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� Introduction�

Over the recent years there has been considerable progress in the simplex range
searching problem� In the planar version of this problem we are required to store
a set S of n points such that the number of points in any query triangle can be
determined e	ciently� One of the combinatorial tools developed for this problem
are spanning trees with low crossing numbers�
Let S be set of n points in the plane� For a spanning tree on S and a line h
 the

crossing number of h in the tree is de�ned as ch � a
 b
�

 where a is the number of

edges fp� qg in the tree with p and q on opposite sides of h
 and b is the number of
edges with exactly one endpoint on h� h crosses an edge
 if that edge contributes
to the crossing number of h� Note that an edge completely contained in the line h
does not contribute to the crossing number� The crossing number of the tree is the
maximal crossing number of any line�
In other words
 a spanning tree with crossing number c ensures that no line

�disjoint from S� intersects the straight line embedding of the tree in more than c
edges� It has been shown in ����
 that every set of n points allows a spanning tree
with crossing numberO�

p
n�
 which is tight� In Section � we review the proof of this

result �which is treated in ���� in a more general setting
 for arbitrary dimension
 and
for set systems of �nite VC�dimension
 see Section ��� We derive an explicit constant
for the bound on the crossing number� The proof builds on a packing lemma for a
pseudodistance on points in the presence of a set of lines �where the distance between
two points is the number of separating lines�
 and on a reweighting technique
 which
has been applied to several seemingly unrelated problems
 see ���
��
�
��
���
Spanning trees are useful in a number of applications� The original motivation

for introducing the concept in ���� was the triangle range searching problem which
can be solved in O�

p
n log n� query time and linear space via spanning trees� This

is close to the lower bound of ��
p
n� for linear space data structures in the so�

called arithmetic model ����� Recently
 this lower bound has actually been achieved
in ����� Several di�erent algorithmic applications are described in ��
 ��
 �
 �
 ��
 ���
For example
 spanning trees with low crossing numbers can be used for ray shooting
among line segments in the plane �i�e�
 we want to preprocess line segments in
the plane such that the �rst segment intersected by a query ray can be e	ciently
computed��
In Section � we indicate the application to triangle range searching
 and we

present two recent combinatorial results which can be easily derived from spanning
trees with low crossing numbers ���
����
Section � indicates some of the building blocks of algorithms for constructing

spanning trees with low crossing numbers� This will lead us to a randomized Monte�
Carlo algorithm� however
 we did not try to present the best known time bounds
for construction� Finally in Section �
 we point at the generalizations to higher
dimensions�
We tried to keep the paper largely self�contained
 so that in particular in Sec�

tions � and � little foreknowledge should be required� Hence we start by reviewing
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some basics before we plunge into the rest of the paper�

Notation and basics� Let S be a set of n points in the plane
 and let G be a set
of � lines in the plane� We say that S is in general position
 if no three points lie
on a common line
 and no two points lie on a vertical line� G is in general position

if no three lines contain a common point
 no two lines are parallel
 and no line is
vertical�
We denote by HS the set of lines containing at least two points in S� if S is

in general position
 then jHS j �
�
n
�

�
� �HS is a representative set of lines for S
 if

whenever a line g �disjoint from S� partitions the set S into nonempty sets S� and
S�� �on the respective sides of g�
 then there is a line h in �HS which induces the same
partitioning� It is an easy exercise to verify
 that there is always a representative set
of at most

�
n
�

�
lines�

The arrangement A�G� of G is the partitioning of the plane induced by G into
vertices �intersections of lines in G�
 edges �connected components on the lines in
the complement of the vertices�
 and cells �connected components of the plane in
the complement of the lines�� Obviously
 there are at most

�
�
�

�
vertices
 at most ��

edges
 and a bound of
�
�
�

�

 � 
 � on the number of cells is also not too hard to

prove� if G is in general position
 then all three bounds are attained cf� �����
We will use the point�line duality de�ned by� for a point p � �a� b�
 the dual

image p� is the nonvertical line with equation y � ax
 b
 and for a nonvertical line
g with equation y � cx 
 d
 the dual image g� is the point ��c� d�� This mapping
preserves incidences between lines and points �i�e� p lies on g if and only if g� lies
on p��
 and it preserves the relative position between a point and a line �i�e� p lies
above g if and only p� lies above g���
For two nonvertical lines g and h
 de�ne the double wedge of g and h as the two

open quadrants �de�ned by the two lines� which are disjoint from the vertical line
through the common point of g and h� if g and h are parallel
 then the double wedge
degenerates to the strip between the two lines� Now a line g intersects the open line
segment with endpoints p and q
 if and only if g� lies in the double wedge de�ned
by p� and q��
We frequently use the inequalities � 
 x � ex
 for all real numbers x
 andPn

i��
�p
i
� �

p
n
 for all positive integers n�

Conventions� All points and lines we consider in Sections �
 �
 and � are assumed
to lie in the plane�

� Proof of existence�

We want to prove that every set of n points in the plane allows a spanning tree
such that no line has more than O�

p
n� crossings with the tree� Note that it su	ces

to concentrate on a representative set �HS of lines� Let T be a spanning tree on S�
Clearly
 by de�nition
 every line disjoint from S has a line in �HS with the same
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�number of� crossings� If h contains points from S
 then we consider two parallel
lines h� and h�� on both sides of h
 but su	ciently close so that all points in S
�except those on h� have the same position relative to h� �and to h��� as to h� Then
the respective crossing numbers satisfy ch �

ch��ch��
�
� That is
 the maximum crossing

number is attained by a line disjoint from S�
The O�

p
n� bound is asymptotically the best we can hope for� To see this for

some positive integer n
 choose a set G of � � dp�ne lines in general position
 and
place n points into the cells of the arrangement
 no two points in the same cell
�which is possible
 since

�
�
�

�

 � 
 � � n�� Every edge of an �arbitrary� spanning

tree will be crossed by at least one of the lines in G� thus there must be a line in G
with at least n��

�
� ��

p
n� crossings�

If we start the construction of our tree
 then it looks like a good idea to begin
with an edge fp� qg
 such that p and q are separated by as few as possible lines in a
representative set� To provide a bound on this number is our next step�

A packing lemma ���� ���� Suppose we are given a set S of n � � points with
diameter  �i�e�  is the maximal Euclidean distance between any two points in
the set�� Then there are two points at distance at most � � ��p

n
� This can be easily

seen by the fact that the closed disks of radius �
� centered at the points in S are

contained in a !large" disk of radius �
� centered at an arbitrary point in S �this

is true if � �  � otherwise the claim is trivial�� If the small disks were pairwise
disjoint
 then they cover an area of n���

� � � �� in the large disk of radius �
� 


which is not possible� Hence two disks intersect
 and the respective centers have
distance at most ��
We will use the same idea as just described to show that for any set S of n points


and any set G of � lines there is always a pair of points separated by less than ��p
n
of

the lines� To this end we introduce a pseudodistance �G for pairs of points �relative
to G� by �G�p� q� � a
 b

�
 where a is the number of lines in G which have p and q
on opposite sides
 and b is the number of lines which contain exactly one of the two
points p and q� It is easily seen that �G is a pseudometric �i�e� it is symmetric and
satis�es the triangle inequality��
For a point p and a real number �
 we let DG�p� �� denote the set of vertices v

in the arrangement of G with �G�p� v� � �� The sets DG�p� �� will play the role of
disks
 and the cardinality of DG�p� �� will play the role of area in our proof
 and so
we need a lower bound on this quantity in terms of ��

Lemma ��� If G is a set of � lines in general position� and � is an integer� � �
� � d ��e� then jDG�p� ��j �

�
���
�

�
for all points p disjoint from G�

Proof� Choose a line g through p which intersects the same number of lines in G
on both sides of p� Such a line exists
 since we can take a directed line h through p
and rotate it
 while observing the number of intersections on h preceding p� After
rotating h by � this will be the number of intersections succeeding p� so in between
we must meet a situation as required for g �note that if � is odd
 then g must be
parallel to one of the lines in G��
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Now consider the intersections q�� q�� � � � � qb���c on g on one side of p
 enumerated
in such a way that �G�p� qi� � i � �

� �if g passes through a vertex
 we may perturb
g with p to make sure that all lines in G create distinct intersections�� Let us �rst
assume that � � b �

�
c� Then
 for all i � �
 qi has at least � � i 
 � vertices on its

line at distance at most � � i
 �
�
� all these vertices have distance at most � from p

�by the triangle inequality�� If we collect vertices at distance at most � in the same
way on the other side of p
 we obtain ���
 � � �
�
�� � �����

�

�
such vertices
 each

of which may be counted at most twice� This gives the claimed bound for � � b ��c�
If � is odd
 and � � d �

�
e
 then the above procedure gives us a count of ���
� � �
��

only� Now we recall that there is a line h � G parallel to g which contains at least
two points at distance at most d �

�
e� take the two vertices incident to the in�nite

edges on h� In this way we have again counted �
�
���
�

�
vertices
 each vertex at most

twice� The lemma is proved�
The bound in Lemma ��� can be shown to be tight�

Lemma ��� Let G be a set of � lines� and let S be a set of n � � points� Then
there are two distinct points p and q in S with �G�p� q� � ��p

n
�

Proof� Choose some positive integer k with the property that

�b�k�p
n
c
 ��b�k�p

n
c 	 ��k��

�

n
� ���

Replace each line h in G by two buckets of k parallel copies each
 such that the
!original" h lies between these two buckets
 and the two buckets are su	ciently close
to h
 so that there are no points from S within a bucket
 and between a bucket and
its original� So the only points from S between the two buckets are those which
lie on h� The resulting set G� has �� � �k� lines
 no point in S lies on a line in G�

and for any pair fp� qg of points in S
 �G��p� q� � �k�G�p� q�� Then perturb the lines
in G� to general position such that no line moves over a point in S� this does not
change the pseudodistance �G� between points in S�
For n � � the assertion of the lemma is trivial� so we have to consider only the

case n � � and Lemma ��� applies to � � b ��p
n
c� We get

X
p�S

jDG��p� ��j � n

�
� 
 �

�

�
	 n

���

�n
	

�
��

�

�
�

�where property ��� proved to be useful�� Since there are only
�
��

�

�
vertices
 there

must be two !disks" DG��p� �� and DG��q� ��
 p� q � S
 p �� q
 which overlap in a
vertex� by the triangle inequality their centers p and q have pseudodistance �G��p� q�
at most ��� Hence
 �G�p� q� � �

�k�b ��p
n
c � ��p

n

 the bound claimed in the lemma�

We need to extend Lemma ��� to sets of lines G where every line h has a positive
real weight w�h� associated� The pseudodistance �G�p� q� is now de�ned as a 


b
� 


where a is the sum of weights associated with lines separating p and q
 and b is the
sum of weights associated with lines which contain exactly one of the two points p
and q�
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Lemma ��	 Let G be a �nite set of weighted lines with overall weight  � and let
S be a set of n � � points� Then there are two distinct points p and q in S with
�G�p� q� � ��p

n
�

Proof� Let k be some positive integer� Replace every line h in G by two buckets
of dk � w�h�e unweighted lines each
 in the same way as described in the previous
proof� We obtain a set G� of at most �k 
 �� unweighted lines to which we can
apply Lemma ���� It supplies us with two points p and q with �G��p� q� � �k����p

n
� If

� is the number of lines in G
 then

�G�p� q� � �G��p� q�

�k
� � p

n


��

k
p
n
�

In other words
 for every 
 	 � we �nd points p and q with �G�p� q� � ��p
n

 
� Since

there are only �nitely many points
 this implies the lemma�

Construction by iterative reweighting �	�� ���� Using Lemma ��� we can
easily show that for n points S and � lines G the greedy algorithm �using �G as
weight function on edges� constructs a spanning tree on S with weight at mostPn

i��
��p
i
� ��pn� That is
 the average crossing number of a line in G is �pn� We

will show that by a di�erent construction we can guarantee this bound �up to a low
order term� for all lines�

Theorem ��
 Every set S of n points has a spanning tree with crossing number at
most �

p
n
O�n���

p
log n��

Proof� Let G	 be a representative set of lines
 � � jG	j �
�
n
�

�

 and let S	 � S�

We start the construction of the spanning tree by choosing two points p and q in S	
which are separated by the smallest number of lines in G	 �i�e� no more than

��p
n
��

Next we put the edge fp� qg into the edge set of our tree and remove p from the
point set which gives S� � S	 � fpg�
For the rest of the construction we need some means to ensure that no line

gathers too many crossings� That is lines which have already many crossings with
the edges constructed so far should cross a next edge less likely� We will achieve this
by assigning weights to the lines� To be precise
 a line which has c crossings so far
will have multiplicity �� 
 ��c for � 	 � a parameter to be chosen later�
Hence
 we continue our construction by multiplying by � 
 � the weight of all

lines in G	 which separate p and q� this gives a new set G� of weighted lines with
overall weight  � � ��� 
 ��p

n
�� Then we continue the construction with G� and

S�� we choose two points p� and q� which are separated by lines of overall minimal
weight
 add edge fp�� q�g to the edge set
 remove p�
 and multiply the weights of
separating lines by � 
 �
 and proceed as above�
After i steps we have a set Gi of weight

 i �  i���� 

��p

n� �i� ��� � �

i��Y
j�	

�� 

��p
n� j

�
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and a set Si of n� i points�
Step n � � completes the construction of a spanning tree for S� What is the

crossing number of this tree# Let ch denote the number of crossings of line h in the
tree� Then h is represented with weight �� 
 ��ch in Gn��
 that is

 n�� �
X
h�G�

�� 
 ��ch �

However
 we have also a bound of

 n�� � �

nY
j��

�� 

��p
j
� � � e

Pn

j��

���

p
j� � e��

p
n�� lnn�

Hence
 we may conclude that

ch �
�

ln�� 
 ��
���

p
n
 � ln n� �

for all lines h which implies ch � �
p
n 
 O�n���

p
log n� for the choice of � which

minimizes this bound �see Appendix��
The theorem and its proof provide us with a number of immediate consequences�

A spanning path is simple
 if only line segments corresponding to consecutive edges
on the path intersect�

Corollary ��� Every set S of n points has a simple spanning path with crossing
number at most �

p
n
O�n���

p
log n��

Proof� The asymptotic bounds follow directly from Theorem ���
 if we double the
edges in a spanning tree of crossing number c
 and consider an Eulerian walk in this
graph
 which has crossing number �c� We can now simply scan this walk and omit
points which have occurred before� In this way the number of crossings with a line
cannot increase� Let p	� p�� � � � � pn�� be the resulting spanning path with crossing
number at most �c� If two line segments pi��pi and pj��pj 
 � � i � j � � � n � �
intersect then we replace the edges fpi��� pig and fpj��� pjg by new edges fpi��� pj��g
and fpi� pjg to obtain the spanning path

p	� p�� � � � � pi��� pj��� pj��� � � � � pi��� pi� pj � pj��� � � � � pn�� �

The crossing number of no line increases
 and the Euclidean length decreases� Con�
sequently
 after a �nite number of steps we have obtained a simple spanning path
with crossing number at most �c�
In order to achieve the claimed constant we have to look at the proof of the

theorem once more� We proceed as for the construction of a tree
 except that we are
more careful about the points we put into the sets Si� We keep as an invariant
 that
the edges constructed so far give a set of vertex disjoint paths on S �some of which
are just isolated vertices�
 and we let Si contain all isolated vertices
 and exactly
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one point of degree one from each path� In the next step
 we choose two points p
and q of minimal pseudodistance �with respect to the current weighted set of lines�
in Si� The addition of edge fp� qg merges two connected components� we remove
p and q from Si
 and add one of the two points of degree one in this component
to the set
 which gives us Si��� After the appropriate reweighting of the lines we
continue the construction� The calculus of the analysis stays the same and gives the
claimed bound� The constructed path can be converted into a simple one by the
same procedure as described in the �rst paragraph of the proof�

Corollary ��� Every set S of n points has a matching of size k with crossing num�
ber at most �kp

n

 O�

p
k lnn�

p
n�� for integers k� �

�

p
n lnn � k � n

�
� and with

crossing number at most �e lnn
ln


p
n lnn�
�k��� for integers k � �

�e

p
n lnn�

Proof� The construction of a matching works in the obvious way �referring to the
notation in the proof of Theorem ����� We choose the edge of minimal pseudodis�
tance
 remove its two points from the current point set
 and reweight the lines with
new crossings� Now Si has n � �i points� After k steps we have a matching of
required size� Via the overall weight  k of Gk we get the following bound for the
number of crossings of lines in G	�

X
h�G�

�� 
 ��ch �  k � �

kY
i��

�� 

��p

n� ��i� ��� � � e

p
��
Pk��

j��
�p

n���j

� � e
p
���


p
n���

p
n���k� � � e��


p
n�pn��k� � e��k�

p
n�� lnn �

The last inequality uses that
p
n�

p
n� x

p
n � x for all x
 � � x � p

n�
It follows that ch ln�� 
 �� � ��kp

n

 � lnn
 and we obtain the bounds claimed in

the corollary by the appropriate choice of � �see Appendix��
It is perhaps interesting to consider explicitly the bound for some values of k�

For k � n�����
 the lemma gives a bound of O��
�
�� for k �

p
n
 we obtain O� logn

log logn
��

for k �
p
n lnn
 the crossing number does not exceed O�log n�� The bounds for

k � ��
p
n log n� are asymptotically tight� It remains open whether there is always

a matching of size
p
n with constant crossing number�

The constant� We have not presented the best possible constant� Nevertheless

we brie$y indicate the best bounds known to the author� Let us �rst observe that a
lower bound of

p
n� � for spanning trees can be obtained by a slight re�nement of

the lower bound construction in the beginning of the section� For a positive integer
n choose a set G of � � �dpne lines in general position� Then we assign colors to
the cells such that no two adjacent cells �i�e� cells which share a common edge� have
the same color� �Choose a �xed point o in one of the cells and color a cell red if for
a point p in this cell �G�o� p� is odd
 and color the cell blue otherwise�� We place n
points in the cells of the larger color class � no two points in the same cell �which
is possible since �

�
�
�
�
�

�

 � 
 �� � n�� Any two of these points are separated by at
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least � lines� Hence
 the overall number of crossings between the set of � lines and
any spanning tree is at least ��n � ��� hence
 there is always a line with at least
�
n���

�
� p

n� � crossings�
Although the bound in Lemma ��� is tight
 the bound can be improved to

jDG�p� ��j � �
�
���
�

�

 if p has pseudodistance at least � to every point in an in��

nite cell
 and if � � �
�
� this follows from a result on k�sets proved in ����� With this

bound we can improve the estimates in Lemmas ��� and ��� to ��p
�n
and ��p

�n
�up to

low order terms�� The bound in Theorem ��� improves to � �p
�

 o����

p
n� So the

optimal constant lies in the range between � and �����

� Applications�

We present three applications of spanning trees
 paths
 or matchings with low cross�
ing numbers� The �rst is algorithmic
 while the second and third are primarily of
combinatorial interest� Nevertheless
 the proofs reveal also algorithms for computing
the structures whose existence we have proven�

Counting points in halfplanes ����� Suppose we want to count the points below
a nonvertical line from a given point set S
 and we have to answer many such queries�
Thus it pays o� to prepare the points in a data structure�
The structure we use is a simple spanning path p�� p�� � � � � pn of S with low

crossing number c� The edges on the path are enumerated so that edge fpi� pi��g
gets number i� For a nonvertical line h disjoint from S
 let I� the set of indices of
edges fpi� pi��g with pi below h and pi�� above h
 and let I� be the set of indices of
edges fpi� pi��g with pi above h and pi�� below h� Then the number of points in S
below h is given by

P
i�I� i�

P
i�I� i
 if pn lies above h
 and n


P
i�I� i�

P
i�I� i


if pn lies below h� Thus
 if we can determine the ch crossings of line h with the
path
 then the number of points below h can be computed with ch additions and
subtractions� Here we can invoke a result from ����
 which states that the edges of
a simple path can be stored with O�n� space
 such that the �rst edge hit by a ray
can be computed in O�log n� time� Clearly
 this structure can be used to compute
the intersections of a line with a path in O�k log n� time
 where k is the number of
intersections�

Theorem 	�� Every set S of n points can be stored in O�n� space� such that the
number of points in S below any query line can be computed in O�

p
n log n� time�

The structure can readily be used also for counting points in triangles within the
same asymptotic time bounds�

Colorings with low discrepancy ����� We want to color a set of n points in the
plane by red and blue
 such that every halfplane contains roughly the same number
of red and blue points� How well can we achieve that goal# This type of questions
are investigated in the �eld of discrepancy � ����
 �����
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For technical reasons we switch to colors �� and 
�� A coloring of a point set S
is a mapping 
 � S � f���
�g� The discrepancy of 
 is de�ned as maxh� j
�S	h��j

where 
�A� �

P
p�A 
�p�
 and the maximum is taken over all halfplanes h

��

Theorem 	�� For every set S of n points there is a coloring 
 with discrepancy at
most �

p
�n���

p
lnn
O�log n��

Proof� Assume that n is even �if not
 we may ignore one point temporarily� the
discrepancy grows at most by one by adding it back with an arbitrary color�� Let
M be a perfect matching on S with crossing number c� We consider the set C of all
colorings 
 with 
�p�

�q� � � for all fp� qg �M � Note that every element of C has
discrepancy at most c� We show that there is a better coloring in C by considering
colorings randomly chosen from C� We need the well�known Cherno� bound �see
e�g� ����
 ����� in the following form� If X is the sum of k independent random
f���
�g variables � each variable attains �� and 
� with equal probability �

then Prob�jXj 	 �

p
k� � �e��

����
Let h be a nonvertical line disjoint from S with ch crossings inM 
 and let h� be

the halfplane below h� Set

Bh � fp � Sjp � h� and h crosses the edge in M containing pg �

Then jBhj � jchj
 
�S 	 h�� � 
�Bh�
 and for a random 
 in C


Prob�j
�Bh�j 	 �
p
ch � � �e

����� ���

If � � �
p
lnn then the bound in ��� becomes �n��� Let �HS be a representative set

of lines with j �HSj �
�
n
�

�
� n���� Thus there is a coloring 
	 in C with 
	�S 	 h�� �

�
p
ch lnn � �

p
c lnn for all h in �HS � this coloring 
	 is good for all �open or closed�

halfplanes below lines� We have j
�A�j � j
�S � A�j for all 
 � C and all A 
 S

which takes care of halfplanes above lines� The lemma follows
 since there is a
perfect matching with c � �

p
n 
O�n���

p
log n�
 see Corollary ����

��� proves a lower bound of ��n������
 for any 
 	 �
 for the discrepancy of
colorings for halfplanes�

Mutually avoiding segments ��
�� Two closed line segments are called avoiding

if the lines supporting the segments intersect outside both segments� The following
result was �rst proved in ���� the simple proof below was presented in �����

Theorem 	�	 Every set S of n points in general position allows �
�

p
n�O�n���plog n�

mutually avoiding line segments with endpoints in S�

Proof� Let p	� p�� � � � � pn�� be a spanning path with crossing number c � �� For
convenience add also the edge fpn��� p	g to obtain a spanning cycle with crossing
number c� We show that among the n edges on this path there are d n

�c��e edges which
de�ne mutually avoiding line segments� To this end consider the graph which has the
set L of line segments pi��pi
 i � �� �� � � � � n��
 and pn��p	
 as vertices� Two vertices
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are adjacent
 if their corresponding line segments are not avoiding� A line containing
a line segments s in L intersects at most c of the line segments in L � fsg �it"s at
most c including the adjacent segments on the cycle��� Consequently
 our graph has
at most cn edges� A graph with n vertices and cn edges has an independent set �i�e�
a set of vertices where no two are adjacent� of cardinality d n

�c��
e �the existence of

a d n�

�m�n
e size independent set in a graph with n vertices and m edges follows from

Turan"s theorem
 cf� ������ But an independent set in this graph corresponds to a
set of mutually avoiding line segments� the theorem follows due to the bounds on c
previously derived�
It is not known whether there are point sets which do not allow a linear number

of mutually avoiding line segments�

� Construction�

The proof of existence of spanning trees with low crossing numbers in Theorem ���
describes an algorithm which can be implemented in polynomial time� A number
of more e	cient algorithms can be found in the literature ���
 �
 ��
 ��
 ��� We will
present some of the basic ingredients of these algorithms
 which will lead us to a
randomized algorithm which computes in expected O�n

p
n log n� time a spanning

tree whose crossing number does not exceed O�
p
n log n� with high probability�

The �rst step in making an algorithm more e	cient is to reduce the number of
lines which have to be considered in a construction�

Test sets� Given a set S of n points and two nonvertical lines g and h
 we de�ne
��S�g� h� � a
 b

� 
 where a is the number of points from S in the double wedge de�ned
by g and h
 and b is the number of points from S which lie on exactly one of the
lines g and h� Similar to � on points
 �� is a pseudometric on lines� In fact
 if we
denote by S� the lines dual to the points in S
 then ��S�g� h� � �S��g�� h���
For a real number �
 we call a set H of lines a ��test set for S
 if for every line

g disjoint from S
 there is a line h � H with ��S�g� h� � ��

Lemma 
�� Let S be a set of n points and let H be a ��test set for S� If the
maximal crossing number of a line in H in a spanning path on S is C� then the
crossing number of this path �for all lines� is at most C 
 ���

Proof� For any two lines g and h
 observe that if g crosses an edge which is not
crossed by h
 then one of the two endpoints of this edge has to lie in th double wedge
of g and h
 or on g� Since every point is incident to at most two edges on a path
 we
easily get that the respective crossing numbers cg and ch satisfy jcg�chj � ���S�g� h��
The lemma is an immediate consequence of this fact�

Lemma 
�� Let S be a set of n points and let � be an integer with � � � � n� �i�
There exists a ��test set of at most ��n

�
�� lines� �ii� If S is in general position� then�
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for every positive real �� a set of lines obtained by connecting at least ��
���n
�
�� lnn

random pairs of points in S is a ��test set with probability at least � � n���

Proof� We prefer to dualize the scenario� In the dual environment statement �i�
claims that for a set G �� S�� of � �� n� lines
 there exists a set Q of �� �

�
�� points


such that every point p disjoint from G has a point q � Q with �G�p� q� � �� Choose
Q as a maximal set of points
 where any two points have pseudodistance �G greater
than �� Lemma ��� implies that Q contains at most ���

�
�� points
 and the maximality

of Q guarantees the desired property�
For a proof of �ii�
 we have to consider a set R of r random vertices in A�G�


G a set of � lines in general position� For any point p disjoint from G
 a random
vertex has pseudodistance at most � from p with probability jDG�p� ��j�

�
�
�

�
	 ��

�
��

�use Lemma ����� Hence
 the probability that all points in R have pseudodistance
more than � from p is less than

�
� �

��
�

���r

� e�r�
���� � ���

For r � �� 
 ��� �
�
�� ln �
 the expression in ��� is bounded by ������ Let P be a set

of m �
�
�
�

�

 � 
 � points
 one in each cell of A�G�� Then with probability at most

m����� � ��� there is a point in P which has pseudodistance more than � from all
points in R �for � � �
 m � ���� Since every point disjoint from G has a point in P
at pseudodistance �
 the lemma is proved�

The algorithm� Let G be a set of lines
 and let p be a point� For a nonvertical
line h �not necessarily in G�
 we say that h sees p �and p sees h� in A�G�
 if p lies
on or above h
 and the closed vertical segment connecting h and p is disjoint from
all lines in G � fhg� �if p lies on h
 then p sees h if and only if p lies on no line in
G�fhg�� Thus a point p which lies on a single line g in G sees g and no other line

and if p is contained in two or more lines in G
 then p sees no line at all� Every
point p sees at most one of the lines in G�
The algorithm proceeds now as follows� We assume that the set S of n points

is in general position
 and that n � �� First we take a random sample T of n lines
connecting points in S� this will be a ��test set
 for � � �

p
n ln n
 with probability

� � n��� Then we construct a set F 
 T of � � p
n ln n lines such that no line in

T � F sees more than � � �epn lnn points from S in A�F � �the construction of
F will be described below�� We add to F a horizontal line h	
 which lies below all
points in S� Each point p in S is projected vertically on a line from F directly below
�or through� p� this gives a set S� of n projections� For g � F 
 let S�

g be the points
in S� which lie on g� if a point in S� lies on several lines in F 
 then we put it only in
one set S�

g�
We add two extra vertical lines h� and h� which lie to the left �right
 respectively�

of all points in S� On every line g connect all points in S�
g by a path along g
 starting

at the intersection of g with h� and ending at the intersection of g with h�� Connect
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these paths via edges on h� and h� so that no line intersects more than two of these
extra edges� Note that the resulting spanning path P � has crossing number �
 � at
most �!�" accounts for crossings on h	
 h�
 and h��� Now we consider the vertical
edges connecting the points in S � S� to their projections in S�� A line g � T � F
crosses such a vertical edge only if it sees the upper endpoint in A�F �
 or it contains
the lower endpoint�
For a line g � T 
 consider a line g� parallel to and below g
 but su	ciently close

so that no point in �S� � S�� g changes its relative position to g� �compared to g��
For all lines g � T 
 g� crosses at most � 
 � edges in P �� If g � F 
 then g� crosses no
vertical edge
 and if g � T � F 
 then g crosses at most � vertical edges�
In order to obtain a path on S we walk along P � with excursions along vertical

edges
 and we enumerate the points in S as we meet them on this walk� For any
line g � T 
 the primed version g� crosses at most � 
 � 
 �� edges
 and since
��S�g� g

�� � � �recall that we assume S to be in general position�
 no line in T has
crossing number exceeding �
�
��� Consequently
 the crossing number of the path
is at most � 
 � 
 ��
 �� �by Lemma ����
 which is at most � 
 �� 
 �e�

p
n lnn �

O�
p
n log n� with probability � � n���
It remains to show how a set F obscuring many visibilities is constructed�

Obscuring sets�

Lemma 
�	 Let S be a set of n points� and let G be a �nite set of lines� For a
random set R of r lines in G� and for a random line g in G�R� the expected number
of points in S seen by g in A�R� is at most n

r�� �

Proof� We employ backwards analysis
 cf� ����� Observe that g sees a point p in
A�R� if and only if g sees p in A�R � fgg�� Thus the quantity we are interested in
is the same as the expected number of points from S seen by a random line g � R�

in A�R��
 with R� a random set of r 
 � lines in G� Since every point in S sees at
most one line in R�
 this number is bounded by n

r�� �
We will use the lemma to make the following conclusion� If we choose r lines R

at random
 then with probability at least �
� the expected number of points seen by

a line in G � R is at most �n
r�� � in this case at most

jG�Rj
e
lines see more than �en

r��

points �we use Markov"s inequality twice��
We start the construction of F by choosing a random sample R	 of r � bp n

lnn
c

lines in H	 � T � We determine the set H� 
 H	 � R	 of lines which see more
than �e n

r�� � �e
p
n lnn points from S in A�R	�� If jH�j 	 jH	j�e � which happens

with probability less than �
� �
 then we choose a new sample R	 from H	 until

jH�j � jH	j�e holds� In the same way we produce a set R� of r lines in H�
 such
that the set H� 
 H��R� of lines which see more than

�e n
r�� points in A�R�� satis�es

jH�j � jH�j�e� If we continue like this
 we have exhausted all lines in T after at most
dln jT j

r

 �e � lnn steps �at least for n large enough�
 and the expected number of

samples we took is at most twice this number� The union F of all Ri"s constitutes a
set of at most r lnn �

p
n lnn lines
 and no line in T �F sees more than �e

p
n lnn
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points in A�F �� �The constants can be decreased at the cost of a larger constant in
the running time��
If we are interested in the existence of F only
 then we may choose !�" as ��

Lemma 
�
 Let S be a set of n points and let G be a set of � lines� For every
positive integer r � minfn� �g� there is a set F of rdln �

r

 �e lines in G� such that

no line in G� F sees more than e n
r��

points of S in A�F ��

Time complexity� What is the time complexity of the construction of F # When
we choose a random sample R of r lines then we construct the arrangement A�R�
in O�r�� time
 cf� ����� Then
 for every point in S
 we determine the cell the point
is contained in� We simply determine the line in R directly below a point p by
looking at all lines �in O�nr� time for all points�� Then
 for each line g � R
 we look
at the points which have this line below and determine the respective edges of the
arrangement directly below these points �this works again in O�nr�
 if every point
checks all edges on !its" line�� As we have located all points in their cells
 we provide
a list of points in each cell sorted by x�coordinate� Now we want to compute the
number of points seen by a line h �� R� We determine the cells intersected by h by
threading the line through the arrangement in O�r�
 cf� ����� In each cell visited
 we
take the x�coordinates of the �rst and last point of h in the closure of this cell� h
can see only points in this cell which have their x�coordinates in this range� In the
sorted lists we can determine these points in O�log n
k��
 k� the number of points in
this range� Similar to the proof of Lemma ���
 we can show that the expected sum
of all k� over all cells intersected by h is at most �n

r�� � So the expected time spent
for a line h is O�r log n 
 n

r��
�� Altogether
 if � lines have to be checked
 we spend

time O�nr 
 ��r log n 
 n
r��
�� � O�n

q
n

logn

 ��

p
n log n��� The expected number

of times we have to handle such a set R is O�log n�
 and the number of lines to be
checked decreases geometrically� Hence
 the overall expected time for constructing
F is O�n

p
n log n�� The spanning path can easily be obtained from the arrangement

A�F � within this time bound�
Theorem 
�� There is a randomized algorithm which computes for any set of n
points in general position a spanning path in expected O�n

p
n log n� time� such that

the crossing number does not exceed O�
p
n log n� with probability �� n���

With some more sophistication
 the algorithm can be tuned to have close to linear
running time �see ���� for some of the ideas required�� Test sets are used in most ef�
�cient constructions of spanning trees with low crossing numbers ���
��
��� E	cient
�deterministic� constructions of test sets are described in ����� The idea of repeated
sampling on !bad" lines for the construction of obscuring sets is taken from �����
A deterministicO�n

p
n log� n� algorithmwhich gives a spanning tree withO�

p
n�

crossing number is described in ����� ��� can produce a tree with crossing number
O�n������ in time O�n���� for any 
 	 �
 and they describe how such a tree can
be maintained under a sequence of insertions and deletions� So�called simplicial
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partitions � ����
 see Section �� can be used to obtain a spanning tree with crossing
number O�

p
n� in time O�n���� for any 
 	 � �where the constant in the crossing

number depends on 
�
 �����

� Discussion�

The result on spanning trees generalizes to higher dimensions and other geometric
objects� For every set of n points in d�space there is a spanning tree
 such that no
hyperplane intersects the straight line embedding of the tree in more than O�n����d�
points
 which is tight� The proof of the general result starts o� by providing a higher�
dimensional counterpart of Lemma ���
 and then proceeds almost verbatim as in the
planar case� Similarly
 we can always �nd a tree which has O�n����d� crossings with
any ball
 if we de�ne that a ball crosses an edge if exactly one endpoint of the edge
lies in the ball�
For a set system �X�R�
 R 
 �X 
 we can also consider spanning trees on �nite

subsets A of X� We say that a set R � R crosses an edge fx� yg of the tree
 if
jR 	 fx� ygj � �� Then it is possible to prove the existence of a spanning trees with
crossing number O�n����d�
 where d is some combinatorial parameter associated
with the set system �related to the VC�dimension�� details can be found in �����
An important extension of matchings with low crossing numbers
 simplicial par�

titions
 were introduced in ����� In the planar version
 for a set S of n points
 such
a partition consists of pairs �ti� Si�
 i � �� �� � � � �m
 where the ti"s are open triangles
or line segments with ti � Si
 and the Si"s form a partition of S� It is shown that for
any r there is a simplicial partition such that m � O�r�
 the cardinalities of the Si"s
are roughly balanced �jSij � �n

m
for all i
 to be precise�
 and no line intersects more

than O�
p
m� of the ti"s� Note that perfect matchings with low crossing numbers are

related to simplicial partitions with m � n
� � Simplicial partitions can be e	ciently

constructed
 and they allow improvements in many algorithmic applications
 �����
We conclude by stating two open problems�

Problem � Is there a constant C� such that every set of n points in the plane has
a matching of size

p
n whose straight line embedding is intersected in no more than

C edges by any line disjoint from the points	

Corollary ��� gives a bound of O� logn
log logn� on C� a constant number of intersections

can be guaranteed
 if a matching of size n����� is required
 for any �xed 
 	 ��

Problem � Given n points S and n nonvertical lines G in the plane� is there always
a set F of O�

p
n� lines in G� such that no line in G� F sees more than

p
n points

of S in A�F �
 a line h � G� F sees a point p in A�F � if p lies on or above h� and
the closed vertical segment connecting p and h is disjoint from all lines in F	

Lemma ��� gives a bound of O�
p
n log n� on the size of F �
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Appendix� Optimal choice of reweighting factor � � ��

We want to estimate min�		 f��� for

f��� �
�

ln�� 
 ��
�a�
 b� � ���

with a� b 	 �� The �rst derivative of f is

f ���� �
a ln�� 
 ��� �a�
 b��� 
 ����

ln��� 
 ��
�

So a local extremum �which obviously has to be a minimum� is achieved when

a�
 b � a�� 
 �� ln�� 
 �� � ���

or
 equivalently
 when
ex�� � x� � �� c � ���

where we write x short for ln�� 
 ��
 and c short for b�a� Equality ��� has exactly
one solution�
Let us �rst consider the case c � �� Then
 for x � p

c


ex��� x� � �� 
 x��� � x� � ��� c� �

and
 for x �
p
�c


ex��� x� � � �
�X
i��

�i� ��xi
i�

� � � x�

�
� � � c �

Consequently
 ��� is satis�ed for some x in the range
p
c � x �

p
�c� so the optimal

� has to be chosen such that

p
b�a � ln�� 
 �opt� �

p
�b�a� for b � a �

If we substitute ��� into ���
 then we get for the optimal � that f��� � a�� 
 ��

and so

min�		f��� � ae
p

�b�a � a
O�
p
ab�� for b � a �

since ey � � 
 � e
p
���p
�
�y for � � y � p

�� �For a � b
 we get min�		 f��� � ea��

If c 	 �
 then we rewrite ��� as

z�ln z � �� � c� � �

where z � � 
 �� We assume actually that c is su	ciently large
 say
 c � e� For
z � ec

ln c 

ec

ln c
�ln ec� ln ln c � �� � c�e� e ln ln c

ln c
� 	 c� � �
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and
 for z � c��
ln c 


c� �
ln c

�ln�c� ��� ln ln c� �� � �c� ����� ln ln c 
 �
ln c

� � c � � �

Therefore
 � has to be chosen such that

b�a� �
ln�b�a�

� � 
 �opt �
eb

a ln�b�a�
� for b � ea �

which implies

min
�		

f��� �
eb

ln�b�a�
� for b � ea �


