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Abstract

Every set S of n points in the plane has a spanning tree such that no line disjoint
from S has more than O(y/n) intersections with the tree (where the edges are embed-
ded as straight line segments). We review the proof of this result (originally proved
by Bernard Chazelle and the author in a more general setting), point at some meth-
ods for constructing such a tree, and describe some algorithmic and combinatorial
applications.
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1 Introduction.

Over the recent years there has been considerable progress in the simplex range
searching problem. In the planar version of this problem we are required to store
a set S of n points such that the number of points in any query triangle can be
determined efficiently. One of the combinatorial tools developed for this problem
are spanning trees with low crossing numbers.

Let S be set of n points in the plane. For a spanning tree on S and a line &, the
crossing number of h in the tree is defined as ¢, = a + %, where «a is the number of
edges {p, ¢} in the tree with p and ¢ on opposite sides of h, and b is the number of
edges with exactly one endpoint on h. h crosses an edge, if that edge contributes
to the crossing number of h. Note that an edge completely contained in the line A
does not contribute to the crossing number. The crossing number of the tree is the
maximal crossing number of any line.

In other words, a spanning tree with crossing number ¢ ensures that no line
(disjoint from S) intersects the straight line embedding of the tree in more than ¢
edges. It has been shown in [16], that every set of n points allows a spanning tree
with crossing number O(y/n), which is tight. In Section 2 we review the proof of this
result (which is treated in [16] in a more general setting, for arbitrary dimension, and
for set systems of finite VC-dimension, see Section 5). We derive an explicit constant
for the bound on the crossing number. The proof builds on a packing lemma for a
pseudodistance on points in the presence of a set of lines (where the distance between
two points is the number of separating lines), and on a reweighting technique, which
has been applied to several seemingly unrelated problems, see [13,18,6,26,5].

Spanning trees are useful in a number of applications. The original motivation
for introducing the concept in [31] was the triangle range searching problem which
can be solved in O(y/nlogn) query time and linear space via spanning trees. This
is close to the lower bound of Q(y/n) for linear space data structures in the so-
called arithmetic model [12]. Recently, this lower bound has actually been achieved
n [26]. Several different algorithmic applications are described in [1,20,2,4,17,3].
For example, spanning trees with low crossing numbers can be used for ray shooting
among line segments in the plane (i.e., we want to preprocess line segments in
the plane such that the first segment intersected by a query ray can be efficiently
computed).

In Section 3 we indicate the application to triangle range searching, and we
present two recent combinatorial results which can be easily derived from spanning
trees with low crossing numbers [27,28].

Section 4 indicates some of the building blocks of algorithms for constructing
spanning trees with low crossing numbers. This will lead us to a randomized Monte-
Carlo algorithm; however, we did not try to present the best known time bounds
for construction. Finally in Section 5, we point at the generalizations to higher
dimensions.

We tried to keep the paper largely self-contained, so that in particular in Sec-
tions 2 and 3 little foreknowledge should be required. Hence we start by reviewing
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some basics before we plunge into the rest of the paper.

Notation and basics. Let S be a set of n points in the plane, and let GG be a set
of ¢ lines in the plane. We say that S is in general position, if no three points lie
on a common line, and no two points lie on a vertical line. (G is in general position,
if no three lines contain a common point, no two lines are parallel, and no line is
vertical.

We denote by Hg the set of lines containing at least two points in 5; if S is
in general position, then |Hg| = (;) Hg is a representative set of lines for S, if
whenever a line g (disjoint from S) partitions the set S into nonempty sets 5" and
S” (on the respective sides of ¢), then there is a line h in Hg which induces the same
partitioning. It is an easy exercise to verify, that there is always a representative set
of at most (;) lines.

The arrangement A(G) of G is the partitioning of the plane induced by G into
vertices (intersections of lines in (7), edges (connected components on the lines in
the complement of the vertices), and cells (connected components of the plane in
the complement of the lines). Obviously, there are at most (5) vertices, at most (?
edges, and a bound of (5) + ¢ + 1 on the number of cells is also not too hard to
prove; if G is in general position, then all three bounds are attained cf. [19].

We will use the point/line duality defined by: for a point p = (a,b), the dual
image p* is the nonvertical line with equation y = ax + b, and for a nonvertical line
g with equation y = cx + d, the dual image ¢* is the point (—c¢,d). This mapping
preserves incidences between lines and points (i.e. p lies on ¢ if and only if ¢* lies
on p*), and it preserves the relative position between a point and a line (i.e. p lies
above ¢ if and only p* lies above ¢*).

For two nonvertical lines ¢ and %, define the double wedge of ¢ and h as the two
open quadrants (defined by the two lines) which are disjoint from the vertical line
through the common point of ¢ and h; if ¢ and h are parallel, then the double wedge
degenerates to the strip between the two lines. Now a line ¢ intersects the open line
segment with endpoints p and ¢, if and only if ¢* lies in the double wedge defined
by p* and ¢*.

We frequently use the inequalities 1 + x < €%, for all real numbers x, and
Yo % < 24/n, for all positive integers n.

Conventions. All points and lines we consider in Sections 2, 3, and 4 are assumed
to lie in the plane!

2 Proof of existence.

We want to prove that every set of n points in the plane allows a spanning tree
such that no line has more than O(y/n) crossings with the tree. Note that it suffices
to concentrate on a representative set Hg of lines: Let T be a spanning tree on S.
Clearly, by definition, every line disjoint from S has a line in Hg with the same
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(number of) crossings. If h contains points from S, then we consider two parallel
lines A’ and A" on both sides of A, but sufficiently close so that all points in S
(except those on h) have the same position relative to A’ (and to 7”) as to h. Then
the respective crossing numbers satisfy ¢, = 222" That is, the maximum crossing
number is attained by a line disjoint from 9.

The O(y/n) bound is asymptotically the best we can hope for. To see this for
some positive integer n, choose a set i of { = [/2n] lines in general position, and
place n points into the cells of the arrangement, no two points in the same cell
(which is possible, since (5) + (41 > n). Every edge of an (arbitrary) spanning
tree will be crossed by at least one of the lines in (; thus there must be a line in ¢
with at least 27+ = ©(y/n) crossings.

It we start the construction of our tree, then it looks like a good idea to begin
with an edge {p, ¢}, such that p and ¢ are separated by as few as possible lines in a
representative set. To provide a bound on this number is our next step.

A packing lemma [11,16]. Suppose we are given a set S of n > 2 points with
diameter A (i.e. A is the maximal Fuclidean distance between any two points in
the set). Then there are two points at distance at most o = 2. This can be easily

seen by the fact that the closed disks of radius § centered atn the points in S are
contained in a ‘large’ disk of radius %A centered at an arbitrary point in S (this
is true if o < A; otherwise the claim is trivial). If the small disks were pairwise
disjoint, then they cover an area of n”fT7T = 4A%x in the large disk of radius %A,
which is not possible. Hence two disks intersect, and the respective centers have
distance at most o.

We will use the same idea as just described to show that for any set S of n points,

and any set (& of ¢ lines there is always a pair of points separated by less than j—% of

the lines. To this end we introduce a pseudodistance d¢ for pairs of points (relative
to ) by é¢(p,q) = a + %, where « is the number of lines in G which have p and ¢
on opposite sides, and b is the number of lines which contain exactly one of the two
points p and ¢. It is easily seen that é¢ is a pseudometric (i.e. it is symmetric and
satisfies the triangle inequality).

For a point p and a real number o, we let Dg(p, o) denote the set of vertices v
in the arrangement of GG with é¢(p,v) < o. The sets Dg(p, o) will play the role of
disks, and the cardinality of D¢(p, o) will play the role of area in our proof, and so
we need a lower bound on this quantity in terms of o.

Lemma 2.1 If (G is a set of { lines in general position, and o is an integer, 0 <
o< (%L then |De(p,o)| > (U"2'1> for all points p disjoint from G.

Proof. Choose a line g through p which intersects the same number of lines in G
on both sides of p. Such a line exists, since we can take a directed line i through p
and rotate it, while observing the number of intersections on h preceding p. After
rotating i by 7 this will be the number of intersections succeeding p; so in between
we must meet a situation as required for g (note that if ¢ is odd, then ¢ must be
parallel to one of the lines in 7).
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Now consider the intersections gy, 2, ..., q[¢2) on g on one side of p, enumerated
in such a way that 6¢(p,¢;) =1 — § (if ¢ passes through a vertex, we may perturb
g with p to make sure that all lines in (& create distinct intersections). Let us first
assume that o < L%J Then, for all : < o, ¢; has at least ¢ — ¢ 4+ 1 vertices on its
line at distance at most o — ¢ + %; all these vertices have distance at most o from p
(by the triangle inequality). If we collect vertices at distance at most o in the same
way on the other side of p, we obtain 2(o +---+2+1) = 2(0"2'1> such vertices, each
of which may be counted at most twice. This gives the claimed bound for ¢ < L%J

If (is odd, and o = (%W , then the above procedure gives us a count of 2(c+- - -42)
only. Now we recall that there is a line h € (G parallel to ¢ which contains at least

two points at distance at most [%]; take the two vertices incident to the infinite

2
edges on h. In this way we have again counted 2(0"2'1
twice. The lemma is proved.

The bound in Lemma 2.1 can be shown to be tight.

) vertices, each vertex at most

Lemma 2.2 Let GG be a set of { lines, and let S be a set of n > 2 points. Then
there are two distinct points p and ¢ in S with é¢(p,q) < \2/—%.

Proof. Choose some positive integer k with the property that

2k 20 (2k0)?
(L) D7) > =

Replace each line h in GG by two buckets of k parallel copies each, such that the

(1)

‘original’ h lies between these two buckets, and the two buckets are sufficiently close
to h, so that there are no points from S within a bucket, and between a bucket and
its original. So the only points from S between the two buckets are those which
lie on h. The resulting set G' has ¢/ = 2k( lines, no point in S lies on a line in G’
and for any pair {p, ¢} of points in S, éc/(p, ¢) = 2kéc(p, q). Then perturb the lines
in G’ to general position such that no line moves over a point in S; this does not
change the pseudodistance 6 between points in 5.

For n < 4 the assertion of the lemma is trivial; so we have to consider only the
case n > 5 and Lemma 2.1 applies to o = L\%J We get

12 !

S patpoz a7 ) 2 up > ().
p€eS
(where property (1) proved to be useful). Since there are only (g) vertices, there
must be two ‘disks’ Dgi(p, o) and Dai(q,0), p,g € S, p # ¢, which overlap in a
vertex; by the triangle inequality their centers p and ¢ have pseudodistance é¢/(p, ¢)
at most 20. Hence, d¢(p,q) < ;—kZL\%J < z—i, the bound claimed in the lemma.

We need to extend Lemma 2.2 to sets oﬁnes (G where every line h has a positive
real weight w(h) associated. The pseudodistance é¢(p, ¢) is now defined as a + %,
where @ is the sum of weights associated with lines separating p and ¢, and b is the
sum of weights associated with lines which contain exactly one of the two points p
and g.
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Lemma 2.3 Let GG be a finite set of weighted lines with overall weight A, and let
S be a set of n > 2 points. Then there are two distinct points p and q in S with

2A
da(p,q) < =

Proof. Let k be some positive integer. Replace every line i in GG by two buckets
of [k - w(h)] unweighted lines each, in the same way as described in the previous
proof. We obtain a set G’ of at most 2kA + 2¢ unweighted lines to which we can
apply Lemma 2.2. Tt supplies us with two points p and ¢ with é¢/(p, ¢) < %. It
( is the number of lines in &, then

2k — \n o kyn
In other words, for every € > 0 we find points p and ¢ with é¢(p, ¢) < \2/—% + €. Since
there are only finitely many points, this implies the lemma.

balp, q) <

Construction by iterative reweighting [31,16]. Using Lemma 2.2 we can
easily show that for n points S and ¢ lines (G the greedy algorithm (using é¢ as
weight function on edges) constructs a spanning tree on S with weight at most

Yo, % < 40/n. That is, the average crossing number of a line in G is 4y/n. We

will show that by a different construction we can guarantee this bound (up to a low
order term) for all lines.

Theorem 2.4 FEvery set S of n points has a spanning tree with crossing number at
most 4/n + O(nl/‘l\/log n).

Proof. Let Gg be a representative set of lines, { = |Go| < (Z), and let Sy = 5.

We start the construction of the spanning tree by choosing two points p and ¢ in Sy

which are separated by the smallest number of lines in Gy (i.e. no more than \2/—%)

Next we put the edge {p, ¢} into the edge set of our tree and remove p from the
point set which gives S; = Sy — {p}.

For the rest of the construction we need some means to ensure that no line
gathers too many crossings. That is lines which have already many crossings with
the edges constructed so far should cross a next edge less likely. We will achieve this
by assigning weights to the lines. To be precise, a line which has ¢ crossings so far
will have multiplicity (1 + ) for g > 0 a parameter to be chosen later.

Hence, we continue our construction by multiplying by 1 + u the weight of all
lines in Gy which separate p and ¢; this gives a new set (G; of weighted lines with
overall weight A; < (1 + \2/—%) Then we continue the construction with &7 and
Sp: we choose two points p; and ¢; which are separated by lines of overall minimal
weight, add edge {p1,¢1} to the edge set, remove p;, and multiply the weights of
separating lines by 1 4 p, and proceed as above.

After 2 steps we have a set (&; of weight

2 2
A< AL+ —E ) <(TJ0 + =)
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and a set S; of n — 2 points.

Step n — 1 completes the construction of a spanning tree for S. What is the
crossing number of this tree? Let ¢; denote the number of crossings of line A in the
tree. Then h is represented with weight (1 + p)® in G,—1, that is

Apr=> (I+p)™.

hEGO

However, we have also a bound of

An—l < gH(l + Q—ﬂ) < gezzl:1(2“/\/;) < e4u\/ﬁ—l—21nn‘
= VI

Hence, we may conclude that

1

m(‘lﬂ\/ﬁ—l' 2lnn)

cp <

for all lines A which implies ¢, < 4y/n + O(n'/*\/logn) for the choice of y which
minimizes this bound (see Appendix).

The theorem and its proof provide us with a number of immediate consequences.
A spanning path is simple, if only line segments corresponding to consecutive edges
on the path intersect.

Corollary 2.5 Every set S of n points has a simple spanning path with crossing
number at most 4/n + O(nl/‘l\/log n).

Proof. The asymptotic bounds follow directly from Theorem 2.4, if we double the
edges in a spanning tree of crossing number ¢, and consider an Eulerian walk in this
graph, which has crossing number 2¢. We can now simply scan this walk and omit
points which have occurred before. In this way the number of crossings with a line
cannot increase. Let pg,p1,...,ps—1 be the resulting spanning path with crossing
number at most 2¢. If two line segments p;_1p; and p;3p;, 1 <e<j—1<n—2
intersect then we replace the edges {p;_1,p;} and {p;_1,p,;} by new edges {p;,_1,p;j_1}
and {p;, p;} to obtain the spanning path

PosPryee s Pic1yPi—19Pj—29« s Did1y Pis Pis Pj+15+++ 5 Pn—1 -

The crossing number of no line increases, and the Fuclidean length decreases. Con-
sequently, after a finite number of steps we have obtained a simple spanning path
with crossing number at most 2c.

In order to achieve the claimed constant we have to look at the proof of the
theorem once more. We proceed as for the construction of a tree, except that we are
more careful about the points we put into the sets S;. We keep as an invariant, that
the edges constructed so far give a set of vertex disjoint paths on S (some of which
are just isolated vertices), and we let S; contain all isolated vertices, and exactly
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one point of degree one from each path. In the next step, we choose two points p
and ¢ of minimal pseudodistance (with respect to the current weighted set of lines)
in S;. The addition of edge {p, ¢} merges two connected components; we remove
p and ¢ from S;, and add one of the two points of degree one in this component
to the set, which gives us S;41. After the appropriate reweighting of the lines we
continue the construction. The calculus of the analysis stays the same and gives the
claimed bound. The constructed path can be converted into a simple one by the
same procedure as described in the first paragraph of the proof.

Corollary 2.6 FEvery set S of n points has a matching of size k with crossing num-

ber at most \4/—% + O(vklnn/\/n), for integers k, $/nlnn < k < 2, and with

crossing number at most ln(\/%ﬂ%, for integers k < 21—6\/511& n.

Proof. The construction of a matching works in the obvious way (referring to the
notation in the proof of Theorem 2.4). We choose the edge of minimal pseudodis-
tance, remove its two points from the current point set, and reweight the lines with
new crossings. Now 5; has n — 2¢ points. After k steps we have a matching of
required size. Via the overall weight Ay of G we get the following bound for the
number of crossings of lines in Gjy:

k-1 1
2
e\/_MZJZO /nf2—j

(=A< O+ 2 )< (

v i n—2(t—1)
< geﬁMQ(w/n/Q—q/n/Q—k) — €62u(\/ﬁ—M) < e4uk/\/77—|—21nn )
The last inequality uses that /n —\/n —ay/n <z for all z, 0 <a < /n.

It follows that ¢; In(1 4 p) < % + 2Inn, and we obtain the bounds claimed in
the corollary by the appropriate choice of p (see Appendix).
It is perhaps interesting to consider explicitly the bound for some values of k.

For k = n'/?=¢, the lemma gives a bound of O(L); for k = /n, we obtain O( losn_».

loglogn
for k = y/nlnn, the crossing number does not exceed O(logn). The bounds for
k = Q(y/nlogn) are asymptotically tight. It remains open whether there is always
a matching of size \/n with constant crossing number.

The constant. We have not presented the best possible constant. Nevertheless,
we briefly indicate the best bounds known to the author. Let us first observe that a
lower bound of \/n — 1 for spanning trees can be obtained by a slight refinement of
the lower bound construction in the beginning of the section. For a positive integer
n choose a set GG of { = 2[/n] lines in general position. Then we assign colors to
the cells such that no two adjacent cells (i.e. cells which share a common edge) have
the same color. (Choose a fixed point o in one of the cells and color a cell red if for
a point p in this cell é¢(o, p) is odd, and color the cell blue otherwise.) We place n
points in the cells of the larger color class — no two points in the same cell (which
is possible since %((5) + ¢+ 1) >n). Any two of these points are separated by at



Spanning Trees with Low Crossing Numbers 9

least 2 lines. Hence, the overall number of crossings between the set of ¢ lines and
any spanning tree is at least 2(n — 1); hence, there is always a line with at least
@ > \/n — 1 crossings.

Although the bound in Lemma 2.1 is tight, the bound can be improved to
|Da(p,o)| > 3(“’;), if p has pseudodistance at least o to every point in an infi-
nite cell, and if o < g; this follows from a result on k-sets proved in [21]. With this

bound we can improve the estimates in Lemmas 2.2 and 2.3 to % and \3—3% (up to

low order terms). The bound in Theorem 2.4 improves to (% + o(1))y/n. So the
optimal constant lies in the range between 1 and 2.31.

3 Applications.

We present three applications of spanning trees, paths, or matchings with low cross-
ing numbers. The first is algorithmic, while the second and third are primarily of
combinatorial interest. Nevertheless, the proofs reveal also algorithms for computing
the structures whose existence we have proven.

Counting points in halfplanes [16]. Suppose we want to count the points below
a nonvertical line from a given point set 5, and we have to answer many such queries.
Thus it pays off to prepare the points in a data structure.

The structure we use is a simple spanning path py,ps,...,p, of S with low
crossing number ¢. The edges on the path are enumerated so that edge {p;, pir1}
gets number 7. For a nonvertical line h disjoint from S, let I* the set of indices of
edges {p;, pix1} with p; below h and p;4; above h, and let I~ be the set of indices of
edges {pi, pix1} with p; above h and p;11 below h. Then the number of points in S
below h is given by > . ;i —> .- 4, if p, lies above h, and n 43, 1 —> .1,
if p, lies below h. Thus, if we can determine the ¢; crossings of line h with the
path, then the number of points below & can be computed with ¢; additions and
subtractions. Here we can invoke a result from [14], which states that the edges of
a simple path can be stored with O(n) space, such that the first edge hit by a ray
can be computed in O(logn) time. Clearly, this structure can be used to compute
the intersections of a line with a path in O(klogn) time, where k is the number of
intersections.

Theorem 3.1 Fvery set S of n points can be stored in O(n) space, such that the
number of points in S below any query line can be computed in O(y/nlogn) time.

The structure can readily be used also for counting points in triangles within the
same asymptotic time bounds.

Colorings with low discrepancy [27]. We want to color a set of n points in the
plane by red and blue, such that every halfplane contains roughly the same number
of red and blue points. How well can we achieve that goal? This type of questions
are investigated in the field of discrepancy ( [30], [9]).
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For technical reasons we switch to colors —1 and +1. A coloring of a point set S
isa mapping y : S — {—1,+1}. The discrepancy of x is defined as maxy« |[x(SNA*)|,
where x(A) = >_ <, x(p), and the maximum is taken over all halfplanes A*.

Theorem 3.2 For every set S of n points there is a coloring x with discrepancy at

most 24/2nY/Inn + O(logn).

Proof. Assume that n is even (if not, we may ignore one point temporarily; the
discrepancy grows at most by one by adding it back with an arbitrary color). Let
M be a perfect matching on S with crossing number ¢. We consider the set C of all
colorings y with y(p)+x(¢) = 0 for all {p,q} € M. Note that every element of C has
discrepancy at most ¢. We show that there is a better coloring in C by considering
colorings randomly chosen from C. We need the well-known Chernoff bound (see
e.g. [30], [22]) in the following form: If X is the sum of k independent random
{—1,4+1} variables — each variable attains —1 and +1 with equal probability —,
then Prob(|X| > MWk) < 2eV/2.

Let h be a nonvertical line disjoint from S with ¢, crossings in M, and let A~ be
the halfplane below h. Set

B ={p€ S|p € h™ and h crosses the edge in M containing p} .
Then |Bp| = |en], x(SNA™) = x(B), and for a random y in C,
Prob(|x(By)| > A ) < 2/ (2)

If A = 2v1Inn then the bound in (2) becomes 2n~2. Let [NJS be a representative set
of lines with |[~{5| < (;) < n?/2. Thus there is a coloring Yo in C with xo(SNA™) <
2v/cpInn < 2v/eclnn for all A in ]:]5; this coloring Yo is good for all (open or closed)
halfplanes below lines. We have |y(A)| = |x(S — A)| for all x € C and all A C S,
which takes care of halfplanes above lines. The lemma follows, since there is a
perfect matching with ¢ = 2\/n + O(n'/*\/Togn), see Corollary 2.6.

8] proves a lower bound of Q(n'/*=), for any ¢ > 0, for the discrepancy of
colorings for halfplanes.

Mutually avoiding segments [28]. Two closed line segments are called avoiding,
if the lines supporting the segments intersect outside both segments. The following
result was first proved in [7]; the simple proof below was presented in [28].

Theorem 3.3 FEvery set S of n points in general position allows é\/ﬁ—O(nl/‘l\/log n)
mutually avoiding line segments with endpoints in S.

Proof. Let po,p1,...,pn—1 be a spanning path with crossing number ¢ — 1. For
convenience add also the edge {p,_1,po} to obtain a spanning cycle with crossing
number ¢. We show that among the n edges on this path there are (ZCZJ edges which
define mutually avoiding line segments. To this end consider the graph which has the

set L of line segments p,_1p;, 2 = 1,2,...,n—1, and p,_1po, as vertices. Two vertices
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are adjacent, if their corresponding line segments are not avoiding. A line containing
a line segments s in L intersects at most ¢ of the line segments in L — {s} (it’s at
most ¢ including the adjacent segments on the cycle!). Consequently, our graph has
at most cn edges. A graph with n vertices and cn edges has an independent set (i.e.
a set of vertices where no two are adjacent) of cardinality [575] (the existence of

a (QTZj_nW size independent set in a graph with n vertices and m edges follows from
Turan’s theorem, cf. [10]). But an independent set in this graph corresponds to a
set of mutually avoiding line segments; the theorem follows due to the bounds on ¢
previously derived.

It is not known whether there are point sets which do not allow a linear number
of mutually avoiding line segments.

4 Construction.

The proof of existence of spanning trees with low crossing numbers in Theorem 2.4
describes an algorithm which can be implemented in polynomial time. A number
of more efficient algorithms can be found in the literature [20,2,25,23,3]. We will
present some of the basic ingredients of these algorithms, which will lead us to a
randomized algorithm which computes in expected O(ny/nlogn) time a spanning
tree whose crossing number does not exceed O(y/nlogn) with high probability.

The first step in making an algorithm more efficient is to reduce the number of
lines which have to be considered in a construction.

Test sets. Given a set S of n points and two nonvertical lines g and h, we define
65(g,h) =a+ %, where a is the number of points from S in the double wedge defined
by g and h, and b is the number of points from S which lie on exactly one of the
lines ¢ and h. Similar to 6 on points, 6™ is a pseudometric on lines. In fact, if we
denote by S* the lines dual to the points in S, then 6%(g, h) = 6s+(g*, h*).

For a real number o, we call a set H of lines a o-test set for S, it for every line
g disjoint from S, there is a line h € H with 65(¢,h) < 0.

Lemma 4.1 Let S be a set of n points and let H be a o-test set for S. If the
mazimal crossing number of a line in H in a spanning path on S is C', then the
crossing number of this path (for all lines) is at most C' + 20.

Proof. For any two lines ¢ and h, observe that if ¢ crosses an edge which is not
crossed by h, then one of the two endpoints of this edge has to lie in th double wedge
of ¢ and h, or on ¢g. Since every point is incident to at most two edges on a path, we
easily get that the respective crossing numbers ¢, and ¢, satisty |¢, — | < 26%(g, h).
The lemma is an immediate consequence of this fact.

Lemma 4.2 Let S be a set of n points and let o be an integer with 0 < o < n. (i)
There exists a o-test set of at most 4(2)* lines. (ii) If S is in general position, then,
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for every positive real X, a set of lines obtained by connecting at least (24+X)(2)*Inn
random pairs of points in S is a o-test set with probability at least 1 —n™".
Proof.  We prefer to dualize the scenario. In the dual environment statement (i)
claims that for a set GG (= S*) of {(= n) lines, there exists a set () of 4(5)2 points,
such that every point p disjoint from G has a point ¢ € @) with ég(p, ¢) < 0. Choose
() as a maximal set of points, where any two points have pseudodistance 64 greater
than 0. Lemma 2.2 implies that () contains at most (zr—f)2 points, and the maximality
of () guarantees the desired property.

For a proof of (ii), we have to consider a set R of r random vertices in A(G),
(G a set of { lines in general position. For any point p disjoint from &, a random
vertex has pseudodistance at most o from p with probability |Dg(p, O')|/<§> > (%)
(use Lemma 2.1). Hence, the probability that all points in R have pseudodistance
more than o from p is less than

(1 - <%>2>T st (3)

Forr > (24 )\)(5)2 In{, the expression in (3) is bounded by (=2=*. Let P be a set
of m = (5) + (4 1 points, one in each cell of A(G). Then with probability at most
ml~2= < (= there is a point in P which has pseudodistance more than o from all
points in R (for £ > 2, m < (?). Since every point disjoint from G has a point in P
at pseudodistance 0, the lemma is proved.

The algorithm. Let GG be a set of lines, and let p be a point. For a nonvertical
line A (not necessarily in (&), we say that h sees p (and p sees h) in A(G), if p lies
on or above h, and the closed vertical segment connecting h and p is disjoint from
all lines in G — {h}; (if p lies on h, then p sees h if and only if p lies on no line in
G'—{h}). Thus a point p which lies on a single line g in (& sees g and no other line,
and if p is contained in two or more lines in ¢, then p sees no line at all. Every
point p sees at most one of the lines in (.

The algorithm proceeds now as follows. We assume that the set S of n points
is in general position, and that n > 2. First we take a random sample T' of n lines
connecting points in .5; this will be a o-test set, for ¢ < 2v/nlnn, with probability
1 —n~2. Then we construct a set /¥ C T of 7 < v/nlnn lines such that no line in
T — F sees more than £ < 2ev/nlnn points from S in A(F) (the construction of
F will be described below). We add to F' a horizontal line hg, which lies below all
points in S. Each point p in S is projected vertically on a line from F' directly below
(or through) p; this gives a set S” of n projections. For g € F', let S| be the points
in 5" which lie on g; if a point in S’ lies on several lines in F', then we put it only in
one set S7.

We add two extra vertical lines A~ and At which lie to the left (right, respectively)
of all points in S. On every line g connect all points in S; by a path along g, starting
at the intersection of ¢ with 2~ and ending at the intersection of ¢ with AT. Connect



Spanning Trees with Low Crossing Numbers 13

these paths via edges on A~ and ht so that no line intersects more than two of these
extra edges. Note that the resulting spanning path P’ has crossing number 3 4 7 at
most (‘3" accounts for crossings on hg, h™, and ht). Now we consider the vertical
edges connecting the points in S — S’ to their projections in S’. A lineg e T — F
crosses such a vertical edge only if it sees the upper endpoint in A(F'), or it contains
the lower endpoint.

For a line g € T, consider a line ¢’ parallel to and below ¢, but sufficiently close
so that no point in (5" U S) — ¢ changes its relative position to ¢’ (compared to ¢).
For all lines ¢ € T', ¢’ crosses at most 3+ 7 edges in P’. If ¢ € F, then ¢’ crosses no
vertical edge, and if ¢ € T' — F', then ¢ crosses at most & vertical edges.

In order to obtain a path on S we walk along P’ with excursions along vertical
edges, and we enumerate the points in S as we meet them on this walk. For any
line ¢ € T, the primed version ¢’ crosses at most 3 + 7 + 2k edges, and since
65(g,9") < 1 (recall that we assume S to be in general position), no line in T has
crossing number exceeding 5+7+2xk. Consequently, the crossing number of the path
is at most 5 + 7 + 2k + 20 (by Lemma 4.1), which is at most 5+ (5 + 4e)vnlnn =
O(v/nlogn) with probability 1 —n=2.

It remains to show how a set F' obscuring many visibilities is constructed.

Obscuring sets.

Lemma 4.3 Let S be a set of n points, and let G be a finite set of lines. For a
random set R of r lines in G, and for a random line g in G — R, the expected number
of points in S seen by g in A(R) is at most -

Proof. We employ backwards analysis, cf. [29]. Observe that ¢ sees a point p in
A(R) if and only if g sees p in A(RU {g}). Thus the quantity we are interested in
is the same as the expected number of points from S seen by a random line ¢ € R’
in A(R'), with R" a random set of r 4 1 lines in (7. Since every point in S sees at
most one line in R’ this number is bounded by e

We will use the lemma to make the following conclusion: If we choose r lines R
at random, then with probability at least % the expected number of points seen by

a line in G — R is at most %; in this case at most |G;R| lines see more than f%
points (we use Markov’s inequality twice).
We start the construction of F' by choosing a random sample Ro of r = | /7|

lines in Hy = 1T'. We determine the set H; € Hy — Ry of lines which see more

than fjﬁ < 2evnlnn points from S in A(Ry). If |Hq| > |Ho|/e — which happens

with probability less than % —, then we choose a new sample Ry from Hy until
|H1| < |Ho|/e holds. In the same way we produce a set Ry of r lines in Hy, such
that the set Hy C H; — R; of lines which see more than fjﬁ points in A(Ry) satisfies
|Hy| < |Hq|/e. If we continue like this, we have exhausted all lines in 1" after at most

[In |::—| + 1] < Inn steps (at least for n large enough), and the expected number of
samples we took is at most twice this number. The union F' of all R;’s constitutes a

set of at most rInn < vnlnn lines, and no line in T' — F' sees more than 2evnlnn
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points in A(F'). (The constants can be decreased at the cost of a larger constant in
the running time.)
If we are interested in the existence of F' only, then we may choose ‘2’ as 1.

Lemma 4.4 Let S be a set of n points and let G be a set of { lines. For every
positive integer r < min{n,(}, there is a set F of r[In % £ 117 lines in G, such that
no line in G — F sees more than 7 points of S in A(F).

Time complexity. What is the time complexity of the construction of 7 When
we choose a random sample R of r lines then we construct the arrangement A(R)
in O(r?) time, cf. [19]. Then, for every point in S, we determine the cell the point
is contained in: We simply determine the line in R directly below a point p by
looking at all lines (in O(nr) time for all points). Then, for each line ¢ € R, we look
at the points which have this line below and determine the respective edges of the
arrangement directly below these points (this works again in O(nr), if every point
checks all edges on ‘its’ line). As we have located all points in their cells, we provide
a list of points in each cell sorted by x-coordinate. Now we want to compute the
number of points seen by a line h ¢ R. We determine the cells intersected by h by
threading the line through the arrangement in O(r), cf. [19]. In each cell visited, we
take the x-coordinates of the first and last point of & in the closure of this cell. h
can see only points in this cell which have their z-coordinates in this range. In the
sorted lists we can determine these points in O(log n+ k"), k&’ the number of points in
this range. Similar to the proof of Lemma 4.3, we can show that the expected sum
of all & over all cells mtersected by h is at most 2” So the expected time spent
for a line h is O(rlogn + o —=). Altogether, if { hnes have to be checked, we spend

time O(nr + ((rlogn + %)) = O(n + ((v/nlogn)). The expected number

of times we have to handle such a set R is O(logn), and the number of lines to be
checked decreases geometrically. Hence, the overall expected time for constructing
Fis O(ny/nlogn). The spanning path can easily be obtained from the arrangement
A(F) within this time bound.

lon

Theorem 4.5 There is a randomized algorithm which computes for any set of n
points in general position a spanning path in expected O(n+/nlogn) time, such that
the crossing number does not exceed O(y/nlogn) with probability 1 — n™2.

With some more sophistication, the algorithm can be tuned to have close to linear
running time (see [25] for some of the ideas required). Test sets are used in most ef-
ficient constructions of spanning trees with low crossing numbers [25,23,2]. Efficient
(deterministic) constructions of test sets are described in [26]. The idea of repeated
sampling on ‘bad’ lines for the construction of obscuring sets is taken from [15].

A deterministic O(n+/n log® n) algorithm which gives a spanning tree with O(y/n)
crossing number is described in [23]. [3] can produce a tree with crossing number
O(n'/?*<) in time O(n'*¢) for any ¢ > 0, and they describe how such a tree can
be maintained under a sequence of insertions and deletions. So-called simplicial
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partitions ( [26], see Section 5) can be used to obtain a spanning tree with crossing
number O(y/n) in time O(n'*®) for any € > 0 (where the constant in the crossing
number depends on €), [24].

5 Discussion.

The result on spanning trees generalizes to higher dimensions and other geometric
objects: For every set of n points in d-space there is a spanning tree, such that no
hyperplane intersects the straight line embedding of the tree in more than O(n'~'/%)
points, which is tight. The proof of the general result starts off by providing a higher-
dimensional counterpart of Lemma 2.1, and then proceeds almost verbatim as in the
planar case. Similarly, we can always find a tree which has O(n'="/?) crossings with
any ball, if we define that a ball crosses an edge if exactly one endpoint of the edge
lies in the ball.

For a set system (X,R), R C 2%, we can also consider spanning trees on finite
subsets A of X. We say that a set R € R crosses an edge {z,y} of the tree, if
|RN{z,y}| = 1. Then it is possible to prove the existence of a spanning trees with
crossing number O(n'~'/?), where d is some combinatorial parameter associated
with the set system (related to the VC-dimension); details can be found in [16].

An important extension of matchings with low crossing numbers, simplicial par-
titions, were introduced in [26]. In the planar version, for a set S of n points, such
a partition consists of pairs (¢;,5;), ¢ = 1,2,...,m, where the ¢,’s are open triangles
or line segments with ¢; O 5;, and the 5;’s form a partition of S. It is shown that for
any r there is a simplicial partition such that m = O(r), the cardinalities of the 5;’s
are roughly balanced (|S;| < 22 for all i, to be precise), and no line intersects more
than O(y/m) of the t;’s. Note that perfect matchings with low crossing numbers are
related to simplicial partitions with m = Z. Simplicial partitions can be efficiently
constructed, and they allow improvements in many algorithmic applications, [26].

We conclude by stating two open problems.

Problem 1 Is there a constant C, such that every set of n points in the plane has
a matching of size \/n whose straight line embedding is intersected in no more than
C' edges by any line disjoint from the points?

logn
loglogn

) on C'; a constant number of intersections

1/2=¢ {5 required, for any fixed e > 0.

Corollary 2.6 gives a bound of O(

can be guaranteed, if a matching of size n

Problem 2 Given n points S and n nonvertical lines G in the plane, is there always
a set I of O(y/n) lines in G, such that no line in G — I' sees more than \/n points
of S in A(F); a line h € G — F sees a point p in A(F) if p lies on or above h, and

the closed vertical segment connecting p and h is disjoint from all lines in F'?

Lemma 4.4 gives a bound of O(y/nlogn) on the size of F.
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Appendix: Optimal choice of reweighting factor 1+ pu.

We want to estimate min, o f(p) for

flp) = EYEE]

with a,b > 0. The first derivative of f is

(ap +10) (4)

aln(l +p) — (ap + )1+ )71

f/(:u) = ln2(1 ‘|‘,M)

So a local extremum (which obviously has to be a minimum) is achieved when
ap+b=a(l+p)In(l +p), (5)

or, equivalently, when

el—a)=1-c¢, (6)

where we write « short for In(1 + x), and ¢ short for b/a. Equality (6) has exactly
one solution.
Let us first consider the case ¢ < 1. Then, for z = /c,

(=22 (L+o)(1—2) = (1- ),
and, for © = /2,

el’(1—x):1—z%<1—%:1—c.
i=1 )

Consequently, (6) is satisfied for some x in the range /¢ < & < v/2¢; so the optimal
i has to be chosen such that

Vbla <In(l+ pope) < v/2b/a, for b < a.

If we substitute (5) into (4), then we get for the optimal x that f(p) = a(l + u),
and so

min,sof(p) < aeV Bla — ¢ 4 O(\/%), forb<a,

since eV < 1+ (e%l)y for 0 < y < /2. (For a = b, we get min,so f(¢) = ea.)

If ¢ > 1, then we rewrite (6) as
zlnz—1)=c—1,

where z = p 4+ 1. We assume actually that ¢ is sufficiently large, say, ¢ > e. For

T
Z_lnc7

Inl
cc —(Inec—Inlne — 1) = (e_ennc

)>c—1,

Ine Ine
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and, for z = <L

Inc?’
- 1(hq(c— I)=Inlne—1) < (e—1)(1 - M)
Inc Inc
Therefore, u has to be chosen such that
b/a —1 eb
1 0 ——— , for b > ea,
m(b/a) ~ " THet S Gnja) 0 M0
which implies
b
min f(p) < 67, for b > ea .

>0 In(b/a)

19

<ec—1.



