution�

This paper is organized as follows� Section � gives an introduction to CORBA� the
third section describes the JacORB architecture and how it is related to CORBA� Section
four presents design issues and section �ve describes the implementation of the JacORB
services naming and events� The concluding section � outlines future work� For a more
practical introduction to using JacORB refer to �Brose����

�according to the terms of the GNU public license�

Chapter �

CORBA

This chapter gives a short introduction to the Common Object Request Broker Architec�
ture� For more comprehensive introductions to CORBA see �OHE��� Siegel���� We go on
to sketch a few di�erent architectures for implementing an Object Request Broker�

��� A CORBA introduction

CORBA �OMG��� de�nes the infrastructure for OMG	s Object Management Architecture
�OMA� by providing standards for object invocations in heterogeneous environments�
CORBA de�nes its own object model which is manifested in the Interface De�nition
Language �IDL�

IDL is used to de�ne the interfaces of objects� The implementation of these objects can
be done in any programming language provided all concepts of CORBA IDL are mapped
to that language� The OMG de�nes a number of language mappings for the most widely
used programming languages� e�g� C� C��� Smalltalk� A Java mapping is being worked
on� but there is presently no o�cial OMG standard�

CORBA objects are connected by an Object Request Broker �ORB� which allows ob�
jects to communicate without regard to object location� Figure ��� illustrates the main
components of an ORB as de�ned by CORBA�

CORBA environments provide two ways of invoking operations on object implemen�
tations�� clients can use pre�compiled stubs which are automatically generated from IDL
speci�cations� or they can use the Dynamic Invocation Interface �DII� to build operation
invocations at runtime�

On the server side� these di�erent approaches are matched by statically compiled
Skeletons or by the Dynamic Skeleton Interface� While the client side functionality is
actually not very complicated and can be provided with a high degree of transparency�

�The term server is avoided here because a server in CORBA parlance refers to an operating sys�
tem process in which active object implementations reside� Services are provided by these object
implementations�

���� OBJECT REQUEST BROKER ARCHITECTURES �

Implementation
ObjectClients

Object Request Broker

ORB

Interface

Dynamic

Implementation RepositoryInterface Repository

Object

Adapters Skeletons
Skeleton
Interfaces

IDL
StaticStatic

Stubs
IDLInvocation

Interface

Dynamic

Figure ���� ORB architecture

the same does not hold for the server side� Since there can be no single mechanism for
activating and binding to object implementations with all conceivable requirements for
their runtime environment� these issues are dealt with by a separate component called
Object Adapter� Object Adapters can be de�ned according to the special requirements
implementations might have� e�g� persistent database objects might require their own
adapter� The only object adapter de�ned in CORBA is called the Basic Object Adapter
�BOA��

The Interface Repository is basically a type management component that can be used
to de�ne� alter and query type information statically and dynamically� The Implementa�
tion Repository is used by the Object Adapter to register object implementations�

While it is not necessary to prescribe a standard for ORB�internal communication�
the scenario is di�erent for communication between objects managed by di�erent ORBs�
These ORBs have to interoperate in such cases� so CORBA speci�es the General Inter�
ORB Protocol �GIOP� that ORBs have to implement� GIOP de�nes a number of message
formats and a Canonical Data Representation �CDR� for transferring data� GIOP may
be realized using any transport protocol� but a TCP�IP implementation � the Internet
Inter�ORB protocol �IIOP� � is obligatory for any CORBA compliant ORB�

��� Object Request Broker Architectures

The CORBA speci�cation does not prescribe any particular implementation of an ORB�
nor does it stipulate the architecture of an ORB implementation� A number of di�erent

� CHAPTER �� CORBA

architectures are conceivable and are actually mentioned in �OMG���� We brie�y describe
the three basic choices for ORB architectures�

Server�based ORB

The �rst possibility is for an ORB to be realized as a normal program which functions as a
server to both client and server objects� Communication with the ORB could be done via
any IPC mechanisms available� The advantage of this approach lies in the centralization
of the ORB management� if any policies �e�g� security� are to be applied to all object
invocations in a domain� this is the easiest way to enforce them�

Library�based ORB

While the ORB�server approach leads to a highly centralized ORB� a library�based ap�
proach e�ectively decentralizes ORB functionality� Here� the ORB is not a separate�
identi�able run�time component but rather resides in libraries through which its func�
tionality is made available to client and server programs�� One example of such an ORB
implementaion is IONA	s Orbix�IONA����

Di�erent instances of applications in the same domain could thus be made to run with
very di�erent con�gurations of ORB functionality� For instance� one application could be
linked with libraries providing a distributed and multi�threaded environment plus security
features such as encryption on the transport level� while another application could be
con�gured to run both client and server objects in a single address space� avoiding run
time marshalling of operation arguments and results and the need for encrypting messages
altogether while perhaps relying on dynamic type management features of the Interface
Repository which were not included in the �rst application�

System�based ORB

A third possible architecture for implementing an ORB could be to provide the ORB
functionality as part of the underlying operating system� as in Sun	s NEO�Sun���� The
advantages this approach o�ers are possibly enhanced security and performance as the
operating system features can be used more directly in the design and implementation of
the ORB� The OS could provide for authentication and could be used to avoid marshalling
if client and server object are located on machines of the same hardware architecture�

�A daemon process� however� will in most cases still be needed on machines running server processes�

Chapter �

A JacORB Overview

Before going into the details of the JacORB architecture and design� we state the principles
and goals underlying this design�

��� JacORB design rationale

The two main JacORB design goals are simplicity� portability and ease of use� In general�
when design decisions have to be made where there are tradeo�s between performance
and one of these goals� we tend to disregard performance� Our aim was to make CORBA
technology easily accessible to everyone and to provide an example implementation of
an ORB which could be used as a kind of textbook example for teaching basic ORB
technology and principles� Making the JacORB implementation intelligible is a main
motivation for keeping the design as simple as possible�

Making a CORBA platform widely accessible touches on portability in our case� since
chosing the Java virtual machine as our target architecture makes JacORB immediately
accessible on all major hardware and operating system platforms and ensures an equally
wide portability of applications written with JacORB� To achieve this� we needed to
restrict the implementation language to pure Java� i�e� we do not use any native code �

Simplicity and ease of use are equally high ranking concerns in the JacORB design�
Ease of use for developers is achieved by providing a high level of distribution transparency
to the programmer through the JacORB API and the IDL�to�Java language mapping�
For details please see �BB��� and the section on the Java language mapping below�

��� JacORB architecture

A library�based ORB architecture was the obvious choice in our case� A system�based
architecture was impractical as we have no means of building an ORB layer into existing
operating systems� Furthermore� this approach would not have been conducive to an
easy understanding of the system as a whole� A server�based approach would have been

� CHAPTER �� A JACORB OVERVIEW

possible but appeared too in�exible and seemed to incur more communication overhead
than necessary�

The JacORB architecture� thus� is library�based� all of the CORBA functionality
realized by JacORB is provided by stubs and skeletons which� by inheritance� use the
JacORB class library� Stubs and skeletons have to be statically compiled from IDL
speci�cations with the IDL compiler and a separate stub generator� These proxy objects
are dynamically linked with client and server programs� In its present form� JacORB
requires no separate runtime component on network nodes running JacORB applications�
All that is needed is one HTTP server somewhere in the domain and one instance of the
JacORB name server��

In the present release
��� there is no DII and no DSI� no Interface and Implementation
Repository and no separate Object Adapter component�� The implication of not having a
 real BOA at the moment is that there is no automatic activation of servers for object
implementations and no mechanism for selecting di�erent activation modes� i�e� servers
have to be up and running at the time a request is made� and the only activation mode
is unshared server �i�e� one object per server�� Interoperability with other CORBA
implementations is achieved through the internal use of the Internet Inter�ORB Protocol
�IIOP�� which is mandatory for CORBA ��
 compliance� JacORB	s interoperability has
been successfully tested with objects running on Orbix� NEO and OmniBroker�

����� Stubs and Skeletons

There are two approaches to generating stubs and skeletons in JacORB� When developing
in a CORBA environment� we have IDL interface speci�cations on which the IDL�to�Java
compiler needs to be run� This will produce one or more Java �les which have to be
compiled with a Java compiler to yield Java byte code� The JacORB generator can then
be run on these �les in order to create the client side stub and the server side skeleton�

If� on the other hand� the interface speci�cation is in Java� the �rst step of running
the IDL compiler can be skipped� In this case� the instances of the generated Java classes
are no CORBA objects but can still be used in distributed Java programs� The whole
process of generating stubs and skeletons from either IDL or Java interfaces is illustrated
in �gure ����

����� Concurrency

Distributed systems are generally concurrent� even if clients and servers are themselves
sequential because any number of clients could access a server at the same time� Another
potential source of concurrency is the ability to create threads in Java programs� Thus�
concurrency can arise from multiple clients invoking operations of an object implementa�

�In future versions there will be one daemon process on every network node responsible for starting
server processes�

�We are in fact planning to build an Interface Repository and an OA�

���� JACORB ARCHITECTURE �

interface.class

interface.java

javac

idl2java

interfaceSkeleton.javainterfaceStub.java

Generator

interface.idl Starting point fot
developing with IDL

Java-only development
Starting point fot

Figure ���� Generating Stubs

tion simultaneously� or it can arise from multiple threads in one client� Obviously� it would
be undesirable if an ORB implementation automatically serialized the execution in di�er�
ent threads� so ORBs have to o�er some sort of multi�threading support� In JacORB� the
ORB core is designed so as to allow multi�threading� so no user intervention is necessary
unless concurrency is to be suppressed�

JacORB Skeletons allow concurrent access to object implementations� so care must
be taken to synchronize method invocations if concurrent access could potentially lead
to inconsistencies or deadlock� You can disallow concurrency altogether by declaring all
methods as synchronized in Java�

Stubs use conventional synchronous message passing semantics by default� but if an
operation is declared as oneway in the IDL interface� the generator produces code for
asynchronous message passing as well��

����� Names and Object References

Using the name service� JacORB o�ers a simple way to locate object implementations
by name� When a variable is to be bound to an object implementation� the implementa�
tion can be located by querying the name service as shown in the following code fragment�

server s � �server�NameServer�locate��server�� context url ���

The result of such a query is an opaque object reference to the object implementation
realized by a proxy object � the stub� This stub is already connected to the object
implementation and ready to receive invocations� �The second argument to the call�
context url� is a string in URL format which is used to identify the naming context

�Strictly speaking� the IDL keyword oneway does not prescribe asynchronous invocation semantics but
�best�e�ort� semantics� i�e� message delivery is not guaranteed� Therefore� oneway must not have results
or out�Parameters� Most ORB implementations interpret this as indicative of asynchronous invocation
semantics� and so do we�

�
 CHAPTER �� A JACORB OVERVIEW

which is to be used for resolving the name��

For an object to be locatable via a name� it needs to be registered with the name
server� As an example� consider the following piece of code which would be part of
the server program holding the object implementation serverImpl� A skeleton for this
object is created and then registered�

serverImpl s � new serverImpl���

serverSkeleton st � new serverSkeleton� s ��

NameServer�registerService� st� �server�� context url ��

Object references can be passed around as arguments for operations and can be ob�
tained as results of operations� JacORB hides all the complexity and always provides
ready�to�use stubs bound to the object implementations� thus insulating programmers
from distribution details� Stubs are only used for remote objects� and there is only one
stub object in an address space for any remote object� JacORB takes care that no super�
�uous stubs are created or used�

����� The Java language mapping

The OMG issued an RFP for a Java language mapping in August ���� �OMG��� to which
there is a joint submission by all the major ORB vendors �Joint���� The �nal release of
a corresponding speci�cation is expected in the second quarter of ����� Any language
mapping that we might use must therefore be considered preliminary� but as the mapping
is mostly straightforward� we do not expect too many changes once the OMG mapping is
agreed upon�

For our purposes� we combine features from both SunSoft	s and IONA	s original lan�
guage mappings rather than invent a complete mapping of our own here� There are�
however� a number of points where our mapping di�ers from the proposed language map�
ping in �Joint���� We will point these out in the remainder of this section� The main design
rationale in our mapping is to make it natural and easy to use for Java programmers as
well as easy to implement�

In general� the basic IDL data types are mapped onto basic Java types� structured IDL
types are mapped onto Java classes and IDL interfaces are mapped onto Java interfaces�

Names and Scopes

IDL provides more scoping constructs than Java does� Modules� interfaces and structs
de�ne their own name spaces� Modules are mapped to Java packages� but Java interfaces
or classes do not allow further nesting of declarations for name scoping purposes�� In Java�
we have to create new �les for every public class generated from structured IDL types�
These classes belong to their respective module�package� and their scope extends to the

�This applies to Java JDK ��	�
� In JDK ���� nested classes are supported�

���� JACORB ARCHITECTURE ��

whole package and cannot be further constrained� The only way to avoid name clashes
with the created classes is to pre�x all class names with the name of the surrounding
scopes if these scopes are not interfaces but� e�g�� structs�

module Example 	

typedef char t�

interface Alpha	

void gr���

struct Struct 	

sequence
t� longies�

struct Me 	

long y�

� you�

char x�

�� �� ��

results in Java classes Alpha�java� AlphaStruct�java and AlphaStructMe�java�

Basic Data Types

A Java long is a ���bit integer� whereas an IDL long is only �� bits� so IDL longs
are mapped onto Java ints� Java does not support unsigned data types� so signed IDL
integers map to their unsigned Java equivalents� Care has to be taken when using large
values of unsigned IDL values which could result in negative values in Java� Strings can be
bounded in IDL� though not in Java� so we lose information in mapping bounded strings
onto Java strings�

The following mapping for basic types is used�

IDL type Java type
boolean boolean

char char

octet byte

string java�lang�String

short short

unsigned short short

long int

unsigned long int

float float

double double

Enumerations

Enumerations are not supported in Java� so an IDL enum declaration produces a �nal
Java class of the same name with static final int members with names corresponding

�� CHAPTER �� A JACORB OVERVIEW

to the elements of the enumeration type in IDL� This generated class implements the
interface jacorb�Orb�Enum in order to make it possible for the runtime to distinguish
between classes generated from enumerations� structures� interfaces or arrays�

enum color 	 Red� Green� Blue� Yellow ��

maps onto the Java class color�java�

public class color implements jacorb�Orb�Enum 	

public static final int Red �
�

public static final int Green � ��

public static final int Blue � ��

public static final int Yellow � ��

�

Constants

Similarly� IDL constants are mapped onto Java classes as there is no equivalent Java
language construct�

IDL�

const string hallo � �hallo��

Java�

public final class hallo 	

public static final String value � �hallo��

�

The language mapping in �Joint��� proposes to map constants which are declared
within an IDL interface to a public static final �eld of the corresponding Java inter�
face� We plan to align our mapping to this proposal�

Structures

Structures are mapped onto Java �nal classes with public instance variables for each
struct member� Two constructors are also generated� one for struct member initializa�
tion� the other empty� All classes generated from structures implement the interface
jacorb�Orb�Struct so that the runtime system can distinguish between classes gener�
ated from structures� enumerations or interfaces�

���� JACORB ARCHITECTURE ��

struct try�me 	

short a�

long b�

char c���� d�

��

gives�

public final class try�me �� from struct type try�me

implements jacorb�Orb�Struct

	

public short a�

public int b�

public idltest�try�mecharArray� c�

public char d�

public try�me�short a� int b� idltest�try�mecharArray� c� char d�	

this�a � a�

this�b � b�

this�c � c�

this�d � d�

�

public try�me��	�

�� serialization code���

�

Unions

Discriminated Unions are only hesitantly supported in our mapping as we do not regard
unions as appropriate in object�oriented programming languages� The use of unions in
IDL speci�cations is therefore strongly discouraged� Any union in IDL is treated as if it
were typedef	d to the class jacorb�Idl�Union�

union unionTest switch�short� 	

case �� long l�

default� char c�

��

is equivalent to�

typedef jacorb��Idl��Union unionTest�

This class� jacorb�Idl�Union� looks like this�

�� CHAPTER �� A JACORB OVERVIEW

public class Union 	

public Object element � null�

public Union��	�

public Union� Object o �	

element � o�

�

�

We will� however� change our mapping to cover unions properly in the future and use
the mapping for unions proposed in �Joint����

Arrays and Sequences

Since IDL arrays are always bounded whereas Java arrays are always unbounded �in the
declaration�� we need to map IDL arrays to special Java classes containing �xed size arrays
and implementing the interface jacorb�Orb�Array �for the same reasons other generated
classes implement their interfaces��

module idltest 	

interface server 	

typedef server servers����

oneway void notify�in servers svs��

��

��

will therefore be mapped to a class serverserverArray��java�

�� Automatically generated by idl�java from array type servers

package idltest�

public class serverserverArray� implements jacorb�Orb�Array 	

public idltest�server values�� � null�

public static final int size � ��

public serverserverArray���	

values � new idltest�server�size��

�

public serverserverArray�� idltest�server �array���

throws jacorb�Idl�ArraySizeMismatchException

	

if� �array�length �� size �

throw new jacorb�Idl�ArraySizeMismatchException���

values � �array�

�

�� serialization code ���

�

���� JACORB ARCHITECTURE ��

plus the interface in server�java�

�� Automatically generated by idl�java from interface server

package idltest�

public interface server extends CORBA�CORBject	

void notify�idltest�serverserverArray� svs��

boolean notify�oneway � true�

�

Sequences are simply mapped to Java arrays� However� the mapped sequences are
always unbounded �i�e� bounds information is lost in the translation process�� Our map�
ping could be extended to produce a bounds checking operation on the generated arrays
so that the original bounds of the sequence are recognized� or we could take a similar
approch as with arrays� This is� however� not part of the present mapping�

struct Container	

sequence
 sequence
 char � � s�

long l�array������

��

is therefore mapped to�

public final class Container 	

�� from struct type Container

public char���� s�

public int l�array���

public Container�char���� s� int l�array���	

this�s � s�

this�l�array � l�array�

�

public Container�� 	�

�

Interfaces

Java supports only single implementation inheritance� but as it has multiple inheritance
for interfaces� no problems arise in directly mapping inheritance clauses from IDL to
Java� IDL interface attributes result in accessor methods in the Java mapping� one for
retrieving the attribute value� one for setting it� If the attribute is marked readonly�
only the get�method is provided�

All interfaces generated from IDL speci�cations extend the interface CORBA�CORBject�
This is done in order to distinguish between such interfaces and Java interfaces not derived
from IDL speci�cations�

IDL�

�� CHAPTER �� A JACORB OVERVIEW

module jacorb 	

module Idl 	

module idltests	

interface grid 	

attribute short height�

readonly attribute short width�

��

�� �� ��

Java�

public interface grid extends CORBA�CORBject 	

short �get�height���

void �set�height�short a��

short �get�width���

�

Typedef

Typedefs introduce new names for IDL types� The types referred to by these newly
introduced names can either be already de�ned� or they can be de�ned in the typedef

declaration�

interface grid 	

typedef char harr�

typedef sequence
 harr � harrSeq�

��

In this example� the type name harr refers to a prede�ned type whereas harrSeq

refers to a newly introduced type� a sequence of harrs� In our mapping� typedef	d names
are mapped by replacing them by the mapped original type� mapping other IDL types
where necessary� In the above example� it is su�cient to replace harr by char� but before
harrSeq can be replaced� we need to map sequence
 harr � to a Java array of char�

A more complete IDL example�

module idltest 	

interface grid 	

typedef char harr�

typedef sequence
 harr � harrSeq�

typedef struct �h�	 harr c� � structdef�

struct harr�test	

harrSeq h�

��

���� JACORB ARCHITECTURE ��

void harr�func�� in harrSeq h ��

void harr�func�� in structdef s ��

��

��

Mapping the type name structdef involves mapping the structure h� which generates
a �nal class grid h��

�� Automatically generated by idl�java

package idltest�

public final class grid�h� �� from struct type �h�

implements jacorb�Orb�Struct

	

public char c�

public grid�h��char c�	

this�c � c�

�

public grid�h���	�

�� ���

�

The interface �in grid�java��

�� Automatically generated by idl�java from interface grid

package idltest�

public interface grid extends CORBA�CORBject	

void harr�func��char�� h��

void harr�func��idltest�grid�h� s��

�

Semantics of argument passing

CORBA de�nes pass�by�value semantics for basic �integer types� chars� etc� and con�
structed values �structs� sequences� arrays� unions� but pass�by�reference semantics for
objects� Accordingly� JacORB stubs and skeletons marshal and un�marshal only the ba�
sic Java types �like int� char� String�� references to remote objects and arrays of these
kinds of objects� There is no automatic marshalling of objects of arbitrary� user�de�ned
types� The IDL compiler includes serialization code for IDL types of non�object values
in every generated Java class�

Apart from the general distinction between objects on non�object values� CORBA
IDL also allows pass�by�result semantics �the out or inout keywords in IDL�� This is
modelled by having the IDL compiler automatically wrap a holder class around inout

parameters� i�e� the objects in which we expect to receive results�

�� CHAPTER �� A JACORB OVERVIEW

IDL�

interface Inout 	

void method�in long l� out short s� inout char c��

��

Java�

public interface Inout extends CORBA�CORBject	

void method�int l�

jacorb�Orb�IntOutHolder��out�� s�

jacorb�Orb�CharHolder��inout�� c ��

�

The package jacorb�Orb contains prede�ned holder classes for all basic types and
generic holders for reference types� There are di�erent holders for out� or inout�
Parameters so the run time system can distinguish between these kinds of Parameters�
Holders for array types will be generated by the IDL compiler when a type is used as a
out� or inout�Parameter�

Any

The IDL type any maps to the Java class jacorb�Orb�Any which has methods to insert
and extract values of prede�ned as well as of user de�ned types� Inserting a value sets the
typeCode �eld to the appropriate value and overrides the previous contents of the value
�eld� Primitive values are wrapped in appropriate object values� e�g� an int is wrapped
in an object of the class java�lang�Integer�

package jacorb�Orb�

import CORBA�TCKind�

import CORBA�Principal�

public class Any implements Serializable 	

TypeCode typeCode�

Object value�

public Any��	�

public int kind��	

return typeCode�kind���

�

public void insert � short s �	 �� ��� ���

public short extract�short�� throws BadOperationException 	�� ������

���� JACORB ARCHITECTURE ��

public void insert � long s � 	�� ��� ���

public int extract�long�� throws BadOperationException 	�� ������

public void insert � float s � 	�� ������

public float extract�float�� throws BadOperationException 	�� ������

�� ���

public void insert� int s� jacorb�Orb�Enum e � throws BadOperationException 	�� ���

public int extract�enum�� throws BadOperationException 	�� ������

�� ���

�

Exceptions

IDL exceptions are mapped onto Java exceptions in the same manner as strutures� Declar�
ing an exception results in the creation of a Java class of the same name which inherits
from java�lang�Exception�

Chapter �

JacORB Design

In this chapter we present the main components of JacORB and their design� viz� the
IDL compiler� the stub generator and the JacORB runtime system�

��� The IDL compiler

The �rst thing to be noted is that the IDL�compiler is responsible for realizing the Java
language mapping presented in the previous chapter� It is not responsible for generating
stubs and skeletons for the Java interfaces produced during the mapping process nor for
generating TypeCode�information� Stubs and skeletons are generated with a separate
tool� taking the IDL�compiler output as its input� This tool� the JacORB generator� is
described in the next section of this chapter�

Despite this decoupling� the design of this component is dependent on the classes
de�ning the communication layer in the JacORB runtime� which will be presented below�
This is due to the fact that the IDL�compiler is used to insert serialization code into
generated Java classes� and this code of course depends on the communication interface�

In order to produce an IDL parser� we used a parser generator from the public domain
�Hudson� which proved to be stable and reliable� It takes a LALR�Grammar for IDL
written in a Lex�Yacc�like language and produces Java code for the IDL parser� relying
on Java classes de�ning the syntactic categories for the parse tree� These Java classes are
also used in the syntax tree and for the tranformation from the parse tree into the syntax
tree� They also contain the methods for the Java code generation�

This design is in fact not very modular� It would be desirable to decouple the parse
tree from the syntax tree in order to allow for other language mappings to be supported�
As it stands� supporting other languages than Java with the same parser front�end would
not be easy� A redesign of the parser classes is� however� presently beyond our resources�

All �les relevant for the IDL�compiler are in the jacorb�IDL directory� The IDL�
Grammar is in the �le parser�cup� A few classes from the parser generator package itself
are needed� and these are not part of the JacORB distribution so that it is necessary to

���� THE GENERATOR ��

download and install the parser generator in addition to JacORB�

��� The Generator

The JacORB generator generates Java code for stub and skeleton classes� It achieves this
by parsing not the Java source code produced by the IDL�compiler� but by parsing the
Java byte code produced by the Java compiler from the source code produced by the IDL�
compiler� This approach has two advantages� First� it allows the generator to be used for
distributed Java programming without IDL speci�cations� and second� it simpli�es the
IDL�compiler component by factoring out an important task�

JacORB was �rst designed to allow remote object invocations in Java� and the gener�
ator was the main tool at that time� Parsing Java byte code instead of Java source code
relieves the generator from the burden of syntax checking possibly incorrect Java source
code and from re�implementing existing technology� Java byte code� on the other hand�
is a well documented and compact format that is much easier to parse�

����� Stubs

A stub is a client�side proxy for another object and is the concrete realization of an object
reference� A client can invoke operations using this reference and pass it as an argument
to other operation invocations where an object of the refernce	s type was expected� There�
fore� a stub must conform to the type of the object it represents� Object types are de�ned
in IDL as interfaces� and these are mapped by the IDL�compiler to Java interfaces� The
object implementation conforms to the mapped Java interface by implementing it� and
so does the stub implementation� Thus� both the stub and the object implementation are
subtypes of the interface de�ning the IDL type and both can be used in any place where
an object of the interface type is expected�

The generator accordingly produces a stub class which implements the interface of
the IDL type� This stub class implements all the methods listed in the original interface
and also inherits a number of management operations and methods implementing the
CORBA�ORBject interface from jacorb�Orb�Stub� Methods that invoke remote operations
have the same signature as the interface methods and are responsible for sending operation
arguments over a communication link to the remote object� They also receive and return
results or exceptions from the remote operation�

As an example� consider the following IDL interface�

�That was before the advent of RMI� of course�

�� CHAPTER �� JACORB DESIGN

module jacorb 	

module demo 	

module example� 	

interface server 	

string writeMessage�in string a���

�� �� �� ��

The IDL�compiler produces the following Java interface from this IDL de�nition�

package jacorb�demo�example��

public interface server extends CORBA�CORBject	

java�lang�String writeMessage�java�lang�String a���

�

The generator �nally produces the following stub class �le�

package jacorb�demo�example��

import jacorb���

public class serverStub extends jacorb�Orb�Stub implements server 	

public String typeId�� 	

return �jacorb�demo�example��server��

�

public java�lang�String writeMessage�java�lang�String a�� 	

Object args�� � new Object����

args�
� � jacorb�Orb�External�wrapArg�a���

Object result � invoke��writeMessage��

�Ljava�lang�String��Ljava�lang�String��� args��

return �java�lang�String�result�

�

�

This example shows that JacORB stubs do not contain marshalling code for sending
and receiving arguments and results� but rather wrap arguments in an Object array and
pass them on to a generic invoke operation of the superclass Stub� This in turn uses the
class jacorb�Orb�External for marshalling and unmarshalling�

����� Skeletons

Skeletons are the server�side equivalent of stubs� They contain code to receive operation
arguments� invoke the operation on the object implementation and send any results or
exceptions from the operation back to the caller� Skeletons need not conform to any
supertype as they are not passed around� The following �abridged� skeleton code was
generated from the above Java interface server and exempli�es the general skeleton
layout�

���� THE GENERATOR ��

package jacorb�demo�example��

import java�net���

import java�io���

public class serverSkeleton extends jacorb�Orb�Skeleton 	

server objImpl�

jacorb�Orb�Request r�

jacorb�Orb�External e�

�� details ommitted

public void run�� 	

jacorb�Orb�ObjectInputStream o � r�in�bytes�

try 	

if� r�mline�equals��writeMessage��� 	

java�lang�String �a
 � �java�lang�String�o�receive�object�

�Ljava�lang�String����

jacorb�Orb�Holder out�args�� � null�

Object result � null�

try	

result � jacorb�Orb�External�wrapArg�objImpl�writeMessage��a
���

� catch� Exception ex �	

if� r�response�expected �

e�sendReply�r� getExceptionTrace�ex�� null�null�

GIOP�ReplyStatusType�USER�EXCEPTION��

return�

�

if� r�response�expected �

e�sendReply�r� result� �Ljava�lang�String��� out�args�

GIOP�ReplyStatusType�NO�EXCEPTION��

�

�� further detail ommitted

� else

throw new jacorb�Orb�NetException��Method not found� � � r�mline��

� catch � Exception exc � 	

exc�printStackTrace���

� � �

JacORB skeletons are by default multi�threaded so they inherit� through their su�
perclass Skeleton� from the Java library�class Thread �multi�threading in JacORB is
presented in more detail below�� A skeleton	s principal method is run� where dispatching
of methods is performed by looking up operation names� Operation signatures are not
considered� since CORBA does not allow overloading of operation names� After identify�
ing which method is to be called� the necessary arguments are received and supplied as
parameters to the actual method call� Any exceptions thrown during the method execu�
tion are caught and sent back to the caller� as are results or out�Parameters in case a

�� CHAPTER �� JACORB DESIGN

result is expected��

��� The JacORB Runtime

The JacORB runtime system is responsible for a number of things which will be detailed
in this section� Apart from marshalling and unmarshalling data according to CORBA	s
interoperability requirements� the runtime system supports concurrent accesses to objects
and manages object references�

����� Interoperability

CORBA speci�es a protocol for interoperability between ORB implementations � the
General Inter�ORB Protocol �GIOP�� GIOP prescribes a number of message formats
and an external data representation� the Canonical Data Representation �CDR�� JacORB
implements the Internet Inter�ORB Protocol �IIOP�� natively and thus interoperates with
any other CORBA ��
 compliant ORB without need for bridging�

JacORB uses the class jacorb�Orb�External for setting up GIOP messages and the
classes jacorb�Orb�ObjectInputStream and ObjectOutputStream� for marshalling and
unmarshalling data according to CDR� For setting up TCP connections the standard
Java library sockets are used� These names of these classes ObjectInputStream and
ObjectOutputStream are abbreviated as In and Out in �gure ����

����� Object References

The JacORB runtime ensures that there will be no more than one stub for a given remote
object in a client address space in order to avoid unnecessary overhead�

����� Concurrency

As has been pointed out above� distributed systems are generally concurrent� and an
ORB implementation needs to address concurrency in one form or another� In order
to explain how JacORB handles concurrent accesses� we �rst describe the client side of
object invocations and then the server side�

�CORBA allows to indicate whether results are expected in the request message header�
�IIOP is GIOP over TCP�IP connections�
�These streams are not named after the stream names in the new JDK ���� The JacORB class names

were chosen independently and before JDK ��� was available�

���� THE JACORB RUNTIME ��

Concurrent Clients

In order to allow concurrent activity in clients� it must be guaranteed that the runtime
does not block waiting for operation replies� Only the individual client threads need to
block after invoking an operation until the invocation returns� This requires the reception
of reply messages to be decoupled from the sending of requests� so JacORB uses a separate
thread to receive replies� Sending of requests is done within the individual client threads
of control� Figure ��� depicts this situation�

Stub

External

Requester

In

Out

invoke()

IIOP

Client

Port
TCP

1: write_call() send_req()

Server

Reply2: result()

recv_rep()

init()

Figure ���� A concurrent client

A client may have any number of concurrently active threads which are allowed to
invoke operations via a single object reference or stub� Access to the stub is serialized
by de�ning a critical region with mutual exclusion around the activity of sending an
individual request message �Step �� write call���� The calling thread then blocks on a
Reply object when trying to obtain the result via the result���method in Step �� The
thread is unblocked again when the Requester�thread receives the reply message for that
Reply�object and noti�es the waiting thread in the init���method�

Concurrent Access on the Server side

While a single object reference is only ever used for accessing one object implementation
and thus only needs to manage one connection� the situation is di�erent on the server
side� A skeleton may receive requests on behalf of its object implementation from many
di�erent clients� Connection management on the server side therefore uses two layers
of threading� Every skeleton has on instance of a NetServer listening on a port for
connection requests� Once such a connection is established� the NetServer creates a
separate instance of itself running in a di�erent thread� This thread is responsible for
receiving request messages over a single connection while the �rst NetServer continues
to listen for additional connection requests from other clients�

�� CHAPTER �� JACORB DESIGN

On order not to suppress interleaving of operation invocations from multi�threaded
clients� the NetServer responsible for a given connection needs to employ threading again
� if the invocation was actually executed in the thread of the NetServer� other incoming
requests from the same source would have to wait for its completion� The NetServer starts
a di�erent skeleton�thread for every incoming request message � thread�per�request
model�� This approach is depicted in �gure ���� As on the client side� an External�
object is used as the interface to the communication layer�

(Spawner)

Skeleton
(Spawner)

accept()

NetServer

dispatch()
receive_req()

Skeleton

start()

NetServer

Object
Implementation

TCP
Port

External

In

Out start()

send_reply()
IIOP

Figure ���� Concurrency on the server side

To sum up� JacORB has one instance of class NetServer listening on a TCP port for
every object implementation� Every such instance starts up another NetServer�thread
per connection� i�e� per client address space� This thread in turn starts Skeleton�threads
for every incoming request message�

����� TypeCodes

CORBA de�nes TypeCodes as a data structure for providing run time type information
about IDL types� This information is used as one component of the generic type any so
that users of any values can determine what IDL type the value actually has� TypeCodes
are also used in the Interface Repository�

In order to make this kind of meta�information available at runtime� two approaches
are possible� TypeCodes can be generated at compile time and inserted into the Inter�
face Repository by the IDL�compiler� or the IDL�compiler could include enough meta�
information in target language constructs when mapping IDL to this language�

Generally� the �rst approach is in�exible and might not have produced the necessary
meta�information because it was not foreseen at compile time that it could be needed�
while the second approach might result in unnecessary overhead because too much infor�
mation is included which might never be used� Both approaches demand that the IDL
compiler perform extra work while mapping IDL to the target language�

���� THE JACORB RUNTIME ��

Using the re�ection features of Java ���� we found that the IDL compiler can be
relieved of most of this kind of extra complexity� Moreover� the �exibility of the second
approach above can be achieved with only neglegible overhead� E�ectively� what is needed
is a reverse mapping between Java and IDL which can be applied without much runtime
overhead � such as invoking a compiler and generating new class �les�

This is possible as the JDK ��� allows runtime access to all features of an object	s
class� methods� �elds� superclasses� type name� constructors and component type �if it
represents an array type� e�g��� This information can be used to construct TypeCodes at
runtime if classes generated by the IDL compiler can be distinguished from ordinary Java
classes and if all classes generated from IDL structured types can be told apart so as to
be able to distinguish a class representing an IDL struct from a class representing an
IDL interface� The IDL compiler need only include a little extra information like class
X implements jacorb�Orb�Struct in class declarations so that this distinction can be
made on the basis of the supertypes of a class or interface�

The generation of TypeCodes can thus be done by a relatively simple static method
getTypeCode�� in the JacORB class TypeCode which returns a TypeCode object for a
given class� This method is used by the JacORB class Any when inserting values into
an Any and marking its type with a TypeCode object� While we have not yet built an
implementation of the Interface Repository� we expect to be able to realize it without
further support from the IDL compiler� relying on the approach outlined above�

Chapter �

Object Services

JacORB comes with an implementation of two Object Services� Naming and Events� Both
these implementations should be considered prototypical rather than production quality�
They are described in the following sections�

��� Naming

The OMG naming service allows objects to be bound to names relative to a speci�c name
space or naming context� A name can be resolved� which means that the object bound to
a given name in a naming context is determined� This service is speci�ed in �OMG����

The JacORB Naming Service Implementation

The JacORB naming service is an implementation of this speci�cation� It does not�
however� implement the names library part of the speci�cation� The IDL interfaces
from COSS � can be found in the �le Coss�idl which comes with JacORB� Their Java
counterparts� which were produced by using the JacORB IDL compiler� reside in the
COSS� subdirectory� The Java interfaces for the naming service belong to the package
COSS�CosNaming and can be found in the COSS�CosNaming� directory�

The central interface in the CosNaming package is NamingContext� which de�nes all
the relevant operations on a naming context or name space� The most important opera�
tions are to bind� rebind� unbind and resolve names or contexts� The stub and skeleton
generated from this interface by the JacORB generator are also part of the CosNaming

package�

The implementation of the naming service is in the package jacorb�Naming� The
class jacorb�Naming�NamingContextImpl implements the NamingContext interface from
COSS�CosNaming and uses the class Name for operations on NameComponents� The API to
using the name service is provided by the class NameServer which creates naming contexts
and implements static methods to access these contexts� The relevant methods are�

���� NAMING ��

public static jacorb�Orb�Stub locate� String service� URL u �

public static void registerService�jacorb�Orb�Skeleton s�

String service� URL u �

public static void unregisterService�jacorb�Orb�Skeleton s�

String service� URL u �

public static NamingContext getContext�URL u�

Starting an instance of the class NameServer through the class	 main method creates
one naming context�

Using the JacORB Naming Service

A name server instance managing a name context can be started by issuing the command�

� ns filename

where filename denotes a �le that can be written to by the name server� The speci�c
name context managed by this name server can then be identi�ed by a URL point�
ing to filename which requires that filename is accessible by a WWW�Server� If the
local WWW�Server in a domain is� e�g�� www�inf�fu�berlin�de and a user brose	s
public html��directory is accessible� a name server could be started with the command

� ns �home�brose�public html�ServiceLog

and the context	s URL would be http���www�inf�fu�berlin�de��brose�ServiceLog
for world�wide access or also file��home�brose�public html�ServiceLog for local
access �perhaps over a shared �le system��

In the JacORB naming service� di�erent contexts are accessed through static methods
of the class jacorb�Naming�NameServer and identi�ed through URLs as outlined above�
An object reference to a speci�c context can be obtained by calling the name server	s
static method getContext� URL u � with a URL identifying a name context� Using this
reference� hierarchical namespaces can be con�gured as speci�ed in �OMG����

Objects can be registered with or located via the name service be �rst obtaining an
object reference for a speci�c context and then calling the bind or resolve operations
on that context object� The class jacorb�Naming�NameServer also o�ers static methods
locate and register which take a URL as a parameter to identify the context the object
is to be registered or located in� As an example� consider the following code to locate an
object�

�� File� jacorb�demo�example��Client�java

package jacorb�demo�example��

import jacorb���

import jacorb�Naming�NameServer�

import java�net���

�Assuming JacORB is installed properly�

�
 CHAPTER �� OBJECT SERVICES

public class Client	

public static void main� String�� args �	

try	

server s � �server�NameServer�locate��server��

new URL��http���www�inf�fu�berlin�de��brose�ServiceLog����

System�out�println� s�writeMessage� args�
� ���

� catch � Exception e�	

e�printStackTrace���

�

�

�

For the locate to succeed� a name server needs to be running
which has been started as outlined above to manage the name contex
http���www�inf�fu�berlin�de��brose�ServiceLog� Also� an object of type server

must have been registered in this context under the name server � If this is the case�
the locate�operation will return an object reference to the object�

��� Events

The OMG Event Service is a means of decoupling objects sending and receiving asyn�
chronous messages or events � neither suppliers nor consumers need to know the other
side� It is possible to have any number of consumers of events connected to a single
supplier� to have a single consumer receive events from a number of suppliers or to have
a n�m relation between suppliers and consumers of events�

The events service supports two di�erent models of event delivery� event consumers
can pull events� i�e� actively request events� or they can be noti�ed of events � push ��
Similarly� suppliers can generate events whenever they wish to � push �� or they can be
asked for events � pull ��

The central abstraction for the event service is that of an event channel� Both suppliers
and consumers connect to the event channel and interact only with the channel� not with
each other� Multiple channels can be con�gured such as to form chains of event channels
where one channel acts as a consumer or supplier to another� Figure ��� illustrates that the
event channel functions as a consumer to supplier objects and as a supplier to consumers�

Actually� it is not the event channel interface that clients � both consumers and
suplliers of events � interact with� but proxy suppliers or consumers� A push sup�
plier� e�g�� would not invoke push operations on the event channel interface� but on a
ProxyPushConsumer�interface to which it would have to obtain a reference �rst�

The typical way of interaction with an event channel� then� is to obtain a reference to
a supplier or consumer admin interface by calling for suppliers�� or for consumers

on the event channel� The interfaces SupplierAdmin or ConsumerAdmin list operations to

���� EVENTS ��

Event Channel

Supplier

SupplierConsumer

Consumer

Supplier

Supplier

Supplier

Consumer

ConsumerConsumer

Consumer

Supplier

Figure ���� An event channel

get references to ProxyPushConsumers� ProxyPullConsumers� ProxyPullSuppliers and
ProxyPushSuppliers for all four possible communication models� After obtaining one of
these by calling the appropriate operation� e�g� obtain pull consumer��� the event ser�
vice user has to connect to that proxy� in this case by calling connect pull supplier���

Event communication is untyped� i�e� event data sent across a channel has the IDL
type any� but typed channels can be used to extend the basic event communication
functionality� There are no a priori quality of service requirements for event channels� so
a broad range of possible implementations is conceivable�

The JacORB Event Service Implementation

The JacORB event service was implemented by Rainer Lischetzki and J�org von Frantzius
as part of their coursework for an advanced programming course in distributed object sys�
tems during the winter term ��������� at Freie Universit�at Berlin� The implementation
was later adapted to more recent JacORB versions by the author of this report�

The service implements the interfaces from the COSS event service speci�cation� The
generated Java interfaces for the event service belong to the packages COSS�CosEventComm
and COSS�CosEventChannelAdmin and reside in the respective directories�

The event channel implementation is in the class jacorb�Events�EventChannelImpl�
This class implements the two interfaces COSS�CosEventChannelAdmin�SupplierAdmin
and COSS�CosEventChannelAdmin�ConsumerAdmin as well as the event channel interface
itself� so the event channel object can control how many proxies it delivers to clients of
the service if it wishes to�

Push style communication is straightforward� A separate thread is started after an
event has been pushed into the channel so that push suppliers return immediately and do
not wait until the event has been delivered� Event delivery is based on current connections
at the time an event is communicated to the channel� only those consumers connected at
that time will receive the event� There is no bu�ering of events for late�comers�

The only kind of bu�ering done by the channel is for pull style consumers� a linked list
is kept that contains all events still waiting to be pulled out by consumers� An event is

�� CHAPTER �� OBJECT SERVICES

only removed from this list after all pull consumers connected at the time of the arrival of
that event at the channel have called pull�� to retrieve it� If there are no events pending
when pull consumers call pull��� the channel tries to pull any pull�style suppliers of
events in order to satisfy the consumers� It is at this time only that pull style suppliers
are polled by the channel� Thus� if only pull suppliers and push consumers are connected
to an event channel� no events will be communicated�

Examples for all four event communication styles can be found in the directory
jacorb�demo�Events�

Chapter �

Future work

This chapter gives a short overview about the directions in which JacORB is likely to
develop� We �rst list limitations of the current release and go on to sketch our goals for
further development�

��� Limitations

� IDL unions are not properly supported�

� We do not presently support little�endian byte order in GIOP messages�

� If servers run out of �le descriptors for connections� no new connections to this
server are possible� A proper connection management on the server side is needed�

� Multidimensional arrays and sequences are not handled correctly�

��� Further Development

Object Adapter and Implementation Repository

One of the main goals for future JacORB releases are to develop a Object Adapter and an
Implementation Repository� Part of the object adapter functionality is presently realized
by the skeletons� but a more �exible registration and activation of object implementa�
tions would be desirable� The introduction of a separate object adapter component will
probably lead to a JacORB daemon process on every network node on which servers are
to be run�

�� CHAPTER �� FUTURE WORK

Interface Repository

A runtime type management facility� the Interface Repository� is prescribed by CORBA�
The JacORB Interface Repository will most likely be realized as one extra process for an
ORB domain� The IR could make use of Java	s re�ection features�

Further Object Services

Further CORBA object services can be added to JacORB incrementally� e�g� Life Cycle�
Concurrency Control� Transactions� Trading� Relationship� etc� A few services have been
implemented as prototypes by undergraduate students� Concurrency� Persistence� Rela�
tionship� Some of these might be included in future JacORB releases though we do not
regard this as essential�

CORBA compliance

JacORB could be made more CORBA�compliant in a few places� The IDL language
mapping for Java will probably di�er from our mapping in a number of respects� and we
could try to align the JacORB mapping to the o�cial mapping� The client and server
interface to the ORB itself does not presently conform to the CORBA standard where
operations such as ORB��init��� BOA��init�� and ORB��list initial services�� are
speci�ed� We regard this as neither particularly urgent nor as problematic� though�

Bibliography

�Brose��� Gerald Brose� An Introduction to Programming with JacORB�
http���www�inf�fu�berlin�de��brose�jacorb�tutorial�ps�

�BB��� Gerald Brose� Boris Bokowski� JacORB � Ein Object Request Broker f�ur
Java � to appear in� Informatik�Informatique� Java�Sonderheft� Juni �����

�GJS��� Gosling� James and Bill Joy� Guy Steele� The Java Language Speci�cation�
Addison�Wesley �����

�Hudson� Scott Hudson� Constructor of Useful Parsers � CUP� Version
���
http���www�cc�gatech�edu�gvu�people�Faculty�hudson�java�cup�home�html�

�IONA��� IONA Technologies Ltd�� The Orbix Architecture� IONA� November �����

�Joint��� DEC� Expersoft� HP� IBM� Netscape� Novell� Oracle� Sun� Visigenic� Xerox�
IDL�Java Language Mapping� Joint Revised Submission� OMG TC docu�
ment orbos����
��
�� �� February �����

�OHE��� Orfali� R� and D� Harkey� J� Edwards� The Essential Distributed Objects
Survival Guide� Wiley �����

�OMG��� OMG � Common Object Services Speci�cation� Volume I� Revision ��
� March
����� OMG Document �������

�OMG��� OMG� The Common Object Request Broker� Architecture and Speci�cation�
��
� July �����

�OMG��� OMG� Java Language Mapping RFP� OMG TC document orbos����
��
�� �
August �����

�Siegel��� Jon Siegel �ed��� CORBA Fundamentals and Programming� Wiley �����

�Sun��� Sun Microsystems� Inc�� Solaris NEO� White Paper� January �����
http���www�sun�com�solaris�neo�whitepapers�solaris neo�index�html�

