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CHAPTER 1

INTRODUCTION AND OUTLINE

All science is either physics or stamp
collecting.

Ernest Rutherford (1871-1937)

In biological and soft matter systems, the dynamics of atoms, molecules and supramolecular
assemblies differ drastically from the motion of macroscopic objects we know from our every-
day life. Unlike balls on a billiard table or satellites traveling through space—the motion of
which is governed by simple physical laws and predetermined by a few initial conditions—
the paths of microscopic objects embedded in a soft or fluid environment are characterized by
rapid and seemingly random fluctuations. Indeed, the trajectories of objects at the nano- and
microscale, similarly to stock prices displayed on financial charts, are characterized by a contin-
uous, fractal-like up and down and knowledge of the past and present states provides, at best,
limited information on the future evolution.

1.1 The Chaotic Brownian Dance

Although the random motion of charcoal powder on the surface of alcohol was already docu-
mented in 1784 by Jan Ingen-Housz [1], the discovery of the erratic and incessant motion of
particles in a fluid is commonly attributed to the botanist Robert Brown, who studied pollen
grains under a microscope in 1827 and observed the "vivid motion on immersion in water" of
the micrometer-sized "particles contained in the grains of pollen" [2]. Brown excluded life as a
driving factor [3], the underlying cause for the motion however remained elusive until the be-
ginning of the twentieth century despite ongoing experimental studies revealing the influence
of particle size, fluid viscosity, and temperature on the dynamics [4–6].

In 1905 and 1906, the explanation for the jittery motion observed by Ingen-Housz and Brown
was proposed independently by William Sutherland [7], Albert Einstein [8–10], and Marian
von Smoluchowski [11]: The continuous kicks of the surrounding solvent molecules—invisible
even under the microscope—were identified as the cause for the thermal motion of suspended
particles. It was Einstein’s achievement to establish the link between two at that time dis-
connected phenomena: the erratic Brownian motion of individual particles and the thermo-
dynamic laws of diffusion already known since the mid of the 19th century [12].
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Figure 1.1:
Overview of Perrin’s seminal work on Brownian motion: a) Equilibrium distribution of granules of
gamboge and mastic at different heights above the object glass of the microscope, b) three sample
trajectories of individual mastic granules in the lateral plane obtained from joining by straight lines
the positions in consecutive configurations taken at 30 seconds intervals, and c) distribution of 365
lateral displacement vectors. All figures are adapted from Ref. [15].

Extensive subsequent experimental work by Jean-Baptiste Perrin and coworkers [13–15] al-
lowed to verify the theoretical prediction D = kBT/ζ0, nowadays called Einstein-relation,
where D denotes the diffusion coefficient, kB the Boltzmann constant, T the temperature (in
Kelvin), and ζ0 the particle’s friction coefficient; the latter is ζ0 = 6πη0a for a spherical particle
of radius a in a solvent of shear viscosity η0 according to Stokes [16] and thus independently ac-
cessible experimentally. Perrin chose several independent experimental pathways to measure
the value of kB and thereby to determine the Avogagro number NA = Rid/kB, the universal
gas constant being denoted by Rid: (i) By evaluating the equilibrium distributions of granules
at different heights above the object glass of the microscope as shown in Fig. 1.1a, (ii) from the
mean square displacement (MSD) of the stochastic particle trajectories in the lateral plane, three
samples being reproduced in Fig. 1.1b, (iii) by comparison of the time dependent distributions
of hundreds of lateral displacement vectors (indicated in Fig. 1.1c) to the theoretical predictions,
and (iv) by analyzing the Brownian rotation of granules. Perrin’s precise estimate of the Avo-
gadro number unambiguously confirmed the molecular nature of matter, an achievement for
which he was awarded the Nobel prize in physics in 1926.

Interestingly, the mathematical concepts for the explanation of Brownian motion are already
contained in Louis Bachelier’s Ph.D. thesis Théorie de la spéculation from 1900 [17] dealing with
the stochastic analysis of the French stock and option markets. Bachelier’s work however re-
mained unnoticed, until being rediscovered by Merton, Black and Scholes, who, based on sim-
ilar arguments, established in 1973 the theoretical fundament for derivative pricing in mathe-
matical finance [18, 19].

Einstein’s and Smoluchowski’s work, reviewed extensively in honor of the 100th anniver-
sary of the discovery of Brownian motion [20–23], pointed out the need for a probabilistic de-
scription of the dynamics at the microscopic scale, where individual realizations are generally
unreproducible and a statistical treatment therefore is inevitable. The early theoretical studies
on Brownian motion can thus be considered as the fundament for the entire field of stochastic
processes, which revolutionized (non-)equilibrium statistical physics and has since then con-
tributed to the understanding of complex phenomena in biology, chemistry, nanotechnology,
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ecology, economy, and other areas [22]. Over the years, two complementary ways of mathemat-
ically tackling stochastic dynamics have evolved:

• Individual trajectories, such as those in Fig. 1.1b, are described in terms of stochastic differ-
ential equations, first introduced by Langevin [24] and put on solid mathematical ground
later by Itô [25, 26], Stratonovich [27], and others [28, 29]. The Langevin equation includes,
in addition to the usual terms in Newton’s equation of motion, a stochastic component
reflecting the interactions with the noisy environment. Generalized Langevin equations
for the dynamics of slow degrees of freedom in complex systems can be derived from the
deterministic Liouville equations using the projector formalism [30–33]. Although exact
analytical solutions are restricted to particular cases, the Langevin equation constitutes
an intuitive form of accounting for the random aspects of the dynamics, and its numeri-
cal implementation is of wide practical relevance for computer simulations of stochastic
systems [28].

• On the contrary, the time evolution of the trajectory ensemble as a whole, e.g., the displace-
ment distribution in Fig. 1.1c, may be captured by partial differential equations, nowa-
days known as Fokker-Planck (FP) equations [34–36]. Early examples include Smolu-
chowski’s generalized diffusion equation for the overdamped motion of a particle in an
external potential [37]. Related approaches suitable to capture the stochastic dynamics
within a finite number of states are known as master equations or Markov models [33, 38].

1.2 Stochastic Dynamics in Biological Systems

Why are stochastic processes essential to understand the dynamics of biological systems? Bio-
logical cells, the basic structural and functional units in all living organisms, are small entities
with typical diameters on the order of 1− 100 µm, which contain many different components
such as genetic material, organelles, the cytoskeleton and the cytosol [39]. The latter consists of
a crowded, aqueous solution of various macromolecular assemblies and in particular proteins,
which are involved in tasks as diverse as enzymatic activity, cell signaling, gene regulation,
ligand binding, intracellular transport, or cell motility. On even smaller scales, the selective
transport of molecules and ions through lipid membranes as well as folding and conforma-
tional changes of proteins are essential processes for proper cellular function. All the above
mentioned processes take place on the micro- and nanometer scale and thus inevitably are
subject to thermal fluctuations. Probabilistic rather than deterministic concepts are therefore
required for a (quantitative) understanding of biological function at the cellular and molecular
level [40, 41]. Physics at these scales is being probed experimentally and modeled theoretically
as outlined in the following.

Due to recent advances in optics, fluorescence, micro-fluidics, and nanotechnology, a wide
range of experimental techniques are nowadays available to sensitively probe the dynamics of
biological cells and molecules. Fluorescent labels are used in combination with super-resolution
microscopy to image and track specific components within living cells [42] and, on a smaller
scale, to probe the dynamics of ligand-protein binding as well as in- and out-of-equilibrium dy-
namics of internal molecular coordinates by site-specific labeling of the molecules [43, 44]. In
addition, single-molecule techniques based on atomic force microscopy or optical and magnetic
tweezers reveal detailed spectroscopic information about individual molecules in equilibrium
or under the influence of an external mechanical force or torque [45].
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When it comes to specific biophysical systems, theoretical approaches nowadays often rely
on computer simulations with various levels of resolution and complexity, which can provide
microscopic details inaccessible experimentally. Moreover, thanks to increasing computational
resources, simulation studies begin to reach time scales, which allow a direct comparison with
experiments [46].

However, the fluctuating time series recorded in experiments and simulations are by them-
selves just as informative as the trajectories of Brownian particles depicted in Fig. 1.1b. Sta-
tistical analysis and in particular adapted theoretical models thus remain crucial to gain phys-
ical insight into cellular and molecular dynamics. In recent years, fundamental advances in
non-equilibrium statistical physics [47, 48] and unified frameworks for single-molecule kinet-
ics [49, 50] have helped to extract meaningful information from experimental data. To name
a few explicit examples of successful theoretical approaches, the analysis of atomistic simula-
tions based on a master equation approach [51] has helped to clarify the mechanisms and time
scales of secondary structure formation in short peptides [52]. Markov models have revealed
the complex folding and unfolding pathways of proteins [53, 54] and have established the rela-
tion between experimental observables and specific conformational changes of the molecules
in simulations [55]. Furthermore, theoretical advances based on the Langevin equation have
contributed to a broader understanding of the dynamics of semiflexible polymers in excellent
agreement with experiments [56, 57], and the working principles of molecular motors, efficient
molecular machines converting chemical energy into mechanical or electrical work, have been
deciphered [41, 58].

Over a century after the discovery of Brownian motion, continuously refined theoretical in-
struments based on the groundbreaking work of Einstein and Smoluchowski play, more than
ever, a fundamental role in contemporary biophysics research. In particular, dynamic processes
with characteristics deviating strongly from the ordinary diffusion laws have attracted consid-
erable interest during the last decades [59–62]. Although the present thesis mostly focuses
on dynamics at the molecular scale, it is worth mentioning that similar concepts are also em-
ployed to model a variety of other complex phenomena: Examples range from gene regulation
networks [63], biological evolution [64], and search strategies of living organisms [59, 65] to
traffic jams on the cellular level as well as in the macroscopic world [20, 66].

1.3 Outline of This Work

As argued above, devising methods to reliably and efficiently extract the physically relevant in-
formation contained in stochastic signals constitutes a major challenge in theoretical biophysics
research. The aims of the present thesis are twofold: (i) Based on data from atomistic simula-
tions, we demonstrate how molecular mechanisms can be identified via a detailed trajectory
analysis, and (ii) we establish refined stochastic models to quantitatively analyze and predict
the statistical properties of fluctuating observables in biophysical simulations and experiments.

The Chapters 2 to 4 form the first part of the thesis and are based on the analysis of fluctuating
time series from molecular dynamics (MD) simulations of aqueous systems. Among others,
we employ a method relying on the calculation of mean first-passage times (MFPTs), which
was first developed in Ref. [x] and which has since then successfully been applied in other
contexts [viii][67]. The approach rests on mapping the dynamics on the FP equation, thereby
disentangling free-energetic and friction contributions, which allows an interpretation of the
kinetics in terms of an intuitive physical picture.
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• Water is the most abundant liquid on earth and of enormous importance for life [68]. Yet,
many of the fascinating aspects of water still remain unexplained [69]. In Chapter 2, the
dynamics of individual water and solute molecules in bulk water are studied based on
simulations run by Dr. Felix Sedlmeier. We resolve the anisotropic translational and ro-
tational diffusive properties of water molecules and determine the diffusivity profile for
the relative motion of a chosen pair of water molecules. The latter exhibits a pronounced
drop within the first coordination shell, pointing towards major contributions of orthogo-
nal degrees of freedom in hydrogen-bond formation and breakage kinetics.

• Next, we focus on the biologically more relevant problem of water near lipid membranes
and investigate the dynamics of hydration water in the vicinity of lipid bilayers in Chap-
ter 3 based on MD simulations run by Prof. Dr. Stephan Gekle. Our analysis reveals
anomalous dynamics over extended time scales and a reversed diffusional anisotropy in
the vicinity of the membrane compared to homogeneous surfaces, where the interfacial
water mobilities are quantitatively described by boundary hydrodynamic theory.

• Numerous studies have shown that problems as complex as protein folding can equally
be interpreted as a diffusive search through an effective, low-dimensional free energy
landscape [70–75]. Chapter 4 is devoted to the conformational changes of a small alanine-
based peptide in MD simulations run by Prof. Dr. Joachim Dzubiella and Dr. Immanuel
Kalcher. We elucidate the influence of ionic co-solutes on the peptide kinetics by iden-
tifying ion-specific changes of both free energy and diffusivity, and relate the observed
differences between sodium and potassium salts to particularly long-lived conformations
involving the binding of single ions to the peptide.

In the second part of the thesis formed by the Chapters 5 to 8, we develop theoretical meth-
ods to quantitatively analyze and predict the spectral properties of equilibrium fluctuations in
biophysical experiments and simulations.

• Single-molecule techniques [43–45] have revolutionized the experimental possibilities for
studying microscopic kinetics in biological systems. In Chapter 5, we devise a method
for the spectral analysis of dual trap optical tweezers, which are used to study individual
molecules, e.g., nucleic acids or proteins [53, 76–78]. Our approach includes the theoreti-
cal modeling of the experimental signal processing and is based on the statistical proper-
ties of the recorded signals. In collaboration with our experimental colleagues Alexander
Mehlich and Benjamin Pelz from the group of Prof. Dr. Matthias Rief, the accuracy of the
Bayesian method is explicitly demonstrated. The comparison to experimental data also
underlines the importance of hydrodynamic retardation effects in the fluid.

• We address a more fundamental problem in Chapter 6, namely the influence of nonlin-
earities in the equations of motion governing the stochastic, thermal motion of a system.
For a one-dimensional system, an expansion of typical dynamic observables in powers
of the thermal noise strength is derived and the findings are validated by comparison to
numerical simulations. In addition, our approach sheds light on the limitations of the
dynamic convolution theory (DCT) [ix] and of the widely employed signal analysis based
on strictly linear models.

• Cytoskeletal semiflexible biopolymers such as actin and microtubules are involved in a
variety of vital tasks ranging from maintaining the cell shape to cellular motion, intra-
cellular transport, and cell division [39, 40]. In Chapter 7, the thermal motion of single
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semiflexible polymers is investigated by means of dynamic mean-field theory and Brow-
nian dynamics simulations. We resolve the influence of the mechanical properties of the
filament as well as of hydrodynamic screening caused by nearby surfaces on various dy-
namic observables and compare our findings to experimental results on f-actin [79].

• Biological materials such as the cytoskeleton are characterized by remarkable mechanical
properties, which are only partially understood [80]. Given the complexity and size of
these structures, explicit simulations of the overall dynamics are currently not feasible.
To study the viscoelasticity of extended polymeric networks, we therefore in Chapter 8
generalize the DCT from Ref. [ix]. Using our approach, the micro- and macrorheological
properties of crosslinked networks, e.g., the shear or compression response, are readily
computed given the linear response properties of the filaments and the network structure.
We in particular focus on the influence of orientational degrees of freedom at the network
nodes and the flexibility of crosslinkers, which are known to be crucial components in
cytoskeletal network structures [81].

The overall results of this thesis are briefly summarized in Chapter 9, where we also discuss pos-
sible future lines of work. Longer calculations, complementary material and technical details
are found in the Appendices A-G.



CHAPTER 2

DYNAMICS OF INDIVIDUAL MOLECULES IN
BULK WATER

Bibliographic information: Parts of this chapter and of Appendix C have previously been pub-
lished. Reprinted with permission from Ref. [v]. Copyright 2011 by the American Physical
Society.

The unique properties of liquid water are relevant for a broad range of processes in biol-
ogy, chemistry, and physics, as well as for technological applications [69]. A prominent goal
of recent research has been to relate macroscopic properties of water, in particular its notable
anomalies and singularities, to the microscopic structure and thus to the hydrogen (H) bond-
ing pattern between individual water molecules [82]. This goal has only partly been achieved.
Indeed, even for the most elementary kinetic process of breaking a single H-bond between
two water molecules that are embedded in the bulk liquid matrix, various viewpoints exist:
In an early application of transition path sampling, it was found that in roughly half of the
cases of an H-bond breaking event a new bond forms right afterwards [83], supporting Still-
inger’s switching-of-allegiance description of the local water dynamics [82]. In later simula-
tion works, the water reorientation during this H-bond switching was shown to occur quite
abruptly [84], in line with the pronounced rotational-translational motion coupling of individ-
ual water molecules [85]. The non-exponential H-bond relaxation was shown to be due to a
coupling of bond forming/breaking dynamics and the relative diffusion of water pairs [86]. It
is however not related to the local environment of H-bond forming water molecules [87], which
is surprising in light of the above mentioned H-bond switching scenario. Clearly, the H-bond
dynamics is intimately related to the kinetics of other processes, e.g., protein folding [88] or so-
lute dissociation [89], so clarifying the kinetics of the binding and unbinding of water molecules
is without doubt of fundamental importance.

In this chapter, we analyze the stochastic trajectories of individual molecules in bulk water
based on molecular dynamics (MD) simulations, which are shortly described in Sec. 2.1. Dy-
namics of individual molecules are considered in Sec. 2.2, and the relative dynamics of pairs of
water molecules are studied in Sec. 2.3. Our main findings are summarized in Sec. 2.4, while
technical aspects and longer calculations are covered in the Appendices B and C.
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2.1 Molecular Dynamics Simulations

MD simulations of the SPC/E [90] water model are performed with the GROMACS simulation
package [91, 92]. Systems consisting of 895 and 2180 water molecules are simulated in a cubic
box with periodic boundary conditions. At T = 300 K the box sizes are roughly 3.0× 3.0×
3.0 nm3 and 4.0× 4.0× 4.0 nm3, respectively. We perform simulations at temperatures T = 280,
300, 320, 340, and 360 K for the small system and at T = 300 K for the large system, both at
a pressure of P = 1 bar. We also perform simulations at T = 300 K of bulk water with one
additional solute molecule: a sodium, caesium, chloride or iodide ion or a methane molecule.
The systems are equilibrated first in an NVT ensemble (constant particle number, volume and
temperature) for 50 ps and then in an NPT ensemble (constant particle number, pressure and
temperature) for 100 ps. Production runs are performed subsequently for 10 ns and config-
urations are saved each 10 fs for the small system and each 100 fs for the large system. In
addition, we also perform one 1 ns simulation of the small system, where configurations are
saved every 2 fs, i.e., after each simulation time step. A Berendsen weak coupling thermostat
and barostat [93] with a relaxation time of 1 ps is used for temperature and pressure control.
All non-bonded interactions are cut off at a radius of 0.9 nm. Long-range electrostatic interac-
tions are treated by the particle mesh Ewald method [94, 95] with tinfoil boundary conditions.
An analytical long-range correction for the Lennard-Jones interaction is applied to energy and
pressure.

The MD simulations analyzed in this chapter have been performed by Dr. Felix Sedlmeier
from the Technical University of Munich.

2.2 Dynamics of Single Water and Solute Molecules

Due to translational and rotational invariance of bulk water, individual molecules do not have a
preferential position or orientation in the simulation box or, in other words, the associated free
energy landscape is unstructured and flat. Under these circumstances, the analysis of the molec-
ular trajectories in terms of the mean square displacement (MSD) is meaningful in the sense that
the long-time MSDs reveal the diffusion coefficients of individual molecules. Overall water and
solute diffusion coefficients are resolved in Sec. 2.2.1, while we focus on the anisotropy of trans-
lational and orientational water dynamics in Sec. 2.2.2.

2.2.1 Overall translational diffusion

In this section, we disregard the internal molecular water structure and quantify the dynamics
in terms of the fluctuating position trajectories rO(t) of the molecules’ oxygen (O) atoms. The
motion of the water molecules is characterized by the time-dependent MSD

〈(∆rO(t))
2〉 ≡ 〈(rO(t′ + t)− rO(t′))2〉, (2.1)

where 〈. . .〉 denotes the thermal expectation value, which is calculated by averaging over both
all SPC/E water molecules in the simulation as well as the reference time t′. For temperatures
T ranging from 280 to 360 K, water MSDs are shown in Fig. 2.1: While the MSDs display a
quadratic dependence on time characteristic for ballistic motion on the femtosecond time scale,
a smooth crossover to a diffusive scaling is observed for t ∼ 10 ps. As for the case of the
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Figure 2.1:
Overall MSDs of SPC/E water molecules (Eq. 2.1) in bulk water at various temperatures T (dashed
colored lines). Linear fits to the data are displayed as thin black lines, resulting diffusion coefficients
(Eq. 2.2) are given in Tab. 2.1.

colloids in Perrin’s experiment (cf. Sec. 1.1), the diffusion constant of a single water molecule is
by definition obtained from the long-time behavior of the MSD

DH2O ≡ lim
t→∞

〈(∆rO(t))
2〉

6t
. (2.2)

Since the MSDs computed from MD simulations are subject to statistical noise on time scales
beyond ∼ 1 ns, we decide to fit the MSD data in the time range 10 ps < t < 103 ps only. The
linear fits are shown as thin black lines in Fig. 2.1 and the resulting SPC/E diffusion coefficients
are given in Tab. 2.1, where they are compared to results from experiments and other simula-
tion studies. Fig. 2.2 reveals an Arrhenius-like temperature dependence of the SPC/E diffusion
coefficients within the investigated range of temperatures in agreement with experiment [97].

For reference, we also resolve the diffusion coefficients of various isotropic solutes in bulk
SPC/E water at a temperature of T = 300 K. Similarly as before, the diffusion coefficients are
obtained from linear fits to the long-time MSDs shown in Fig. 2.3, the corresponding values
are given in Tab. 2.2. We note that the diffusion coefficients of the charged solutes are smaller
than the water diffusion coefficient implying a higher hydrodynamic radius, although the bare
ionic radii are smaller than the radius of a water molecule. The underlying reasons for this
at first sight contradictory observation are theoretically well understood [101] and partially in
accordance with the simple picture that ions do not diffuse as isolated entities but together with
the tightly bound water molecules of the first hydration shell [101].

2.2.2 Anisotropy of translational and rotational water diffusion

Realizing that water molecules, in contrast to the isotropic solutes considered above, are char-
acterized by an internal structure and thus by an unambiguous orientation, we in the following
take a closer look at the SPC/E water dynamics and resolve all translational and rotational
entries of the underlying grand-diffusivity matrix. For this purpose, we define an internal coor-
dinate frame (êx, êy, êz) as indicated in Fig. 2.4: The z-axis is selected to point in direction of the



10 2 Dynamics of Individual Molecules in Bulk Water

T [K]
DH2O [nm2/ns]

Simulations (SPC/E) Experiments
278 — 1.313 [96]
280 1.60 ± 0.02 1.44 [97]
298 2.75 [98], 2.70 [99] 2.22− 2.61 [96, 97, 100]
300 2.55 ± 0.05 —
318 — 3.575 [96]
320 3.70 ± 0.05 —
340 5.08 ± 0.05 —
360 6.60 ± 0.05 —

Table 2.1:
Temperature dependence of the diffusion coefficient DH2O of individual water molecules in bulk wa-
ter. Simulation results for the SPC/E water model obtained from Eq. 2.2 are compared to results from
previous simulation studies and to experimental findings, both with references in square brackets.
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Figure 2.2:
Arrhenius plot of the SPC/E water diffusion coefficient: Blue circles denote results from Tab. 2.1, the
black line, DH2O(T) ≈ 956 exp (−1783.6 K/T) nm2/ns, reveals the Arrhenius-like dependence of the
diffusion coefficients in the studied temperature range.

Solute Dsol [nm2/ns]
CH4 ≈ 2.2
Na+ ≈ 1.1
Cs+ ≈ 1.9
Cl− ≈ 1.6
I− ≈ 1.6

Table 2.2:
Translational diffusion coefficients of isotropic solutes at T = 300 K in bulk SPC/E water obtained
from linear fits to the long-time MSDs in Fig. 2.3.
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Figure 2.3:
MSDs of isotropic solutes in bulk SPC/E water at T = 300 K (colored lines). The dashed black lines denote
linear fits used to determine the solute diffusion coefficients Dsol given in Tab. 2.2.

water dipole vector and the x-axis to be parallel to the vector connecting the two H-atoms. The
origin of the internal coordinate frame is chosen so that the SPC/E molecule is mirror-symmetric
to the x = 0 and y = 0 planes and is located at a distance δz above the position of the oxygen
atom. In the following, the distance δz is varied to study the effect of the position of the internal
coordinate frame on the resulting dynamics.

Clearly, since the molecules do not have a preferential orientation in the simulation box, the
MSDs of the motion along the lab coordinate axis are not suited to reveal a possible molecular
anisotropy. As an intuitive analogue, one may think of a diffusing ellipsoidal colloid, which is
characterized by three in general distinct diffusion coefficients [102, 103]. Thermal averages of
the colloid’s motion in the lab coordinate frame, however, do not reflect this anisotropy since
the colloid reorients over time and motion along all internal axes thus contributes equally to
the lab frame observables.

In order to disentangle the contributions of the dynamics along the internal axes, we define
internal coordinates and angles

rα(t) ≡
∫ t

−∞
dt′ vα(t′), ϕα(t) ≡

∫ t

−∞
dt′ ωα(t′), α = x, y, z, (2.3)

where vα and ωα denote the translational and angular velocities along/around the internal axis
α. Temporal increments of these variables are given by

∆rα(t) ≡ rα(t)− rα(0) =
∫ t

0 dt′ vα(t′) ≈ ∑
m
i=1 δrα(i δt), α = x, y, z, (2.4)

∆ϕα(t) ≡ ϕα(t)− ϕα(0) =
∫ t

0 dt′ ωα(t′) ≈ ∑
m
i=1 δϕα(i δt), α = x, y, z, (2.5)

where m ≡ t/δt and δt denotes the time resolution of the simulation output, and where the
reference time is set to 0 for simplicity. In the last step, the integrals over the velocities are
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Figure 2.4:
Internal coordinate frame used to reveal the anisotropy in the translational and rotational dynamics of
water molecules in MD simulations: The z-direction points in the direction of the water dipole and the
x-axis is chosen parallel to the vector connecting the two H-atoms. The origin of the coordinate frame
is located within the two symmetry planes of the molecule and at a distance δz above the water’s
oxygen atom.

approximated by sums over the (small) increments δrα and δϕα between subsequent configura-
tions

δrα(i δt) ≡ 1
2

(

r
(
i δt
)
− r
(
(i− 1) δt

))

·
(

êα

(
(i− 1) δt

)
+ êα

(
i δt
))

, (2.6)

δϕα(i δt) ≡ 1
2 ∑

β,γ
εαβγ êβ

(
i δt
)
· êγ

(
(i− 1) δt

)
, (2.7)

where r = rO + δz êz is the position of the origin of the molecule’s internal coordinate frame,
the êα are unit vectors in the directions of the internal coordinate axis and εαβγ denotes the
Levi-Civita symbol

εαβγ ≡







1 if (α, β, γ) is an even permutation of (x, y, z),
−1 if (α, β, γ) is an odd permutation of (x, y, z),
0 else.

(2.8)

Note that the definition of the internal coordinates in Eq. 2.3 based on the unambiguous trans-
lational and angular velocities in the comoving local coordinate frame is essential to obtain
trajectories, from which the various diffusion coefficients can be disentangled. In particular,
our definition of the internal angles in Eq. 2.3 directly reveals the rotation around a single axis
in contrast to the definition in Ref. [104], where rotations around two axes mix. In practice, the
MSDs are calculated from the Eqs. 2.6 and 2.7, where the time resolution δt needs to be selected
small enough, i.e., so small that the resulting MSDs do not depend on the particular choice of δt.
Here, we simply select a time resolution of δt = 2 fs, which corresponds to the integration time
step in the MD simulation.

For a non-orthotropic rigid body, the overdamped translational and rotational motions are
generally coupled [102, 103], see Appendix B for an explicit derivation. However, given the
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internal coordinate frame of the SPC/E molecule in Fig. 2.4 and based on symmetry arguments
detailed in Appendix B.1, we expect a grand-diffusivity matrix of the form

D =












Dx 0 0 0 Dtrans, rot
xy 0

0 Dy 0 Dtrans, rot
yx 0 0

0 0 Dz 0 0 0
0 Drot, trans

xy 0 Drot
x 0 0

Drot, trans
yx 0 0 0 Drot

y 0
0 0 0 0 0 Drot

z












, (2.9)

where the six diagonal elements are the translational and rotational diffusion coefficients and
where the four off-diagonal elements reflect the correlations in the translational and rotational
motion.

Similarly as before, the translational and rotational diffusion coefficients are obtained from
the long-time dependence of the corresponding MSDs

Dα ≡ lim
t→∞

〈(∆rα(t))
2〉

2t
, Drot

α ≡ lim
t→∞

〈(∆ϕα(t))
2〉

2t
, α = x, y, z, (2.10)

and the off-diagonal elements in Eq. 2.9 are deduced from the cross-correlations of the temporal
increments in the local variables

Dtrans, rot
αβ = Drot, trans

βα ≡ lim
t→∞

〈
∆rα(t)∆ϕβ(t)

〉

2t
, α, β = x, y, z. (2.11)

For δz = 0, i.e., for a local coordinate frame centered in the oxygen atom, the resulting trans-
lational MSDs 〈(∆rα)2〉 along the internal coordinates are shown in Fig. 2.5a: The curves are
slightly different already in the ballistic regime, since the center of mass is located at a distance
δz ≈ 0.0064 nm from the oxygen atom and inertial rotational motion around x and y therefore
mixes in. The colored curves clearly separate on time scales around ∼ 0.1 ps, with the motion
along y being clearly faster than that along x or z. The translational MSDs enter the diffusive
regime around ∼ 10 ps and the sum of the three translational MSDs (dash-dotted yellow line)
as expected approximately coincides with the overall MSD from Fig. 2.1, which for reference is
shown as larger gray line in Fig. 2.5a. Thinner dashed black lines denote linear fits to the data
used to determine the corresponding diffusion coefficients.

The angular MSDs 〈(∆ϕα)2〉 displayed in Fig. 2.5b differ from each other in the ballistic regime
due to the different moments of inertia; here, the rotational motion around x is enhanced com-
pared to that around z and y. The orientational MSDs are characterized by a pronounced plateau
at times around ∼ 30 fs attributed to the fast librational motion in the H-bonded water net-
work [104]; subsequently, the curves cross over to the linear regime on the picosecond time
scale. Note that the curves for x and z intersect so that diffusive rotational motion around z is
faster than the one around x.

The two non-vanishing cross-correlations 〈∆rx∆ϕy〉 and 〈∆ry∆ϕx〉 are shown in Fig. 2.5c:
The cross-correlations of translations along y and rotations around x (blue curve) take posi-
tive values over the entire time range resolved and enter the diffusive regime for t & 10 ps.
The center of mass of the molecule being located at δz ≈ 0.0064 nm, the cross-correlations of
translations along x and rotations around y (red curve) are negative (indicated by a dashed
line) in the inertial time regime but cross over to positive values for t & 1 ps. Despite an
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Figure 2.5:
Anisotropic dynamics of single SPC/E water molecules in bulk water at T = 300 K resolved via
Eqs. 2.4 and 2.5 from MD simulation data for δz = 0: a) Translational MSDs, b) rotational MSDs, and
c) cross-correlations in the temporal increments of positional and angular variables. Negative values
of the cross-correlations are indicated by dashed colored lines. In all panels, thinner dashed black lines
denote linear fits to the data in the time range shown.
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Figure 2.6:
Influence of the distance δz between the origin of the internal coordinate frame and the water’s oxygen
(Fig. 2.4) on the diffusion coefficients: a) Translational diffusion coefficients (Eq. 2.10), b) off-diagonal
elements of the grand-diffusivity matrix (Eq. 2.11) reflecting correlations of the translations along
axis α and rotations around axis β. Symbols denote data points calculated from MD data (Fig. 2.5)
according to the Eqs. 2.10 and 2.11, lines denote quadratic and linear fits (Eqs. 2.12 and 2.13).

appreciable statistical uncertainty of the cross-correlations 〈∆rx∆ϕy〉 in the diffusive regime,
these are clearly suppressed by a factor ∼ 25 compared to 〈∆ry∆ϕx〉 as is seen from Fig. 2.5c.
As a measure for the statistical uncertainty in the data, we show an estimate for one of the
vanishing cross-correlations, 〈∆ry∆ϕz〉, as a green line in Fig. 2.5c.

To investigate the influence of the distance δz between the origin of the internal coordinate
frame and the oxygen atom (Fig. 2.4), we repeat the same kind of analysis for various values of
δz and determine the entries of the grand-diffusivity matrix (Eq. 2.9) via Eqs. 2.10 and 2.11. The
coefficients resulting from the MD trajectory analysis are shown as colored circles in Fig. 2.6: As
expected from symmetry arguments (Appendix B.1), the translational diffusion coefficients in
Fig. 2.6a scale as

Dx = D0
x + Drot

y (δz− δz′)2, Dy = D0
y + Drot

x (δz− δz′′)2, Dz = D0
z , (2.12)

where δz′ and δz′′ are a priori unknown, while the off-diagonal elements of the grand-diffusivity
matrix linearly depend on δz

Dtrans, rot
xy = Drot, trans

yx = Drot
y (δz− δz′), Dtrans, rot

yx = Drot, trans
xy = −Drot

x (δz− δz′′). (2.13)
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Water axis α D0
α [nm2/ns] Drot

α [rad2/ns]
x ≈ 2.4 ≈ 250
y ≈ 3.5 ≈ 135
z ≈ 2.1 ≈ 325

Table 2.3:
Minimal translational and rotational SPC/E water diffusion coefficients along/around the internal
axes at T = 300 K. Based on the above coefficients, the grand-diffusivity matrix (Eq. 2.9) is calculated
for arbitrary δz using the Eqs. 2.12 and 2.13 and the roots of the colored lines in Fig. 2.6b: δz′ ≈
−0.002nm and δz′′ ≈ 0.035nm.

The rotational diffusion coefficients Drot
α , which result from the angular MSDs in Fig. 2.5b, do

not depend on δz (Eqs. 2.7 and B.19) and are therefore not shown. Fits of the Eqs. 2.12 and 2.13
to the MD diffusion coefficients are shown as colored lines in Fig. 2.6 and yield the minimal
diffusion coefficients D0

x, D0
y, D0

z as well as the values for δz′ and δz′′. The resulting values
for the minimal translational and the rotational diffusion coefficients along/around the three
internal axes are given in Tab. 2.3.

Note that the position δz′ ≈ −0.002 nm, for which translations along x and rotations around
y are uncorrelated, does not coincide with the position δz′′ ≈ 0.035 nm, for which translations
along y and rotations around x are uncorrelated. In other words, no position of the internal
coordinate frame exists, for which the grand-diffusivity matrix is completely diagonal and dif-
fusional translations along and rotations about all axes are completely independent.

Summarizing, we find that both the translational and orientational diffusive motions of in-
dividual water molecules in bulk water are characterized by a pronounced anisotropy: The
translational diffusion coefficients differ by factors of up to ∼ 1.8 if the origin of the internal
coordinate frame in Fig. 2.4 lies between oxygen and hydrogen atoms (0 ≤ δz . 0.06 nm),
and the rotational diffusion coefficients differ by factors of up to ∼ 2.4. The ordering of the
rotational diffusion coefficients, Drot

z > Drot
x > Drot

y , is exactly opposite of the translational
ones, D0

y > D0
x > D0

z , but unlike (orthotropic) ellipsoidal bodies [102, 103] no internal coordi-
nate frame can be found for which all cross-correlations in the translations and rotations of the
SPC/E molecule vanish.

This complex anisotropic diffusion behavior of individual water molecules is yet another
remarkable property of water and presumably a consequence of the intricate dynamics of H-
bonds between neighboring water molecules in the liquid matrix. To gain further insight into
the process of H-bond formation and breakage in water, we in the following focus on the rela-
tive dynamics of a selected pair of water molecules.

2.3 Relative Dynamics of Pairs of Water Molecules

For the stochastic analysis of the relative dynamics of pairs of water molecules, we adopt the
concept of diffusion along a reaction coordinate (RC), which has been fruitful for exploring
the underlying mechanisms of high-dimensional dynamics as in the case of protein folding,
for which various approaches to identify suitable RCs [105–107] and to locate or characterize
transition states [108, 109] have been developed. Here, we select the separation between two
oxygen atoms of the water molecules as the naive RC and show that a consistent description of
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Figure 2.7:
a) Snapshot of a bulk-water MD simulation visualized via VMD [110], a simulation movie is included
as supplementary material [111]. The radial separation between the oxygen atoms is denoted by R in
the enlarged section. b) Typical time series R(t) at T = 300 K, the magnification reveals fluctuations
on the sub-picosecond time scale. c) Illustrative reaction path involving a component R⊥ orthogonal
to R, cf. Sec. 2.3.7.

the dynamics along the separation coordinate can be obtained. In fact, our stochastic analysis in
terms of the Fokker-Planck (FP) equation with coordinate-dependent free energy and diffusivity
allows us to quantify to which extent degrees of freedom that are orthogonal to our selected RC

are involved in the reaction. As a main result, we find the relative translational friction in the
first coordination shell to be more than six-fold increased compared to bulk water. Application
of transition rate theory without taking this local friction change into account underestimates
typical bond-breakage times by a factor of two.

Our analysis is based on the trajectories of the separation R between the oxygen atoms of
all mutual water pairs in the simulation box, see Fig. 2.7a-b for a snapshot and an example
trajectory. A corresponding movie, which visualizes the relative dynamics of a selected water
pair in the MD simulation, has been created with VMD [110] and is included as supplementary
material [111].

A brief review of the FP equation, on which our analysis is based, is given in Sec. 2.3.1. The
trajectory analysis is described in Sec. 2.3.2 and results are presented in the Secs. 2.3.3 and 2.3.4.
Various aspects of the results are discussed in the Secs. 2.3.5-2.3.7.

2.3.1 Fokker-Planck equation for radial dynamics

In the overdamped limit, the FP equation

∂

∂t
P3D(R, t) = −∇R · J(R), (2.14)



18 2 Dynamics of Individual Molecules in Bulk Water

describes the time evolution of the probability density function (PDF) P3D of observing a (three
dimensional) separation vector R between the two water molecules at time t, where the proba-
bility flux density

J(R) = −P3D(R, t)←→µ 3D(R) ·∇RU(R)−←→D 3D(R) ·∇RP3D(R, t),

has two contributions: (i) the overdamped motion due to an (effective) potential U and (ii) dif-
fusion with a (possibly) position dependent diffusion tensor

←→
D 3D. Using the Einstein relation←→

D 3D = kBT←→µ 3D linking mobility and diffusivity via the thermal energy kBT, Eq. 2.14 can be
rewritten as

∂

∂t
P3D(R, t) = ∇R ·

(

e−U(R)/(kBT)←→D 3D(R) ·∇R

(

eU(R)/(kBT) P3D(R, t)
))

. (2.15)

For the relative dynamics of two water molecules along their radial distance R ≡ |R|, the
diffusion tensor

←→
D 3D =





DR 0 0
0 DΘ 0
0 0 DΦ



 , (2.16)

is diagonal when introducing spherical coordinates (R, Θ, Φ). Since internal orientational coor-
dinates of the molecules are neglected and due to symmetry, the effective inter-molecular po-
tential U depends on R only. The angular coordinates Θ and Φ can thus be integrated out [112],
and the time evolution of the radial PDF

P(R, t) ≡
∫ 2π

0
dΦ

∫ π

0
dΘ sin Θ R2 P3D(R, Θ, Φ, t), (2.17)

specifying the probability of finding a radial distance R at time t, is then described by the
simpler equation

∂

∂t
P(R, t) =

∂

∂R

(

R2e−U(R)/(kBT) DR(R)
∂

∂R

(

eU(R)/(kBT) P(R)
R2

))

, (2.18)

where the pair radial diffusivity DR may depend on R. It is useful to absorb the factors R2 in
Eq. 2.18 by defining a free energy F ≡ U− 2kBT log(R) + const. [112] to recover the usual form
of the one-dimensional FP equation [36, 38]

∂

∂t
P(R, t) =

∂

∂R

(

DR(R)e−F(R)//(kBT) ∂

∂R

(

eF(R)/(kBT) P(R, t)
))

. (2.19)

The free energy F(R) = −kBT log 〈P(R)〉 + const. is obtained by Boltzmann inversion of the
equilibrium probability 〈P(R)〉. Determining DR(R) is more subtle: Different procedures have
been proposed in the context of protein folding [113–115][x] or interfacial water diffusion [116–
119][viii]. Here, we obtain DR(R) directly from measured mean first-passage times (MFPTs):
For diffusive dynamics described by Eq. 2.19, the MFPT τfp of first reaching a target separation
Rt when starting off from R is given by [120]

τfp(R, Rt) =
∫ Rt

R
dR′

eF(R′)/(kB T)

DR(R′)

∫ R′

Rmin

dR′′ e−F(R′′)/(kB T), (2.20)
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assuming a reflective (zero-flux) boundary condition at Rmin and Rmin ≤ R ≤ Rt. By differenti-
ation, one readily gets [x]

DR(R) = − eF(R)/(kB T)

∂τfp(R, Rt)/∂R

∫ R

Rmin

dR′ e−F(R′)/(kB T). (2.21)

Extracting MFPT curves τfp from simulation data thus allows to determine the separation de-
pendent diffusivity DR(R) governing the dynamics in the free energy landscape F(R).

2.3.2 Mean first-passage time data analysis

The relative dynamics of all pairs of water molecules within the 10 ns long MD trajectory are
resolved using their minimal image distance with a spatial resolution of δR = 0.002 nm and a
temporal resolution of δt = 20 fs. All paths starting within a distance δR/2 from R and crossing
Rt− δR/2 at a time tfp later contribute to the MFPT τfp =

〈
tfp
〉

and to the first-passage time (FPT)
distribution ffp. Due to the periodicity of the system, the trajectories along the coordinate R is
only meaningful for R ≤ Lb/2 with box size Lb; we therefore only consider target distances
Rt < Lb/2. Note that the absolute values of the MFPT curves τfp(R, Rt) sensibly depend on the
time resolution δt of the underlying trajectory as discussed in detail in Appendix C.1.

The derivative ∂τfp(R, Rt)/∂R in Eq. 2.21 is determined by fitting a straight line to τfp within
a region of width 0.032 nm around R (corresponding to 17 data points). This width is empiri-
cally found to smooth out the statistical noise in the MFPT curves without hiding the relevant
variations of the diffusivity. The integral in Eq. 2.21 is evaluated numerically, the equilibrium
PDF 〈P(R)〉 is linearly interpolated and the reflective boundary is set to Rmin = 0.235 nm. Ap-
plying the same kind of procedure based on simulations of 2180 water molecules in a cubic
box of edge length Lb ≈ 4 nm allows to consider targets Rt up to 1.9 nm without introducing
artifacts due to the periodicity of the simulation box and thus resolving the diffusivity DR over
a larger range of separations R; finite size effects in the diffusivity profiles are not observed.

We have thoroughly checked that for all numerical steps of the data analysis, varying the
spatial and temporal resolutions as well as the position of the reflective boundary Rmin had no
significant impact on the resulting diffusivity profiles.

2.3.3 Mean first-passage times and resulting diffusivity profile

Pair-correlation functions gOO(R) displaying the distribution of oxygen-oxygen separations R
at various temperatures are shown in Fig. 2.8a, where the maxima indicate the positions of the
respective coordination shells. The free energy

F(R) ≡ −2kBT log R− kBT log (gOO(R)), (2.22)

exhibits a barrier of about 1 kBT at T = 300 K for crossing from the first to the second coordina-
tion shell as seen in Fig. 2.11a. MFPT curves τfp extracted from the simulation data for targets
Rt ranging from 0.4 to 1.4 nm for T = 300 K are shown in Fig. 2.8b. They are converted, using
Eq. 2.21, into diffusivity profiles DR(R) shown in Fig. 2.8c. We observe rather good agreement
between the curves for different target separations Rt, which is strictly expected only for a pure
Markovian process described by a one-dimensional FP equation. As will be discussed later on,
this suggests that water bond breakage, defined as the passage from the first to the second coor-
dination shell, is to a good approximation Markovian. The deviations seen when |Rt − R| → 0
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Figure 2.8:
a) Pair correlation function gOO from MD simulations at various temperatures. b) MFPT curves τfp
from MD data for T = 300 K and several target separations Rt. c) Diffusivity profiles DR at T = 300 K
from the distributions in (a) and the MFPTs in (b) using the Eqs. 2.21 and 2.22, same color coding as in (b).
d) Diffusivity profiles rescaled by the relative bulk diffusivity 2 DH2O for various temperatures.
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are expected, since on the short spatial scales associated with those first-passage events water
motion is not diffusive; in fact, the crossover between ballistic and diffusive motion of single
water molecules occurs at length scales of around 0.1 nm, cf. Fig. 2.1. For increasing separation,
all curves saturate at the expected of value of twice the diffusion constant of a single water
molecule, limR→∞ DR(R) = 2DH2O ≈ 5.1 nm2/ns, denoted by a dashed line in Fig. 2.8c.

As our main finding, the diffusivity profile exhibits a pronounced drop within the first coordi-
nation shell and reaches a minimum value of DR ≈ 0.79 nm2/ns about six times smaller than in
bulk, while only factors ∼ 2 have previously been observed in simpler systems [121, 122]. The
thin, black line in Fig. 2.8c is obtained by evaluating MFPTs to a target separation Rt = 1.9 nm
based on simulation data of the larger box with edge length Lb ≈ 4.0 nm.

Diffusivity profiles corresponding to distinct target separations Rt deviate from each other
in two respects: (i) Non-Markovian dynamics on short time and length scales lead to modifi-
cations for |R− Rt| . 0.25 nm as discussed above, and (ii) an increasing statistical uncertainty
with increasing |R− Rt| due to a decreasing number of recorded transition events contributing
to the corresponding MFPTs. Smooth and reliable diffusivity profiles are thus obtained by join-
ing the regions Rt − 0.45 nm ≤ R < Rt − 0.35 nm of the diffusivity profiles corresponding to
targets Rt = 0.5, 0.6, . . . , 1.4 nm.

The resulting diffusivity profiles rescaled by twice the bulk diffusion constant DH2O are
shown for various temperatures in Fig. 2.8d. Interestingly, deviations over a temperature span
of 80 K are very small; the main features of the profile, including the six-fold decrease within
the first coordination shell, are accurately described by the heuristic formula

DR(R) ≈ 2DH2O

(

10.76− 0.68 exp
(

−9
R̃
4

)

− 0.1 exp
(

−1
5
(27− 50R̃)2

)

+ 10 tanh
(
50(1− 4R̃)

)
− 0.34 tanh

(
13.2− 40R̃

)
+ 0.1 tanh

(
4.1− 10R̃

)
)

,

(2.23)

which is shown as thin black line in Fig. 2.8d and where R̃ ≡ R/nm. From the Arrhenius-
like temperature dependence of the bulk diffusion coefficient, cf. Fig. 2.2, it directly follows
that the entire diffusivity profile for relative motion obeys an Arrhenius law over the studied
temperature range.

2.3.4 Maxima in the mean first-passage times at small separations

According to Eq. 2.20 the MFPT-curve τfp(R, Rt) is a strictly decreasing function of R; in con-
trast, as can be seen in Fig. 2.9a, which shows a close-up of the MFPTs of Fig. 2.8b at small sep-
arations, the MFPT curves obtained from MD simulation data show a maximum at separations
R ≈ 0.26 nm. Since according to Eq. 2.21 a vanishing/positive slope of an MFPT-curve implies
a diverging/negative diffusivity, the concept of Markovian dynamics obviously breaks down
at such small separations. The diffusivity profiles in Fig. 2.8c-d are therefore only resolved for
separations R ≥ 0.265 nm.

Though being counterintuitive at first sight, these maxima in the MFPTs can easily be under-
stood by considering the average oxygen-oxygen separation 〈R(t)〉R0

of an ensemble of water
pairs starting with defined initial separation R0 at time t = 0. SPC/E-water molecules interact
via Coulomb and via Lennard-Jones (LJ) interactions: For small separations the repulsive part of
the LJ-potential significantly contributes to the total energy of a water pair, e.g., ULJ ≈ 13.5 kBT
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Figure 2.9:
a) Enlarged view of the MFPT curves τfp from Fig. 2.8b. b) Average oxygen-oxygen separations for
water pairs with defined initial separation R0, only every second curve is shown in the legend.

for R = 0.25 nm and T = 300 K. The corresponding water pair is thus expected to be quickly
driven apart due to the repulsive LJ-force. Fig. 2.9b indeed reveals that the average distance be-
tween water molecules starting at separations R0 . 0.25 nm increases strongly within fractions
of picoseconds. The oscillations seen in the curve for R0 ≈ 0.244 nm nicely match the time scale
of inter-oxygen vibrations, which is found to be on the order of 0.1− 0.2 ps [87]. Due to the
repulsive LJ-interaction for R . 0.25 nm, the average separations of water pairs starting out at
R0 ≈ 0.244 nm and at R0 ≈ 0.282 nm are very similar on time scales t & 1 ps. In particular,
they exceed the average separation of pairs starting in the range 0.255 nm < R0 < 0.275 nm.
The maxima observed in the MFPT curves of Fig. 2.9a thus are a direct consequence of mutual
LJ-repulsion.

2.3.5 Fokker-Planck kinetics with and without diffusivity profile

To what extent is this local friction increase relevant for the water-bond breakage kinetics? To
quantify the relevance of the change in local friction, we compare in Fig. 2.10a the MFPT curves
from MD data already shown in Fig. 2.8b (colored lines) to analytical predictions resulting from
Eq. 2.20 using the diffusivity profiles DR(R) (solid lines) shown in Fig. 2.8c as well as calcula-
tions employing a constant diffusivity DR = 2DH2O (dashed lines). The solid lines by construc-
tion match the MD data nicely, where the vertical shift is caused by the 20 fs time discretization
of the underlying MD trajectory, cf. Appendix C.1 for a detailed analysis of the sensitivity of
MFPT curves on the temporal discretization of the trajectory. It is seen that the assumption of a
constant diffusivity leads to a considerable underestimation of the MFPTs. The time to reach the
target separation Rt = 0.4 nm from the first coordination shell (R . 0.28 nm) is underestimated
by a factor of roughly one half.

The accuracy of the FP approach involving the diffusivity profile is demonstrated by com-
paring first-passage time (FPT) distributions: Fig. 2.10b contrasts the FPT histogram from MD

data for Rt = 0.4 nm with FPT distributions from the numerical solution of the FP equation
(numerical details are given in Appendix C.2), again using the flat diffusivity 2DH2O and the
actual diffusivity profile DR(R). Only the FP approach including the DR(R) profile correctly re-
produces the entire FPT distribution from MD simulations and in particular also the exponential
tail of the distribution, as shown by the plot using the logarithmic scale on the right. Systematic
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Figure 2.10:
a) MFPTs from MD simulations (solid colored lines, same data as in Fig. 2.8b), and from the FP description
(Eq. 2.20) for several target separations Rt. b) FPT distribution to reach a separation Rt = 0.4 nm for
water pairs starting within the first coordination shell (R = 0.281± 0.001 nm). Histograms from MD
simulations at T = 300 K (blue circles) are compared to the numerical solution of the FP Eq. 2.19. Data
are shown on both linear and logarithmic scales, vertical arrows indicate the mean of the distributions.
Other examples are found in Appendix C.2. FP results for a constant diffusivity 2DH2O are displayed
as dashed black lines, those for the diffusivity profile DR(R) from Fig. 2.8c as solid black lines.

discrepancies are observed on short time scales . 1 ps where the MD data show more "fast" tran-
sitions than the FP description. These effects are caused by ballistic motion of water molecules
and cannot be captured by a Markovian description.

2.3.6 Testing the quality of the reaction coordinate

Although our procedure does not strictly depend on the fact that the separation R is a "good"
RC, the whole mapping on a one-dimensional FP equation will certainly be more meaningful
if this is the case. To check the quality of our RC, we divide R into a bound region A for
R < RA = 0.275 nm, an unbound region B for R ≥ RB = 0.47 nm and the intermediate
region for 0.275 nm < R < 0.47 nm, which roughly encompasses the free energy barrier seen in
Fig. 2.11a. For a diffusive process described by the FP equation (Eq. 2.19), the committor πX(R)
specifying the probability of first reaching the region X ∈ {A, B} when starting from R is a
solution of the stationary backward FP equation [38]

eF(R)/(kB T) ∂

∂R

(

e−F(R)/(kBT)DR(R)
∂πX(R)

∂R

)

= 0. (2.24)

The committor fulfills the boundary conditions πX(RY) = δXY, with δXY denoting the Kro-
necker symbol. The solutions are

πA(R) =
1
N
∫ RB

R
dR′

eF(R′)/(kB T)

DR(R′)
, πB(R) = 1− πA(R) =

1
N
∫ R

RA

dR′
eF(R′)/(kB T)

DR(R′)
, (2.25)

with the common normalization factor

N ≡
∫ RB

RA

dR′
eF(R′)/(kB T)

DR(R′)
. (2.26)
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In Fig. 2.11b, we show the committors πA(R) and πB(R), which specify the probability of first
reaching region A and B, respectively: Estimates from MD data (circles) as well as from the
exact solution of the FP equation (Eqs. 2.25 and 2.26) employing constant bulk (dashed line) or
true diffusivity profile (solid line) are displayed. Agreement between solid lines and MD data
is quite good, although deviations close to region A are discernible and might point to residual
barrier-crossing events orthogonal to the coordinate R [83].

The probability P(TP|R) that a path passing through R is a transition path (TP), i.e., a path
directly connecting the regions A and B, is given by [109]

P(TP|R) = 2πA(R)πB(R) = 2πA(R)(1− πA(R)), (2.27)

where the factor 2 takes into account that a TP can start in A and reach B or vice versa. The
probability P(TP|R) reaches its maximum value 0.5 at the transition state denoted by R‡ [123],
where πA(R‡) = πB(R‡) = 0.5. A "good" RC is characterized by a maximum value of the TP

probability near this diffusive limit of 0.5 [109]. In contrast, for "poor" RCs, which do not single
out the transition states, this maximum is considerably lower; the reason is that for "poor" RCs
excursions starting and ending in A and excursions starting and ending in B dominate all along
the coordinate so that TPs are rare everywhere between A and B [89, 108].

Committor and TP probabilities are estimated by analyzing all simulation paths within the
region R ∈ [RA, RB] = [0.275 nm, 0.47 nm] within a time window of 100 ps, where the time
resolution is δt = 0.01 ps. P(TP|R) from MD data in Fig. 2.11c reaches a maximal value of
P(TP|R‡) ≈ 0.38, where the position R‡ is slightly displaced from the FP prediction by about
0.02 nm. Though caution is recommended in interpreting the TP probability test [124], we
conclude that the separation R is an acceptable RC unlike in the similar problem of ion unbind-
ing [89].

2.3.7 Interpretation of the diffusivity profile

Based on these findings, it is possible to give a quite intuitive interpretation of the diffusivity
profile. Assuming that the relative dynamics of two water molecules can be described as a
diffusive process along a single path R in the full high-dimensional configuration space, the
projection onto one single coordinate, in this case the oxygen-oxygen separation R, generally
leads to considerable changes in free energy and diffusivity.

For convenience we assume the path R(s), s ∈ [0, L] of total contour length L being arc-
length parametrized, i.e., |dR(s)/ds| = 1 ∀s ∈ [0, L]. In doing so, we implicitly assume
that the reactive flux tube is quite narrow, i.e., that the idea of a single, dominating path makes
sense [107]. The vector R ≡ (R, R⊥) is split up into the coordinate R and an ortogonal, vectorial
component R⊥, implying

∣
∣
∣
∣

dR(s)
ds

∣
∣
∣
∣
=

√
∣
∣
∣
∣

dR⊥(s)
ds

∣
∣
∣
∣

2

+

(
dR
ds

)2

= 1, ∀ s ∈ [0, L]. (2.28)

We assume a one-to-one correspondence between the arc-length variable s and the relative sep-
aration R, i.e., a path which does not take any value of R more than once. In this case, the
coordinate R is just a reparametrization of s. As is well-known [120][x], such a reparametriza-
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tion can sensibly alter the free energy and the diffusivity; more precisely, the corresponding
profiles along the coordinates R and s are connected via

F(R) = Fs(s) + kBT log
(

dR
ds

)

, DR(R) = Ds(s)
(

dR
ds

)2

. (2.29)

Combining the Eqs. 2.28 and 2.29, one deduces

∣
∣
∣
∣

dR⊥
ds

∣
∣
∣
∣
=

√

1−
(

dR
ds

)2

=

√

1− DR(R(s))
Ds(s)

, (2.30)

meaning that the knowledge of the diffusivity profile DR(R) along the coordinate R allows to
draw conclusions on the shape of the path R(s). In particular, a reduction of the diffusivity
DR(R) along a chosen RC R is a signature of pronounced contributions to the reaction path
that are orthogonal to the RC. Deviations of the diffusivity from the value Ds(s) thus indicate
a non-negligible component of the path tangent perpendicular to R. Since only the magnitude
of this perpendicular tangent component can be accessed and thus the direction of the path re-
mains uncertain, the path R cannot be completely reconstructed from the knowledge of DR(R).
However, the definition of

R⊥ ≡
∫ R

R0

dR′
∣
∣
∣
∣

dR⊥
dR′

∣
∣
∣
∣
=
∫ R

R0

dR′
√

Ds(s(R′))
DR(R′)

− 1, (2.31)

allows to visualize the path in the (R, R⊥)-plane starting from a reference coordinate R0. Choos-
ing a constant Ds(s) = 2DH2O for illustrative purposes, we show in Fig. 2.7c a fictitious path in
the plane (R, R⊥) that would be consistent with the diffusivity profile DR(R) actually extracted
from MD simulations. We observe that the pictorial reaction path has large contributions orthog-
onal to R within the first coordination shell, where the diffusivity profile shows its prominent
drop, i.e., for relative separations 0.26 nm . R . 0.34 nm. This is in agreement with previous
simulation results suggesting that the orthogonal degrees of freedom involved in water-bond
breakage are of angular nature [84, 85].
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Figure 2.11:
a) Free energy and diffusivity profiles for separations between the first and second coordination shell
and a temperature T = 300 K. b) Commitment probabilities πA and πB (Eqs. 2.25 and 2.26). c) Transi-
tion path probability P(TP|R) (Eq. 2.27). In (b) and (c), simulation results (circles) are compared to FP
estimates based on the diffusivity profile DR(R) (solid lines) and based on a constant diffusivity 2DH2O
(dashed lines).
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2.4 Conclusions

Based on the analysis of the stochastic trajectories obtained from MD simulations, we have re-
solved the diffusion coefficients of individual water and solute molecules in bulk SPC/E water.
Distinguishing between translations along and rotations around the individual internal coordi-
nate axes of the water molecules, we have found a pronounced anisotropy of the translational
and rotational dynamics as well as non-vanishing correlations in the translational and orienta-
tional motion.

The diffusivity profile characterizing the relative dynamics of a selected pair of water mole-
cules drops by a factor of more than six within the first coordination shell compared to large
separations, where both molecules diffuse independently. Although the absolute diffusivities
show an Arrhenius-like temperature dependence, the shape of the diffusivities for the relative
motion is found to be temperature-insensitive between 280 and 360 K. The form of the diffusiv-
ity profile is necessary to reproduce dynamic properties, e.g., FPT distributions observed in the
simulations, and can be interpreted in terms of a reaction path which is distorted with respect
to the resolved separation coordinate R.

We cautiously remark that a distorted reaction path is only one of a few mechanisms that
would modify the local diffusivity; orthogonal energetic barriers, which are, based on our re-
sults shown in Fig. 2.11, presumably small in the present case but dominate in related prob-
lems [89], and competing reaction paths [55] or flux-tube width variations [107, 125] are addi-
tional complications. The charm of our approach is that it allows for a consistent description of
the kinetics even without a detailed knowledge of the transition path and the involved relevant
degrees of freedom.

A better understanding of H-bond breakage and formation processes presumably requires an
extension of the analysis to a larger configuration space, e.g., including orientational degrees of
freedom of the molecules, and the application of concepts such as transition path theory [107] or
Markov-state-modeling [126]. We in particular expect the observed anisotropy in the dynamics
of individual water molecules to play a key role for a better understanding of the complex
rearrangement processes in the H-bonded network.
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CHAPTER 3

WATER DYNAMICS AT BIOLOGICAL INTERFACES

Bibliographic information: Parts of this chapter have previously been published. Reprinted with
permission from Ref. [iii]. Copyright 2013 by the American Physical Society.

Lipid bilayers are fundamental building blocks of all living matter [127]. Most membrane
physiological functions involve transport of molecules within the membrane plane or between
the membrane and the bulk compartments [128]. In all these situations, the dynamics of the
membrane hydration water are believed to be important [129] and has been experimentally
studied by radioactive labeling [130], nuclear magnetic resonance (NMR) [131], inelastic neu-
tron scattering [132], fluorescence spectroscopy [133], infrared adsorption [134] and THz spec-
troscopy techniques [135]. Experimentally, the long-time dynamics of molecules in bacterial
cells [42] and crowded fluids [136] as well as transmembrane-protein motion [137] have been
found to deviate strongly from the ordinary diffusion law, which has been suggested to be of
physiological relevance in preventing prospective reaction partners to prematurely run away
from each other [42].

In atomistic simulations, lateral lipid diffusion has been found to be anomalous over ex-
tended intermediate time scales for different compositions [138], to exhibit cooperative mo-
tion [139] and to reflect internal degrees of freedom [140]. Transmembrane proteins diffuse even
slower and show enhanced anomalous diffusion behavior [141]. The dynamics of membrane
hydration water have been considered in few theoretical works: Water diffusion perpendicular
to the membrane plane has been simulated in order to predict transmembrane water trans-
port [142, 143] and water dynamics as relevant to NMR experiments [144]. Water diffusion at a
fixed distance away from the bilayer surface has been extracted from molecular dynamics (MD)
simulations [145], but the spatially resolved tensorial diffusivity of the hydration water has not
been considered yet.

Here, we examine the dynamics of individual water molecules in the vicinity of a dipalmi-
toylphosphatidylcholine (DPPC) bilayer based on the trajectory analysis of extensive MD simu-
lations. Once the free energy profile perpendicular to the membrane plane is accounted for in
the stochastic analysis, water diffusion is found to be strongly reduced next to the membrane.
We reveal anisotropic diffusion behavior of the hydration water that markedly differs from
the one at solid surfaces, where the water diffusion is also substantially slowed down but in
quantitative agreement with continuum hydrodynamic theory. As we show by coarse-grained
simulations, this anisotropy can be traced back to the transient but long-lived corrugated free
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energy landscape imposed by the lipids. The lateral water dynamics consequently show the
characteristics of obstructed diffusion, similar to the dynamics in crowded fluids [136]. We
expect the diffusion of other solutes at membranes to exhibit similar features and thus our
findings to be relevant for a broad range of physiological processes ranging from intercellular
signaling to drug delivery.

The chapter is organized as follows: The simulation methods are presented in Sec. 3.1 and the
dynamics of water molecules parallel and perpendicular to the membrane are analyzed in the
Secs. 3.2 and 3.3 respectively. We compare the water diffusion anisotropy near lipid membranes
to the one at solid, homogeneous surfaces in Sec. 3.4, reveal the influence of the bilayer structure
on the lateral dynamics in Sec. 3.5, and summarize the main results of the chapter in Sec. 3.6.

3.1 Methods

3.1.1 Molecular dynamics simulations

Our simulation setup resembles that of previous studies [146–148] and consists of a lipid bilayer
composed of 72 DPPC molecules and 2278 SPC/E water molecules, see the simulation snapshot
in Fig. 3.1a. Simulations are based on the DPPC force field from Ref. [149] and are run using
the GROMACS 4.0.7 package [91] in the NVT ensemble starting from a pre-equilibrated box as
described in Ref. [148]. The box dimensions are 4.597× 5.090× 6.839 nm3 corresponding to a
mean area of ≈ 0.65 nm2 per DPPC molecule. The average temperature is fixed at 320 K using
a Berendsen thermostat and the integration time step is set to 2 fs. For the covalent bonds to
hydrogens in the DPPC molecules rigid constraints are used [150], while the water geometry
is constrained using SETTLE [151]. A plain cut-off at 0.9 nm is used for short-range van der
Waals interactions. Electrostatics are treated on the particle-mesh Ewald level [94, 95] with a
real-space cutoff of 0.9 nm.

For the constrained simulations evaluated in Sec. 3.2.3, approximately 10% of the water
molecules within initial separations |z− z0| ≤ 0.15 nm from various distances z0 from the
membrane mid-plane are randomly selected and harmonically constrained around their initial
z-positions with a spring constant of 6640 kJ/(mol nm2), while being free in x- and y-direction.
Neighboring values of z0 being separated by 0.5 nm, in total only roughly 6 % of the 2278 water
molecules are z-constrained in these simulations.

Production runs have a total length of approximately 6.5 µs and frames for analysis are writ-
ten every 0.05 ps (unconstrained simulations) and every 2 ps (constrained simulations). The to-
tal simulation length used for the evaluation of the lateral mean square displacements (MSDs) in
the unconstrained simulations is roughly 600 ns, and approximately 400 ns for the constrained
simulations. The perpendicular diffusivity is evaluated from mean first-passage times (MFPTs)
based on the unconstrained simulations with a total length of roughly 6 µs.

Recent systematic studies on systems similar to ours [152–154] have investigated a possible
influence of the finite system size used in MD simulations. Quantifying internal dynamics and
collective structural properties of the lipids, they have found 36 lipids per leaflet as used in
our simulations to be sufficient to obtain reliable results which are not modified when going
to larger system sizes. Therefore, and since we find the lateral water dynamics next to the
membrane to become Markovian on sub-nanometer length scales and on time scales of a few
nanoseconds in Sec. 3.2.4, we expect at most a minor influence of the system size on our results.
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(a) (b)

x

z

Figure 3.1:
a) Snapshot of the simulation box. b) Trajectory of a water molecule in the vicinity of the membrane
in the MD simulation: The yellow path of 100 ps duration starts in the lower right. A corresponding
movie is included as supplementary material [111].

The MD simulations analyzed in this chapter have been performed by Prof. Dr. Stephan Gekle
from the University of Bayreuth.

3.1.2 Monte Carlo simulations

To estimate the effect of the bilayer structure on the lateral water dynamics, we perform Monte
Carlo (MC) simulations in the transient free energy landscapes from MD simulations

Fz0,τ(x, y) ≡ −kBT log
(

ρz0,τ(x, y)/ρ0

)

, (3.1)

where ρz0 ,τ denotes the lateral water density at a distance z0 from the membrane mid-plane
averaged over a time τ and where ρ0 ≈ 32 nm−3 denotes the bulk water number density.
The lateral water densities ρz0 ,τ are resolved with a spatial resolution δx ≈ δy ≈ 0.1 nm by
averaging the distribution of water molecules over a 0.5 nm thick slab centered around z0, an
example density profile for z0 = 2 nm and τ = 50 ps is shown in Fig. 3.2.

MC simulations are performed based on the following protocol: The motion along the two
spatial directions is independent and within a time step δt the position of the random walker
at the lattice position (xi, yj) changes according to the Metropolis algorithm

(xi, yj) −→







(xi−1, yi) with prob. min
[

1
2 ,

ρz0,τ(xi−1,yj)

2ρz0,τ(xi,yj)

]

(xi+1, yi) with prob. min
[

1
2 ,

ρz0,τ(xi+1,yj)

2ρz0,τ(xi,yj)

]

(xi, yi) with prob. 1−min
[

1
2 ,

ρz0,τ(xi−1,yj)

2ρz0,τ(xi,yj)

]

−min
[

1
2 ,

ρz0,τ(xi+1,yj)

2ρz0,τ(xi,yj)

]

, (3.2)
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Figure 3.2:
Water density profile ρz0,τ(x, y) averaged in a slab |z− z0| ≤ 0.25 nm around a distance z0 = 2 nm
from the membrane mid-plane over a time window τ = 50 ps with lateral discretization δx ≈ δy ≈
0.1 nm. A sample MC trajectory of 500 steps is shown as thin black line. Inset: The lateral MSD from MC
simulations (red line) and the reference MSD in an unstructured environment, 4DMC

0 t, (dashed black line)
are shown.

and

(xi, yj) −→







(xi, yj−1) with prob. min
[

1
2 ,

ρz0,τ(xi,yj−1)

2ρz0,τ(xi,yj)

]

(xi, yj+1) with prob. min
[

1
2 ,

ρz0,τ(xi,yj+1)

2ρz0,τ(xi,yj)

]

(xi, yj) with prob. 1−min
[

1
2 ,

ρz0,τ(xi,yj−1)

2ρz0,τ(xi,yj)

]

−min
[

1
2 ,

ρz0,τ(xi,yj+1)

2ρz0,τ(xi,yj)

]

, (3.3)

where periodic boundary conditions are used. The time step δt in the MC simulations is related
to the lateral diffusion coefficient in an unstructured environment DMC

0 via δt ≡ (δx)2 /(2DMC
0 ) ≈

(δy)2 /(2DMC
0 ). For each set of parameters (z0, τ), trajectories of 2 · 107 MC steps each are gener-

ated in 25 independent density profiles. A sample MC trajectory of 500 steps is shown as a thin
black line in Fig. 3.2.

3.2 Water Dynamics Parallel to the Lipid Membrane

3.2.1 Unconstrained simulations

Water motion parallel to the membrane surface is characterized by the MSDs

〈(∆x(t))2〉z0 ≡ 〈
(

x(t′ + t)− x(t′)
)2〉z0 , 〈(∆y(t))2〉z0 ≡ 〈

(
y(t′ + t)− y(t′)

)2〉z0 , (3.4)

of the x- and y-coordinates of the water oxygen. In Eq. 3.4, 〈. . .〉z0
denotes the double average

over the reference time t′ and all the water molecules, for which |z(t′ + τ)− z0| ≤ 0.25 nm
is fulfilled for the entire time span 0 ≤ τ ≤ t, i.e., only trajectories which remain within an
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Figure 3.3:
a) Lateral MSDs (Eq. 3.4) for water at different distances z0 from the membrane center (colored lines),
for lipid heads (black dots), and for bulk water (adapted from Fig. 2.1, gray lines, mostly hidden under
the z0 = 3.5 nm water data). Inset: Corresponding local exponents α (Eq. 3.8). b) Resulting time-
dependent diffusion coefficients Dlat (Eq. 3.9). Inset: Double-logarithmic representation of the same
data, filled colored circles denote upper bounds for the long-time diffusion coefficients. In all panels
and insets, the same color coding is used, and data for unconstrained and harmonically trapped water
molecules are displayed as dashed and solid lines, respectively.

interval of 0.5 nm centered around a prescribed distance z0 from the membrane mid-plane are
considered. In order to avoid artifacts due to the diffusion of the membrane as a whole, we
have subtracted the lateral center-of-mass position of the nearest membrane leaflet from the
water coordinates [155, 156].

Lateral water MSDs for different distances z0 from the membrane center (denoted by different
colors) are shown as dashed lines in Fig. 3.3a. The perfect agreement of the MSDs for x and y
testifies to the statistical data quality. While the sub-picosecond dynamics are independent of
z0, on larger time scales the MSDs differ considerably depending on the distance from the mem-
brane mid-plane [145]: Whereas water molecules in the center of the water slab (z0 = 3.5 nm)
show MSD curves that are indistinguishable from those in bulk water studied in Sec. 2.2.1 (thick
gray line), closer to the membrane the water MSD curves approach the lateral MSDs of the lipids’
phosphorus atoms (black dots).

Note that the MSD curves for z0 ≤ 2.5 nm in Fig. 3.3a (green, orange and red dashed lines)
saturate and then begin to decrease for times t & 50 ps. As we show next, these artifacts are
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due to the fact that the trajectory ensemble which serves to calculate the MSD (Eq. 3.4) changes
over time [116].

3.2.2 Alternative definitions of the lateral mean square displacement

According to Eq. 3.4, only those trajectory segments contribute to the lateral MSD values, for
which |z(t′ + τ)− z0| ≤ 0.25 nm for all times 0 ≤ τ ≤ t. When the time t increases, fewer
and fewer trajectories fulfill this criterion, i.e., the trajectory ensemble contributing to the MSD

values at time t2 is a subset of the trajectory ensemble over which MSD-values at time t1 < t2
are calculated. To estimate the influence of the time-dependent trajectory-ensembles, we also
consider MSDs

〈(∆x(t))2〉z0, tref ≡ 〈
(

x(t′ + t)− x(t′)
)2〉z0, tref ,

〈(∆y(t))2〉z0, tref ≡ 〈
(
y(t′ + t)− y(t′)

)2〉z0 , tref ,
(3.5)

for which the condition |z(t′ + τ)− z0| ≤ 0.25 nm holds for all times 0 ≤ τ ≤ tref, where tref de-
notes a certain fixed reference time. Corresponding curves for reference times tref = 50 ps and
100 ps are compared in Fig. 3.4a to the dashed curves from Fig. 3.3a. The curves corresponding
to Eq. 3.5 reflect the time evolution of the second moment of a fixed trajectory ensemble and
are monotonously increasing with time. The spurious effects in Fig. 3.3a (decrease or satura-
tion of the MSD curves) thus are a consequence of the time-dependent trajectory ensemble: As
is seen from Fig. 3.4a, water molecules which remain for a long time within a 0.5 nm interval in
z-direction are also less mobile laterally [116].

Both the definitions of the lateral MSDs in the Eqs. 3.4 and 3.5 are very restrictive with respect
to the motion of the molecules in z-direction since only those trajectory segments are consid-
ered, which do not leave the prescribed interval around z0 (not even once!). Water MSD curves
therefore become statistically unreliable for t or tref & 100 ps, because very few water trajecto-
ries stay within a given interval around z0 for such long times. Long-time MSDs, from which the
lateral diffusion coefficients can be inferred, thus cannot be resolved based on the definitions in
the Eqs. 3.4 and 3.5. We therefore consider the alternative definitions of the lateral MSDs

〈(∆x(t))2〉z0, beg. ≡ 〈
(

x(t′ + t)− x(t′)
)2〉z0, beg.,

〈(∆y(t))2〉z0, beg. ≡ 〈
(
y(t′ + t)− y(t′)

)2〉z0, beg.,
(3.6)

where the z-coordinate is required to lie within the slab around z0 at the beginning of a trajec-
tory segment (τ = 0) only, i.e., |z(t′)− z0| ≤ 0.25 nm, as well as

〈(∆x(t))2〉z0 , beg.&end ≡ 〈
(

x(t′ + t)− x(t′)
)2〉z0, beg.&end,

〈(∆y(t))2〉z0 , beg.&end ≡ 〈
(
y(t′ + t)− y(t′)

)2〉z0, beg.&end,
(3.7)

where the average is taken over trajectories, for which |z(t′ + τ)− z0| ≤ 0.25 nm is fulfilled at
the two reference times τ = 0 and τ = t, while no restriction is imposed for intermediate times
0 < τ < t. Note that in contrast to the Eqs. 3.4 and 3.5, where x and y denote the coordinates
of the oxygen relative to the nearest lipid leaflet, x and y denote the coordinates of the water
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Figure 3.4:
Comparison of various MSD definitions: a) Lateral MSDs from Fig. 3.3a (varying trajectory ensemble,
Eq. 3.4) are shown as dashed lines, while (dashed-)dotted lines denote lateral MSDs according to Eq. 3.5
(fixed trajectory ensemble) for reference times tref = 50 ps and tref = 100 ps. b) Lateral MSDs according
to the Eqs. 3.6 and 3.7 are shown as differently dashed lines, and the solid black line denotes the bulk
water MSD with DH2O ≈ 3.7 nm2/ns from Tab. 2.1. In both panels, the color coding discriminates
between different separations z0 from the membrane mid-plane, analogous to Fig. 3.3.

oxygen in the laboratory frame in the Eqs. 3.6 and 3.7, since the trajectories are not restricted to
the vicinity of a specific leaflet.

Corresponding MSD curves are shown in Fig. 3.4b: While the MSD curves for trajectories
only starting as well as starting and ending next to the membrane (z0 . 2.0 nm) are clearly
suppressed on time scales of tens to hundreds of picoseconds, all MSD curves converge to a
common linear MSD 2Dlatt on the nanosecond time scale. Although the statistical uncertainty
in the curves in Fig. 3.4b is negligible, these are not suited to determine the z-dependence of the
lateral diffusivity profile, since the long-time MSDs reflect the slab-averaged lateral diffusion
coefficient Dlat ≈ 2 nm2/ns only. This is significantly smaller than the bulk diffusion constant
DH2O ≈ 3.7 nm2/ns at T = 320 K from Sec. 2.2.1, indicating an overall reduced lateral diffusiv-
ity of the membrane hydration water compared to bulk as is clearly seen from the comparison
to the solid black line in Fig. 3.4b.
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3.2.3 Constrained simulations

To reliably determine lateral MSDs on the nanosecond time scale and resolve the z-dependent
diffusivity profile for lateral motion, we therefore resort to simulations where roughly 6% of
the 2278 water molecules are harmonically constrained in z-direction as described in Sec. 3.1.1.
The resulting MSDs are shown as solid lines in Fig. 3.3 and compare well to the unconstrained
MSDs (dashed lines) on times up to ∼ 20 ps.

The local slopes of the MSD data in the double-logarithmic representation reflect the time-
dependent exponent, which for a general function f (t) is defined as

α(t) ≡ d log ( f (t))
d log (t)

=
t

f (t)
d f (t)

dt
. (3.8)

Time-dependent exponents of the MSD data are shown in the inset of Fig. 3.3a: For bulk-like
water (blue curves), we observe a smooth transition from superdiffusive behavior α > 1 for
times t . 200 fs to a subdiffusive regime with α ≈ 0.9 on the picosecond time scale, and a
subsequent crossover to the exponent α = 1, associated with normal diffusion, for t & 10 ps.
When approaching the membrane, the anomalous diffusion regime extends to time scales of
up to nanoseconds and the exponents α decrease. For water molecules in direct proximity of
the membrane (z0 = 1.5 nm), typical MSD exponents are ≈ 0.4, similar to those of the lipid
head-groups themselves [138, 140], demonstrating a tight coupling of water and lipid motions
further analyzed in Sec. 3.5.

Time-dependent lateral diffusion coefficients

Dlat(t; z0) ≡
〈(∆x(t))2 + (∆y(t))2〉z0

4t
, (3.9)

from both constrained and unconstrained simulations, are shown as solid and dashed lines in
Fig. 3.3b using the same color coding as in Fig. 3.3a. While the superdiffusive regime at short
times gives rise to an increasing diffusion coefficient, a maximum in the sub-picosecond range
and a slow subsequent saturation are observed. The diffusion coefficients in the membrane
vicinity continue to decrease even beyond several nanoseconds, as is best seen in the double-
logarithmic representation of the data in the inset of Fig. 3.3b, where upper bounds for the
long-time diffusion coefficients are indicated by colored circles.

3.2.4 Mean first-passage time analysis for motion parallel to the membrane

Estimates for the lateral diffusion coefficients have been obtained from the long-time MSDs
above. They can equally be determined by an MFPT analysis, cf. Sec. 2.3.1 and Refs. [viii][x].
For this, trajectories r(t) of the radial lateral distance of the z-constrained molecules from a (ran-
domly selected) reference point in the two-dimensional plane are analyzed. Due to translation
invariance in the lateral plane, the equilibrium probability density function of radial distances
is of entropic nature only, i.e., e−F(r)/(kBT) ∝ r. According to Eq. 2.21, the radial diffusivity
profile then can be reconstructed from

Dr(r) = −
1/r

∂τfp(r, rt)/∂r

∫ r

0
dr′ r′ = − r

2∂τfp(r, rt)/∂r
. (3.10)
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Figure 3.5:
Top panels: MFPTs to first reach a radial distance rt from a given reference point in the lateral plane,
when starting off from r; data for three distances z0 from the membrane mid-plane are shown. Bottom
panels: Corresponding lateral diffusivity profiles (colored lines) calculated from the MFPTs in the top
panels using Eq. 3.10; diffusion coefficients obtained from the long-time MSDs in Fig. 3.3b are shown
as horizontal dashed black lines.

Similarly to the analysis in Sec. 2.3.2, radial MFPTs are resolved with a spatial resolution of
0.01 nm and the MFPT derivatives in Eq. 3.10 are approximated by fitting straight lines to the
MFPT data within intervals of 0.15 nm to minimize the influence of statistical uncertainties. The
resulting diffusivity profiles for the lateral motion at different distances z0 from the membrane
center are shown in Fig. 3.5 As expected, the diffusivity profiles for different radial target dis-
tances rt converge to a common and constant value for rt − r large enough. The estimates for
the lateral diffusion coefficients from the radial MFPT analysis nicely agree with the estimates
extracted from the long-time MSDs (filled colored circles in the inset of Fig. 3.3b), which are
shown as horizontal dashed black line in the lower panels of Fig. 3.5.

3.3 Water Dynamics Perpendicular to the Lipid Membrane

We next turn to water diffusion perpendicular to the membrane surface, i.e., along the z-direction
in Fig. 3.1a. Several methods have been used to extract diffusivity profiles in similar inhomo-
geneous systems before [116, 119, 142]. Here, we employ the same MFPT analysis as before to
disentangle the contributions of free energy and diffusivity to the water kinetics.

The free energy F(z) and MFPTs τfp(z, zt) to first reach a target distance zt from the membrane
mid-plane given a start at z are resolved with a spatial resolution of 0.01 nm based on the
trajectories of the 2278 water molecules in the unconstrained MD data. In analogy to Eq. 2.21,
the diffusivity profile is then obtained via

Dz(z) = −
eF(z)/(kB T)

∂τfp(z, zt)/∂z

∫ z

zrefl

dz′ e−F(z′)/(kB T), (3.11)
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where the MFPT derivatives are again approximated by fitting straight lines to the MFPT data
within intervals of 0.15 nm width to minimize the influence of statistical uncertainties, analo-
gous to the analysis in Sec. 3.2.4. In Eq. 3.11, we impose a reflective boundary at zrefl = 0.475 nm
corresponding to a value of the free energy of roughly 12 kBT. Similarly as in Sec. 2.3.2, the pre-
cise position of the reflecting boundary has a negligible influence on the form of the resulting
diffusivity profiles.

The water density ρ(z), the corresponding Gibbs dividing surface (GDS) and the associated
free energy profile

F(z) ≡ −kBT log (ρ(z)/ρ0) , (3.12)

where ρ0 ≈ 32/nm3 denotes the bulk water number density, are shown in Fig. 3.6a. MFPTs
for different target distances zt as extracted from MD trajectories are presented in Fig. 3.6b.
Diffusivity profiles resulting from Eq. 3.11 are denoted by solid lines in Fig. 3.6c using the
same color coding as in Fig. 3.6b: The diffusivity profiles reveal bulk-like dynamics in a small
region in the center of the slab only as is seen from the comparison to the diffusion coefficient
DH2O ≈ 3.7 nm2/ns at T = 320 K from Sec. 2.2.1, which is indicated by a horizontal dashed line
in Fig. 3.6c. When approaching the membrane the diffusivity smoothly decreases and levels off
at values ∼ 0.2 nm2/ns in the lipid head group region, about a factor 20 smaller than in bulk.

We observe that diffusivity profiles from MFPT curves for different target distances zt super-
impose well except for zt − z . 0.25 nm = δz. These deviations are caused by non-Markovian
effects on time scales (δz)2/Dz ranging from ∼ 10 ps in the bulk-like region of the water slab to
∼ 300 ps near the lipids. The overlap of the diffusivity profiles demonstrates that perpendicu-
lar diffusion on larger length and longer time scales is Markovian and accurately described by
a diffusion equation including the free energy profile.

For comparison, we also indicate the upper bounds for the lateral diffusivity Dlat(z) from
the inset of Fig. 3.3b as open circles in Fig. 3.6c. While both perpendicular and parallel diffu-
sion are slowed down in a region with a thickness of roughly 2 nm, a significant anisotropy
Dlat(z)/Dz(z) < 1 is observed in the inset of Fig. 3.6c (filled circles) close to the membrane-
surface: for z0 = 1.5 nm, the lateral diffusivity is Dlat ≈ Dz/3 only. This observation is in
marked contrast to the water dynamics at solid homogeneous interfaces discussed in the fol-
lowing.
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Figure 3.6:
a) Water density ρ(z) and the corresponding free energy profile F(z) (Eq. 3.12). b) Water MFPTs to
first reach a target distance zt when starting off from z. c) Perpendicular water diffusivity profiles
Dz(z) (colored solid lines) derived via Eq. 3.11. Open circles denote the long-time lateral diffusivities
from the inset of Fig. 3.3b. Inset: Water diffusion anisotropy Dlat/Dz at the membrane (•), at solid
homogeneous hydrophobic (⋆) and hydrophilic (◦) surfaces (Fig. 3.7) discussed in Sec. 3.4, and lateral
rescaled diffusion constant DMC

lat /DMC
0 (△,�, ⋄) from MC simulations (Fig. 3.11c) discussed in Sec. 3.5.

The z-coordinates of the solid homogeneous surfaces have been adjusted so that the positions of the
respective GDSs (vertical gray dashed line) agree.
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3.4 Water Diffusion at Solid, Homogeneous Surfaces

In Fig. 3.7, we reproduce water free energy and diffusivity profiles at H- (hydrophobic) and OH-
terminated (hydrophilic) diamond surfaces obtained using similar methods as described above,
see Ref. [viii] for details. A corresponding simulation movie is included as supplementary
material [111]. For a better comparison of the diffusivities at the lipid bilayer and at the solid
homogeneous interfaces, the z-coordinates of the solid interfaces have been adjusted so that the
positions of the GDSs agree for all interfaces. The position zGDS ≈ 1.92 nm is indicated by gray
dashed lines in the Figs. 3.6 and 3.7.

The bulk diffusion coefficient DH2O ≈ 2.7 nm2/ns at T = 300 K from Ref. [viii] is shown
as horizontal dashed black line in Fig. 3.7d-f. Exactly opposite from the behavior at the lipid
bilayer, the lateral diffusivity (blue squares) is larger than the perpendicular one (red circles) for
all three surface polarities as expected based on continuum hydrodynamics as we show next.

3.4.1 Hydrodynamics at planar interfaces

For a comparison of water diffusivity profiles from MD simulations to estimates from contin-
uum hydrodynamic theory for a solid no-slip sphere of radius a and bulk diffusion coefficient
D0, we set D0 = DH2O ≈ 2.7 nm2/ns and a = ahyd, where the hydrodynamic radius of a water
molecule is

ahyd ≡
kBT

6πη0DH2O
≈ 0.11 nm, (3.13)

according to Stokes’ law [16] and using the shear viscosity η0 ≈ 0.71 mPa · s of SPC/E water [99].
The H-terminated diamond surface used by us has been found to have a finite slip length

b ≈ 2.5 nm, the corresponding data from Ref. [99] is reproduced in Fig. 3.8a. The position of
the interface in the hydrodynamic description is set to zint = zGDS − ahyd ≈ 1.81 nm. Approxi-
mate expressions by Lauga and Squires [157] for the anisotropic mobilities of a no-slip sphere
of radius a at a distance h ≡ z− zint from a boundary with slip length b are reproduced in Ap-
pendix D.1: The analytical predictions for the sphere diffusivities kBTµLS

‖ (Eq. D.1) and kBTµLS
⊥

(Eq. D.2) are shown as solid lines in Fig. 3.7d.
As has been observed previously [99], the hydrophilic diamonds with 12.5 % and 25 % sur-

face OH-groups used in the MD simulations are characterized by a region of increased viscos-
ity in direct proximity of the interface, the corresponding data for 25 % OH is reproduced
in Fig. 3.8b. For simplicity, we compare the diffusivity profiles to hydrodynamic theory in a
medium of uniform viscosity in Fig. 3.7e-f. For this, the position of the no-slip interface is set to
zint = zv0 − ahyd. Here, zv0 denotes the position, where the extrapolated shear velocity profile
equals the velocity v0 of the interface, as seen in Fig. 3.8b. The resulting positions of the inter-
face are zint ≈ 2.05 nm (12.5% OH) and zint ≈ 2.08 nm (25% OH). The mobilities of a sphere of
radius a at a distance h ≡ z− zint from a no-slip wall are covered in Appendix D.2: The diffusiv-
ity profile for lateral motion is well approximated by kBTµPJ

‖ (Eq. D.6) and the one for motion
perpendicular to the interface is given by kBTµSJ

⊥ (Eq. D.7), the corresponding expressions are
drawn as solid colored lines in Fig. 3.7e-f.

Apart from oscillations in the mobilities due to molecular interfacial layering, the continuum
theory is in excellent agreement with the MD data for all three surfaces in Fig. 3.7d-f. This
is particularly meaningful since no adjustable fit parameter is introduced, i.e., the shear vis-
cosity as well as the slip and stagnation lengths have independently been determined [99].
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Figure 3.7:
a), b), and c) Water free energy profiles at hydrophobic/-philic solid surfaces from MD simula-
tions [viii]. d), e), and f) Diffusivity profiles for motion parallel and perpendicular to the surfaces
from MD simulations (symbols) [viii] and estimates from hydrodynamic theory (lines, cf. Sec. 3.4.1 for
details); the horizontal dashed black line denotes the bulk diffusion coefficient DH2O ≈ 2.7 nm2/ns at
T = 300 K [viii]. The vertical dashed gray lines denote the positions of the GDSs.

Figure 3.8:
Shear simulations of water slabs confined by hydrophobic/-philic diamond surfaces from Ref. [99].
a) Hydrophobic H-terminated diamond: Simulation setup, water density profile and water velocity
profile (from top to bottom). b) Hydrophilic diamond (25% surface OH-groups): Water density profile
(top), water velocity profile (bottom) and magnification of the gray-shaded interfacial stagnation layer.
Adapted with permission from Ref. [99]. Copyright 2009 American Chemical Society.
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Figure 3.9: Same as Fig. 3.5 but for the lateral dynamics at the diamond with 25 % surface-OH density.

Both continuum hydrodynamics and MD simulations show that the lateral diffusivity at solid
surfaces is larger than the perpendicular one, in contrast to the membrane scenario. This is
highlighted in the inset of Fig. 3.6c, where we compare the ratio Dlat/Dz for hydrophobic and
hydrophilic solid surfaces (magenta stars and magenta open circles, results have been averaged
over 0.25 nm) with the membrane results (black filled circles).

3.4.2 Mean first-passage time analysis for motion parallel to a solid surface

Similarly as in Sec. 3.2.4, diffusion coefficients for the motion parallel to the solid, homogeneous
surfaces can also be obtained from a radial MFPT-analysis. In the top panels of Fig. 3.9, radial
MFPT-curves for the lateral motion of a subset of z-constrained water molecules in the vicinity
of the diamond with 25 % surface-OH density are shown. Corresponding diffusivity profiles
are displayed in the bottom panels of Fig. 3.9 and mostly fall on the dashed horizontal lines,
which favorably agree with the estimates from Fig. 3.7. Note that for the molecules in the
first interfacial solvent layer (z0 = 2.04 nm), the overlap in the diffusivity profiles for distinct
target separations rt is worse than for larger separations z0 from the interface; in particular, a
pronounced dip in the diffusivity profiles at r ≈ rt − 0.1 nm is observed. The cause are the
regularly distributed OH-groups on the diamond surface, which break the lateral translation
symmetry, on which the analysis via Eq. 3.10 is based, on a molecular length scale.

As has been argued in Sec. 3.3, the length scale from which on the water diffusion becomes
Markovian, and thus the description in terms of the usual diffusion equation adequate, is set by
the distance δr, from which on the radial diffusivity profiles for various target distances rt agree.
At homogeneous, solid surfaces the length scale δr ≈ 0.2 nm is independent of the distance to
the interface as is seen from the bottom panels in Fig. 3.9, where for example the diffusivity
profiles for rt = 1.4 nm (green curves) are essentially flat for r . 1.2 nm for all values of z0
shown.
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In contrast, for motion parallel to the lipid bilayer the values for δr depend on the distance
z0 from the membrane mid-plane: As is seen from the bottom panels of Fig. 3.5, the diffusivity
profile for rt = 1.6 nm (green curve) is constant for r . 1.4 nm at a distance z0 = 2.5 nm,
whereas for z0 = 1.5 nm convergence is observed for values r . 1 nm only. The Markovianity
length scale thus increases from values around δr ≈ 0.2 nm for z0 = 2.5 nm to δr ≈ 0.6 nm
for z0 = 1.5 nm indicating an influence of the interface on the character of the lateral motion.
The associated time scales (δr)2/Dlat range from ∼ 20 ps for z0 = 2.5 nm to ∼ 4 ns for z0 =
1.5 nm in agreement with the time scales for the transition to normal diffusion with exponent
α = 1 observed in the lateral MSD curves (Fig. 3.3a). The increase of δr when approaching the
membrane reflects the increasing transient lateral heterogeneity imposed by the lipids, which
is studied in further detail below.

3.5 Influence of the Lateral Bilayer Structure

To understand the discrepancy between water diffusion next to solid, homogeneous surfaces,
where the anisotropy Dlat/Dz > 1 is in agreement with boundary hydrodynamic theory, and in
the lipid interfacial region, where an anisotropy Dlat/Dz < 1 and a markedly increased length
scale δr are observed, we examine the lateral bilayer structure. For this, we calculate lateral
water density profiles ρz0,τ(x, y) that are averaged over a time τ for different distances z0 from
the membrane mid-plane as described in Sec. 3.1.2.

The lateral water density profiles ρz0,τ(x, y) in Fig. 3.10 reveal a transient heterogenous and
strongly structured water distribution: In particular for z0 = 1.5 nm and z0 = 2 nm, the density
profiles are characterized by a considerable roughness and fractal structure remaining nearly
invariant on time scales of up to hundreds of picoseconds, while the densities in the bulk region
of the water slab (z0 = 3.5 nm) show small statistical fluctuations only, which quickly average
out.

To estimate the effect of the bilayer structure and dynamics on the lateral water diffusion, we
perform MC simulations in the two dimensional free energy landscapes Fz0,τ(x, y) defined in
Eq. 3.1 as described in Sec. 3.1.2. MC trajectories serve to calculate lateral MSDs by computing
time and ensemble averages (Eq. 3.4). In the case, where the density profiles divide up into
separate partitions, trajectories are initiated in each of them and MSDs are calculated from a
weighted average of the MSDs in the individual partitions. The statistical weights are propor-
tional to the relative number of water molecules in the partitions so that the lateral distributions
of water molecules in the MC trajectory ensemble and in the density profiles from MD simula-
tions agree.

Lateral MSDs (Eq. 3.4), corresponding exponents α (Eq. 3.8) and time-dependent diffusion
coefficients (Eq. 3.9) from MC simulations are shown in Fig. 3.11a-c. For z0 . 2.0 nm, the
lateral MSDs in the MC simulations are characterized by a pronounced subdiffusive regime and
a decreased long-time diffusion coefficient, which both are characteristic features for obstructed
diffusion in rough environments [136, 137]. Both the distance from the membrane z0 as well
as the choice of the averaging time τ affect the MSD curves: The density profiles ρz0,τ being
considerably rougher for short averaging times, MSD values, local exponents and diffusion
coefficients are reduced compared to larger values of τ, for which the profiles are "washed out"
and lateral motion in the MC simulations therefore faster. A similar dependency is observed
when changing the lateral cell dimensions δx and δy (data not shown).
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Figure 3.10:
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lines correspond to the MSD 4DMC
0 t of normal diffusion in a homogeneous environment.
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Because of the above sensitivity on the parameters drawing quantitative conclusions from
the MC simulations is difficult. Moreover, the overall match of water dynamics in the MD and
MC simulations would require time-dependent free energy landscapes. Nevertheless, the MC

results clearly show that the roughness and fractal structure of the density profiles indeed gives
rise to a ratio DMC

lat /DMC
0 significantly smaller than one and to a pronounced subdiffusive regime

in the MSDs with crossover times to diffusive dynamics increased by up to several orders of
magnitude. The long-time ratios DMC

lat /DMC
0 from Fig. 3.11c are shown as open triangles (τ =

50 ps), squares (τ = 100 ps) and diamonds (τ = 250 ps) in the inset of Fig. 3.6c. Note that
the water diffusion anisotropy from the MC simulation, which comprises the obstructing free
energy landscape due to the inhomogeneous lipid distribution but no hydrodynamic effects, is
more pronounced than the anisotropy extracted from the membrane simulations (filled circles).

3.6 Conclusions

Summarizing, we have resolved both the lateral and the perpendicular diffusivity profile of
water molecules next to a lipid bilayer. We find that the diffusivities of the membrane hydration
water are reduced by more than one order of magnitude compared to bulk water. Furthermore,
in contrast to solid, homogeneous surfaces, the lateral water diffusion next to the membrane is
considerably slower than the perpendicular one.

The observed diffusion anisotropy of membrane hydration water results from the interplay
of two competing effects: (i) Continuum hydrodynamics alone (Sec. 3.4.1) speed up the lateral
diffusion compared to the perpendicular one, irregardless of the surface polarity, as confirmed
by our MD simulations at solid homogeneous surfaces, implying Dlat/Dz > 1, while (ii) the
lateral diffusion dynamics are considerably slowed down by the transient but long-lived free
energy landscape imposed by the lipids, implying Dlat/Dz < 1, as shown by our coarse-grained
MC simulations without hydrodynamics (Sec. 3.5). As seen in the inset of Fig. 3.6c, both effects
roughly compensate for z & 2.5 nm yielding almost isotropic diffusive properties, while the
second effect dominates for z . 2.5 nm giving rise to a pronounced anisotropy with Dlat/Dz <
1 in the vicinity of the lipid leaflet.

Our findings imply that efficient transport parallel to the membrane surface necessarily also
involves fluctuations perpendicular to the lipid leaflet as shown in Fig. 3.1b. In turn, attraction
towards the lipid bilayer would constitute a simple mechanism for significantly suppressing
lateral diffusive motion. We expect our results also to be relevant for the diffusion of solutes
at the surfaces of proteins or other structured biological surfaces and to have implications for
surface binding and reaction kinetics [158].



CHAPTER 4

ION-SPECIFICITY OF PEPTIDE
CONFORMATIONAL DYNAMICS

Bibliographic information: Parts of this chapter have previously been published. Reprinted with
permission from Ref. [vii]. Copyright 2010 American Chemical Society.

The application of stochastic concepts based on the Fokker-Planck (FP) equation are not re-
stricted to the diffusional dynamics of solute and solvent molecules discussed in the preceding
chapters. Indeed, the complex problem of protein folding is typically also interpreted in terms
of a diffusive search through an effective, low-dimensional free energy landscape, where most
of the countless degrees of freedom of the system have been integrated out [70–75]. In this
scenario the effective diffusivity (or friction) arising from intrapeptide and peptide-solvent in-
teractions as well as from orthogonal degrees of freedom typically varies considerably along
the reaction coordinate (RC) [115][x]. In general, the internal friction constitutes a major contri-
bution to the friction, so that solvent viscous drag and solvent-peptide interactions are not the
only mechanisms that govern protein kinetics [159, 160]. Internal and solvent-induced friction
processes may even be intimately connected as was demonstrated for the loop formation rate
of unfolded peptides, where the strongly denaturing salt guanidine hydrochloride modifies
internal friction by specific binding mechanisms [161, 162].

The investigation of the salt-specific action on proteins in general ("Hofmeister effects") has a
long history [163] but the underlying mechanisms are still under exploration [164, 165]. In a re-
cent series of experiments, for example, it has been shown that even the simple cations sodium
(Na+) and potassium (K+) exhibit considerably different behavior in the interaction with pro-
tein surfaces, where Na+ is favored over K+ [166–168]. One apparent reason is the stronger
attraction of sodium to acidic (anionic) surface groups, in particular to carbonyl and side chain
carboxylate groups. While these static properties have received much attention lately [169], not
much is known about their consequences to biomolecular kinetics. Experimental hints have
been given in studies of Na+- and K+-specific polyglutamic acid aggregation kinetics [170],
folding kinetics of halophilic ("salt-loving" and very acidic) proteins [171, 172], or DNA [173].
However, a detailed molecular understanding of the ion-specific action on biomolecular fold-
ing and assembly kinetics is still lacking. In particular for large concentrations (c & 1 mol/l) salt
effects are pronounced, highly sequence and salt-type specific; they typically lead to changes in
protein solubility, stability, and/or denaturation that result in the so-called Hofmeister series for
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the precipitation of proteins [163]. Although an order of magnitude higher than at typical phys-
iological conditions (c ∼ 0.2 mol/l), large salt concentrations play a central biochemical role in
the broad field of protein crystallization [174], in food industry as fermentation additives [175],
and for the function and stability of biotechnologically interesting halophilic (salt-loving) en-
zymes [176]. Additionally, the study of protein structures in high salinity solvents is instructive
as salt-specific effects are amplified and, important from a computational perspective, can be
sampled more efficiently in molecular dynamics (MD) simulations, a popular tool nowadays
for the theoretical study of protein folding, function, and stability [177].

A ubiquitous and fundamental secondary structure element of proteins is the α-helix, which
is stabilized by (i, i + 4) backbone hydrogen-bonds involving four amino acids (aa) per turn.
The majority of short (. 20 aa) isolated helices derived from proteins are unstable in solution,
unless specific side-chain interactions stabilize them. Among those it has been demonstrated
that alanine-based peptides have the strongest intrinsic helix propensity [178–182]. A very in-
structive model peptide was experimentally introduced by Marqusee and Baldwin [178], who
showed that alanine-based oligopeptides with an A(EAAAK)nA pattern display a high α-helix
propensity, which is probably stabilized by Glu− (E) and Lys+ (K) salt bridges along the folded
peptide. Marqusee and Baldwin also found that the simple salt NaCl has a destabilizing ef-
fect on the α-helical configurations of these peptides. Indeed, in a recent explicit-water MD

computer simulation [183] the structural behavior of the oligopeptide Ace-AEAAAKEAAAKA-
Nme, in the following named the "EK" peptide, has been explored in detail, and the stabiliz-
ing and destabilizing mechanisms in various highly concentrated aqueous electrolyte solutions
have been identified. Amongst others, it has been found that sodium (Na+) destabilizes the
helical structure more strongly than potassium (K+); it was also previously recognized that the
reason for the destabilization of the salt bridges and the hydrogen-bonds of the secondary struc-
ture lies in the higher affinity of Na+ to carboxylate and carbonyl groups. In a recent follow-up
study, the folding kinetics of the EK-peptide in pure aqueous solution have been investigated
and interpreted in terms of diffusion in a reduced (one-dimensional) free energy landscape
involving a local coordinate-dependent diffusivity [x].

The aim of this chapter is to extend these previous studies on the "EK"-peptide to the inves-
tigation of the specific effects of the salts KCl, NaCl, and NaI on peptide α-helical folding and
unfolding kinetics. In particular, we explore how salts alter the mean folding and unfolding
times and look for possible molecular reasons. Strong salt-specific effects are found in the mean
folding times, which can be attributed to the binding of individual ions to multiple, anionic pep-
tide groups inducing transient cross-links between peptide fragments. In consequence, not only
equilibrium distributions of configurations are modified but also new, slow time scales in the
peptide’s configurational mobility arise due to enhanced internal friction. Salt effects are thus
reflected in both modified free energy landscape and local changes of the effective diffusivity;
our results demonstrate the highly specific action on protein folding kinetics by the individ-
ual binding of ions and, more generally, exemplify the intimate coupling between solvent and
intrapeptide friction effects in protein folding. We believe that these mechanisms could be of
general importance and transferable to a variety of biomolecular and polyelectrolyte systems.

The chapter is organized as follows: The simulation and analysis methods are introduced
in Sec. 4.1 and the results are presented in Sec. 4.2, before being comprehensively discussed in
Sec. 4.3. Our main findings are summarized in Sec. 4.4.
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4.1 Methods

4.1.1 Molecular dynamics simulations

Our MD simulations are performed using the parallel module sander.MPI in the simulation pack-
age Amber9.0 with the ff03 force field for the peptides and the rigid and nonpolarizable TIP3P
water for the solvent [184]. All simulated systems are maintained at a fixed pressure of P = 1
bar and a temperature T = 300 K by coupling to a Berendsen barostat and Langevin ther-
mostat [184], respectively. The cubic and periodically repeated simulation box of edge length
Lb ≃ 3.6 nm includes approximately 1500 water molecules. Electrostatic interactions are calcu-
lated by particle mesh Ewald summation, and all real-space interactions (electrostatics and van
der Waals) have a cutoff of 0.9 nm. The peptide is generated using the tleap tool in the Amber
package [184].

We investigate the helical folding and unfolding behavior of a 12 amino acid long peptide
with the acetyl (Ace) and amine (Nme) capped sequence Ace-AEAAAKEAAAKA-Nme. This
peptide can form three α-helical turns in the fully folded state, where Glu2 and Lys6, and Glu7
and Lys11, are potentially able to form a salt bridge, respectively [183]. The influence on α-
helix folding kinetics of a large concentration of ≃ 3.6± 0.1 mol/l of the simple monovalent
salts NaCl, KCl, and NaI is investigated. We have simulated the system without salt for approx-
imately 1.35 µs and including salt for roughly 2 µs for each salt type. We note here that the free
energy along the RC q (see below) derived from replica-exchange MD trajectories at T = 300 K
for the salt-free system gives very good agreement to the brute force approach [x], indicating a
decent statistical sampling by our trajectories.

The considered salt concentrations result from 90 ion pairs in the simulation box. Cations
and anions are modeled as nonpolarizable Lennard-Jones spheres with charge and interac-
tion parameters as supplied by Dang [185], as the default Amber parameters are known to be
faulty [186]. The Dang parameters show reasonable bulk thermodynamic properties in SPC/E

water even for high concentrations [187]. Comparative calculations in TIP3P water show only
small differences in hydration structure and no qualitative difference in the binding to peptide
groups [188]. The parameters used are summarized in previous work on the equilibrium struc-
ture of the EK peptide in salt at a different temperature [183]. We are aware of the weaknesses
of ionic MD force fields for quantitative predictions in biomolecular simulations, although a
reasonable description of helicity and destabilization with NaCl has been observed when com-
pared to experiments [183]. Since the destabilization seems to be overemphasized for NaCl, we
do not claim to be quantitative in our work but focus on the discussion of the main effects and
qualitative trends with the addition of salt; we believe these to be insensitive to the particular
force field and relevant for a variety of experimental observations.

The MD simulations analyzed in this chapter have been performed by Prof. Dr. Joachim Dzu-
biella from the Helmholtz Zentrum Berlin and Humboldt University Berlin and Dr. Immanuel
Kalcher from the Technical University of Munich.

4.1.2 Helicity and reaction coordinate

The trajectory analysis is performed using the ptraj tool in the Amber9.0 package [184]. The he-
licity, i.e., the α-helical fraction, is identified using the DSSP method by Kabsch and Sander [189].
We focus on the RC Q, which is defined as the root mean square distance from a fully helical
reference structure, i.e., a structure with helicity equal to one, averaged over all atoms of the
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Figure 4.1:
Left: Three reference structures. Right: Time series of the RC q for these choices of the reference struc-
tures in the salt-free case. a) reference 0, b) reference 1, c) reference 2. The reference structures deviate
from each other mainly in the arrangement of the E and K side chains. Reference 0 is the structure
used for the kinetic analysis within this chapter.

peptide and which thus measures the deviation from the "native" state. This quantity was pre-
viously found to act as an adequate dynamic RC in the salt-free case [x].

Trajectories are recorded with a resolution of 20 ps, giving a total of ∼ 67500 data points for
the simulations without salt and roughly 100000 data points for the runs including salt. For
convenience, we define a rescaled RC by q = (Q− Qmin)/(Qmax − Qmin), so that the minimal
and maximal values of the data points, denoted as Qmin and Qmax, are projected on the RC

values q = 0 and q = 1, respectively. The absolute minimum and maximum RC values are
similar for all systems and are Qmin ≃ 0.1 nm and Qmax ≃ 0.8 nm.

To check the sensitivity of our results on the microscopic reference structure used for the
definition of the RC, we calculated time series q(t) for three different structures for the salt-free
case. As is clearly seen from Fig. 4.1, the specific choice only has a minor influence on the form
of the resulting time series, which therefore yield the same kinetic behavior. Similarly, we only
observed a marginal influence of the reference structure on the resulting free energy landscapes,
i.e., local variations on the order of fractions of the thermal energy kBT, as shown in Fig. 4.2.

4.1.3 Bulk shear viscosities

In order to get a more complete picture of the solvent properties, we calculate bulk shear viscosi-
ties for NaCl, KCl, and NaI at the relevant concentrations in TIP3P water. We employ the same
ionic force fields as above but perform the simulations with the GROMACS 4.0 [91, 92] package
due to the implemented viscosity calculation methods. In these simulations, the periodically
repeated box has an edge length of Lb ≃ 4 nm, with a total number of 1910 water molecules
and 135 ion pairs. For the pure water simulation we use 2180 water molecules. After NPT-
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Figure 4.2: Free energy landscapes resulting from the same reference structures as in Fig. 4.1.

equilibration we proceed with an NVT-production run of 50 ns. We compare two approaches
to calculate the viscosity: First, we employ the Green-Kubo (GK) formula [190, 191]

η0 =
V

kBT

∫ ∞

0
〈σxz(t0)σxz(t0 + t)〉t0

dt, (4.1)

involving an off-diagonal component, e.g., σxz, of the stress tensor only. We obtained averaged
viscosities over a correlation time of 5 to 20 ps. The latter choice reflects the fact that the viscosity
converges rapidly but exhibits large statistical errors for long correlation times [192]. Second,
we perform a nonequilibrium perturbation method [190], in which an external force is applied
in the NVT-simulation with the periodic acceleration profile

ax(z) = A cos
(

2π
z

Lb

)

, (4.2)

Lb being the edge length of the box. The amplitude A needs to be chosen small enough in order
not to drive the system out of the linear response regime and at the same time large enough
to yield a decent signal-to-noise ratio. We set the amplitude to A = 0.02 nm ·ps−2 and refer to
previous work [190] for a more detailed discussion. We then obtain the viscosity by calculating
the average velocity profile of all particles [190].

With the GK formula we find values of η0 = (0.31± 0.01) × 10−3 kg/(m · s) for pure TIP3P
water, corroborating with previous studies [193], and ηsalt

0 = 0.58, 0.74, and (0.6± 0.01) ×
10−3 kg/(m · s) for the KCl, NaCl, and NaI solutions at a concentration of 3.6 mol/l, respec-
tively. The periodic perturbation method yields the same results within a 5% error range.
Compared to experimental values [194] the MD simulation considerably overemphasizes the
increase of the viscosity at this elevated salt concentration; indeed, the viscosity has experi-
mentally been found to increase by only roughly 5% for KCl and 30− 40% for NaCl and NaI
compared to pure water. This failure in describing the correct bulk viscosities of the electrolyte
solutions must be attributed to inaccuracies in the force field. Note that the value for pure
TIP3P water already considerably deviates from the experimental value 0.893 ×10−3 kg/(m · s)
at 298.15 K [195] by more than a factor of two.
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4.1.4 Diffusional analysis

Similarly to Sec. 2.3.1, we assume that the stochastic time evolution of the probability P(q, t)
of finding a configuration with RC value q at time t is described by the one-dimensional FP

equation [196]

∂

∂t
P(q, t) =

∂

∂q

(

D(q) e−F(q)/(kBT) ∂

∂q

(

eF(q)/(kBT) P(q, t)
))

, (4.3)

where D(q) is the (in general q-dependent) diffusivity and F(q) = −kBT ln〈P(q)〉 is the free
energy obtained by Boltzmann-inversion of the time-averaged normalized probability density
function 〈P(q)〉. Similarly as in Ref. [x], we define round-trip times (RTTs)

τRT(q, qt) ≡ sign(q− qt)[τfp(q, qt) + τfp(qt, q)], (4.4)

which specify the average time needed for an excursion starting at q, reaching qt at least once,
and returning to q for the first time. Similarly as in Sec. 2.3.1, MFPTs for transitions starting at q
and reaching qt are denoted by τfp(q, qt) in Eq. 4.4. For a diffusive process described by the FP

equation (Eq. 4.3) the RTT is given by the integral

τRT(q, qt) =
∫ q

qt

dq′
eF(q′)/(kB T)

D(q′)

∫ 1

0
dq′′ e−F(q′′)/(kB T) =

∫ q

qt

dq′
1

D(q′)〈P(q′)〉 , (4.5)

which is derived from Eq. 4.4 and the MFPT-formula in Eq. 2.20. Though Eq. 4.5 can in principle
be inverted to obtain the diffusivity profile D(q) from the slope of the RTT curves [x], we choose
a complementary analysis method here to avoid artifacts due to insufficient statistical sampling.
The FP approach assumes an underlying Markovian process and, as is easily seen from Eq. 4.5,
RTT curves (as a function of q) for different target points qt therefore only differ by a constant

τRT(q, qt) = τRT(q, q′t) + τRT(q′t, qt). (4.6)

The assumption of Markovian behavior however generally breaks down at short times and
for unsuitable RCs, i.e., RCs that do not single out the transition state as explicitly shown in
Chapter 2 and Ref. [x].

In our analysis of the simulation time series q(t) we discretize the RC in N = 50 intervals
centered around q(i) = (2i − 1)/100, i ∈ {1, 2, . . . , 50}; MFPTs between all possible pairs of
bins are extracted from simulation data and converted into RTTs using Eq. 4.4. To simplify
the analysis, we assume a flat diffusivity within each of the following regions: (i) values of
the RC q < q2/3 corresponding to an almost perfectly folded helix, (ii) one or two unfolded
helical turns equivalent to q2/3 ≤ q < q1/3, and (iii) mostly unfolded states characterized by RC

values q ≥ q1/3, where the indices 1/3 and 2/3 denote the average helicity at these q-values.
The values of the diffusivity in those three regions are used as fit parameters in Eq. 4.5 to best
reproduce the RTT curves obtained from simulation data; the integral in Eq. 4.5 is computed
numerically by linear interpolation of {〈P(q(i))〉}50

i=1. Best fits to the round-trip data for different
target points qt allow the determination of the diffusivity (including an error estimate) for each
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of the three regions. Alternatively, the diffusivity profile can also be obtained by fitting to the
average RTT

τRT(q(j)) ≡ 1
N

N

∑
i=1

τRT(q(j), q(i)), (4.7)

which is less affected by statistical noise and which according to Eq. 4.6 is just shifted vertically
with respect to the round-trip curve τRT(q, qt) for a specific target position qt. The results of
both fitting procedures are shown and discussed in Sec. 4.2.3.

4.2 Results

4.2.1 Equilibrium free energy landscapes

The RC time series of all investigated systems are shown in Fig. 4.3, where numerous folding
and unfolding transitions on different time scales are discernible. Already at a first glance
longer time scales (and fewer folding and unfolding transitions) are observed in the systems
with the sodium salts, which will be quantified and discussed in more detail in the following.
Free energy profiles F(q) of all investigated systems are extracted from the trajectories q(t)
and plotted in Fig. 4.4 together with the (time-averaged) helicity resolved along the RC. In
the salt-free case (black curve) in Fig. 4.4a, three minima are clearly visible: one at q1 ≃ 0.1,
a second at q2 ≃ 0.32, and a third, shallow one at q3 = 0.58. Judging from the helicity vs q,
plotted in Fig. 4.4b, these minima seem to correspond mainly to (1) a full helix with three turns,
(2) a partially unfolded helix with two neighboring turns, and (3) one helical turn as well as
fully unfolded states. Representative simulation snapshots taken at corresponding qi-values
(i = 1, 2, 3) confirm this view and are shown in Fig. 4.4b. We note that the value of q1, which
in absolute units corresponds to Q1 ≃ 0.16 nm, deviates from 0 (the reference state) due to
thermal fluctuations.

For KCl, the free energy F(q) is slightly shifted to favor unfolded states at larger q-values
(q3 ≃ 0.67), while the main features remain the same as without salt. The total helicity decreases
slightly from 62% to 55%. For the sodium salts, NaCl and NaI, the fully folded state at q1
becomes metastable, and the distribution is strongly shifted to the partially and fully unfolded
states. In particular, the third minimum at q3 deepens and broadens. Also in the systems with
salt the minima mostly match with partially folded α-helical states as can be judged from the
helicity vs q curve. All total helicities and positions of the minima in F(q) are summarized in
Tab. 4.1.

system helicity q1 q2 q3 q2/3 q1/3
no salt 0.62 0.11 0.31 0.57 0.34 0.56

KCl 0.55 0.10 0.32 0.67 0.35 0.65
NaCl 0.39 0.08 0.28 0.59 0.30 0.52
NaI 0.34 0.09 0.31 0.65 0.32 0.53

Table 4.1:
Total helicity of the investigated systems and helicity at the positions in the free energy landscape
shown in Fig. 4.4: locations of local minima are denoted by qi, i = 1, 2, 3, and values of the RC, where
the average helicity is 2/3 or 1/3, by q2/3 and q1/3 respectively.
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Figure 4.3:
Time series data for reaction coordinate q from the MD simulations in explicit water with varying salt
type. Data in black shows the full 20 ps resolution, while data in red is smoothed over time windows
of 2 ns.

For the NaCl and NaI salts the total helicity significantly decreases to about 39% and 34%,
respectively. The main causes have been discovered previously [183] and are twofold: First,
specific Na+-binding to the glutamic acid side chain carboxylates interferes with EK salt bridg-
ing, and second, the binding of cations to backbone carbonyls perturbs secondary-structure
forming hydrogen bonds [183]. In comparison to Na+, the specific binding of K+ is weak, and
KCl thus behaves less destabilizing. We note that quantitatively these effects are force field
dependent while the binding trends have been corroborated in many experiments and vari-
ous simulation studies [166–168]. For completeness, we plot radial distribution functions g(r)
between the cations and the oxygen atoms from the backbone carbonyls and side chain car-
boxylates in Fig. 4.5: the dominance of sodium over potassium binding to the anionic peptide
groups is obvious.

4.2.2 Long-lived structures and specific ion binding

Previous work on the EK-peptide stability in salt solution [183] revealed that due to Na+-
binding long-lived loop-forming configurations occupy the region of intermediate to large
q-values, in addition to one-turn and random coil states also present without salt. In these
looped configurations a single Na+-ion is collectively trapped by a few peptide backbone car-
bonyls and side chain carboxylates. This leads to a partial wrapping of the oligomeric backbone
around the ion. From a superficial inspection of our trajectories we find that these long-lived
configurations involving tightly bound Na+-ions can be stable on a≃ 1-10 ns time scale. Repre-
sentative simulation snapshots which are dynamically selected, so that they exist for more than
2 ns are shown in Fig. 4.6: A sodium ion is bound and wrapped by the central part of the pep-
tide, while the terminal parts exhibit partial helical turns in Fig. 4.6a. The bound sodium "locks"
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Figure 4.4:
a) Free energies F(q) for the EK peptide in different salt solutions; the profiles are shifted vertically
for better comparison. b) Average α-helicity of the peptide resolved by q. The snapshots illustrate
the backbone structure of partially folded/unfolded states corresponding to values of the helicity
indicated by arrows. Simulation snapshots are visualized using VMD [110].
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Radial distribution function of cations around peptide oxygen atoms from the side chain (sc) carboxy-
lates or backbone (bb) carbonyls. Inset: Residence time distribution for the cations in the first solvation
shell of the peptide oxygen atoms. The distribution for K+ can be fitted by a single exponential with
a time constant of τ = 50 ps, while the one for Na+ obeys a stretched exponential with τ = 50 ps and
stretching exponent β = 0.55.
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Figure 4.6:
Simulation snapshots of backbone configurations, in which a single Na+-ion (blue sphere) is trapped
by multiple oxygen binding sites (red). These snapshots are dynamically selected, so that the configu-
rations shown existed for longer than 2 ns. In a) and b), no side chains are shown to better illustrate
the binding to the backbone. In c) and d) all side chains are shown, since glutamic acid side chains are
also involved in binding the cation.
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this structure on times up to several nanoseconds. An example of a long-lived configuration,
in which two neighboring turns are correctly folded, while the rest of the peptide forms a loop
around the cation is shown in Fig. 4.6b. Often also the glutamic acid side chain is involved as
displayed in Fig. 4.6c-d, where the cation not only binds to a backbone carbonyl but also to the
headgroup of the E− side chain. In all these situations the peptide is relatively compact with
one or two turns correctly folded, corresponding to the q-region 0.25 . q . 0.65, where the he-
licity is mostly between 2/3 and 1/3 (cf. Fig. 4.4b). Configurations of this type have not or only
rarely have been found involving anions or a K+-ion, so that their existence must be attributed
to the relatively strong binding of the Na+-ion.

A rigorous life-time analysis of the occurring configurations involving trapped ions is diffi-
cult to perform due to the variety and complexity of the somewhat amorphous structures. We
therefore resort to the analysis of cation binding times. In the inset of Fig. 4.5, we plot the
binding time distribution Pb(t) of the cations K+ and Na+ in the first solvation shell of carboxy-
lates and carbonyls, which defined by the location of the first minimum in the cation radial
distribution function in Fig. 4.5. While the distribution decays exponentially for K+ with a time
constant of about 50 ps, we find a much slower, nonexponential behavior for Na+ which can be
best fitted by a stretched exponential of the form ∝ exp(−(t/τ)β) with τ ≃ 50 ps and β = 0.55.
This indicates that long binding times on the order of nanoseconds are indeed possible and
corroborate the existence of "trapped" unfolded configurations in which peptide parts tightly
wrap around the cation.

We note that it is indeed well established that systems with multiple trapping or other man-
ifestations of disorder can lead to anomalous kinetics [197]. In our investigated systems, the
appearance and magnitude of trapping is controlled by the nature of the ions. The observed
"stretched" exponentials resemble the slow relaxation in glass-forming liquids [198]. Anoma-
lous kinetics in peptide and protein dynamics have been indeed observed in simulations and
experiments for certain dynamic variables or RCs [199–201], and obviously question the general
validity of Markovian approaches to predict long-time dynamics in protein folding. While this
complex issue is still awaiting resolution, we proceed with the interpretation of helix folding
in the framework of simple diffusion. Since the average folding-unfolding times (& 10 ns) are
typically much larger than the ion binding times (∼ 50 ps), we expect the long-term dynamics
to be adequately described in terms of memoryless diffusion in a free energy landscape.

4.2.3 Folding kinetics

We first analyze mean folding and unfolding times: In Fig. 4.7a, the MFPTs for folding from
q > q1 to q1 given by τf(q, q1) ≡ τfp(q, q1) are shown; the salt-specific values of q1 are found
in Tab. 4.1. Without salt the typical folding time is about τf ≃ 20− 30 ns in the region q & 0.3
before it quickly drops down to 0 for q-values closely approaching q1. In KCl τf(q, q1) increases
by a factor of about 2, while the sodium salts lead to a considerable slowing down of folding
by one order of magnitude. The unfolding times τuf(q, q3) (q < q3), cf. Fig. 4.7b, show less
variations between the salts. Without salt the typical unfolding time is about 30-40 ns while it
may rise by a factor of 2-3 in NaCl or KCl. Note that for KCl both the folding and unfolding are
slower than in the salt-free case although the free energy landscape is very similar.

To get a grasp on the folding kinetics involving fewer helical turns we have also resolved
τf(q, q2) for q > q2 (folding by one or two turns to the two-turn state) and τuf(q, q2) for q < q2
(unfolding by one turn to the two-turn state), which are shown in Fig. 4.7c-d. The folding times
decrease by a factor of about 2 when compared to the q → q1 folding, while the trends with
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Figure 4.7:
a) MFPTs τf for folding from state q to q1. b) MFPTs τuf for unfolding from state q to q3. c) MFPTs τf for
folding from state q to q2. d) MFPTs τuf for unfolding from state q to q2.

salt remain the same, in particular the one order of magnitude slower folding in the sodium
salts. Unfolding times τuf(q, q2) are relatively small, lying between 3 − 7 ns. The variation
between the salts is again more pronounced for the folding times compared to the unfolding
times, which show a different ordering.

Note that the MFPTs shown in Fig. 4.7 are in part subject to substantial noise due to insuffi-
cient statistical sampling: for example, clear deviations from a monotonously increasing func-
tion (expected for diffusive dynamics) are observed in the KCl-folding times shown in Fig. 4.7a;
this irregularity has its origin in an exceptionally long-lived (relative to the full trajectory dura-
tion) state of a specific peptide configuration in the KCl-time series in Fig. 4.3 within the time
range 200 ns . t . 400 ns. Briefly, this specific configuration is characterized by two helical
turns and the Ace-cap being buried between the hydrophobic side chains of one Lys and one
Ala group. This configuration, which does not involve bound ions, is found rather frequently
in all trajectories but with typically much shorter life times.

4.2.4 Free energy and diffusivity profiles

We now turn to the interpretation of the mean folding times in terms of the free energy F(q) and
diffusivity profile D(q). For statistical reasons leading to the above-mentioned anomalies, we
have resolved the D(q) profile only by three q-regions distinguishing: (i) mainly full-helix states
corresponding to q < q2/3, (ii) one- and two-turn states, i.e., q2/3 ≤ q < q1/3, and (iii) mainly
unfolded states with q ≥1/3. We assume that these states are separated by the q-values, where
the average helicity is 2/3 and 1/3 in Fig. 4.4, the salt-specific values of q2/3 and q1/3 being
summarized in Tab. 4.1. The RTT τRT in Eq. 4.5 then is a function of q involving up to four pa-
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Figure 4.8:
a) Free energy landscapes with and without salt; colored circles show the positions of the target points
qt considered in the RTT analysis. b) RTTs from the q(t) trajectories (colored circles, same color coding as
in (a); colored lines show best fits of the RTT functions to the simulation data. Averaged RTTs (Eq. 4.7)
are shown as thick red lines, the corresponding best fits are displayed as dashed black lines. c) Diffusivity
profiles resulting from best fits to the data shown in (b) as explained in Sec. 4.2.4.

rameters: the target position qt, and the diffusivities Df, Dpf, and Duf in the folded (f), partially
folded (pf), and unfolded (uf) regions.

Free energy landscapes for the systems with and without salt are shown in Fig. 4.8a, where
colored circles denote the positions of target points qt considered in the RTT analysis. RTTs ex-
tracted from the simulation trajectory q(t) by combining MFPTs according to Eq. 4.4 are shown
as colored circles in Fig. 4.8b, where the color-coding denotes the target positions shown in
Fig. 4.8a and where the average round-trip curves defined in Eq. 4.7 are displayed as thicker
red lines. We now adjust the three diffusivity values Df, Dpf, and Duf in such a way to best
reproduce the RTT data extracted from the simulation trajectories: Best fits are shown as lines
in Fig. 4.8a, where colored thin lines correspond to fits to RTT data belonging to specific targets
qt and the thicker dashed black lines correspond to best fits to the average RTTs (Eq. 4.7). The
diffusivity profiles corresponding to these fits are shown in Fig. 4.8c, again using the same color
coding.

Clearly, insufficient statistical sampling and deviations from pure Markovian dynamics along
q lead to irregularities in the round-trip data of Fig. 4.8b: Round-trip curves corresponding to
distinct targets qt are not just strictly shifted vertically with respect to each other (cf. Eq. 4.6)
and—in particular for KCl—non-monotonous behavior is observed for some of the target po-
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Figure 4.9:
a) Free energy landscapes (same data as in Fig. 4.4a). b) Diffusivity profiles for all investigated systems
resolved by three regions q < q2/3, q2/3 ≤ q ≤ q1/3, and q ≥1/3, which correspond to the fully helical,
two-turn, and one-turn as well as unfolded states, respectively. Symbols with error bars result from fits
to the ensemble of RTTs for different targets qt (colored lines in Fig. 4.8c), while the diffusivity profiles
resulting from fits to the average RTT curve (black lines in Fig. 4.8c) are displayed as solid lines.

sitions, similarly to the artifacts seen in the average folding times in Fig. 4.7a. It is therefore
not astonishing that the resolved diffusivities (thin colored lines in Fig. 4.8) sensitively depend
on the target position qt. In Fig. 4.9b, the means and standard deviations of the thin, colored
diffusivity profiles in Fig 4.8c are displayed as circles with error bars, while the solid lines dis-
play the fit results to the average RTT curve, which is less affected by statistical noise (thicker
black lines in Fig 4.8c). As is seen from Fig. 4.9b, both analysis methods yield estimates, which
coincide within error bars (the only exception being KCl for q > q1/3), by this clearly validating
our approach.

First of all, we observe that the diffusivity profiles in Fig. 4.9b are not flat, a feature discussed
previously for this peptide in the salt-free case [x]. The inhomogeneities reflect variations of the
multidimensional configurational mobility of the peptide projected onto the one-dimensional
RC q, cf. Sec. 2.3.7. After including the salt, a few significant changes to D(q) are visible within
the large error bars: first, in the solution with sodium salts there is a moderate decrease of the
effective diffusivity by 30− 60% in the large q-region, q > q1/3, where the peptide is mostly
unfolded. In contrast, with KCl the diffusivity seems to increase by 30− 60% in the unfolded
regions. Second, a drastic drop in diffusivity is observed for all salts in the central region q2/3 <
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Figure 4.10:
a) Average folding and b) unfolding times from the reduced FP description using the diffusion profiles
denoted by solid lines in Fig. 4.9b (lines) and from the original time series (circles, same data as in
Fig. 4.7a-b). c) Average folding and d) unfolding times from the reduced FP description assuming a
flat diffusivity profile; times are displayed in units of the inverse diffusion constant Dconst.

q < q1/3, where the peptide features one or two α-helical turns. The decrease is about one order
of magnitude for the sodium salts NaCl and NaI. Finally, we find a smaller decrease of the
diffusivity again in the completely folded states q < q2/3, where the diffusion drops by about
30− 60% for the KCl and NaCl salts.

Although the resolution of D(q) is small, we emphasize that it can almost quantitatively
reproduce the folding and unfolding times plotted in Fig. 4.7. MFPTs for folding and unfold-
ing from the reduced FP approach using the free energy landscape and the diffusivity profiles
in Fig. 4.9 obtained by fitting to τRT are compared in Fig. 4.10a-b to the raw simulation data
(already shown in Fig. 4.7a-b). Note that the predictions of the reduced FP description are
qualitatively in agreement with the simulation data, especially for longer times where non-
Markovian effects become negligible, in contrast to what one would expect from a naive look
at the different free energies. This observation is corroborated by the comparison to Fig. 4.10c-d
displaying average folding and unfolding times resulting from an FP description involving a
state-independent diffusivity, i.e., a diffusion constant D(q) = Dconst. In particular, a flat and
salt-independent diffusivity cannot account for the salt-dependent ordering of the folding and
unfolding times seen in Fig. 4.10a-b. Conversely, this implies that the knowledge of the salt-
specific changes in the equilibrium free energy (Fig. 4.9a) is not sufficient to draw conclusions
about the salt-specific folding and unfolding dynamics. Similarly to Sec. 2.3.5, this comparison
thus demonstrates that only the combination of free energy and diffusivity profiles (Fig. 4.9a-b)
yields the complete picture of the kinetics.
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4.3 Discussion

Thus, while no clear-cut trends in the change of the diffusivity profile with salt can be recog-
nized, clearly the diffusivity mainly decreases with salt, along with a significant drop in the
partially folded states in the intermediate q-region. Importantly, the changes of D(q) with salt
are obviously not just a rescaling of D(q) of the salt-free system as if the action would just stem
from a nonspecific change due to a different bulk viscosity. In particular, the very few cases for
which a viscosity argument applies could be for NaCl and KCl in the low q-region, q < q2/3,
or for NaCl and NaI in the high q-region, q > q1/3: Here, the diffusivity is reduced by a factor
of 2, roughly the same as for the viscosity increase discussed in Sec. 4.1.3. Since there is no
general trend, however, we must conclude that the change of the diffusivity profile originates
from a combination of bulk viscosity effects and specific cosolute binding to the peptide. We
believe that viscosity effects may be more important in the large q-region than in the low q-
region, because large scale coil rearrangements in the solvent are frequent in the former, while
changes along the RC are mainly governed by internal mechanisms in the latter case. Here,
only minor configurational rearrangements like the expulsion of one water molecule or one
ion, or the forming and breaking of internal hydrogen-bonds take place. From this perspective
it is interesting to see the diffusivity increase in the high q-region for KCl, while from viscosity
arguments only it should decrease by a factor of 2.

However, given the diffusivity profiles in Fig. 4.9b, the large increase of folding times in
the Figs. 4.7a and 4.7c for the sodium salts must thus be attributed not only to the changes
in the free energy landscape but more dominantly, to the strongly reduced diffusivity in the
intermediate q -region, q2/3 . q . q1/3. The faster unfolding and the weaker dependence of
unfolding vs folding times on salt type (cf. Figs. 4.7b and 4.7d) seems to arise from a cancelation
effect, where the small diffusivity in the intermediate q-regions is counterbalanced by the low
unfolding barriers in the free energy landscape.

What are the molecular reasons for the major changes in the diffusivity profiles in the elec-
trolytes solutions? On the basis of our structural and ion binding analysis in Sec. 4.2.2, it is
now easy to argue that the prominent drop in the effective diffusivity in the sodium salts is a
consequence of the long-lived configurations similar to those shown in Fig. 4.6. The long-lived
character of these conformations is clearly observed in trajectory analysis and also manifested
in the long binding times of cations on a nanosecond time scale shown in Fig. 4.5. While the
form of the free energy landscape does not depend on the lifetime of these states (just what
fraction of time they are sampled), the long life times are clearly reflected in the intermediate
q-region of the diffusivity profiles. Due to the stronger binding of Na+ vs K+ to the peptide
oxygen atoms, the effect is less drastic in the KCl solution than for the sodium salts.

4.4 Conclusions

In this chapter, we have investigated the specific effects of salt at molar concentrations on the
α-helical folding kinetics of a short, alanine-based and salt-bridge-forming peptide by means
of molecular simulations and a diffusional analysis. Mean folding times have been found to
considerably depend on salt type with folding times varying over one order of magnitude. The
molecular basis for this is the previously observed stronger binding affinity of Na+- vs K+-
ions to anionic peptide groups thereby transiently cross-linking multiple groups in the peptide.
These binding processes increase the internal friction and induce a new, slow time scale. Within
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an analysis in terms of an effective diffusivity in a one-dimensional free energy landscape, these
new time scales are expressed by a strong and salt-specific variation of the local diffusivity. A
recent simulation study of a fully charged polyglutamic acid chain in salt solution has shown
that segmental relaxation kinetics are significantly slowed because of the same molecular mech-
anisms [188].

Therefore, adsorption of ions not only alter the equilibrium but also the kinetic properties of
protein folding by direct binding mechanisms. Whether a general relation between preferential
adsorption [202] and changes in the kinetics can be drawn may be an interesting topic for fur-
ther research. Given the current insights it seems likely, however, that the change in the kinetics
not only depends on the amount of adsorbed ions but also on the nature of the individual ion
peptide interactions.

As we have demonstrated, molecular simulations can provide valuable information to under-
stand the complex mechanisms in solvent-protein interactions and thereby protein stability and
folding. The molecular mechanism found may be of general importance to understand cosolute
effects on protein folding kinetics and shed more light onto experimentally observed cation-
specific slowing down of (bio-)polyelectrolyte kinetics [170, 173], in particular for halophilic
proteins [171, 172]. Similar mechanisms may be at work in polymer melts [203], so that more
experimental studies are highly desirable. In particular, the novel long-lived loop-forming
configurations in the denatured/unfolded states, in which sodium or similarly strong binders
are bound and immobilized by the peptide backbone, may be experimentally accessible by
nuclear magnetic resonance [204] or time-resolved Förster resonance energy transfer measure-
ments [162] probing salt-specific peptide relaxation and kinetics.

Furthermore, the action of complex denaturants such as guanidinium and urea deserve fur-
ther attention, and systematic studies on specific salt effects should follow. The guanidinium
cation, for instance, has been shown to decrease friction in neutral (GlySer)n peptides [161, 162].
We expect also a strong influence of other specifically binding cations on anionic peptides, such
as lithium, or polyvalent cations, such as Mg2+ or Ca2+. Large effects may also be anticipated
by exchanging the anion, which has been found to considerably alter the unfolding kinetics of
a halophilic protein [171, 172].
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CHAPTER 5

SPECTRAL ANALYSIS OF DUAL TRAP OPTICAL
TWEEZER EXPERIMENTS

Bibliographic information: Parts of this chapter and of Appendix E have previously been pub-
lished. Reprinted with permission from Ref. [iv]. Copyright 2012, AIP Publishing LLC.

Recent years have seen an ever increasing use of optical tweezers as sensitive tools for the
manipulation and observation of single molecules [205], including a number of studies focus-
ing on the mechanical properties of nucleic acids and proteins [53, 76, 77, 206]. As a result
of technological development, spatial resolution with sub-nanometer precision and sampling
rates reaching the MHz range [207, 208] are by now possible and allow unprecedented insights
into molecular structure and dynamics. Similarly to micro-rheological studies [209–211], dual
trap optical tweezers exhibit a number of advantages, including a higher "signal-to-noise" ratio
and a minimized influence of instrumental drift [212] and therefore are preferred to single trap
setups, when high precision is a concern.

Typical extension traces recorded in equilibrium single-molecule experiments display fluc-
tuating trajectories with discrete jumps of the extension trace baseline: The standard analysis
consists in computing the moving average of the time series to identify distinct molecular con-
formations, their average extension, equilibrium probabilities and inter-state kinetics [53, 77].
The thermal fluctuations of the tethered beads—often referred to as "noise"—are thus gener-
ally disregarded, although their spectral properties are a signature of the viscoelastic proper-
ties of the experimental construct and therefore interesting by themselves. In fact, based on
coarse grained simulations of such a single-molecule experiment, the contributions of the ex-
perimental handles, of hydrodynamic interactions, and—most importantly—of the molecule
under study to the measured fluctuations of the beads in their respective traps, could be disen-
tangled [ix].

Here, we provide a framework for the quantitative spectral analysis of data from actual dual
trap optical tweezer experiments. As will be shown, this involves a detailed understanding of
instrumental characteristics as well as a controlled way of inferring undetermined parameters
from experimental data.

The chapter is organized as follows: We start with a description of our experimental setup
in Sec. 5.1. The fluctuation-dissipation theorem (FDT) relating thermal equilibrium fluctuations
and linear force response of mechanical objects is reviewed in the general context of optical
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tweezer experiments in Sec. 5.2.1, while the more specific case of two unconnected beads is
treated in Sec. 5.2.2. Low Reynolds number hydrodynamics and the resulting frequency de-
pendence of self- and cross-mobilities are covered in the Secs. 5.3.1 and 5.3.2, respectively.
We model the signal processing in a dual trap optical tweezer setup including polarization
crosstalk, (parasitic) filtering, and instrumental noise and discuss the influence of the finite
sampling rate on self- and cross power spectral densities (PSDs) in the Secs. 5.4.1 and 5.4.2. The
statistical properties of auto- and cross-periodograms [213] of the experimental time series in
Sec. 5.5.1 form the basis for the maximum-likelihood method presented in Sec. 5.5.2, which
by Bayesian inference allows to determine optimal values for the model parameters. Judging
whether the theoretical model used is indeed adequate may be done by quantifying the devi-
ations between fit and experimental data as explained in Sec. 5.5.3. The overall procedure for
the spectral analysis is summarized in Sec. 5.5.4. As an application of the maximum-likelihood
method, we suggest a calibration scheme for dual trap optical tweezers based on three mea-
surements in Sec. 5.6. It can be viewed as a generalization of a calibration technique, which
for single trap setups is by now standard [214–218]. We consider a pair of unconnected but
hydrodynamically interacting beads trapped in their respective laser foci in Sec. 5.7 and explic-
itly demonstrate the influence of instrumental effects and of finite statistics on the auto- and
cross-periodograms of the measured signals. For a carefully calibrated setup, PSDs estimated
from experimental data agree with the theoretical predictions taking into account the frequency
dependence of hydrodynamic interactions (HI) arising from the finite time for vortex diffusion
in the fluid [219–221]. Our main findings are summarized in Sec. 5.8, while more technical as-
pects are found in Appendix E: Various filter effects are discussed in Appendix E.1, a minimal
model explaining the observed crosstalk asymmetry is presented in Appendix E.2, statistical
properties of auto- and cross-periodograms are explicitly calculated in Appendix E.3, basic
characteristics of the discrete Fourier transformation (DFT) are reviewed in Appendix E.4, and
the properties of normally distributed random variables on logarithmic plots are discussed in
Appendix E.5.

For more complex experimental situations, where a pair of trapped beads are e.g. tethered
via double stranded DNA handles to a protein, we suggest a two-step procedure to reliably
determine the viscoelastic properties of the molecular tether: (i) a calibration run as described
in Sec. 5.6 without the tethering macromolecular construct to fix the instrumental parameters,
and (ii) a production run with the tether construct to determine the tether parameters. In both
steps, the same maximum-likelihood method (Sec. 5.5.2) can be used, the only difference lying
in the thermal PSDs (Sec. 5.2.1) and in the set of parameters to be determined.

5.1 Dual Trap Optical Tweezers

The experimental setup used for trapping and tracking micron-sized beads is a custom-built
high-resolution dual trap optical tweezer with back-focal plane detection (see Fig. 5.1b) similar
to setups described elsewhere [212, 217, 222, 223]. The light of a 4 W linear polarized diode
pumped Nd:YVO4 solid state cw laser system emitting at 1064 nm (Spectra-Physics, Califor-
nia, USA) passes a Faraday isolator (Electro-Optics Technology, Inc., Michigan, USA) before
getting expanded and collimated by the first telescope. A first computer controlled and mo-
torized λ/2-plate followed by a polarizing beam splitter (PBS) cube (order number PTW 2.10
or PTW 2.20, Bernhard Halle, Germany) controls the overall laser power passing into the suc-
cessive optical parts. A second λ/2-plate sets the relative laser power in the two orthogonally



5.1 Dual Trap Optical Tweezers 67

Laser 1064 nm

PBS

PBS

PBSPBS

Beam Dump

AOM

Faraday

Isolator

1st Objective

Piezo Table

DetectorsBright Field Illumination

Bright Field Detection

λ/2 Plate

λ/2 Plate

Beam Expander

1.7x Telescope

2nd Objective

Piezoelectric

Tip/Tilt Actuator

Sample Chamber

λ/2 Plate

1x Telescope

(a) (b)

Figure 5.1:
a) Zoom-in into the dual trap optical tweezer sample chamber: The notation for the coordinates of
the beads (blue) relative to the trap centers (gray) is used throughout the chapter. b) Schematic of the
overall experimental setup described in Sec. 5.1.

polarized trapping beams separated by a second PBS. One of the beams is reflected by a mirror
mounted on a two axis piezoelectric tip/tilt actuator (Mad City Labs, Wisconsin, USA) provid-
ing lateral displacement of the corresponding trap in the specimen plane. The other beam is
frequency shifted using an acousto-optical modulator (Gooch & Housego, Great Britain) to re-
duce interference artifacts [224]. After recombination of the two trapping beams with a third
PBS a second telescope expands the beams to overfill the back aperture of the focusing objective
(63x/1.20 W Corr, C-Apochromat, Zeiss, Germany). The objective focuses the beams to two
diffraction-limited spots in the sample chamber. The use of a water-immersion objective per-
mits trapping deep inside the sample chamber. The distance from the cover slip is set to 20 µm
and therewith is much larger than typical inter-bead distances. The hydrodynamic influence
of the cover-slip surface is therefore neglected in Sec. 5.3. After passing the sample chamber
placed on a piezoelectric table (Physik Instrumente, Germany), the forward scattered light of
the trapped beads is collimated with a second identical objective. The beams are split by polar-
ization and imaged onto two position sensing devices (DL100-7PCBA3, Pacific Silicon Sensor
Inc., California, USA). Due to depolarization in the optical path and the intrinsic non-perfect
separation and conservation of polarization upon transmission through and reflection by the
PBSs, each of the detector signals to a certain degree also reflects the motion of the bead in the
"wrong" trap; this effect, known as polarization crosstalk [225], is explicitly considered in the
signal processing described in Sec. 5.4.1. All components are mounted on a vibration isolated
optical table (M-ST-46-12, Newport Corporation, Irvine, USA). Optical paths are enclosed to
minimize the effect of air fluctuations. Custom-built electronics are used for processing the
analog position signals including an individual offset correction, normalization and amplifi-
cation for each channel [214, 226]. Before recording, all signals are filtered with an 8th order
Butterworth filter with 3dB-frequency set at 200 kHz and further amplified (Model 3384 Filter,
Kron-Hite, Massachusetts, USA). For real-time steering and data acquisition a custom-written
LabVIEW program runs on a field-programmable gate array (FPGA)-board (NI PCI-7833R 3M,
National Instruments, Texas, USA). Data is recorded with a sampling rate of 100 kHz. Mea-
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surements are performed at a temperature of 22.6± 0.3◦ C using silica beads with 1.0 µm in di-
ameter (Bangs Laboratories, Indiana, USA) diluted in phosphate buffered saline (P4417, Sigma
Aldrich, St. Louis, USA). The sample chamber consists of two cover slips separated by stripes
of Nescofilm (Bando Chemical Industries Ltd., Japan) forming a channel, which is sealed with
vacuum grease after filling. The dimensions of the sample chamber are about 9× 18× 0.1 mm3.

Optical tweezer experiments have been performed by Alexander Mehlich and Benjamin Pelz
under the supervision of Prof. Dr. Matthias Rief at the Technical University of Munich.

5.2 Force Response and Thermal Motion

5.2.1 General formulation

In a dual trap optical tweezer experiment, the thermal motion of the two beads in their respec-
tive traps reflects the viscoelastic properties of the experimental construct. For simplicity, we
restrict the following discussion to the case, in which all spatial components decouple; the nec-
essary conditions for this to happen are detailed in Sec. 5.2.2. The thermal cross-correlation
function of the bead coordinates ri and rj is defined as

Sth
ij (t) ≡

〈
ri(0)rj(t)

〉
=
〈
ri(t
′)rj(t

′ + t)
〉

t′ ≡ lim
T→∞

1
T

∫ T/2

−T/2
dt′ ri(t

′)rj(t
′+ t), i, j ∈ {1, 2}, (5.1)

where the equivalence of equilibrium average 〈. . .〉 and temporal average 〈. . .〉t′ holds in er-
godic systems and where the measurement time is denoted by T. Correlation functions in
thermal equilibrium are of interest because they reflect the linear force response properties of
the system; in fact, the FDT [227] states

Jij(t) =

{

−(kBT)−1 dSth
ij (t)/dt for t ≥ 0,

0 for t < 0,
(5.2)

where kBT denotes the thermal energy and Jij the corresponding response function. In the
past, the interplay of (instantaneous) HI and the harmonic laser trap potential [228–230] as well
as the relaxation dynamics of DNA [231] were measured resolving auto- and cross-correlation
functions of the bead’s positions.

Here, working in frequency space turns out to be more convenient for the following reasons:
(i) Retardation/memory effects in the (integro-differential) equations of motions cause difficul-
ties when calculating temporal correlation functions, while they are easily taken into account
in frequency space as shown in Sec. 5.2.2, (ii) relevant instrumental effects such as crosstalk,
signal filtering, and instrumental noise can be accounted for as detailed in Sec. 5.4, and (iii) the
maximum-likelihood method presented in Sec. 5.5.2 makes it straightforward to quantitatively
evaluate experimental estimates for auto- and cross-PSDs, defined as the Fourier transforma-
tions (cf. Appendix A.2) of the corresponding thermal correlation functions

Sth
ij (ω) ≡

∫ ∞

−∞
dt Sth

ij (t)e
iωt, i, j ∈ {1, 2}. (5.3)
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Note that if time reversal symmetry holds, temporal correlation functions Sth
ij (t) as well as their

Fourier transformations, the PSDs Sth
ij (ω), are real and even functions. According to the cross-

correlation theorem, PSDs and the Fourier components of the stochastic motion are related via

Sth
ij (ω) 2π δ(ω− ω′) = 〈ri(ω)r⋆j (ω

′)〉, i, j ∈ {1, 2} (5.4)

where (. . . )⋆ denotes the complex conjugate. PSDs can thus directly be estimated experimen-
tally by calculating averaged auto- and cross-periodograms from the stochastic trajectories as
detailed in Sec. 5.5.1.

For simple systems as the one in Sec. 5.2.2, thermal PSDs can be obtained easily from the
stochastic equations of motion; for more complex constructs, it may be easier to calculate linear
response functions Jij relating average oscillation and external driving force amplitudes on the
linear level

〈ri(ω)〉 =
2

∑
j=1

Jij(ω) f ext
j (ω) +O

((
f ext)2

)

, i ∈ {1, 2}. (5.5)

Overall, the experimental object of study—two micron-sized beads in optical traps potentially
connected via a molecular tether and embedded in a fluid—is completely characterized by two
self-response functions J11 and J22 relating forces and displacements on the same bead and, in
the absence of time reversal breaking, one cross-response function J12 = J21 relating force and
displacement amplitudes of different beads. Dynamic (de-)convolution theory [ix] provides
a framework for iteratively calculating these three response functions from the mechanical re-
sponse characteristics of the individual components, i.e., the beads in the optical traps, the
elements of the molecular tether and HI between the various components. The corresponding
thermal PSDs are then obtained using the FDT in frequency space

Sth
ij (ω) =

2kBT
ω

Im
[
Jij(ω)

]
, i, j ∈ {1, 2}, (5.6)

where Im [. . . ] denotes the imaginary part. Because of causality (Jij(t) = 0 for times t < 0),
real and imaginary parts of the response functions in frequency space are related by Kramers-
Kronig relations [227]. Recording the equilibrium fluctuations of the system and estimating
the PSDs Sth

ij is therefore sufficient for completely characterizing the system’s force response via
Eq. 5.6.

5.2.2 Two hydrodynamically interacting beads

The stochastic, thermal motion of two unconnected beads in the trapping potentials of two laser
foci is described by a set of differential equations, which in the frequency domain reads

− i ω

(
r1(ω)
r2(ω)

)

=

(←→µ 11(ω) ←→µ 12(ω)←→µ 21(ω) ←→µ 22(ω)

)

·
(

f
trap
1 (ω) + f ext

1 (ω) + m1 ω2r1(ω)

f
trap
2 (ω) + f ext

2 (ω) + m2 ω2r2(ω)

)

+

(
vst

1 (ω)
vst

2 (ω)

)

. (5.7)

Here, the 3× 3 mobility tensors←→µ ij relate the forces on bead j, i.e., forces due to the trapping
potential f

trap
j , external forces f ext

j and inertial ones (m1 and m2 denoting the beads’ masses), to
the velocity −i ωri of bead i; the stochastic contribution to the motion of bead i is denoted by
vst

i .
The motion along the individual spatial coordinates in Eq. 5.7 decouples if the main axis of

the elliptic laser foci coincide with the Cartesian coordinates [214] and if the mobility tensors
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are diagonal. While the first condition can be achieved via careful alignment of the instru-
ment [223], the second requirement is satisfied in an unbounded fluid if the axis connecting the
trap centers is parallel to one of the coordinate axes (cf. Sec. 5.3.2). To simplify the notation,
we restrict ourselves to two identical beads (m ≡ m1 = m2) in the following, and distinguish
motion along the optical axis (o) as well as along (‖) and perpendicular (⊥) to the inter-trap
axis as shown in Fig. 5.1a.

The thermal motion of the two beads held in harmonic traps along the spatial coordinate α is
then described by the simpler set of equations of motion

− i ω

(

r1,α(ω)
r2,α(ω)

)

=

(

µself(ω) µα
cross(ω)

µα
cross(ω) µself(ω)

)

·

(
(−κ1,α + m ω2)r1,α(ω) + f ext

1,α (ω)

(−κ2,α + m ω2)r2,α(ω) + f ext
2,α (ω)

)

+

(
vst

1,α(ω)

vst
2,α(ω)

)

, (5.8)

where the trap strengths κi,α and, in particular, the cross-mobilities µα
cross in general depend on

the spatial coordinate α ∈ {‖,⊥, o}. The frequency dependence of self- and cross-mobilities is
a consequence of the hydrodynamic flow field created around a moving sphere discussed in
Sec. 5.3. The stochastic velocity contributions vst

i,α in Eq. 5.8 are due to thermal kicks of solvent
molecules and are normally distributed random variables with vanishing mean

〈
vst

i,α
〉
= 0, i ∈ {1, 2}, α ∈ {‖,⊥, o}, (5.9)

and correlations

〈vst
i,α(ω)vst

j,α
⋆
(ω′)〉 = 4π kBT Re

[
δijµself (ω) +

(
1− δij

)
µα

cross (ω)
]

δ(ω− ω′), (5.10)

where δij is the Kronecker symbol and where Re [. . . ] denotes the real part. Eq. 5.8 being linear,
solving for ri,α is straightforward; for each of the spatial directions α, thermal PSDs Sα,th

ij can
then be either calculated directly using Eq. 5.4 or by identifying response functions Jα

ij defined
via Eq. 5.5 and using the FDT (Eq. 5.6).

Though being in general characterized by a weaker trapping strength, the coordinate o is
equivalent to the coordinate⊥ from a hydrodynamic point of view due to symmetry, cf. Sec. 5.3.
Since bead displacements along ⊥ are easier to access experimentally than the ones along
o [232], we restrict the following discussion to the coordinates ‖ and ⊥. Note that for teth-
ered beads, motion along o and⊥will in general couple to the equations of motion for ri,‖ even
in a perfectly aligned setup. These nonlinear contributions (discussed extensively in Chapter 6)
can however be suppressed using longer tethers and smaller bead sizes [212][ix].

5.3 Low Reynolds Number Hydrodynamics

5.3.1 Flow-field around an oscillating sphere

The Reynolds number characterizing the relative importance of inertial compared to viscous
forces in a hydrodynamic flow is typically small for the thermal motion of micron-sized objects
in water: for a bead of radius a moving with velocity v through a fluid of kinematic viscosity
ν ≡ η0/ρ, with the fluid’s shear viscosity being denoted by η0 and its mass density by ρ, one
has Re ∼ av/ν. The equipartition theorem kBT ∼ m

〈
v2
〉
, where the bead’s mass is denoted

by m, allows to estimate the Reynolds numbers for the thermal motion of a micron-sized bead
in water, Re ∼

√
kBT/m a/ν ∼ 10−3 ≪ 1. Hydrodynamics are thus adequately described by



5.3 Low Reynolds Number Hydrodynamics 71

the linearized Navier-Stokes (or transient Stokes) equation, which for an incompressible fluid
reads

ρ ∂u/∂t = η0∇2u−∇p, ∇ · u = 0, (5.11)

where u denotes the velocity and p the pressure field in the fluid. Taking the curl of Eq. 5.11
yields a diffusion equation for the vorticity Ω ≡ ∇× u: vortices due to forces or torques acting
on objects in a viscous fluid thus diffusively propagate in space, the characteristic time scale for
diffusion over a distance R being τR ≡ R2/ν. A prominent consequence of the finite time scale
for vortex diffusion is the frequency dependence of the self-mobility µself (the inverse of the
sphere’s drag coefficient): For a no-slip sphere of radius a in an unbounded and incompressible
fluid, the exact result found by Stokes [16] reads

µStokes
self (ω) = µ0/

(
1 + λina + λ2

ina2/9
)

. (5.12)

where

λin ≡
√

−i
ω

ν
=

√−i ωτa

a
, Re [λin] > 0. (5.13)

The penetration depth in the fluid is 1/ |λin| and τa ≡ a2/ν is the characteristic time scale for
vortex diffusion on length scales comparable to the bead’s radius a. The self-mobility thus devi-
ates from the quasi-stationary self-mobility µ0 ≡ 1/(6πη0a) for frequencies ω & τ−1

a . Though
theoretically known for over a century, the frequency dependence in Eq. 5.12—responsible for
power law tails in the velocity autocorrelation function and resonances in PSDs—is of ongoing
interest [207, 208, 233, 234].

The velocity field around an oscillating sphere with a no-slip boundary condition on its sur-
face is calculated employing a standard singularity ansatz involving the Green’s function for a
force Stokeslet [16, 235]. For a sphere in an incompressible fluid, cross-sections of the velocity
field for various values of ωτa are shown in Fig. 5.2; animations visualizing the time evolution
of these velocity fields are included as supplementary material [236]. The direction of the ve-
locity field is denoted by streamlines (black lines with arrow heads), its amplitude by the color
coding, which is the same in all snapshots and animations, emphasizing the attenuation of the
velocity field at higher frequencies. At low frequencies the time dependence in Eq. 5.11 can
be neglected: in the "creeping flow" limit, forces are instantaneously propagated through the
fluid. The animations for values ω . 10−4/τa indeed show a flow-field that is almost imme-
diately built up all over the displayed cross-section; the flow-field in Fig. 5.2a is long-ranged
decaying as 1/R with corrections accounting for the finite bead size at small separations R ∼ a.
In contrast, retardation/memory effects become noticeable, when the time scale τR for vortex
diffusion over a distance R becomes comparable to the oscillation period: the flow direction
changes and the velocity magnitude is attenuated as seen in Fig. 5.2b. For further increasing
frequencies, vorticity effects not only appear at the edges of the displayed cross-section but
also in the sphere’s vicinity. For ω = 1/τa (Fig. 5.2c), the subsequent creation of vortices and
their diffusion towards the sides is best seen. For even larger frequencies (ωτa & 10) shown
in the series of animations [236], the flow-field is completely changed: it is now dominated by
the dipole contribution with magnitude decaying like 1/R3 and with frequency as 1/ω, while
vorticity effects are restricted to the direct proximity of the sphere. The external force acting
on and the velocity of the sphere are related by the frequency-dependent self-mobility given in
Eq. 5.12. Their amplitudes are shown as red and blue arrows within the spheres in Fig. 5.2 and
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Figure 5.2:
Cross-sections of the flow field around an oscillating no-slip sphere in an incompressible fluid for
various driving frequencies: a) ω = 10−4/τa, b) ω = 10−2/τa, c) ω = 1/τa. Streamlines indicate
the direction of the velocity field and the color coding its magnitude, where F0 is the driving force
amplitude and µ0 = 1/(6πη0a) the quasi-static sphere mobility. Spatial coordinates are given in units
of the sphere radius a, frequencies in units of τ−1

a = ν/a2, the kinematic viscosity of the fluid being
denoted by ν. Amplitudes of the driving force acting on and the velocity of the sphere are shown
as red and blue arrows within the spheres. The figures above show the configuration of the flow-field,
when the sphere velocity is maximal. Animations showing the time evolution of these flow fields are
included as supplementary material [236].

in the animations [236]; the phase shift and the decrease of the sphere’s self-mobility are clearly
discernible in the regime ωτa & 1.

Similarly to the sphere’s self-mobility (Eq. 5.12), the strength of the HI, i.e., the entrainment of
objects by the flow fields shown in Fig. 5.2, also depends on the driving frequency as discussed
in Sec. 5.3.2. For the spheres of radius a = 500 nm used in our experiment, the vorticity time
scale in water is τa ≈ 0.26 µs; in the snapshots (Fig. 5.2) and animations [236], the angular
frequency ω = 10−2/τa thus corresponds to a driving frequency f ≈ 6 kHz.

5.3.2 Frequency dependence of self- and cross-mobilities

Calculating the HI between two spheres of radius a at radial distance R constitutes a challenging
problem from a mathematical point of view, because the no-slip boundary conditions on the
sphere’s surfaces have to be fulfilled simultaneously. Since no closed-form solution is known,
one has to rely on approximations of varying complexity and accuracy, which are discussed in
the following. A series expansion of self- and cross-mobilities in powers of a/R and λina by
van Saarloos and Mazur [237] (vSM) yields self-mobilities

µvSM
self (ω) = µ0

(

1− λina +
8
9

λ2
ina2 − 7

9
λ3

ina3
)

, (5.14)
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Figure 5.3:
Dependence of real and imaginary parts of the self-mobility of a sphere on the driving frequency ω.
In the low-frequency limit, the quasi-stationary self-mobility µ0 ≡ 1/(6πη0a) of a sphere of radius a
in a fluid of shear viscosity η0 is recovered. On the bottom, the angular frequency ω is rescaled by
τa ≡ a2/ν, the top frequency scale corresponds to the experimental case where τa ≈ 0.26 µs (beads of
radius a = 500 nm in water). The exact result by Stokes (dashed lines, Eq. 5.12) and the approximate
expressions (solid lines, Eq. 5.14) nicely match over the entire range of frequencies resolved in our
experiment ( f . 100 kHz).

and cross-mobilities

µα,vSM
cross (ω)

µ0
=

3a
4R

e−λinR
(

1 +
5
9

λ2
ina2 +

1
6

λ3
ina3

) [

1 + δα,‖
]

−
(

a3

R3 +
9a

2λ2
inR3

−
(
5λ2

ina2 + 9
) (

λ2
inR2 + 2λinR + 2

)
a

4λ2
inR3

e−λinR

) [
1
3
− δα,‖

]

,

(5.15)

where δ‖,‖ = 1 and δ⊥,‖ = δo,‖ = 0. A comparison of the approximate expression for the spheres’
self-mobility (Eq. 5.14) and the exact result by Stokes (Eq. 5.12) is shown in Fig. 5.3: both nicely
match over the entire frequency range accessible in our experiment ( f . 100 kHz).

The frequency dependence of the cross-mobilities parallel and perpendicular to the inter-
bead axis are shown for two different ratios of inter-bead separation R to bead radius a as
solid lines in Fig. 5.4. In the low-frequency limit ωτR → 0, the cross-mobilities in Eq. 5.15
reduce to the principal components of the Rotne-Prager (RP) tensor [238] commonly employed
in Brownian hydrodynamics simulations [239]

µα,RP
cross

µ0
=

3a
4R

[

1 + δα,‖
]

+
3a3

2R3

[
1
3
− δα,‖

]

, α ∈ {‖,⊥, o}, (5.16)

with dominant 1/R-scaling and corrections accounting for the finite bead size a. These quasi-
stationary cross-mobilities are indicated by horizontal arrows in Fig. 5.4.

The finite time scale τR for the vorticity to diffuse over length scales comparable to the bead
separation R is reflected in the frequency dependence of real and imaginary parts of the cross-
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Figure 5.4:
Frequency dependence of cross-mobilities parallel (α =‖) and perpendicular (α =⊥) to the inter-bead
axis for two different ratios of inter-bead separation R to bead radius a: a) R/a = 20, b) R/a = 3.
Cross-mobilities for spheres of finite radius (solid lines, Eq. 5.15) are compared to the Oseen result for
point-like particles (dashed lines, Eq. 5.17) and to quasi-static HI (horizontal arrows, Eq. 5.16). Cross-
mobilities are given in units of the quasi-static Stokes self-mobility µ0 ≡ 1/(6πη0a) for a sphere
of radius a in a fluid of shear viscosity η0; the angular frequency is rescaled by the characteristic
time scale τa for vortex diffusion over the length scale of the bead’s radius a, the top frequency scale
corresponds to experimental conditions (τa ≈ 0.26 µs).
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mobilities as seen in Fig. 5.4; corrections to the quasi-static limit denoted by horizontal arrows,
set in at frequencies ω ∼ 1/τR and thus become apparent at smaller frequencies for the case of
large separations R/a = 20 as compared to R/a = 3. In contrast, corrections accounting for the
finite size of the beads are important at small separations (R/a = 3) and become irrelevant at
larger ones (R/a = 20): in the limit a/R → 0 the expressions for the cross-mobilities (Eq. 5.15)
reduce, as expected, to the Oseen result for point-forces [102, 240]

µα,Oseen
cross

µ0
=

3a
(
1− e−λinR(λinR + 1)

)

λ2
inR3

δα,‖ +
3a
2

e−λinR
(
λ2

inR2 + λinR + 1
)
− 1

λ2
inR3

[

1− δα,‖
]

, (5.17)

shown as dashed lines in Fig. 5.4. In the frequency and distance range, in which |λin| R ≫ 1
but still |λin| a ≪ 1, Eq. 5.15 reduces to [237]

µα,vSM
cross (ω)

µ0
≈ −

(
9
2

a
λ2

inR3
+

a3

R3

)[
1
3
− δα,‖

]

, α ∈ {‖,⊥, o}, (5.18)

revealing the existence of a second dynamic regime, in which HI are considerably weakened
and decay as 1/R3. Note that since |λin| a ≪ 1, in the above expression the first term ∝ ω−1

dominates over the second one accounting for the finite size of the beads.
As discussed in the last paragraphs, the strength of the HI depends on the relative distance

and orientation of the two beads, which introduces nonlinearities in the equations of motion
(Eqs. 5.7 and 5.8). The fact that the bead’s positional fluctuations (in our setup on the order
of
√

kBT/κ ≈ 5 nm) are relatively small compared to the average inter-bead separation R ∼
1.5− 10 µm justifies the pre-averaging [241] of the equations of motion, i.e., replacing the actual
cross-mobilities by the (constant) cross-mobilities for the average bead configuration.

Previous experimental studies have mostly focused on the quasi-stationary limit (Eq. 5.16):
The interplay of instantaneous HI and the finite relaxation times in the harmonic trapping po-
tentials of optical tweezers are responsible for time-delayed anti-correlations in the beads’ posi-
tions [228–230]. Similarly, translation-rotation coupling, though decaying as 1/R2 and therefore
weaker, is equally observable combining optical tweezers with polarization microscopy [242,
243]. The frequency dependence of the HI has been addressed in a series of experiments [219–
221] based on the point-particle limit derived by Oseen (Eq. 5.17), thereby neglecting correc-
tions for the finite size of the beads.

5.4 Signal Processing in a Dual Trap Optical Tweezer Experiment

The electrical signals recorded in a dual trap optical tweezer setup as described in Sec. 5.1
generally differ from the actual trajectories of the two beads due to various instrumental ef-
fects [214, 225, 244] including polarization crosstalk, filtering of the position sensing device and
amplification electronics as well as instrumental noise. The consequences of these instrumental
effects on the PSDs are discussed in Sec. 5.4.1. Experimentally, PSDs are estimated based on
discretely sampled and finite trajectories, the resulting effects are addressed in Sec. 5.4.2.

Notation: The following discussion equally applies to the signals corresponding to both spa-
tial coordinates α =‖ and α =⊥. To avoid an overloaded notation, indices and superscripts
α are therefore omitted. An overview of frequently used symbols throughout this chapter is
found in Tab. 5.1.
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Quantity Symbol Definition
Spatial direction α ∈ {‖,⊥, o}
Bead / Signal indices i, j ∈ {1, 2}
Bead coordinate ri
Linear response function Jij Eq. 5.5
Thermal correlation function / PSD Sth

ij Eqs. 5.1, 5.3 & 5.4
(Virtual) filter function fi Eq. E.13
Electrical signal zi Eqs. 5.19 & 5.20
Electrical PSD Sij Eq. 5.24
Electrical DFT component Zi Eq. E.41
Sampling interval ∆t
Sampling rate fsampl = 1/∆t
Nyquist frequency fNyq = fsampl/2
# of data points per time window N
Duration of a time window T = N∆t
Periodogram Pij Eq. 5.27
# of independent time windows Nw
# of discrete frequencies per block Nb
# of blocked frequencies resolved Nf
Averaged periodogram Pij Eq. 5.32

Table 5.1:
Overview of the notation used in this chapter; sub- and superscripts α are omitted in the text, if the
discussion equally applies to all spatial directions.

5.4.1 Crosstalk, signal filtering and instrumental noise

The use of a single laser for both optical traps induces polarization crosstalk between the chan-
nels [225], meaning that changes in the positions r1 and r2 of both beads contribute to each of
the detected signals

z̃i(t) ≡
∫ ∞

−∞
dt′ fi(t− t′)

2

∑
j=1

ǫijrj(t
′) i ∈ {1, 2}, (5.19)

with amplitudes ǫ11 ≫ ǫ12 and ǫ22 ≫ ǫ21 and where fi denotes the filter kernel in channel
i. Clearly, fi(t) = 0 for t < 0 due to causality. Filtering can be due to the position sensing
device detecting the centroid of the laser spot intensity [216, 244], the amplification electronics
or other factors, which are discussed in detail in Appendix E.1. In addition, the recorded signals
are affected by stationary additive and independent instrumental noise

zi(t) = z̃i(t) + ηi(t), i ∈ {1, 2}, (5.20)

with vanishing mean
〈ηi(t)〉 = 0, (5.21)

and correlations
〈ηi(t)ηj(t

′)〉 = Snoise
ij (t− t′),

〈
ηi(t)zj(t

′)
〉
= 0. (5.22)
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In the actual experimental setup, contributions to the noise ηi include vibrations of the optical
components in the optical path, electronic noise in the detectors as well as shot noise. Using the
Eqs. 5.19 and 5.20 and the above statistical properties of the instrumental noise, the PSD of the
electrical signals, defined by

〈zi(ω)z⋆j (ω
′)〉 = 2π δ(ω− ω′) Sij(ω), (5.23)

can be related to the thermal PSDs Sth
ij defined in Sec. 5.2.1 and the noise PSDs Snoise

ij ,

Sij(ω) ≡ fi(ω) f ⋆j (ω)
2

∑
k,l=1

ǫikǫjlS
th
kl (ω) + Snoise

ij (ω). (5.24)

Due to crosstalk, filter and noise characteristics, these PSDs Sij may dramatically differ from
the thermal PSDs Sth

ij , in particular: (i) The cross-PSD S12 can be dominated by Sth
11 or Sth

22 due to
crosstalk, if ǫ21Sth

11 & ǫ22Sth
12 or ǫ12Sth

22 & ǫ11Sth
12, which is always true for zero crossings of Sth

12,
(ii) although all thermal PSDs Sth

ij (i, j ∈ {1, 2}) are real (cf. Sec. 5.2.1), the cross-PSD S12 may have
a non-vanishing imaginary part, if the filter characteristics of the two position sensing devices
and electronics differ so that Im [ f1 f ⋆2 ] 6= 0, see Appendix E.1 for details, and (iii) auto-PSDs Sii
are generally more affected by instrumental noise than cross-PSDs, since the instrumental noise
in the two channels is found to be (almost) independent, Snoise

ii ≫ Snoise
ij , i 6= j.

5.4.2 Influence of time resolution and overall measurement time

Discretely sampled experimental signals form the basis of the spectral analysis and are used
to estimate auto- and cross-PSDs applying a DFT on the recorded time series. The use of a DFT

instead of a continuous Fourier transformation introduces systematic artifacts as detailed in
Appendix E.4. Most prominently, due to the finite sampling interval ∆t one obtains estimates
for the aliased PSDs

Sal.
ij (ωn) ≡

∞

∑
m=−∞

Sij

(

ωn + m
2π

∆t

)

, (5.25)

at discrete frequencies

ωn ≡
2πn

T
, (5.26)

where T = N∆t is the length of the time series and n is an integer. The double-infinite sum
over all integers m in Eq. 5.25 is in practice approximated numerically using suitable lower and
upper cutoffs, see Appendix E.4 for details.

5.5 Relating Experiment and Theory

In equilibrium optical tweezer experiments, the recorded signals reflect the stochastic, thermal
fluctuations of the beads in the setup: Periodograms calculated from experimental time series
therefore are random variables, the statistical properties of which are discussed in Sec. 5.5.1,
while the explicit calculations are found in Appendix E.3. Based on these statistics, a maximum-
likelihood method is proposed in Sec. 5.5.2, which allows to determine unknown parameters
by a global fit of auto- and cross-PSDs to the periodogram values. Quantifying the deviations
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between fit and experimental data may serve to validate the underlying model as shown in
Sec. 5.5.3. The overall spectral analysis is summarized in Sec. 5.5.4.

5.5.1 Statistical properties of auto- and cross-periodograms

The thermal motion of the beads being stochastic, the signals zi(t) recorded over a time window
T, their Fourier components zi(ω) as well as real and imaginary parts of the periodograms

Pij(n) ≡
1
T

zi(ωn)z⋆j (ωn), (5.27)

are stochastic quantities. Leakage effects (cf. Appendix E.4) being negligible as long as the
window time T is much larger than all relevant time scales in the system [214], the expectation
values of real and imaginary parts of the periodograms by definition (cf. Eqs. 5.23 and 5.27)
coincide with the corresponding real and imaginary parts of the PSDs

〈
Re
[
Pij(n)

]〉
= Re

[
Sij(ωn)

]
, (5.28)

〈
Im
[
Pij(n)

]〉
= Im

[
Sij(ωn)

]
. (5.29)

However, the values of individual periodograms are broadly distributed around these expecta-
tion values as is seen from the variances of these quantities. From the explicit calculations in
Appendix E.3 resulting in the Eqs. E.38-E.40, one obtains [213]

Σ2 [Re
[
Pij
]]

=
1
2

(

SiiSjj + Re
[
Sij
]2 − Im

[
Sij
]2
)

, (5.30)

Σ2 [Im
[
Pij
]]

=
1
2

(

SiiSjj − Re
[
Sij
]2

+ Im
[
Sij
]2
)

, (5.31)

where Σ2 [. . . ] ≡
〈
(. . . )2〉− 〈. . .〉2 denotes the second central moment and the frequency argu-

ments have for simplicity been omitted. For auto-periodograms (i = j), which by definition
are real and positive, Σ2[Re [Pii]] = S2

ii since Im [Sii] ≡ 0 in Eq. 5.30; the statistical uncertainty
thus coincides with the expectation value Sii. More specifically, one can show that the values of
the auto-periodogram Pii are exponentially distributed [214, 245, 246]. Note that periodogram
values are non-self-averaging, meaning that increasing the signal length T yields periodogram
estimates for a larger set of discrete frequencies and reduces leakage effects (cf. Appendix E.4)
but has no influence on the periodogram statistics.

For the real and imaginary parts of the cross-periodograms (i 6= j), the situation is even
worse, since the statistical uncertainties will in general exceed the expectation values due to
the dominance of the term SiiSjj in the Eqs. 5.30 and 5.31; in the general case where Sij 6= 0,
the form of the probability density functions (PDFs) for real and imaginary parts of the cross-
periodograms are not simple [213].

The previous statements, which are based on the use of the continuous Fourier transforma-
tion, also apply to the periodograms based on the DFT of discretely sampled time series, if the
PSDs Sij in the Eqs. 5.28-5.31 are replaced by their aliased equivalents Sal.

ij defined in Eq. 5.25,
see Appendix E.3 for details.
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Figure 5.5:
Visualization of the signals in a typical dual trap optical tweezer experiment as described in the
Secs. 5.4 and 5.5.1. a) Signal processing as described by the Eqs. 5.19 and 5.20; averaged periodograms
Pij obtained via DFT from the discretely sampled stochastic trajectories yield experimental estimates
for the aliased PSDs Sal.

ij . b) Relation between auto- and cross-PSDs Sth
ij of the beads’ thermal motion

and aliased electrical PSDs Sal.
ij according to the Eqs. 5.24 and 5.25. Unknown parameters in the PSDs

can be determined via a global maximum-likelihood fit to Pij as explained in Sec. 5.5.2.

The way to deal with the above mentioned statistical uncertainties is of course to average
periodograms over Nw statistically independent time windows and (possibly) over blocks of
Nb discrete, neighboring frequencies, yielding averaged periodograms

Pij(n) ≡
1

NwNb

Nw

∑
k=1

∑
l

P(k)
ij (l), (5.32)

where the superscript (k) discriminates the periodogram values of different time windows and
the index l runs over the block of Nb frequencies around ωn. Note that "blocking" may cause ar-
tifacts: for a single trap blocking effects are negligible as long as Nb ≪ κµ0T/(2π), see Ref. [214]
for further details. According to the central limit theorem, the statistical uncertainty Σ of the
averaged periodograms is reduced by a factor 1/

√
NwNb with respect to the periodograms of

individual time windows; the values of Pij thus represent statistically more reliable experimen-
tal estimates of the PSD Sij.

Clearly, not the individual values of the auto- and cross-PSDs Sij are of interest but the values
of the parameters in the theoretical model, which yield the best agreement between theory and
experimental data, i.e., the averaged auto- and cross-periodograms Pij at the discrete frequen-
cies ωn resolved experimentally. A controlled way of inferring these parameters from the data
taking into account the statistical aspects discussed in this section is given by the maximum-
likelihood method described in Sec. 5.5.2. A schematic summarizing the signal processing
described in Sec. 5.4 and the relationship between periodograms and PSDs discussed above
is found in Fig. 5.5.

5.5.2 Maximum-likelihood fits of power spectral densities

The theoretical auto- and cross-PSDs Sij of the electrical signals involve parameters both on
the level of the thermal motion of the experimental object (trap strengths, particle radii, etc., cf.
Secs. 5.2 and 5.3) as well as on the level of the signal processing in the instrument (amplification,
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polarization crosstalk, parasitic filtering, etc., cf. Sec. 5.4 and Appendix E.1). For averaged
periodograms Pij (Eq. 5.32) calculated from experimental time series, optimal parameter values
can be obtained by Bayesian inference, which thus constitutes the missing link between theory
and experiment in Fig. 5.5. The strength of the method consists in the fact that the statistical
aspects discussed in Sec. 5.5.1 are inherently taken into account.

In general, given some measured data, the most likely parameters (params) are those maxi-
mizing the conditional probability P (params|data). Using Bayes’ theorem

P (params|data) =
P (data|params)P (params)

P (data)
, (5.33)

and assuming a uniform prior distribution of the parameters, i.e., P (params) = const., maxi-
mizing P (params|data) turns out to be equivalent to maximizing the conditional probability
P (data|params) of observing some data given a set of parameters. In the present case, the data
consists of the ensemble of averaged periodogram vectors

P ≡ (P11, P22, Re
[
P12
]

, Im
[
P12
])T , (5.34)

at each of the Nf discrete frequencies resolved in the spectral analysis. Periodograms of distinct
time windows are independent random variables drawn from a PDF with finite first and second
moments given in Sec. 5.5.1 and Appendix E.3. According to the central limit theorem, when
averaging over a large number NwNb of realizations, the PDF for an averaged periodogram
vector P converges to a multivariate normal PDF characterized by the expectation vector

〈
P
〉
= Sal. ≡

(

Sal.
11 , Sal.

22 , Re
[

Sal.
12

]

, Im
[

Sal.
12

])T
, (5.35)

and a covariance matrix resulting from the periodogram covariances calculated in Appendix E.3,

Val. ≡ 1
NwNb

×





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)








,

(5.36)

where the (discrete) frequency arguments n and ωn are again omitted for simplicity. Peri-
odogram values at different frequencies being (approximately) independent [213], the overall
conditional probability of observing a certain ensemble of averaged periodograms given a par-
ticular set of parameters is just the product of the Nf multivariate normal PDFs

P(data|params) = ∏
n




1

4π2
√

det(Val.(ωn))
e−

1
2 (P(n)−Sal.(ωn))

T ·Val.−1
(ωn) ·(P(n)−Sal.(ωn))



 . (5.37)

For a given ensemble of averaged periodograms, the optimal set of parameters is obtained
by maximizing the above conditional probability with respect to these parameters; by rea-
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son of numerical stability, it is however preferred to minimize the negative log-likelihood
− log (P(data|params)), which up to a constant equals

∑
n

(
1
2

(

P(n)− Sal.(ωn)
)T
·Val.−1

(ωn) ·
(

P(n)− Sal.(ωn)
)

+
1
2

log
[

det
(

Val.(ωn)
)])

. (5.38)

The maximum-likelihood method for determining the optimal set of parameters in the theoret-
ical model consists of performing a minimization of Eq. 5.38 in the (multidimensional) parame-
ter space; since the second term in Eq. 5.38 can be neglected if

√

NwNb(n)≫ 1, one is left with
minimizing the sum of normalized squared deviations

SNSD ≡∑
n

(

P(n)− Sal.(ωn)
)T
·Val.−1

(ωn) ·
(

P(n)− Sal.(ωn)
)

, (5.39)

which corresponds to a standard multidimensional least-square fit, for which a handy imple-
mentation in C/C++ has been provided by M. Lourakis [247].

Note that in the case of one trap and thus a single signal, Val. = Sal.
11

2/(NwNb) and Eq. 5.38
(again up to a constant) reduces to

∑
n




NwNb(n)

2

(

P11(n)
Sal.

11(ωn)
− 1

)2

+ log
(

Sal.
11(ωn)

)



 . (5.40)

This is the quantity which is commonly minimized for the calibration of single trap setups [214].

5.5.3 Deviations between fits and data

Once Eq. 5.39 has been minimized numerically, the encountered minimal value

SNSDmin ≡ min
params

SNSD, (5.41)

quantifies the remaining squared deviations between averaged experimental periodograms
and theoretical PSDs. The fit quality can be judged based on the sample average of the nor-
malized deviations per experimental observable

χ2
fit =

1
NP Nf

SNSDmin, (5.42)

where Nf denotes the number of discrete frequencies resolved in the spectral analysis and NP

is the dimension of the periodogram vector P defined in Eq. 5.34. The expectation value of χ2
fit

being 1, the encountered value of χ2
fit is an indicator for the quality of the theoretical modeling

of the experimental signals: both values χ2
fit ≫ 1 and χ2

fit ≪ 1 indicate deficits in the model
and comparing χ2

fit-values may help to discriminate between various potentially appropriate
models.

In some cases, it is helpful to restrict the computation of SNSD and χ2
fit to a subset of the

observables in P to localize the source of the deviations observed. If for example only P11 and
Re [P12] are considered, only the first and third columns and rows in Val. are taken into account
and one sets NP = 2 in Eq. 5.42.
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5.5.4 Power spectral analysis in a nutshell

Overall, the auto- and cross-power spectral analysis of optical tweezer experiments proposed
in this chapter involves the following procedure:

1. Determine the analytical form of the auto- and cross-PSDs Sth
ij describing the thermal fluc-

tuations of the beads, which are the experimentally accessible parts of the overall con-
struct under study (Sec. 5.2).

2. Identify the relations between bead positions and detected signals (Sec. 5.4) and deduce
the analytical form of the auto- and cross-PSDs Sij.

3. Perform the actual experiment and calculate averaged auto- and cross periodograms Pij
from the experimental time series via Eqs. 5.27 and 5.32.

4. Perform a numerical minimization of Eq. 5.39 to determine the optimal parameter values
compatible with the data.

5. Judge on the validity of the theoretical model based on the deviations between best fits
and the experimental data (Sec. 5.5.3).

In a first step, this procedure allows a precise calibration of the instrument by three consec-
utive calibration measurements as shown in Sec. 5.6. In a second step, additional unknown
parameters of more complex experimental constructs, characterizing for example the viscoelas-
tic properties of the molecular tether under study, can be determined.

5.6 Calibration of Dual Trap Optical Tweezers

A series of three measurements is proposed for the calibration of a dual trap optical tweezer
setup: (i) both traps empty, in the following named Cal. I, (ii) first trap occupied, second one
empty (Cal. II), and (iii) second trap occupied, first one empty (Cal. III). In Cal. I, all thermal
PSDs vanish, Sth

ij = 0, ∀i, j, and therefore according to Fig. 5.5a the recorded periodograms Pij

result from the instrumental noise only. In Cal. II, only the thermal PSD Sth
11 is non-zero reflecting

the stochastic motion of a single bead in the first optical trap [214] and similarly Sth
22 is the only

non-vanishing thermal PSD in Cal. III. Explicit expressions for the thermal PSD of a single bead
in a harmonic trap are for example found in Ref. [214].

Detector output voltages are recorded with 100 kHz sampling rate over a time window of
60 s for each of the calibration experiments. The time series are analyzed using 6000 windows
of T = 10 ms duration each, and blocking neighboring periodogram values resulting in blocked
periodogram values at 84 distinct discrete frequencies in the range of 100 Hz to 50 kHz. The
averaged periodograms resulting from the spectral analysis are denoted as symbols in Fig. 5.6,
where top and bottom figures show data corresponding to the spatial direction parallel and
perpendicular to the inter-trap axis, respectively.

The averaged periodograms from Cal. I shown in Fig. 5.6a reveal that the instrumental noise
recorded by the two detectors is to a major extent independent, demonstrated by the fact that
typical amplitudes of the cross-periodograms P12 are suppressed by one order of magnitude
or more with respect to the auto-periodogram values P11 and P22. The functional form of the
instrumental noise-PSDs Snoise

ij , the Fourier transformations of the noise correlation functions
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Figure 5.6:
Results of the three calibration measurements described in Sec. 5.6: a) no trapped beads, b) first trap
occupied and second one empty, c) vice versa. Averaged experimental periodograms P

α
ij are denoted

by symbols, theoretical PSDs Sα al.
ij , based on a global maximum-likelihood fit to the data (Sec. 5.5.2)

are shown as lines, where dashed lines correspond to negative values of the PSDs; fit values are given
in Tab. 5.2. Results for the spatial coordinates parallel to the inter-trap axis (α =‖) are shown in the
upper row, those for the perpendicular direction (α =⊥) in the lower one.

in Eq. 5.22, can be modeled as a uniform white-noise background spectrum superimposed by
a 1/ f -PSD as well as a number of spikes at well-defined frequencies (data not shown). Given
that, according to Eq. 5.24, noise PSDs simply yield an additive contribution to the detected PSDs
Sij, we restrict ourselves to directly use the values of the averaged periodograms in Fig. 5.6a
as reliable estimates of the aliased noise PSDs for the analysis of the subsequent experiments.
Assuming stationarity and statistical independence of the time windows, the expected statis-
tical error for the averaged auto-periodograms is in fact on the order of one percent or below,
depending on the block size.

According to Fig. 5.5b, one expects contributions of the thermal motion of the bead in the
first trap, Sth

11, and of the instrumental noise, Snoise
ij , to the measured periodograms of Cal. II.

The averaged periodograms P11 (red circles) in Fig. 5.6b in fact reflect the typical Lorentzian
shape of Sth

11. Due to polarization crosstalk (ǫ21 6= 0) the thermal motion of the bead is also
observed in the real part of the cross-periodograms, Re

[
P12
]
, shown as green symbols, though

reduced in amplitude by a factor ǫ21/ǫ11 with respect to P11. The auto-periodogram of the
second signal P22 (blue circles) is clearly dominated by the instrumental noise, the thermal
motion of the bead introducing only slight changes with respect to Cal. I in Fig. 5.6a. The
imaginary parts of the cross-periodogram values, Im

[
P12
]

(orange symbols), result from an
asymmetry in the signal filtering properties of the two channels as well as from the statistical
uncertainty and will be discussed later. Up to this point, the undetermined parameters are the
trap strength κ1 in Sth

11, the V/nm conversion factors ǫ11 and ǫ21 as well as parameters φi and τi
(i ∈ {1, 2}) reflecting the parasitic filtering properties of the two position sensing devices and
entering the filter functions f1 and f2, see Appendix E.1 for further details. The situation for



84 5 Spectral Analysis of Dual Trap Optical Tweezer Experiments

Quantity Symbol Values ‖ Values ⊥ Units
Trap strength κ1 0.21± 0.021 0.21± 0.007 pN/nm

κ2 0.21± 0.018 0.20± 0.012 pN/nm
Amplitudes ǫ11 32± 1.1 61± 1.0 mV/nm

ǫ12 0.93± 0.034 0.34± 0.021 mV/nm
ǫ21 0.52± 0.025 2.10± 0.037 mV/nm
ǫ22 32± 1.2 56± 1.0 mV/nm

Pol. crosstalk ǫ12/ǫ11 2.9 0.56 %
ǫ21/ǫ22 1.6 3.7 %

Fraction of φ1 0.6± 0.054 0.63± 0.038 —
fast electrons φ2 0.6± 0.040 0.61± 0.023 —
Electr. relax. τ1 5.7± 1.5 5.5± 1.0 µs
time scale τ2 6.1± 1.5 6.6± 0.8 µs
Normalized sq. χ2

fit 18 8.7 —
deviations χ2

fit, red 1.8 2.1 —

Table 5.2:
Calibration results: Best fit parameters obtained from global maximum-likelihood fits to the averaged
periodograms in Fig. 5.6 as described in Sec. 5.6.

Cal. III is analogous to the previous discussion of Cal. II except for indices 1 and 2 interchanged,
which adds the three additional parameters κ2, ǫ12 and ǫ22.

Since voltage amplitudes and polarization crosstalk differ for both spatial directions, we treat
the corresponding data sets for α =‖ and α =⊥ separately. We use η0 = 0.949 · 10−3 N s/m2

and ν = 0.951 · 10−6 m2/s for the dynamic and kinematic viscosity of water at the experimental
temperature T = 22.6◦ C and the radius a = 500 nm given by the manufacturer for both beads.
The values of the 10 parameters are determined by a global maximum-likelihood fit to averaged
auto- and cross-periodograms from Cal. II and III as described in Sec. 5.5.2. Best fits to the data
are shown as black lines in Fig. 5.6, values of the fit parameters including confidence intervals
are found in Tab. 5.2. As expected, the fit values for the trap stiffnesses κ1 and κ2 as well as
for the detector properties (φ1, φ2, τ1, τ2) for the two orthogonal spatial directions ‖ and ⊥ in
Tab. 5.2 agree within error.

In Fig. 5.6, the agreement of experimental data and fits for the auto-PSDs S11 and S22 and
the real part of the cross-PSD, Re [S12], is excellent over the entire range of frequencies for both
Cal. II and III. As is seen from Tab. 5.2, the sample average of the squared normalized deviations
of the data from the PSD values χ2

fit defined in Eq. 5.42 is relatively large compared to the expec-
tation value of 1, the reasons for which most likely are: (i) differences in the instrumental noise
Snoise

ij in Cal. I compared to Cal. II or III, (ii) other non-stationary effects in the experimental
setup, which are intrinsically difficult to model and to quantify, and (iii) an inconsistency be-
tween Cal. II and III concerning the imaginary parts of the cross-periodograms Im [P12], which
is discussed at the end of this section. In fact, when restricting the computation of χ2

fit to the
quantities which are less sensitive to the above mentioned effects, i.e., P11 and Re [P12] in Cal. II
as well as P22 and Re [P12] in Cal. III, one obtains reasonable values for the squared deviations
denoted by χ2

fit, red in Tab. 5.2.
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Once the setup is calibrated as described, all instrumental parameters are set and the link
between electrical PSDs Sij and the thermal PSDs Sth

ij is thus established, as is seen from the
signal processing summarized in Fig. 5.5b. For more complicated experimental constructs, e.g.,
single molecules tethered to the beads, additional unknown parameters characterizing the vis-
coelastic properties of the molecule under study and entering the thermal PSDs Sth

ij of the over-
all experimental construct [ix], can in a second step be determined from the measured auto-
and cross-periodograms Pij employing the same maximum-likelihood fitting method. Here,
we demonstrate in Sec. 5.7 that—without additional adjustable parameters—the periodograms
recorded for two hydrodynamically interacting beads are in excellent agreement with the the-
oretical predictions over the entire range of frequencies resolved and for different trap separa-
tions. We thereby demonstrate the accuracy of the calibration method and the influence of the
frequency dependence of the HI discussed in Sec. 5.3 on the PSDs.

However, some additional comments on the calibration spectra and the fit results are worth
to be mentioned before proceeding:

• The radii of micron-sized beads used in optical tweezer experiments may vary from one
bead to another due to finite sample variance. Determining the bead radii using a stan-
dard approach [217] involves a low-frequency oscillation of the piezo stage and adds the
two parameters a1 and a2 to be determined when calibrating the instrument. Based on the
peak amplitudes of P11 in Cal. II and P22 in Cal. III at the driving frequency of 30 Hz (data
not shown), we found bead radii 500± 5 nm in perfect agreement with the manufacturer’s
specifications (cf. Sec. 5.1). We therefore use a fixed bead radius a1 = a2 = a = 500 nm
in all our modeling. Note that the oscillation of the piezo stage also induces a periodic
signal in the "empty" channel (2 in Cal. II and 1 in Cal. III), the amplitude and relative
phase of which is less straightforward to interpret; values of the cross-periodogram and
the auto-periodogram of the empty channel at the driving frequency have therefore not
been considered when determining a1 and a2. In asymmetric setups, the bead masses m1
and m2 in Eq. 5.7 would have to be adjusted and our common radius a in the expressions
for the self-mobilities (Eqs. 5.12 and 5.14) would have to be replaced by a1 and a2, respec-
tively; expressions for the corresponding cross-mobilities replacing Eq. 5.15 are found in
Ref. [237].

• As is clearly seen from Tab. 5.2, the polarization crosstalk amplitudes in the two channels
and for the two spatial directions differ considerably ranging from 0.56 to 3.7 percent.
Moreover, the importance of crosstalk is larger in channel 1 for the ‖-direction, while it
is dominant in channel 2 for the ⊥-direction. This observed asymmetry is presumably
a consequence of the orthogonally polarized light in the two traps and the fact that the
two spatial directions are detected in different layers of the position sensing devices, see
Appendix E.2 for a minimal model explaining this crosstalk asymmetry.

• According to our model for the signal processing in Sec. 5.4, the ratio of real and imagi-
nary parts of the cross-PSDs results from the filtering properties in the two channels and
is given by Re [ f1 f ⋆2 ] /Im [ f1 f ⋆2 ] and thus independent of the thermal PSDs Sth

ij , which are
purely real (cf. Sec. 5.2.1). In contrast, the ratio of real and imaginary parts of the cross-
periodogram values in Fig. 5.6, given by the distance of the periodogram values in the
logarithmic plots, differ for Cal. II and Cal. III. The filtering properties of the detectors
thus seem to slightly differ depending on which of the traps is occupied and which one
is empty. Separate maximum-likelihood fits to the data of Cal. II and Cal. III yielded
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marginally better fits (not shown), the fit values however remained essentially unchanged
compared to the results of the global fit to both experimental data sets in Tab. 5.2.

5.7 Discussion

The experimental setup being calibrated as described in Sec. 5.6, we now compare theoretical
PSDs resulting from the Eqs. 5.8, 5.24, and 5.25 and using the fit parameters in Tab. 5.2 to av-
eraged, experimental periodograms for two hydrodynamically interacting beads fluctuating
in their respective laser traps. For trap separations R ranging from 10 down to 1.5 µm, aver-
aged periodograms are calculated from the four voltage time series (z1,‖, z2,‖, z1,⊥, z2,⊥) with an
overall duration of 30 seconds by analyzing time windows of T = 10 ms length each. The im-
portance of hydrodynamic retardation effects are highlighted in Sec. 5.7.1, while the influence
of instrumental effects, i.e., polarization crosstalk, (parasitic) filtering and instrumental noise,
as well as of finite statistics is discussed in Sec. 5.7.2.

5.7.1 Retarded vs instantaneous hydrodynamics

Theoretical PSDs based on frequency-dependent HI between finite-sized beads described by
Eq. 5.15 (black lines) as well as averaged periodograms from experimental data (colored sym-
bols) are shown for various distances R between the trap centers and for motion parallel and
perpendicular to the inter-trap axis in Fig. 5.7. Both auto-PSDs S11 and S22 and, in particular,
the cross-PSD S12 are affected by the varying strength of the HI with changing trap separation
or spatial direction. Over the entire resolved frequency range of 100 Hz− 50 kHz, excellent
agreement between theoretical predictions and experimental data is observed. Note that no
additional fit parameters are used in Fig. 5.7, demonstrating the accuracy of both the modeling
of the signal processing in Sec. 5.4 as well as of the instrumental calibration in Sec. 5.6.

To stress the importance of the frequency dependence of the HI discussed in Sec. 5.3.2, we also
plot theoretical predictions based on instantaneous HI described by the components of the RP

tensor (Eq. 5.16) as light blue lines in Fig. 5.7. The comparison reveals that the frequency depen-
dence of the cross-mobilities shown in Fig. 5.4 arising from the finite time of vortex propagation
in the fluid is essential for a quantitative match of theory and experiment. As expected, the in-
fluence of the frequency dependence is more prominent at large separations than at smaller
ones, where the idealized picture of instantaneous HI constitutes a better, though still approxi-
mate description (cf. Sec. 5.3.2).

Remaining deviations between theoretically predicted and recorded spectra are mainly at-
tributed to uncertainties in the calibration fit parameters (see Tab. 5.2), non-stationary instru-
mental effects and slight dependencies of the system parameters on the trap configuration. In
particular, the signal amplitude ǫ11 of our mobile trap was found to vary within some percent
when the trap is displaced over length scales of several µm (data not shown). If a quantitative
evaluation of the spectra is intended, it is therefore recommended to perform the calibration
measurements in a similar configuration as the actual experiment is done. In addition, at high
frequencies systematic deviations may result from limitations in the model, e.g., for the para-
sitic filtering covered in Appendix E.1, and for separations R . 3a, the uncertainty in the ab-
solute distance R and the neglect of higher order corrections for self- and cross-mobilities [102]
may play a role. Finally, alignment inaccuracies of the instrument (cf. Sec. 5.2.2) or crosstalk
between the spatial directions within each of the position sensing devices [214] may be respon-
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Figure 5.7:
Auto- and cross-PSDs of the fluctuations parallel (a-d) and perpendicular (e-h) to the inter-trap axis

for various trap separations R: Symbols denote averaged experimental periodograms P
‖
ij and P

⊥
ij , lines

the theoretical predictions for the aliased PSDs S
‖al.
ij and S

⊥al.
ij according to the Eqs. 5.24 and 5.25: black

lines include the full frequency dependence of the HI (Eq. 5.15), while cyan lines correspond to instanta-
neous HI (Eq. 5.16). Positive values of the averaged experimental periodograms are denoted by circles,
negative ones by squares; similarly, solid and dashed lines respectively denote positive and negative PSD
values.
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Figure 5.8:
Influence of polarization crosstalk: Theoretical PSDs accounting for polarization crosstalk are shown
as black lines (same as in Fig. 5.7), theoretical PSDs neglecting polarization crosstalk are denoted as
purple lines; since auto-PSDs are only marginally affected by polarization crosstalk, black and purple
lines for S11 and S22 overlap. Symbols denote experimental data (same as in Fig. 5.7).

sible for residual deviations; both effects have been neglected in the present analysis but can
in principle be accounted for using the full three-dimensional theory (Sec. 5.2.2) and a refined
model for the signal processing involving all four recorded signals, thereby generalizing the
approach taken in Sec. 5.4.

5.7.2 Instrumental effects and finite statistics

As schematically indicated in Fig. 5.5b, the electrical PSDs Sij deviate from the thermal PSDs of
the beads Sth

ij due to three instrumental effects: polarization crosstalk, (parasitic) filtering and
instrumental noise. Their influence on the calibration and hydrodynamic spectra in the Figs. 5.6
and 5.7 is discussed in the following.

The importance of polarization crosstalk for the calibration process has been covered in
Sec. 5.6; its influence on the PSDs of two hydrodynamically interacting beads is illustrated by
comparing experimental data and theoretical curves from the Figs. 5.7e and 5.7h to theoretical
predictions for the PSDs, which do not account for crosstalk setting ǫ12 = ǫ21 = 0. The corre-
sponding PSDs are shown as purple lines in Fig. 5.8 together with the original data and curves
from Fig. 5.7. For a trap separation R = 10 µm (Fig. 5.8a), where due to weak HI the thermal
cross-PSD Sth

12 is small in amplitude compared to the thermal auto-PSDs Sth
11 and Sth

22, the observed
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cross-PSD of the electrical signals S12 is dominated by the thermal auto-PSDs, which couple in
due to polarization-crosstalk. Experimental data is consequently ill-represented when polar-
ization crosstalk is neglected, as shown in Fig. 5.8a. For smaller trap separations (R = 1.5 µm
in Fig. 5.8b), where HI are stronger, the frequency dependence of the thermal cross-PSD Sth

12 is
better reflected in S12, though including polarization crosstalk remains necessary for a quanti-
tative agreement between theory and experimental data. As expected, the black and purple
lines for the auto-PSDs overlap mostly in Fig. 5.8, since the polarization crosstalk affects the
auto-PSDs to a minor extent only. We conclude that a quantitative analysis of experimental
(cross-)periodograms requires accounting for crosstalk to disentangle the contributions of ther-
mal auto- and cross-PSDs.

The effects of the parasitic filtering of the position sensing devices (cf. Appendix E.1) on the
auto-periodograms measured in single trap optical tweezer experiments have been discussed
in detail before [216, 244, 248]. For dual trap setups, deviations in the filter properties of the
two devices have as additional consequence a non-vanishing imaginary part of the cross-PSD,
Im [S12], as discussed in Sec. 5.4.1 and exemplified in Appendix E.1.

The influence of the instrumental noise is seen in the calibration measurements of Cal. II
and III in Fig. 5.6b-c; the discussion in this paragraph focuses on Cal. II but equally applies to
Cal. III with indices 1 and 2 interchanged. In the absence of noise, according to the schematic
in Fig. 5.5b, one expects roughly equivalent shapes for P11, Re

[
P12
]
, and P22, slight differences

being attributed to the individual filter functions f1 and f2 and the relative magnitudes being set
by the ratio ǫ11/ǫ21 ≫ 1. However, the averaged periodogram values P22 are mostly dominated
by the instrumental noise, since Snoise

22 & ǫ2
21Sth

11.
Finally, some comments on the statistical uncertainty in the data: In Fig. 5.6b-c, one observes

a noticeable larger scatter of the cross-periodogram values Re
[
P12
]

around the theoretical es-
timate Re [S12] compared to the auto-periodogram values. This effect is best seen for large
frequencies in the bottom panel of Fig. 5.6c corresponding to the ⊥ direction, where the polar-
ization crosstalk is the weakest. According to the periodogram statistics discussed in Sec. 5.5.1,
the relative statistical uncertainty of Re [P12] (Eq. 5.30) is

√

Σ2[Re [P12]]

Re [S12]
≈
√
√
√
√

1
2

(
(Snoise

11 + ǫ2
12Sth

22)ǫ
2
22Sth

22 + (ǫ12ǫ22Sth
22)

2
)

(
ǫ12ǫ22Sth

22

)2 =

√

1 +
Snoise

11

2ǫ2
12Sth

22
, (5.43)

which exceeds the expected relative statistical uncertainty of auto-periodogram values (= 1, cf.
Sec. 5.5.1), whenever the instrumental noise in the "empty" signal dominates over the contri-
bution of the thermal bead motion. The instrumental noise in the two signals z1 and z2 being
(mostly) independent, the expectation value

〈
Re
[
P12
]〉

= Re [S12] are relatively insensitive to
instrumental noise, the statistical uncertainty in the cross-periodogram values is however in-
creased. For the case of two hydrodynamically interacting beads, the contribution of noise
to the observed PSDs is rather small; taking into account instrumental noise is thus in the first
place important to account for the increased statistical uncertainty of cross-periodogram values
when calibrating the experimental setup as described in Sec. 5.6.

The averaged periodograms Pij shown in the Figs. 5.6-5.8 result from the spectral analysis of
at least 3000 signal windows and from blocking periodogram values corresponding to neigh-
boring frequencies; for independent samples, the statistical uncertainty of the averaged peri-
odograms is thus reduced by a factor ≤ 1/

√
3000 ∼ 0.02 compared to the bare periodograms.

Nevertheless, for the cross-periodograms the statistical uncertainty still may be comparable
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or even exceed the magnitude of the expectation value, cf. Sec. 5.5.1. As an example, the pe-
riodogram values Re

[
P12
]

considerably scatter around the theoretical predictions Re [S12] in
the top panels of Fig. 5.7. If the statistical uncertainty exceeds the magnitude of the expecta-
tion value, plotting the absolute periodogram values on a logarithmic scale leads to a spuri-
ous, smooth frequency dependence, which is a signature of the statistical uncertainty only and
which can easily be misinterpreted, see Appendix E.5 for further details. Such a spurious behav-
ior is for example observed for the periodogram values Im

[
P12
]

in Cal. III shown in Fig. 5.6c.
The statistical aspects discussed in the previous two paragraphs are rather subtle; it is there-

fore recommended to fit auto- and cross-periodograms simultaneously rather than indepen-
dently by applying the Bayesian inference fitting method presented in Sec. 5.5.2, which inher-
ently accounts for the statistical properties of auto- and cross-periodograms and which was
used within this chapter for the calibration of a dual trap optical tweezer instrument.

5.8 Conclusions

In summary, we have presented a theoretical description of the signal processing in a typi-
cal dual trap optical tweezer experiment, and have proposed a maximum-likelihood method
based on the statistical properties of auto- and cross-periodograms for the power spectral anal-
ysis of the experimentally recorded fluctuations. We have shown how—in a first calibration
step—the method can be used to determine the instrumental parameters involved in the signal
processing as well as the optical trapping strengths by combining data from three consecutive
measurements. Using two unconnected but hydrodynamically interacting beads trapped in
the respective laser potentials as simple model system, we could demonstrate a number of dif-
ferent aspects including: (i) the frequency-dependence of the hydrodynamic coupling arising
from the finite time of vortex diffusion in the viscous fluid, (ii) the influence of crosstalk, (para-
sitic) filtering and instrumental noise on the recorded periodograms, and (iii) potential caveats
in the interpretation of experimental data due to finite statistics. We expect the present Bayesian
inference method paired with dynamic (de-)convolution theory [ix] to enable experimentalists
in a second step to recover the viscoelastic force response characteristics of the molecule of
study from the measured equilibrium fluctuations of the overall experimental construct, e.g.,
the molecule tethered via handles to the two beads trapped in their respective laser foci.



CHAPTER 6

DYNAMICS OF THERMALLY FLUCTUATING
NONLINEAR SYSTEMS

Bibliographic information: Parts of this chapter and of Appendix F have previously been pub-
lished. Reprinted from Ref. [ii]. With kind permission of The European Physical Journal (EPJ).

A common way of studying the dynamics of a system consists in probing its response to ex-
ternally applied non-stationary fields. Linear response is of particular interest not only because
it yields the dominant contribution for small driving amplitudes, but also because it is easily
obtained from the system’s thermal equilibrium fluctuations, cf. Chapter 5.

As a matter of fact, the exact analytical forms of equilibrium correlation functions and dy-
namic susceptibilities are often tedious or impossible to obtain for nonlinear systems. Expres-
sions employed in the evaluation of experimental or simulation data are therefore often phe-
nomenological or based on linearized equations [249]. Examples are ubiquitous and include
various types of spectroscopic techniques ranging from the dielectric characterization of liquid
systems [250] to single-molecule force spectroscopy [206].

Previous attempts to theoretically tackle the problem of nonlinearities in the equations of
motion of thermally fluctuating systems are mainly based on the Fokker-Planck (FP) equation.
While exact solutions have been derived for a few particular cases [251, 252], most methods
rely on approximations: examples comprise the expansion of the observables in eigenfunctions
of the FP operator [253] and perturbative approaches for the system’s response to external driv-
ing [254, 255].

Here, we systematically analyze the influence of nonlinearities in the equations of motion
of thermally fluctuating systems by expanding typical dynamic observables in powers of the
thermal noise strength and corroborate our analytical findings by comparison to the results of
numerical simulations. As we show based on explicit examples, linear models are very suc-
cessful for parametrizing two-point correlation functions. Caution is however advised, when it
comes to the interpretation of the (fitted) parameter values, since the underlying physics may be
completely missed. In addition, many practical applications effectively probe the dynamics of
a multi-component system, which is more complex than the bare object of interest. Theoretical
methods relating the dynamics of a composite system to the dynamic properties of its building
blocks thus are essential to disentangle the individual contributions and to recover the relevant
information about the object of primary interest from measured data. In this context, the advan-
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tages and limitations of a recently introduced method [ix] serving this goal are discussed based
on our expansion of dynamic observables in powers of the thermal noise strength.

Although the problem in the remainder of the chapter is phrased in terms of a mechanical
system characterized by its position and driven by a mechanical force, our approach is very
general as outlined in Sec. 6.1 and therefore in principle applicable to any pairs of observables
and conjugated fields, e.g., polarization and electric field, magnetization and magnetic field,
etc.

The chapter is organized as follows: In Sec. 6.1, we derive the general functional form of
equilibrium correlation and force response functions of a thermally fluctuating system from
the underlying equations of motion. As an example, we consider in Sec. 6.2 the overdamped
diffusion of a particle in three different potential landscapes, for which we explicitly evaluate
our analytical expressions and compare them to results from numerical simulations. We crit-
ically discuss the role of strictly linear models for the analysis of fluctuating dynamics based
on two-point correlation functions in Sec. 6.3 and explicitly show how the evaluation of higher
order correlation functions may easily unmask nonlinearities in the dynamics. In Sec. 6.4, we
focus on the dynamics of composite systems and reveal the limitations of the linear dynamic
convolution theory (DCT) of Ref. [ix], for which we derive a first-oder correction term, which is
even relevant for the spectral properties of the equilibrium fluctuations in the limit of vanish-
ing external force strength. The main results of the chapter are summarized in Sec. 6.5, while
details on the spectral analysis as well as parts of the calculations are found in Appendix F.

6.1 Expansion in Powers of the Thermal Noise Strength

For simplicity, we consider the ergodic dynamics of a one-dimensional system characterized
by the position x. Our approach is general in the sense that—beyond the analyticity of the
equations of motion—no prerequisites are needed. In particular, the formalism is restricted
neither to overdamped nor to Markovian dynamics. An extension of the formalism to multiple
variables and/or higher dimensions is amenable, but not pursued here.

The expansions of the force profile and the trajectory of the system are introduced in Sec. 6.1.1,
the expansions for the resulting thermally averaged observables are derived in Sec. 6.1.2 and a
short discussion of our analytical findings is found in Sec. 6.1.3.

6.1.1 Equations of motion and athermal force response

The equation of motion of the system is formulated in terms of the functional

Ft[x] = f (t), (6.1)

which yields the force f acting on the system at time t in dependence of the system’s entire
trajectory x(t). The above formulation of the equation of motion explicitly includes non-local
dependencies between x and f such as frictional memory-kernels. The inverse relation be-
tween force and position trajectories, i.e., the (numerical) solution of the equation of motion, is
expressed in terms of the functional

Xt[ f ] = x(t), (6.2)

which yields the position x of the system at time t given the entire force profile f (t). For conve-
nience, we restrict the discussion to systems, where Ft[0] = 0 and Xt[0] = 0; for bound systems,
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this can always be achieved by an appropriate shift of the reference point along the x-axis. We
expand the functional in Eq. 6.2 and obtain

x(t) = Xt[ f ] =
∫

dt′
δXt[ f ]
δ f (t′)

∣
∣
∣
∣

f=0
︸ ︷︷ ︸

j1(t−t′)

f (t′) +
1
2

∫

dt′
∫

dt′′
δ2Xt[ f ]

δ f (t′)δ f (t′′)

∣
∣
∣
∣

f=0
︸ ︷︷ ︸

j2(t−t′,t−t′′)

f (t′) f (t′′)

+
1
6

∫

dt′
∫

dt′′
∫

dt′′′
δ3Xt[ f ]

δ f (t′)δ f (t′′)δ f (t′′′)

∣
∣
∣
∣

f=0
︸ ︷︷ ︸

j3(t−t′,t−t′′,t−t′′′)

f (t′) f (t′′) f (t′′′) + . . . ,

(6.3)

thereby defining athermal force response functions j1, j2, etc., which only depend on the time
differences t − t′, t − t′′, etc. because of time translation invariance. Note that the athermal
response functions vanish as soon as one of the temporal arguments is negative due to causality.
Switching to Fourier domain, one obtains

x(ω) =
∫

dω′ j1(ω′) f (ω′)δ(ω−ω′) +
1
2

1
2π

∫

dω′
∫

dω′′ j2(ω′, ω′′) f (ω′) f (ω′′)δ(ω − (ω′ + ω′′))

+
1
6

1
(2π)2

∫

dω′
∫

dω′′
∫

dω′′′ j3(ω′, ω′′, ω′′′) f (ω′) f (ω′′) f (ω′′′)δ(ω − (ω′ + ω′′+ ω′′′)) + . . . ,

(6.4)

where the employed convention for the Fourier transformation and details on the notation are
found in Appendix A.2. Similarly, expanding the functional in Eq. 6.1 and taking the Fourier
transformation, one obtains

f (ω) =
∫

dω′ g1(ω
′)x(ω′)δ(ω −ω′) +

1
2

1
2π

∫

dω′
∫

dω′′ g2(ω
′, ω′′)x(ω′)x(ω′′)δ(ω − (ω′ + ω′′))

+
1
6

1
(2π)2

∫

dω′
∫

dω′′
∫

dω′′′ g3(ω
′, ω′′, ω′′′)x(ω′)x(ω′′)x(ω′′′)δ(ω − (ω′ + ω′′ + ω′′′)) + . . . ,

(6.5)

where corresponding functions gi have been defined. Real and imaginary parts of the functions
g1, g2, g3, etc. denote the linear, quadratic, and cubic conservative and dissipative contribu-
tions to the equations of motion respectively. The functions ji and gi have the following im-
portant properties: (i) they are symmetric with respect to a permutation of the arguments, i.e.,
j2(ω, ω′) = j2(ω′, ω), g2(ω, ω′) = g2(ω′, ω), j3(ω, ω′, ω′′) = j3(ω′, ω, ω′′) = j3(ω′′, ω, ω′) =
. . . , etc, and (ii) being the Fourier transformations of real valued functions, they fulfill j⋆1(ω) =
j1(−ω), j⋆2(ω, ω′) = j2(−ω,−ω′), etc.

The overall dynamic properties of the system are equivalently encoded in the sets of func-
tions {ji} or {gi}, where knowledge of the ji’s permits the calculation of the system trajectory
from the force acting on it via Eq. 6.4, and conversely knowledge of the gi’s allows to determine
the force associated with a given trajectory using Eq. 6.5.

Each of these sets can (in principle) be calculated from the other one by inserting Eq. 6.5 into
Eq. 6.4, grouping together all terms with equal powers of x, and satisfying the equality term
by term for arbitrary x(ω). The resulting equations (specified in Appendix F.1) give rise to a
hierarchy of relations, the first ones of which read

j1(ω) =
1

g1(ω)
, (6.6)

j2(ω, ω′) = − g2(ω, ω′)j1(ω + ω′)
g1(ω)g1(ω′)

= − g2(ω, ω′)
g1(ω)g1(ω′)g1(ω + ω′)

, (6.7)
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j3(ω, ω′, ω′′) = − j1(ω + ω′ + ω′′)g3(ω, ω′, ω′′) + j2(ω, ω′ + ω′′)g1(ω)g2(ω′, ω′′)
g1(ω)g1(ω′)g1(ω′′)

− j2(ω′, ω + ω′′)g1(ω
′)g2(ω, ω′′) + j2(ω′′, ω + ω′)g1(ω

′′)g2(ω, ω′)
g1(ω)g1(ω′)g1(ω′′)

,

(6.8)

etc., allowing to recursively calculate the athermal response functions j1, j2, etc. from the gi-
functions, which are easily read off from the equations of motion. The equivalent inverse
relations for the functions gi are obtained by interchanging j and g in the above expressions.
For linear systems, the only non-vanishing functions are g1 and j1. In turn, any nonlinearity
in the equations of motion leads to at least one additional non-vanishing gi-function and in
consequence to a whole series of non-zero athermal response functions ji.

6.1.2 Thermally averaged dynamic observables

In the general framework of a Langevin equation, the overall force acting on the system f ≡
fext + fst consists of a superposition of an external driving fext and a stochastic thermal force
fst. In equilibrium, the statistical properties of the stochastic force, which is assumed to be
independent of the external driving, are

〈 fst(ω)〉 = 0,
〈

fst(ω) fst(ω
′)
〉
= 4πkBTζ′(ω)δ(ω + ω′) ≡ σ2

st(ω, ω′). (6.9)

According to the fluctuation-dissipation theorem (FDT), the linear dissipative part in the equa-
tion of motion and the fluctuating thermal force are linked

ζ′(ω) = − Im [g1(ω)]

ω
. (6.10)

Here, ζ′ denotes the real part of the (in general) frequency dependent friction coefficient

ζ(ω) = ζ′(ω) + ζ′′(ω). (6.11)

According to the definition of the Fourier transformation in Appendix A.2, Eq. 6.9 translates
into

〈 fst(t)〉 = 0,
〈

fst(t) fst(t′)
〉
= 2kBTζ′(t− t′) = kBTζ

(
|t− t′|

)
, (6.12)

where ζ′(t) denotes the inverse Fourier transform of the real part of the friction coefficient ζ′(ω),
and ζ(t) corresponds to the memory kernel of the associated generalized Langevin equation in
time domain [256].

The thermal noise strength kBTζ′(ω) is by definition (Eqs. 6.9 and 6.12) a real and even func-
tion of frequency. We only consider the case, in which the friction coefficient is independent
of the system’s state x, which, for a one-dimensional systems, can always be achieved by an
appropriately chosen coordinate transformation [36], cf. Sec. 2.3.7.

We restrict the following discussion to linear dissipative contributions to the equation of
motion only: The real and imaginary parts of the Fourier components fst(ω) are then normally
distributed variables with variance σ2

st/2, and higher moments are straightforward to calculate:
Odd moments vanish due to symmetry, i.e.,

〈
fst(ω) fst(ω

′) fst(ω
′′)
〉
= 0, (6.13)

〈

fst(ω) fst(ω
′) fst(ω

′′) fst(ω
′′′) fst(ω

IV)
〉

= 0, (6.14)
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etc., and even moments can be broken down to factors of second moments, e.g.,

〈
fst(ω) fst(ω

′) fst(ω
′′) fst(ω

′′′)
〉
=

1
2! 22 ∑

P{ω,ω′,ω′′,ω′′′)}
σ2

st(ω, ω′)σ2
st(ω

′′, ω′′′)

= σ2
st(ω, ω′)σ2

st(ω
′′, ω′′′) + σ2

st(ω, ω′′)σ2
st(ω

′, ω′′′) + σ2
st(ω, ω′′′)σ2

st(ω
′, ω′′),

(6.15)

and

〈

fst(ω) fst(ω
′) fst(ω

′′) fst(ω
′′′) fst(ω

IV) fst(ω
V)
〉

=
1

3! 23 ∑
P{ω,...,ωV)}

σ2
st(ω, ω′)σ2

st(ω
′′, ω′′′)σ2

st(ω
IV, ωV),

(6.16)

etc., where P{. . . } denotes the ensemble of permutations of the elements in {. . . } and the
symmetry σ2

st(ω
′, ω) = σ2

st(ω, ω′) has been used in Eq. 6.15.

Note that systems with nonlinearities in the dissipative contributions to the equations of
motion, i.e., Im [gi(ω)] 6= 0 for i > 1, would also require corrections in the higher-order correla-
tions of the thermal forces (Eqs. 6.15 and 6.16).

Fluctuating dynamics in thermal equilibrium

We first focus on the unperturbed system ( fext = 0) subject to thermal forces only. Taking the
thermal average of Eq. 6.4 yields

〈x(ω)〉 =
(

kBT
∫

dω′ j2(ω
′,−ω′)ζ ′(ω′) +

(kBT)2

4π

∫

dω′
∫

dω′′ j4(ω
′,−ω′, ω′′,−ω′′)ζ ′(ω′)ζ ′(ω′′)

+ O
(

(kBT)3
)
)

δ(ω) = xavg 2π δ(ω),

(6.17)

where xavg denotes the average state of the system. As is evident from the above equation, for
finite thermal noise strength the average position xavg does in general differ from the reference
point of the expansion x = 0. A dynamic quantity of common interest is the power spectral
density (PSD) of the equilibrium fluctuations S(ω) defined by

S(ω) 2π δ(ω + ω′) ≡ 〈∆x(ω)∆x(ω′)
〉

, (6.18)

and thus nothing else than the Fourier transformation of the temporal auto-correlation function
S(t) ≡ 〈∆x(t′ + t)∆x(t′)〉, where deviations around the mean are denoted as

∆x(t) ≡ x(t)− xavg or ∆x(ω) ≡ x(ω)− xavg 2π δ(ω). (6.19)
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Performing the thermal average in Eq. 6.18 using Eq. 6.4 and the relations from the Eqs. 6.9 and
6.13-6.16, one obtains

S(ω) = 2kBTζ ′(ω) |j1(ω)|2

+
(kBT)2

π

(

2ζ ′(ω)
∫

dω′ Re
[
j1(ω)j3(−ω, ω′,−ω′)

]
ζ ′(ω′)

+
∫

dω′
∣
∣j2(ω

′, ω −ω′)
∣
∣2 ζ ′(ω′)ζ ′(ω−ω′)

)

+
(kBT)3

π2

(
1
2

ζ ′(ω)
∫

dω′
∫

dω′′ Re
[
j1(ω)j5(−ω, ω′,−ω′, ω′′,−ω′′)

]
ζ ′(ω′)ζ ′(ω′′)

+
∫

dω′
∫

dω′′ Re
[
j2(ω

′, ω−ω′)j4(−ω′, ω′ − ω, ω′′,−ω′′)
]

ζ ′(ω′)ζ ′(ω −ω′)ζ ′(ω′′)

+
1
3

∫

dω′
∫

dω′′
∣
∣j3(ω

′, ω′′, ω−ω′ −ω′′)
∣
∣2 ζ ′(ω′)ζ ′(ω′′)ζ ′(ω−ω′ −ω′′)

+
1
2

ζ ′(ω)

∣
∣
∣
∣

∫

dω′ j3(ω, ω′,−ω′)ζ ′(ω′)
∣
∣
∣
∣

2
)

+O
(

(kBT)4
)

.

(6.20)

The first term, which depends on the athermal linear response j1 of the system as well as on
the frequency-dependence of the friction coefficient, is linear in the thermal noise strength
and known from linearized fluctuation theory [253]. It is the only term contributing to the
response of a linear system, for which all athermal response functions except j1 are zero, cf.
Sec. 5.2.2. In turn, nonlinearities in the equations of motion contribute terms to the equilib-
rium PSD, which scale as (kBTζ′)n with n > 1 and thus become more and more important with
increasing strength of the thermal noise.

Similarly, higher order correlation and cumulant functions can be calculated from the Eqs. 6.4,
6.9 and 6.13-6.16. In particular, we focus on the fourth order cumulant Y defined via

Y(ω1, ω2, ω3) 2π δ(ω1 + ω2 + ω3 + ω4) ≡ 〈∆x(ω1)∆x(ω2)∆x(ω3)∆x(ω4)〉 − 〈∆x(ω1)∆x(ω2)〉 〈∆x(ω3)∆x(ω4)〉

− 〈∆x(ω1)∆x(ω3)〉 〈∆x(ω2)∆x(ω4)〉 − 〈∆x(ω1)∆x(ω4)〉 〈∆x(ω2)∆x(ω3)〉 .
(6.21)

Explicit evaluation of the above expression yields

Y(ω1, ω2, ω3) =8(kB T)3 j1(ω1)ζ
′(ω1)j1(ω2)ζ

′(ω2)j1(ω3)ζ
′(ω3)j1(−ω1−ω2 −ω3)ζ

′(−ω1−ω2 −ω3)

×
(

j3(ω1, ω2, ω3)

j1(−ω1−ω2 −ω3)ζ ′(−ω1 −ω2−ω3)
+

j3(−ω1−ω2 −ω3, ω2, ω3)

j1(ω1)ζ ′(ω1)

+
j3(ω1,−ω1 −ω2−ω3, ω3)

j1(ω2)ζ ′(ω2)
+

j3(ω1, ω2,−ω1−ω2 −ω3)

j1(ω3)ζ ′(ω3)

)

+O
(

(kB T)4
)

.

(6.22)

The first term in the expansion of the function Y in powers of the thermal noise strength being
already proportional to the athermal cubic force response function j3, the function Y vanishes
for strictly linear systems, where j3 = 0. In turn, non-vanishing values of Y indicate nonlinear
contributions to the equilibrium dynamics.
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Thermal force response

In the case of a non-vanishing external driving force fext, the average response of the system

〈∆x(ω)〉 = j1(ω) fext(ω) +
kB T
2π

∫

dω′ j3(ω, ω′,−ω′)ζ ′(ω′) fext(ω)

+
(kB T)2

8π2

∫

dω′
∫

dω′′ j5(ω, ω′,−ω′, ω′′,−ω′′)ζ ′(ω′)ζ ′(ω′′) fext(ω)

+
(kB T)3

48π3

∫

dω′
∫

dω′′
∫

dω′′′ j7(ω, ω′,−ω′, ω′′,−ω′′, ω′′′,−ω′′′)ζ ′(ω′)ζ ′(ω′′)ζ ′(ω′′′) fext(ω)

+O
(

(kB T)4
)

fext(ω) +O( f 2
ext),

(6.23)

is obtained by taking the thermal average of Eq. 6.4, again employing the relations from the
Eqs. 6.9, 6.15 and 6.16. Defining linear and higher order response functions J1, J2, etc. for the
thermal force response similarly as before

〈∆x(ω)〉 =
∫

dω′ J1(ω
′) fext(ω

′)δ(ω −ω′) +
1
2

1
2π

∫

dω′
∫

dω′′ J2(ω
′, ω′′) fext(ω

′) fext(ω
′′)δ(ω − (ω′ + ω′′))

+
1
6

1
(2π)2

∫

dω′
∫

dω′′
∫

dω′′′ J3(ω
′, ω′′, ω′′′) fext(ω

′) fext(ω
′′) fext(ω

′′′)δ(ω − (ω′ + ω′′ + ω′′′)) + . . . ,

(6.24)

we obtain expressions for the thermal linear force response function

J1(ω) = j1(ω) +
kBT
2π

∫

dω′ j3(ω, ω′,−ω′)ζ ′(ω′)

+
(kBT)2

8π2

∫

dω′
∫

dω′′ j5(ω, ω′,−ω′, ω′′,−ω′′)ζ ′(ω′)ζ ′(ω′′)

+
(kBT)3

48π3

∫

dω′
∫

dω′′
∫

dω′′′ j7(ω, ω′,−ω′, ω′′,−ω′′, ω′′′,−ω′′′)ζ ′(ω′)ζ ′(ω′′)ζ ′(ω′′′)

+O
(

(kBT)4
)

,

(6.25)

as well as for the higher order response functions

J2(ω, ω′) = j2(ω, ω′) +
kBT
2π

∫

dω′′ j4(ω, ω′, ω′′,−ω′′)ζ′(ω′′) +O
(

(kBT)2
)

, (6.26)

J3(ω, ω′, ω′′) = j3(ω, ω′, ω′′) +
kBT
2π

∫

dω′′′ j5(ω, ω′, ω′′, ω′′′,−ω′′′)ζ′(ω′′′) +O
(

(kBT)2
)

,

(6.27)
etc., contributing to the nonlinear thermal force response of the system. For a recent study
on the thermal nonlinear force response of bistable systems, see Ref. [257]. As expected, the
athermal response of the system (the first term in the Eqs. 6.25-6.27) is complemented by noise
strength dependent terms involving higher order athermal response functions ji with i > 1 and
the real part of the frequency-dependent friction coefficient ζ′.
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Note that the PSD of the equilibrium fluctuations (Eq. 6.20) can equally be calculated from
the linear force response (Eq. 6.25) using the FDT

S(ω) =
2kBT

ω
Im [J1(ω)] =

2kBT
ω

Im [j1(ω)] +
(kBT)2

πω

∫

dω′ Im
[
j3(ω, ω′,−ω′)

]
ζ ′(ω′)

+
(kBT)3

4π2ω

∫

dω′
∫

dω′′ Im
[
j5(ω, ω′,−ω′, ω′′,−ω′′)

]
ζ ′(ω′)ζ ′(ω′′) +O

(

(kBT)4
)

.

(6.28)

In practice, calculating S(ω) via this second route may be easier than evaluating the integrals
in Eq. 6.20.

6.1.3 Discussion of the analytical results

As follows from the derivations above, thermally fluctuating systems are in general character-
ized by force response and equilibrium correlation functions showing a complex functional
dependence on the thermal noise strength. The results obtained in this section (Eqs. 6.20, 6.22
and 6.25-6.27) represent the first terms in a systematic expansion. The practical use of the first
few terms in the Taylor expansion as valuable estimates for the overall series clearly depends on
the convergence properties of the series as is discussed in Sec. 6.2 based on explicit examples of
overdamped diffusion in three different potential landscapes. Previous studies focusing on sim-
ilar systems provided approximate [258–260] and in a few cases also exact [251, 252] analytical
expressions based on the corresponding FP equation. In contrast, our approach, which is based
on the Langevin equation, is not restricted to Markovian dynamics; incorporating the effects
of colored instead of white thermal noise thus does not constitute a problem. In addition, the
single trajectory perspective taken in our approach is essential to understand the consequences
for the dynamics of composite systems discussed in Sec. 6.4.

6.2 Examples: Overdamped Diffusion in a Potential Landscape

In the Secs. 6.2.2-6.2.4, we consider the overdamped motion of a particle with friction coefficient
ζ0 in three different external potentials U(x). The corresponding equation of motion is

ζ0
dx(t)

dt
+

dU(x)
dx

= Ft[x] = fst(t) + fext(t). (6.29)

The stochastic forces are assumed to be δ-correlated in time,
〈

fst(t) fst(t′)
〉
= 2ζ0kBTδ(t− t′), (6.30)

which according to the definitions in the Eqs. 6.9 and 6.12 implies

ζ′(t) = ζ0 δ(t), ζ′(ω) = ζ0. (6.31)

The normalized equilibrium probability density function (PDF) is

Peq(x) ≡ 1
Z

e−U(x)/(kBT), Z ≡
∫

dx e−U(x)/(kBT), (6.32)
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characterized by the mean and the variance

xavg ≡
∫

dx x Peq(x), σ2
x ≡

∫

dx (x− xavg)
2 Peq(x). (6.33)

In the following, the potentials are chosen so that the potential minimum, around which the
expansion is performed, is located at x = 0. The second derivative of the potential at the
position of the minimum is denoted by α0. Energy is measured in units of kBT, length in units
of
√

kBT/α0 and time in units of ζ0/α0. In consequence, the units of the linear force response
and of the PSD are 1/α0 and ζ0kBT/α2

0, respectively. Rescaled units are denoted by a tilde.

6.2.1 Numerical simulations

Numerical simulations of the Eqs. 6.29 and 6.30 in the potentials given in the Eqs. 6.34, 6.44
and 6.52 are performed using a simple Euler integration scheme with a time step δt̃ = 10−3.
For each set of parameters, 10 independent simulations with 2 · 1010 integration steps each are
performed corresponding to a total simulation time T̃sim = 2 · 108. The position x is written out
with a time resolution of ∆t̃ = 10−1 for the subsequent spectral analysis.

6.2.2 Harmonic potential with a quartic contribution

We consider potential landscapes of the form

U(x) =
1
2

α0x2 +
1
4

βx4, α0 > 0, β ≥ 0, (6.34)

where deviations from a harmonic potential are introduced through the parameter β determin-
ing the strength of the quartic contribution as shown in Fig. 6.1a. Fourier transformation of the
equation of motion (Eq. 6.29) and comparison to Eq. 6.5 yield

g1(ω) = −iωζ0 + α0, g2(ω, ω′) = 0, g3(ω, ω′, ω′′) = 6β,

gi(ω, . . . , ω(i−1)) = 0, ∀ i ≥ 4,
(6.35)

translating into

j1(ω) =
1

α0 − iζ0ω
, (6.36)

j2(ω, ω′) = 0, (6.37)

j3(ω, ω′, ω′′) =
− 6β

(α0 − iζ0ω)(α0 − iζ0ω′)(α0 − iζ0ω′′))(α0 − iζ0(ω + ω′ + ω′′)))
, (6.38)

according to the Eqs. 6.6-6.8. The functions ji with even i vanish due to symmetry, while those
with odd i do not. The function j5 is calculated via Eq. F.5, the resulting bulky expression is
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however not shown explicitly. With this, the first terms in the expansions for the linear force
response function (Eq. 6.25) and the equilibrium PSD (Eq. 6.20) read

J1(ω) =
1

α0 − iζ0ω
− 3β̃

α0(1− iζ0ω/α0)2

+
9β̃2

(1− iζ0ω/α0)2

(
1

α0 − iζ0ω
+

2
3α0 − iζ0ω

+
1
α0

)

+O
(

β̃3
)

,

(6.39)

and

S(ω) =
2ζ0kBT

α2
0 + ζ2

0ω2
− 12β̃ζ0kBT
(
α0 + ζ2

0ω2/α0
)2 +

18β̃2ζ0kBT
(
59α4

0 + 26α2
0ζ2

0ω2 − ζ4
0ω4

)

(
9 + ζ2

0ω2/α2
0

) (
α2

0 + ζ2
0ω2

)3 +O (β̃3) ,

(6.40)
where we have introduced the expansion parameter β̃ ≡ βkB T/α2

0 controlling the importance
of the subsequent terms in the above equations. The examination of the PSD in Eq. 6.40 reveals
that the effect of the quartic part in the potential landscape is most pronounced in the low-
frequency regime (ω ≪ α0/ζ0), while it is negligible in the opposite case, since the correction
terms to the Lorentzian asymptotically scale as ∝ ω−n with n ≥ 4 and thus only marginally
affect the high-frequency behavior S(ω) ∼ 2kBT/(ζ0ω2).

To assess the influence of the nonlinearity, we consider a series of potentials, in which the
quartic contribution tuned by the value of β̃ in Eq. 6.34 is gradually increased. The potential
landscapes and corresponding equilibrium PDFs are shown in Fig. 6.1a-b. Real and imaginary
parts of the linear response function J1 (Eq. 6.39) are shown in Fig. 6.1c-d: When the quartic con-
tribution is increased, the real part of the quasi-static response decreases; at the same time, the
position of the characteristic peak in the imaginary part is shifted towards higher frequencies
and its peak height diminishes. Note that the apparent reversal of this trend for β̃ = 0.1 is an
artifact due to the slow convergence properties of the series in Eq. 6.39. Similarly, the terms in
the Taylor expansion of the PSD (Eq. 6.40) are of alternating sign and the convergence based on
the first three terms is rather poor for β̃ & 0.1 as is explicitly shown in the following. A better
estimate is the corresponding Padé approximant [261] of order [1, 1], which for a Taylor series

S = S0 + S1β̃ +
1
2

S2 β̃2 +O(β̃3), (6.41)

is given by

S[1,1] ≡ 2S0S1 + (2S2
1 − S0S2)β

2S1 − S2β
. (6.42)

Based on Eq. 6.40, we obtain

S[1,1](ω) =
ζ0kBT

α2
0

2ζ2
0ω2α2

0
(
2− 3β̃

)
+ 6α4

0
(
6 + 23β̃

)

ζ4
0ω4

(
2− 3β̃

)
+ 2α2

0ζ2
0ω2

(
10 + 39β̃

)
+ 3α4

0

(
6 + 59β̃

) , (6.43)

which is free of singularities for β̃ < 2/3.
In Fig. 6.2, the PSDs S (Eq. 6.40) and S[1,1] (Eq. 6.43) are compared to estimates from numerical

simulations of the Eqs. 6.29, 6.30 and 6.34. Details about the spectral analysis of the simulation
data are found in Appendix F.2. The purple line corresponds to the purely harmonic potential
(β̃ = 0), for which the PSD takes the form of a simple Lorentzian. As the quartic contribution to
the potential is increased, the PSD values decrease significantly in the low frequency regime. As



6.2 Examples: Overdamped Diffusion in a Potential Landscape 101

0

2

4

6

8

10

12

U
[k

B
T
]

β̃ = 0.0

β̃ = 0.003

β̃ = 0.01

β̃ = 0.03

β̃ = 0.1

β̃ = 0.3

−3 −2 −1 0 1 2 3

x [
√

kBT/α0]

0.0

0.1

0.2

0.3

0.4

P
e
q
[√

α
0
/
(k

B
T
)]

(a)

(b)
0.0

0.2

0.4

0.6

0.8

1.0

R
e[
J
1
]
[1
/
α
0
]

β̃ = 0.0

β̃ = 0.003

β̃ = 0.01

β̃ = 0.03

β̃ = 0.1

10−2 10−1 100 101 102

ω [α0/ζ0]

0.0

0.1

0.2

0.3

0.4

0.5

Im
[J

1
]
[1
/
α
0
]

(c)

(d)

Figure 6.1:
a) Potential landscape (Eq. 6.34) and b) equilibrium PDF (Eq. 6.32) for different values of the rescaled
quartic contribution β̃ ≡ βkBT/α2

0. c) Corresponding real and d) imaginary parts of the Taylor expan-
sion of the linear response function J1 (Eq. 6.39).

is seen from Fig. 6.2, the Padé approximants (solid lines) clearly represent the better estimate
compared to the first three terms of the Taylor expansion (dashed lines). In fact, S[1,1] yields an
excellent description of the data for β̃ . 0.1 and even for β̃ = 0.3 the maximal relative error
remains on the order of 20% only.

6.2.3 Smoothed V-shape potential

Next, we consider potential landscapes

U(x) = F0x tanh
(

α0x
2F0

)

, α0 > 0, F0 > 0, (6.44)

corresponding to a smoothed V-shape as shown in Fig. 6.3a. For |x| ≪ 2F0/α0, the poten-
tial is characterized by a quadratic dependence U(x) ≈ α0x2/2, while it is linearly increasing,
U(x) ≈ F0 |x|, for |x| ≫ 2F0/α0. Fourier transformation of the equation of motion (Eq. 6.29)
and comparison to Eq. 6.5 yield

g1(ω) = −iωζ0 + α0, g3(ω, ω′, ω′′) = −α3
0/F2

0 , g5(ω, ω′, ω′′, ω′′′, ωIV) = 3α5
0/F4

0 , etc.

gi(ω, . . . , ω(i−1)) = 0, ∀ i even,
(6.45)
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Figure 6.2:

PSDs for overdamped diffusion in a harmonic potential with rescaled quartic contribution β̃ ≡
βkBT/α2

0, same color coding as in Fig. 6.1. Dashed lines denote the first three terms in the Taylor ex-
pansion of S (Eq. 6.40), solid lines correspond to the Padé approximant S[1,1] (Eq. 6.43), and colored
circles denote spectral estimates from numerical simulations. Note that purple and blue dashed lines
perfectly overlap with the solid ones and that the orange dashed line is hardly discernible between the
purple and blue data points.

translating into

j1(ω) =
1

α0 − iζ0ω
, (6.46)

j2(ω, ω′) = 0, (6.47)

j3(ω, ω′, ω′′) =
α3

0

F2
0 (α0 − iζ0ω)(α0 − iζ0ω′)(α0 − iζ0ω′′)(α0 − iζ0(ω + ω′ + ω′′))

, (6.48)

according to the Eqs. 6.6-6.8. The functions ji and gi with even i vanish due to symmetry, while
both the functions gi and ji with odd i do not. The function j5 is calculated via Eq. F.5, the
resulting bulky expression is however not shown explicitly. The first terms in the expansions
of the linear force response function (Eq. 6.25) and the equilibrium PSD (Eq. 6.20) are

J1(ω) =
1

α0 − iζ0ω
+

α0

2F̃2
0 (α0 − iζ0ω)2

+
α0
(
7α2

0 − 2iα0ζ0ω + ζ2
0ω2

)

8F̃4
0 (α0 − iζ0ω)3(3α0 − iζ0ω)

+O (F̃−6
0
)

, (6.49)

and

S(ω) =
2ζ0kBT

α2
0 + ω2ζ2

0
+

2α2
0ζ0kBT

F̃2
0

(
α2

0 + ζ2
0ω2

)2 +
2α2

0ζ0kBT
(
8α4

0 − α2
0ζ2

0ω2− ζ4
0ω4

)

F̃4
0

(
α2

0 + ζ2
0ω2

)3 (9α2
0 + ζ2

0ω2
) +O (F̃−6

0
)

, (6.50)

where the expansion parameter F̃−2
0 ≡ α0kBT/F2

0 is used and the harmonic potential is thus
recovered in the limit F̃0 → ∞. Again, the effect of the nonlinearity in the potential landscape
(Eq. 6.44) is most pronounced in the low-frequency regime (ω ≪ α0/ζ0), while it is negligible
for ω ≫ α0/ζ0, since the correction terms to the Lorentzian asymptotically scale as ∝ ω−n with
n ≥ 4 and thus only marginally affect the high-frequency behavior S(ω) ∼ 2kBT/(ζ0ω2).
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Figure 6.3:

a) Potential landscape (Eq. 6.44) and b) equilibrium PDF (Eq. 6.32) for different values of F̃0 ≡
F0/
√

α0kBT. c) Corresponding real and d) imaginary parts of the first three terms in the Taylor ex-
pansion of the linear response function J1 (Eq. 6.49).

To study the effect of the nonlinearity on the equilibrium fluctuations of the system, we con-
sider overdamped motion in a series of potentials characterized by different values of F̃0 ≡
F0/
√

α0kBT. Potential landscapes and corresponding equilibrium PDFs are shown in Fig. 6.3a-
b, real and imaginary parts of the linear force response functions are displayed in Fig. 6.3c-d:
When gradually decreasing the value of F̃0 in Eq. 6.44, the quasi-stationary force response and
the peak amplitude of the imaginary part increase, while the characteristic frequency decreases.
Increasing the degree of nonlinearity (by decreasing the value F̃0) thus has the opposite effect
on the linear force response than in Sec. 6.2.2, which shows that nonlinearities act differently
depending on the specificities of the potential.

To assess the accuracy of the analytical results, we compare results from numerical simu-
lations of the Eqs. 6.29, 6.30 and 6.44 to the first three terms of the Taylor expansion of the
equilibrium PSD (Eq. 6.50) in Fig. 6.4. We observe excellent quantitative agreement between
simulation results (circles) and the analytical estimates (solid lines) for F̃0 & 2. For F̃0 = 1,
the first three Taylor terms for S are still in qualitative agreement with the data, but relative
deviations of ∼ 30% are discernible for small frequencies. For F̃0 = 0.2 (red curve), the first
three terms in Eq. 6.50 yield (unphysical) negative values in the intermediate frequency range,
thereby indicating the slow convergence of the series for such large nonlinearities.

In the limit F̃0 → 0, the exact form of the potential at the origin becomes irrelevant for the
resulting two-point correlation functions and a potential of the form U(x) = F0 |x| should
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Figure 6.4:
PSDs for overdamped motion in a smoothed V-shape potential (Eq. 6.44) for different values of
F̃0 ≡ F0/

√
α0kBT, same color coding as in Fig. 6.3. Solid lines denote the first three terms in the Tay-

lor expansion of S (Eq. 6.50) and colored circles denote spectral estimates from numerical simulations.
Dashed lines correspond to the PSD S∨ in a cuspidal V-shape potential (Eq. 6.51). Purple symbols and
lines are mostly superimposed by the blue symbols and lines.

therefore accurately capture the dynamics. For the problem of overdamped diffusion in such a
cuspidal V-shape potential the exact functional form of the PSD has been derived [251]

S∨(ω) =
2kBT
ζ0ω2









1 +
1
2

(
F̃2

0 α0

ζ0ω

)2









1−

√
√
√
√
√

1 +

√

1 +
(

4ζ0ω
F̃2

0 α0

)2

2

















, (6.51)

and is displayed as dashed colored lines in Fig. 6.4. Indeed, numerical data and the above
expression agree well for F̃0 ≪ 1, while for F̃0 ≫ 1 the values of the PSD are underestimated by
several orders of magnitude for small frequencies. Thus, depending on the value of F̃0, either
Eq. 6.50 or Eq. 6.51 represent the better analytical estimate.

6.2.4 Symmetric double-well potential

Finally, as an example for a highly nonlinear system, we examine the overdamped dynamics in
a double-well potential, which has extensively been studied in the literature and is of particular
interest in the context of stochastic resonance [253, 254, 262, 263]. We consider a symmetric
double-well potential of the form

U(x) =
1
2

α0x2 − α0

4

√
α0

2∆U
x3 +

α2
0

64∆U
x4, α0 > 0, ∆U > 0, (6.52)

as shown in Fig. 6.5a. The potential is characterized by an energy barrier of magnitude ∆U
located at x = 2

√
2∆U/α0 separating two minima at x = 0 and x = 4

√
2∆U/α0. Again, the
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second derivative of the potential in the minima is given by α0. Fourier transformation of
Eq. 6.29 and comparison with Eq. 6.5 yield

g1(ω) = −iωζ0 + α0, g2(ω, ω′) = −3α0

2

√
α0

2∆U
,

g3(ω, ω′, ω′′) =
3α2

0
8∆U

, gi(ω, . . . , ω(i−1)) = 0, ∀ i ≥ 4,

(6.53)

translating into

j1(ω) =
1

α0 − iζ0ω
, (6.54)

j2(ω, ω′) =
3α0
√

α0

2
√

2∆U (α0 − iζ0ω) (α0 − iζ0ω′) (α0 − iζ0(ω + ω′))
, (6.55)

according to the Eqs. 6.6 and 6.7. The functions j3, j4 and j5 are calculated based on the Eqs. F.3-
F.5, the resulting bulky expressions are however not shown. With this, we obtain the linear
force response function (Eq. 6.25)

J1(ω) =
1

α0 − iζ0ω
+

3α0(5α0 − iζ0ω)

8∆Ũ(α0 − iζ0ω)2(2α0 − iζ0ω)

+
9α0

(
182α4

0− 211iα3
0ζ0ω − 78α2

0ζ2
0ω2 + 19iα0ζ3

0ω3 + 2ζ4
0ω4)

64(∆Ũ)2(α0 − iζ0ω)3(2α0 − iζ0ω)2(3α0 − iζ0ω)
+O

((
∆Ũ
)−3
)

,

(6.56)

and the equilibrium PSD (Eq. 6.20)

S(ω) =
2ζ0kBT

α2
0 + ζ2

0ω2
− 3ζ0kBT

(
α2

0ζ2
0ω2 − 23α4

0
)

4∆Ũ
(
α2

0 + ζ2
0ω2

)2 (4α2
0 + ζ2

0ω2
)

+
9α2

0ζ0kBT
(
6932α8

0 + 449α6
0ζ2

0ω2 − 1849α4
0ζ4

0ω4 + 27α2
0ζ6

0ω6 + ζ8
0ω8)

32(∆Ũ)2
(
α2

0 + ζ2
0ω2

)3 (4α2
0 + ζ2

0ω2
)2 (9α2

0 + ζ2
0ω2

) +O
((

∆Ũ
)−3
)

,

(6.57)

where the expansion parameter is (∆Ũ)−1 ≡ kBT/∆U and the harmonic potential is thus recov-
ered in the limit of large barrier heights ∆Ũ → ∞. In the following, we consider overdamped
dynamics in a series of double-well potentials, in which the rescaled height of the energy bar-
rier ∆Ũ is progressively decreased. Potential landscapes and corresponding equilibrium PDFs
are shown in Fig. 6.5. The first three terms of the Taylor expansion of the PSD (Eq. 6.57) are
compared to estimates from numerical simulations of the Eqs. 6.29, 6.30 and 6.52 in Fig. 6.6a.
Good agreement between theoretical and numerical estimates is found for large frequencies
only, while large deviations are observed in particular for small frequencies, where the contri-
bution of inter-well hopping to the PSD is dominant. For reference, the standard Lorentzian
representing the first term in the Taylor expansion of the PSD (Eq. 6.57) is drawn as a dashed
black line. The differences between the actual PSD values and the Lorentzian comprise several
orders of magnitudes for small frequencies and thus it is not astonishing that the first three
terms of alternating sign in the Taylor series are not sufficient to yield quantitative agreement
over the whole range of frequencies. In the inset of Fig. 6.6, a close view of the region indi-
cated by a gray rectangle is shown, where the vertical axis is rescaled to better distinguish the
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Figure 6.5:
a) Symmetric double-well potential (Eq. 6.52) and b) corresponding equilibrium PDF (Eq. 6.32) for
different values of the rescaled height of the energy barrier ∆Ũ ≡ ∆U/kBT.

individual curves and data points. As expected, the deviations between numerical data and
theoretical curves set in at larger frequencies the smaller the value of the energy barrier ∆Ũ.
The slow convergence of the Taylor series for small values of ∆Ũ is emphasized by the fact that
the red curve corresponding to ∆Ũ = 0.25 takes (unphysical) negative values for intermediate
frequencies.

6.2.5 Range of validity of the expansions for the model systems

We conclude that already slight nonlinearities have a significant effect on the linear force re-
sponse function J1 and the equilibrium PSD S of a thermally fluctuating system. Increasing
nonlinear contributions affect the low-frequency regime first, the high-frequency dynamics be-
ing trivially linear. For the case of overdamped diffusion in a harmonic potential with a quartic
contribution (Sec. 6.2.2), these changes can quantitatively be captured over the full frequency
range by the first three terms of the Taylor expansions in the Eqs. 6.39 and 6.40 as long as
βkB T/α2

0 . 0.03. Moreover, the Padé approximant of the equilibrium PSD (Eq. 6.43) still yields
reasonable agreement with the data for quartic contributions βkB T/α2

0 . 0.3. For the case of
a smoothed V-shape potential (Sec. 6.2.3), the first three terms in the Taylor expansions in the
Eqs. 6.49 and 6.50 yield accurate predictions for F0/

√
α0kBT & 1. In turn, the analytical expres-
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∆Ũ = 6.0
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Figure 6.6:
PSDs for overdamped motion in a symmetric double-well potential (Eq. 6.52) with different barrier
heights ∆Ũ ≡ ∆U/kBT. Solid colored lines denote the first three terms in the Taylor expansion of S
(Eq. 6.57) and colored circles denote spectral estimates from numerical simulations, same color coding as
in Fig. 6.5. The dashed black line indicates the first term in Eq. 6.57. The inset shows a close view of the
rectangular region indicated by the gray box; the vertical axis of the inset is rescaled by ∆Ũ for clarity.

sion for the PSD associated with overdamped diffusion in a cuspidal V-potential [251] becomes
adequate for F0/

√
α0kBT . 1. For a highly nonlinear system such as diffusion in a double-well

potential (Sec. 6.2.4), the first few terms in the Taylor expansion are not sufficient to quanti-
tatively capture the entire frequency dependence of the PSD irrespective of the barrier height
∆Ũ.

Although the limits of the series expansions in Sec. 6.1 are independent of the expansion
point, for asymmetric bi- or multistable systems, a better convergence of the first few terms
may be obtained via a Boltzmann-weighted average over the expansions around the minima in
the individual wells.

6.3 Use and Misuse of Strictly Linear Models

A standard approach when characterizing the fluctuating dynamics of observables consists in
estimating the associated two-point correlation function (in time or frequency domain) and
interpreting it based on a strictly linear model. For overdamped dynamics, this is equivalent to
fitting the temporal two-point correlation function by a single exponential, or the PSD data by
the first term in the expansions of the PSDs in the Eqs. 6.40, 6.50 and 6.57, i.e., a Lorentzian

Sfit(ω) =
2ζfitkBT

(αfit)
2
+ (ζfit)

2
ω2

, (6.58)

where the friction coefficient ζfit and the potential strength αfit are used as fit parameters. To
explicitly show the limitations of such an approach, we fit the PSD data from numerical simu-
lations of overdamped diffusion in the monostable but anharmonic potentials of the Secs. 6.2.2
and 6.2.3 to the functional form of Eq. 6.58, details on the fitting procedure are found in Ap-
pendix F.3.
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Figure 6.7:
a) PSDs for overdamped motion in the potential U (Eq. 6.34) for different values of the rescaled quartic
contribution β̃ ≡ βkBT/α2

0: Colored circles denote estimates from numerical simulations, black lines
denote fits to a strictly linear model (Eq. 6.58), see Appendix F.3 for details. Inset: Fit values αfit are
shown as open colored circles, fit values ζfit ≈ ζ0 are independent of β̃ and are not shown. Purple data
points are mostly hidden under the blue ones. b) Estimates for the spectral kurtosis κ (Eq. 6.59) resolved
from numerical data, where circles and squares denote positive and negative values respectively. Gray-
shaded areas indicate the 90%-confidence interval for strictly linear dynamics, see Appendix F.4 for
details.

For the quadratic potential with a quartic contribution (Eq. 6.34), this kind of analysis pro-
vides almost perfect fits to the data independent of the degree of nonlinearity as is seen from
Fig. 6.7a, where fits to the simulation data are displayed as black lines. A similar conclusion is
drawn from Fig. 6.8a, where we show corresponding data and fits for diffusion in the V-shape
potential (Eq. 6.44). The frequency dependence of the equilibrium PSDs thus does not or only
very weakly deviate from a Lorentzian (Eq. 6.58) even for strongly nonlinear dynamics. While
this observation explains the wide use and success of linear models, it in turn also implies that
an apparent agreement of the spectral data with a Lorentzian fit cannot serve to validate or
reject the hypothesis of strictly linear dynamics. Moreover, the information content of the fit
values is rather limited: Indeed, the fit values αfit shown in the insets of the Figs. 6.7a and 6.8a
are well captured by the function kBT/σ2

x (shown as black line in the insets) meaning that the
fit values merely reflect the width σx of the equilibrium PDF (Eq. 6.33). Similarly, we obtain
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Figure 6.8:

Same as Fig. 6.7 but for overdamped diffusion in a V-shape potential (Eq. 6.44). Fit values ζfit ≈ ζ0 are
independent of F̃0 and not shown.

ζfit ≈ ζ0 for all fits shown in the Figs. 6.7a and 6.8a, as expected due to the trivially linear
high-frequency behavior of the dynamics.

In order to identify possible nonlinear contributions to the dynamics, the analysis of higher-
order correlation or response functions is therefore required. Here, we resolve the spectral
kurtosis

κ(ω) ≡ Y(ω,−ω, ω)

S(ω)2 = 8kBTζ′(ω)Re
[

j3(ω,−ω, ω)

j1(−ω)

]

+O
(

(kBT)2
)

, (6.59)

where the leading term in the expansion on the right hand side results from the Eqs. 6.20 and
6.22. Since κ(ω) = 0 for strictly linear dynamics, non-zero values of the spectral kurtosis indi-
cate nonlinearities in the dynamics. Estimates for the spectral kurtosis from numerical simula-
tions (see Appendix F.2 for the details on the spectral analysis) are shown in the Figs. 6.7b and
6.8b. While all systems considered are (within error) linear in the high-frequency regime, non-
linearities clearly come to light at smaller frequencies. While the overdamped diffusion in the
harmonic potential with a quartic contribution is characterized by a negative spectral kurtosis,
the kurtosis is positive for the motion in the V-shape potential. Given enough data (see Ap-
pendix F.4 for details on the statistical aspects), even weak nonlinearities such as for β̃ = 10−3
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and β̃ = 10−2 are reliably revealed in the spectral kurtosis (blue data points in Fig. 6.7b), while
the PSD-values are (by eye) indistinguishable from those for β̃ = 0 in Fig. 6.7a.

The spectral kurtosis of the overdamped dynamics in the double-well potential (Eq. 6.52) is
shown in Fig. 6.9b, the corresponding discussion is however deferred to the following section,
where the data is discussed in the context of the superposition of two independent subsystems.

Overall, we find that linear models generally are well-suited to parametrize two-point corre-
lation functions independently of the nature of the underlying dynamics. Caution is therefore
advised before taking the fit values and thus implicitly the assumption of a linear model at face
value. Resolving higher-order correlation/response functions and analyzing the dependence
of PSD (Eq. 6.20) or response functions (Eqs. 6.25-6.27) on the thermal noise strength represent
complementary approaches to unmask nonlinearities in the fluctuating dynamics and thus to
confirm or to reject the linearity hypothesis.

6.4 Dynamics of Composite Systems

In the following, we consider the dynamics in a system resulting from the combination of two
independent subsystems named A and B. Each of these systems is described by separate sets of
correlation and response functions, in particular the linear force response is given by

JA1 (ω) = lim
fAext→0

〈xA(ω)〉A
fAext(ω)

, JB1 (ω) = lim
fBext→0

〈xB(ω)〉B
fBext(ω)

, (6.60)

where 〈. . .〉A and 〈. . .〉B denote averages over the thermal fluctuations of the respective subsys-
tems.

The case of superposition is treated in Sec. 6.4.1, and the more complex case of mechanical
coupling, for which the linear DCT was introduced in Ref. [ix], is discussed in Sec. 6.4.2.

6.4.1 Superposition

A simple composite system results from the superposition of the two independent subsystems
as indicated in Fig. 6.10a: The composite system is characterized by the variable

x = xA + xB, (6.61)

while both subsystems feel the same external force

fext = fAext = fBext. (6.62)

Assuming that the two subsystems remain independent when being superposed, the force re-
sponses simply add up

Ji = JAi + JBi , ∀ i, (6.63)

and in particular the PSD of the composite system is just the sum of the individual PSDs

S(ω) = SA(ω) + SB(ω). (6.64)
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Figure 6.9:
a) PSDs for overdamped diffusion in a double-well potential (Eq. 6.52) for different values of the
rescaled barrier height ∆Ũ ≡ ∆U/kBT: Colored circles denote estimates from numerical simulations,
black lines denote fits to the superposition of two Lorentzians (Eq. F.12), see Appendix F.3 for details.
Inset: Fit values αfit

1,2 are shown as colored open circles, the fit values ζfit
1,2 as open colored squares, the solid

black lines are given in Eq. 6.66. b) Estimates for the spectral kurtosis κ (Eq. 6.59) resolved from numer-
ical data, where circles and squares denote positive and negative values respectively. Gray-shaded areas
indicate the 90%-confidence interval for strictly linear dynamics, see Appendix F.4 for details.

Overdamped diffusion in a double-well potential

The superposition principle is often used to approximate the dynamics in bistable systems [257].
For the overdamped dynamics in the double-well (dw) potential of Sec. 6.2.4, the overall coor-
dinate

xdw = xinter + xintra, (6.65)

can be thought of a discrete stochastic variable xinter discretely switching between the positions
of the potential minima and of a continuous variable xintra describing the dynamics within the
corresponding wells.

Approximating the PSDs Sinter and Sintra both by a Lorentzian (Eq. 6.58) and adjusting the
four parameters in the fit procedure (see Appendix F.3 for details), we obtain the solid lines in
Fig. 6.9a. The fits nicely match the data from numerical simulations over the entire frequency
range resolved and for all values of ∆Ũ. The fit values are displayed in the inset, where values
for αfit and ζfit are denoted by open circles and squares, respectively. For barrier heights ∆Ũ & 1,
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Figure 6.10:
a) The superposition of two independent mechanical subsystems of type A and B yields a composite
system with coordinate x = xA + xB. b) The mechanical coupling of A and B enforces the same
positions of both subsystems; the equivalent composite system is characterized by the coordinate
x = xA = xB.

the fit values for the inter-well process are well approximated by estimates from Kramers’ rate
theory (Appendix F.5),

αfit
inter =

α0

8∆Ũ
, ζfit

inter =
π ζ0 e∆Ũ

4
√

2∆Ũ
, (6.66)

which are displayed as solid black lines in the inset of Fig. 6.9a, while the intra-well process is
characterized by ζintra ≈ ζ0 and αintra ≈ α0 (indicated by a broken horizontal line) as expected.

The nice agreement between the PSD data and the fits in Fig. 6.9a does however not represent
a validation of the underlying assumption that the dynamics indeed result from the superpo-
sition of two independent stochastic processes. It also does not allow a judgement about the
linearity of the dynamics. In fact, the spectral kurtosis (Eq. 6.59) of the stochastic fluctuations of
the diffusive motion in the double-well potential, which is shown in Fig. 6.9b, emphasizes the
highly nonlinear character of the dynamics: For intermediate frequencies, the spectral kurtosis
is positive, while it takes negative values in the limit ω → 0.

6.4.2 Mechanical coupling

In contrast to the superposition described above, the mechanical coupling of the subsystems A
and B, which is relevant for practical applications [ix], is equivalent to the requirement

x ≡ xA = xB, (6.67)

where x denotes the position of the overall system as depicted in Fig. 6.10b. For this to be
fulfilled, the forces on the subsystems will generally differ, and the overall force on the coupled
system then is

f = fA + fB. (6.68)

If the force-free positions of both subsystems agree, one directly infers from the expansion in
Eq. 6.5 and the coupling constraints (Eq. 6.67)

gi = gAi + gBi , ∀ i, (6.69)

Inserting the gi-functions of the coupled system into the Eqs. 6.6-6.8 then allows to calculate
the PSD (Eq. 6.20) or the force response functions (Eqs. 6.25-6.27). Note that the knowledge of
all athermal gi-functions of the subsystems are thus required to calculate dynamic quantities
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of the composite system. Unlike in the case of the superposition (Sec. 6.4.1), the thermal linear
response functions JA1 and JB1 of the subsystems do in general not contain enough information
to calculate the thermal linear response function J1 of the coupled system.

Dynamic convolution theory

The DCT from Ref. [ix] provides a method of estimating the linear force response of mechani-
cally coupled objects based on the linear response functions of the individual components. For
systems with only one degree of freedom and linear response functions given by Eq. 6.60, the
DCT predictions reduce to the result from Ref. [264], namely

JDCT
1 (ω) ≡ JA1 (ω)JB1 (ω)

JA1 (ω) + JB1 (ω)
=

(
1

JA1 (ω)
+

1
JB1 (ω)

)−1

(6.60)
= lim

fAext→0
lim

fBext→0

(
fAext(ω)

〈xA(ω)〉A
+

fBext(ω)

〈xB(ω)〉B

)−1

(6.67)
= lim

fAext→0
lim

fBext→0

(
fAext(ω)

〈x(ω)〉A
+

fBext(ω)

〈x(ω)〉B

)−1

≈ lim
fAext→0

lim
fBext→0

(
fAext(ω) + fBext(ω)

〈x(ω)〉

)−1 (6.68)
= lim

fext→0

〈x(ω)〉
fext(ω)

≡ J1(ω),

(6.70)

where the definitions of the linear force response functions (Eq. 6.60), the coupling constraints
(Eq. 6.67), and the additivity of the forces (Eq. 6.68) have been used as indicated by the equation
numbers above the equalities. The approximation step in Eq. 6.70 consists in identifying the
averages with respect to the thermal forces of the subsystems, i.e., 〈x(ω)〉A and 〈x(ω)〉B, with
the thermal average in the coupled system 〈x(ω)〉. To better understand the consequences of
this approximation, we expand both sides of Eq. 6.70 in powers of the thermal noise strength
employing Eq. 6.25 for the thermal linear response functions JA1 and JB1 of the subsystems as
well as for the thermal linear response J1 of the composite system. For the DCT estimate on the
left side of Eq. 6.70, we obtain

JDCT
1 (ω) =

jA1 (ω)jB1 (ω)

jA1 (ω) + jB1 (ω)
+

kBT
2π

1
(

jA1 (ω) + jB1 (ω)
)2×

∫

dω′
(

jA1 (ω)2jB3 (ω, ω′,−ω′)ζ ′B(ω′) + jB1 (ω)2jA3 (ω, ω′,−ω′)ζ ′A(ω
′)
)

+O
(

(kBT)2
)

,

(6.71)

while the expansion of the right side of Eq. 6.70 yields

J1(ω) = j1(ω) +
kBT
2π

∫

dω′ j3(ω, ω′,−ω′)
(
ζ′A(ω

′) + ζ′B(ω
′)
)
+O

(

(kBT)2
)

, (6.72)

where

j1(ω) =
1

g1(ω)
=

1
gA1 (ω) + gB1 (ω)

=
1

1/jA1 (ω) + 1/jB1 (ω)
=

jA1 (ω)jB1 (ω)

jA1 (ω) + jB1 (ω)
, (6.73)
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according to the Eqs. 6.6 and 6.69. Similarly, the function j3 in Eq. 6.72 results from the Eqs. 6.6-
6.8 and the coupling constraints (Eq. 6.69), more specifically

j3(ω, ω′,−ω′) =
1

(gA1 (ω) + gB1 (ω))2
∣
∣gA1 (ω

′) + gB1 (ω′)
∣
∣2

(

− gA3 (ω, ω′,−ω′)− gB3 (ω, ω′,−ω′)

+
(gA2 (ω,−ω′) + gB2 (ω,−ω′))(gA2 (ω

′, ω −ω′) + gB2 (ω′, ω− ω′))
gA1 (ω− ω′) + gB1 (ω− ω′)

+
(gA2 (ω, ω′) + gB2 (ω, ω′))(gA2 (ω + ω′,−ω′) + gB2 (ω + ω′,−ω′))

gA1 (ω + ω′) + gB1 (ω + ω′)

+
(gA2 (ω, 0) + gB2 (ω, 0))(gA2 (ω

′,−ω′) + gB2 (ω′,−ω′))
gA1 (0) + gB1 (0)

)

.

(6.74)

Obviously, the first terms in the Eqs. 6.71 and 6.72 do agree, while already the terms ∝ kBT in
general deviate from each other. The DCT prediction thus represents a zero-order approximant
to the actual linear force response of the coupled system.

The deviations become most apparent in the simple case, in which two subsystems of the
same type are coupled, i.e., for B = A: The DCT prediction (Eq. 6.71) then reduces to

JDCT
1 (ω) =

1
2

JA1 (ω) =
1
2

jA1 (ω) +
kBT
4π

∫

dω′ jA3 (ω, ω′,−ω′)ζ′A(ω
′) +O

(

(kBT)2
)

. (6.75)

while the exact linear response of the system (Eq. 6.72) is

J1(ω) =
1
2

jA1 (ω) +
kBT
8π

∫

dω′ jA3 (ω, ω′,−ω′)ζ′A(ω
′) +O

(

(kBT)2
)

, (6.76)

since gi = 2gAi (Eq. 6.69) and thus ji = jAi /2i according to the Eqs. 6.6-6.8. In this simple
example, the DCT thus overestimates the J1-contribution, which scales linearly with kBT, by a
factor of two; inspection of the next order terms in the expansion reveals that contributions to
J1 which scale ∝ (kBT)n are overestimated by a factor of 2n in the DCT prediction.

The above results explain why the DCT, which enforces the equivalence of the expectation
values 〈xA〉A = 〈xB〉B only and not of the instantaneous positions, fails to capture even the
linear dynamics of composite systems involving a highly nonlinear subsystem [265]. Neverthe-
less, the DCT provides a good approximation [ix], when the temperature-independent term is
"dominant" in the expansion (Eq. 6.25). As can directly be deduced from the Eqs. 6.71 and 6.72,
the DCT in particular is exact in the following two cases: (i) for arbitrary systems in the limit
kBT → 0, where the dynamics becomes deterministic and the linear force response is governed
by jA1 and jB1 only, and (ii) for strictly linear systems at arbitrary temperature T, i.e., for systems
where gA1 and gB1 are the only non-vanishing gi-functions.

First-order correction to the dynamic convolution theory

Based on the relations derived in Sec. 6.1, systematic corrections to the DCT estimate JDCT
1 can

be calculated. For example, if in addition to the linear force response functions the quadratic
and cubic response functions of the subsystems, i.e., JA2 , JB2 , JA3 , and JB3 , are known, a first-order
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correction ∆JDCT
1 can be calculated so that the corrected DCT prediction and the exact linear

response function of the coupled system agree up to O
(
(kBT)2

)
, i.e.,

JDCT
1 (ω) + ∆JDCT

1 (ω) = J1(ω) +O
(

(kBT)2
)

. (6.77)

The correction term results from the difference of the terms of O(kBT) in the Eqs. 6.72 and 6.71,
using the thermal response functions of the subsystems as zero-order approximants for the
athermal ones. More specifically,

∆JDCT
1 (ω) =

kBT
2π

P
∫

dω′
1

i ω′

(

j̃3(ω, ω′,−ω′)

(

JA1 (ω′)
∣
∣JA1 (ω′)

∣
∣2

+
JB1 (ω′)
∣
∣JB1 (ω′)

∣
∣2

)

− JA1 (ω)2 JB3 (ω, ω′,−ω′)
(

JA1 (ω) + JB1 (ω)
)2

JB1 (ω′)
∣
∣JB1 (ω′)

∣
∣
2 −

JB1 (ω)2 JA3 (ω, ω′,−ω′)
(

JA1 (ω) + JB1 (ω)
)2

JA1 (ω′)
∣
∣JA1 (ω′)

∣
∣
2

)

,

(6.78)

where P denotes the Cauchy principal value of the integral and the zero-order approximants
for the linear friction coefficients arise from the Eqs. 6.6, 6.10 and 6.25

ζ̃′a(ω) ≡ Im [Ja1 (ω)]

ω
∣
∣Ja1(ω)

∣
∣2

=
Im [ja1(ω)]

ω
∣
∣ja1(ω)

∣
∣2

+O(kBT) = − 1
ω

Im [ga1(ω)] +O(kBT) = ζ′a(ω) +O(kBT),

(6.79)
as well as symmetry arguments have been used to simplify the integral in Eq. 6.78. Analogous
to the recursive relations in the Eqs. 6.6-6.8, the zero-order approximant for the cubic athermal
response function of the coupled system j̃3 is calculated from

j̃3(ω, ω′, ω′′) =− j̃1(ω + ω′ + ω′′)g̃3(ω, ω′, ω′′) + j̃2(ω, ω′+ ω′′)g̃1(ω)g̃2(ω
′, ω′′)

g̃1(ω)g̃1(ω′)g̃1(ω′′)

− j̃2(ω′, ω + ω′′)g̃1(ω
′)g̃2(ω, ω′′) + j̃2(ω′′, ω + ω′)g̃1(ω

′′)g̃2(ω, ω′)
g̃1(ω)g̃1(ω′)g̃1(ω′′)

,

(6.80)

j̃2(ω, ω′) = − g̃2(ω, ω′) j̃1(ω + ω′)
g̃1(ω)g̃1(ω′)

, (6.81)

j̃1(ω) =
1

g̃1(ω)
, (6.82)

where the zero-order approximants for the gi-functions of the coupled system are given by

g̃1(ω) = g̃A1 (ω) + g̃B1 (ω), g̃2(ω, ω′) = g̃A2 (ω, ω′) + g̃B2 (ω, ω′),

g̃3(ω, ω′, ω′′) = g̃A3 (ω, ω′, ω′′) + g̃B3 (ω, ω′, ω′′).
(6.83)

The zero-order approximants of the subsystems are finally expressed in terms of the individual
linear, quadratic, and cubic thermal response functions based on the Eqs. 6.25-6.27 and the
relations from the Eqs. F.1-F.3 in Appendix F

g̃a1 (ω) =
1

Ja1 (ω)
, a ∈ {A,B}, (6.84)

g̃a2(ω, ω′) = − Ja2(ω, ω′)g̃a1(ω + ω′)
Ja1(ω)Ja1 (ω

′)
, (6.85)
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g̃a3(ω, ω′, ω′′) =− g̃a1(ω + ω′ + ω′′)Ja3(ω, ω′, ω′′) + g̃a2(ω, ω′ + ω′′)Ja1 (ω)Ja2(ω
′, ω′′)

Ja1(ω)Ja1(ω
′)Ja1 (ω

′′)

− g̃a2(ω
′, ω + ω′′)Ja1(ω

′)Ja2(ω, ω′′) + g̃a2(ω
′′, ω + ω′)Ja1 (ω

′′)Ja2 (ω, ω′)
Ja1 (ω)Ja1(ω

′)Ja1(ω
′′)

.

(6.86)

Summarizing, the knowledge of the linear, quadratic, and cubic thermal response functions of
the two subsystems A and B allows via Eqs. 6.84-6.86 to approximate the gi-functions of the
subsystems and of the coupled system (Eq. 6.83). The inverse procedure (Eqs. 6.80-6.82) then
yields j̃3 which approximates the athermal cubic response function j3 of the coupled system
and which is used together with Eq. 6.79 in the integral of Eq. 6.78 to calculate the first-order
correction to the DCT prediction.

Higher order correction terms for the DCT can systematically be derived based on the rela-
tions from Sec. 6.1 in a similar manner as exemplified above.

6.5 Conclusions

In conclusion, we have derived perturbation expansions for equilibrium correlation functions
(Eqs. 6.20 and 6.22) and force response functions (Eqs. 6.25-6.27) to account for nonlinearities in
the equations of motion of thermally fluctuating systems. The non-trivial dependence of these
quantities on the thermal noise strength has been illustrated using overdamped diffusion in
three different potential landscapes as simple model systems and the accuracy of the analytical
predictions has been tested by comparison to results from numerical simulations.

We have explicitly shown that discriminating between linear and nonlinear dynamic models
is an intrinsically difficult task based on two-point correlation functions only. However, eval-
uating higher order correlation and cumulant functions, e.g., the spectral kurtosis, or probing
the nonlinear response of the system are valuable methods to detect nonlinearities. In addition,
nonlinearities leave specific fingerprints in the dynamic quantities, which become apparent
when the temperature of the system is varied. The spectral analysis approach taken in this
chapter is particularly relevant, when the equilibrium PDF of the signal, from which the nonlin-
earities are trivially read off, is not directly accessible. This is for example the case, when the
measured signal is (intentionally) filtered by the experimental or data acquisition equipment as
seen in Chapter 5, thereby irrevocably distorting the signal’s equilibrium PDF [78]. Accounting
for linear filters in the spectral analysis, as done in Sec. 5.4.1, is in contrast straightforward.

Finally, we have studied the dynamics of composite systems, in particular mechanically cou-
pled ones. We have revealed the range of validity of the linear DCT [ix] and have derived a
first-order correction to account for nonlinearities in the dynamics of the subsystems.

Our approach is based on the Langevin equation and very general: It allows to readily com-
pute the first terms in the expansion of any dynamic quantity of interest once the stochastic
equation of motion has been specified. We therefore expect a variety of possible applications
for the analysis of simulations and experiments of thermally fluctuating systems. The specific
monostable systems (Secs. 6.2.2 and 6.2.3) may serve to detect nonlinearities of atomic force
microscopy and optical tweezer experiments. This is particularly important, because the small
equilibrium fluctuations of the cantilevers/beads in these instruments (cf. Chapter 5) are used
for calibration purposes [214, 266], while actual experimental force measurements often involve
large deflections and therefore are sensibly affected by nonlinear contributions in the potential.
The analytical formulas for the PSDs (Eqs. 6.43 and 6.50) thus constitute a valuable starting point
to identify and quantify these nonlinearities and to improve the accuracy of microscopic force
measurements.



CHAPTER 7

DYNAMICS OF SEMIFLEXIBLE POLYMERS AT
INTERFACES

Bibliographic information: Parts of this chapter and of Appendix D have previously been pub-
lished. Reprinted with permission from Ref. [vi]. Copyright 2011, American Institute of Physics.

Semiflexible polymers are of interest in various fields of science and technology due to their
abundance in biological and synthetic systems. Examples of biological relevance include double-
stranded DNA and cytoskeletal filaments such as actin and microtubules. The theoretical inter-
est in semiflexible polymer dynamics [56, 57, 267–271] has been spurred since the manipulation
and observation of single polymer filaments has become feasible experimentally. A variety of
refined experimental techniques allow to precisely follow and analyze conformations and dy-
namics of single polymers in all kinds of different environments, e.g., under confinement in
nanotubes and nanoslits [272, 273]. To give explicit examples, the internal relaxation dynam-
ics of f-actin have been resolved by fluorescence videomicroscopy [79], and the end-monomer
dynamics of dsDNA have been investigated by fluorescence correlation spectroscopy [274, 275].
Although polymers are often confined due to practical reasons in such experiments, hydrody-
namic interactions (HI) are—if considered at all—generally included in existing theories [276]
assuming a boundless fluid. Though the importance of HI has been demonstrated in a range
of simulation studies on force- or shear-driven filaments [267–269, 271, 277, 278], the question
how the internal equilibrium dynamics of a polymer change, when nearby surfaces alter the HI

between different parts of the polymer, has received little attention and the influence of surface-
induced hydrodynamic screening on semiflexible polymer dynamics has thus remained elu-
sive.

Within this chapter, we focus on a single semiflexible polymer, which is confined to a layer at
fixed separation from a planar hydrodynamic boundary at which a no-slip boundary condition
is enforced; the strength of the HI thus varies depending on the distance to the wall. Polymer
dynamics are studied by means of Brownian hydrodynamics simulations and compared with
a hydrodynamic mean-field theory (MFT). Our study demonstrates the complexity of semiflexi-
ble polymer dynamics resulting from a subtle interplay of chain connectivity, internal bending
and stretching stiffness as well as (screened) HI. We find the importance of the HI to vary among
the different dynamic observables considered: while the mean square displacements (MSDs) of
vectorial quantities such as the end-monomer position or the end-to-end vector sensitively de-
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pend on the HI strength, this dependence is much less pronounced for the MSDs of a scalar
quantity such as the end-to-end distance. In the scalar case, on the other hand, a pronounced
dependence of dynamic scaling exponents on the ratio of the bending and stretching stiffnesses
and on the ratio of contour and persistence lengths appears in the data, in qualitative agreement
with our reanalysis of experimental data for the internal relaxation dynamics of f-actin [79]. In-
terestingly, the crossover from Zimm-type behavior in bulk to Rouse-type behavior in the MSDs
of vectorial quantities at the hydrodynamic boundary is rather weak and the free-draining limit
is not completely reached even when the polymer distance from the wall is on the order of the
monomer size. An interesting question in the future thus concerns the relevance of hydrody-
namics for the dynamics of biopolymers in vivo with omnipresent confining surfaces and the
crowded environment of cellular systems [279].

The chapter is organized as follows: The essentials of low Reynolds-number hydrodynam-
ics near a planar surface, which are used in both simulations and theory, are shortly revisited
in Sec. 7.1. The Brownian hydrodynamics scheme is described in Sec. 7.2.1; for the theoreti-
cal description of semiflexible polymer dynamics, a hydrodynamic mean-field approach [56]
is adapted to the present context, details of which are found in Sec. 7.2.2. The results of hy-
drodynamic simulations and of the theory are presented and discussed in Sec. 7.3, while the
main implications of our findings are exposed in Sec. 7.4. The entries of the hydrodynamic
interaction tensor used for simulation purposes and within the analytical theory are found in
Appendix D.3.

7.1 Hydrodynamics near a Planar No-Slip Boundary

We assume the planar hydrodynamic boundary being placed in the xy-plane at z = 0 of the
coordinate system. The no-slip boundary condition at the wall implies that all components
of the solvent flow field vanish at the boundary. The quasi-stationary incompressible Stokes
equation (cf. Eq. 5.11)

∇p(r) − η0∇2u(r) = f (r), ∇ · u(r) = 0, (7.1)

relating pressure p, shear viscosity η0, fluid velocity u and an external force density f , can be
solved using a standard Green’s function technique [280]. The solution satisfying the no-slip
condition at z = 0, named the Blake tensor←→µ B, is derived using the method of images [281]

←→µ B(r, r′) =←→µ O(R)−←→µ O(R) +←→µ D(R)−←→µ SD(R), (7.2)

where r′ = (x′, y′, z′)T is the position of the Stokeslet, the image Stokeslet has coordinates r′ =
(x′, y′,−z′)T, and where we have defined the relative vectors R ≡ r − r′ and R ≡ r − r′. The
Oseen tensor←→µ O, the Stokes doublet←→µ D, and the source doublet←→µ SD are 3× 3-tensors with
entries

µO
αβ(R) =

1
8πη0R

(

δαβ +
RαRβ

R2

)

, α, β ∈ {x, y, z}, (7.3)

µD
αβ(R) =

2z′2(1− 2δβz)

8πη0

(

δαβ

R
3 −

3RαRβ

R
5

)

, α, β ∈ {x, y, z}, (7.4)
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µSD
αβ(R) =

2z′(1− 2δβz)

8πη0

(

δαβRz

R
3 − δαzRβ

R
3 +

δβzRα

R
3 − 3RαRβRz

R
5

)

, α, β ∈ {x, y, z}, (7.5)

where R ≡ |R| and R ≡
∣
∣R
∣
∣. The hydrodynamic entrainment effect of the motion of a finite

sized sphere of radius a located at r on another equal-sized sphere at r′ is approximated by a
multipole expansion [282, 283] to second order in the bead radius a

←→µ RPB(r, r′) ≡
(

1 +
a2

6
∇2

r +
a2

6
∇2

r′

)

←→µ B(r, r′), (7.6)

which in analogy to the procedure in an unbounded fluid is called the Rotne-Prager [238] (RP)
level of the Blake tensor. The approximate expression for the HI between finite sized spheres in
Eq. 7.6 is used in both simulations and theory as detailed in Sec. 7.2, the explicit entries of the
tensor are found in Appendix D.3.

7.1.1 Self-mobilities near a planar no-slip interface

The no-slip boundary at the wall not only alters HI between different particles, but also affects
the particles’ self-mobilities. Approximate expressions [282, 283] for the dependence of the
self-mobility of a sphere on the separation z to the wall are obtained by considering the limit

←→µ RPB
self (z) ≡ lim

r→r′
←̃→µ RPB

(r, r′) =






µRPB
‖ (z) 0 0

0 µRPB
‖ (z) 0

0 0 µRPB
⊥ (z)




 , (7.7)

where ←̃→µ RPB
is the RP level of the tensor ←̃→µ B

, in which—compared to the Blake tensor←→µ B in
Eq. 7.2—the first Oseen contribution←→µ O(r, r′), which has a singularity at r = r′, is replaced by
the diagonal 3× 3 matrix µ0

←→
1 , µ0 ≡ 1/ (6πη0a) being the bare Stokes self-mobility of a sphere

of radius a in a solvent of viscosity η0 [16]. One obtains renormalized self-mobilities parallel (‖)
and perpendicular (⊥) to the boundary, which depend on the distance z from the wall

µRPB
‖ (z) = µ0

(

1− 9a
16z

+
1
8

( a
z

)3
+O

(( a
z

)4
))

, (7.8)

µRPB
⊥ (z) = µ0

(

1− 9a
8z

+
1
2

( a
z

)3
+O

(( a
z

)4
))

. (7.9)

In Fig. 7.1, the expressions in the Eqs. 7.8 and 7.9 (dashed lines), which only approximately ful-
fill the no-slip boundary condition on the bead’s surface, are compared to more elaborate and
experimentally tested results [284], shown as solid lines, which correctly reproduce the short-
range lubrication effects: The expression for the self-mobility parallel to the wall obtained by
Perkins and Jones [285] (PJ) and Stimson’s and Jeffery’s (SJ) exact result for the self-mobility per-
pendicular to the surface [103, 286], which have already been used in Sec. 3.4.1, are reproduced
in Appendix D.2.

In Fig. 7.1 differences between the exact and the approximate self-mobilities are only notice-
able for distances z/a . 2. For the sake of consistency of self-mobilities and inter-bead HI

described by the RP level of the Blake tensor (Eq. 7.6), we resort to the approximate expressions
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Figure 7.1:
Parallel (‖) and perpendicular (⊥) self-mobilities of a sphere of radius a located at a distance z from
a planar no-slip wall (z = 0). The approximations of the Eqs. 7.8 and 7.9 (dashed lines) are compared
to the PJ result (Eq. D.6, solid blue line), and to the exact SJ expression for the perpendicular mobility
(Eq. D.7, solid red line). Self-mobilities are given in units of the bare self-mobility µ0 = 1/(6πη0a) in a
fluid of shear viscosity η0. The region z < a is inaccessible due to excluded-volume effects.

in the Eqs. 7.8 and 7.9 even for z/a < 2. Since the continuum description of hydrodynamics
is expected to break down in any case in the limit z/a → 1, since single molecules have a non-
vanishing mobility even when they are in direct contact with a surface, we do not attribute any
experimental significance to the deviations between our approximate and the exact expressions
in Fig. 7.1.

7.1.2 Screening of hydrodynamic interactions near a planar no-slip interface

HI are long-ranged, decaying as 1/R in an unbounded fluid. The term hydrodynamic screen-
ing is employed to describe the weakening of these HI, for example in the presence of nearby
surfaces. Within the following discussion we restrict ourselves to the scenario schematically
depicted in Fig. 7.2, where two equal-sized spheres of radius a are found at a distance z from
the no-slip interface and at a separation R from each other along the x-axis of the coordinate
frame. As illustrated in Fig. 7.2, the hydrodynamic flow-field created by a force f acting on one
of the spheres also causes a motion with velocity v =←→µ RPB · f of the other one.

In Fig. 7.3a-c, the strengths of the HI at different distances from the wall are compared: The
diagonal entries of the RP level of the Blake tensor ←→µ RPB (Eq. 7.6 with specific entries in Ap-
pendix D.3) are shown as a function of the inter-particle distance R. For HI along the connec-
tion vector (Fig. 7.3a), HI remain long-ranged decaying as 1/R for R ≪ z, but cross over to a
1/R3-scaling for R≫ z. The strength of the HI perpendicular to this axis decays faster (∝ 1/R5)
as seen in Fig. 7.3b-c. Note also the sign change in µRPB

zz in Fig. 7.3c which turns from positive to
negative for R/z ≈ 0.9. To characterize the strength of the HI for a certain relative configuration
of two spheres, we define the scalar quantity

H(R, z) ≡
√

1
3 ∑

α,β
µRPB

αβ
2, 〈v2〉 f = 〈 f T ·←→µ RPBT ·←→µ RPB · f 〉 f ≡ H2(R, z) | f |2 , (7.10)
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Figure 7.2:
Schematic illustration of the bead configuration for which the diagonal elements of the hydrodynamic
interaction tensor (Eq. 7.6) relating the force f acting on one of the beads and the velocity v of the other
one are plotted in Fig. 7.3: both spheres are located at the same height z above the no-slip interface,
the vector of length R connecting the sphere centers points along the x-direction.

which relates the average root mean square velocity of one sphere,
√

〈v2〉 f , to the magnitude
| f | of the force acting on the other one, and where 〈. . .〉 f denotes an average over the possible
directions of the force. Dynamic scaling regimes in the motion of semiflexible polymers result
from a subtle interplay of HI and monomer mobility, which both decrease when approaching
the no-slip boundary: As is visible from the Langevin Eq. 7.13 underlying the Brownian dy-
namics (BD) simulation method in Sec. 7.2.1 as well as from the theoretical dynamic description
in Sec. 7.2.2, a simultaneous drop of the HI and self-mobilities by the same factor is equivalent
to a rescaling of time and thus does not affect dynamic scaling exponents. In turn, in order to
see non-trivial dynamic effects embodied in changes of dynamic scaling exponents, the ratio
between self- and cross-mobility must change. The unitless ratio

H̃(R, z) ≡ H(R, z)
√

1
3

(

2
(

µRPB
‖ (z)

)2
+
(
µRPB
⊥ (z)

)2
)

µ0

H∞(R)
, (7.11)

quantifies the relative importance of hydrodynamics at a finite distance z from a no-slip bound-
ary compared to an unbounded fluid, where

H∞(R) ≡ lim
z→∞

H(R, z) =
µ0a
R

√

1 +
1
8

(

1− 2a2

R2

)2

, (7.12)

corresponds to the strength of the HI based on the RP-tensor [238] (Eq. D.9 in Appendix D.3).
For the configuration shown in Fig. 7.2, the function H̃ in Eq. 7.11 is plotted for different values
of the separation z in Fig. 7.3d. In the limit of large separations from the wall, z/a → ∞, full
HI described by the RP tensor are recovered (H̃ = 1), while the free-draining limit corresponds
to H̃ = 0. As is clearly seen in Fig. 7.3d, the influence of the HI is continuously reduced with
increasing inter-bead separation R and decreasing distance to the wall compared to the case
of an unbounded fluid, though for small inter-bead separations it remains sizeable even for
z/a = 2. The consequences arising from this complex behavior of the HI and self-mobilities for
the dynamics of semiflexible polymers are discussed in Sec. 7.3.
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Figure 7.3:
Screened HI between spherical particles of radius a at a relative distance R and at equal height z above
a no-slip interface as shown in Fig. 7.2. a), b), c) Diagonal entries of the RPB tensor (Eqs. D.8 and D.10-
D.12 in Appendix D.3) for different distances z from the wall (colored lines); in the limit z/a → ∞ the
usual RP tensor (Eq. D.9 in Appendix D.3) is recovered (solid black line). In (c), the tensor element is
positive for R/z . 0.9 and negative for R/z & 0.9. d) Relative importance of HI compared to an
unbounded fluid in terms of the unitless function H̃ (Eq. 7.11).
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7.2 Methods

7.2.1 Brownian hydrodynamics simulations

We simulate the dynamics of a semiflexible polymer in solution adopting a standard hydrody-
namic BD scheme [239], in which the polymer is modeled as a chain of M beads of radius a.
According to Itô [29], the overdamped Langevin equation governing the time evolution of the
position ri = (xi, yi, zi)

T of bead i is given by

dri(t)
dt

=
M

∑
j=1

←→µ ij ·
(

−∇r jU(r1, . . . , rM)
)

+ kBT
[

dµRPB
⊥ (z)
dz

]

z=zi

êz + vst
i (t), (7.13)

where êz denotes the unit vector in the z-direction. The mobility matrix ←→µ composed of the
3× 3-submatrices ←→µ ij = δij

←→µ RPB
self (zi) + (1− δij)

←→µ RPB(ri, rj), (7.14)

accounts for two effects: (i) the dependence of the self-mobility on the distance zi of bead i from
the wall (Eqs. 7.7-7.9), and (ii) the fact that a force fj ≡ −∇r jU acting on bead j creates a hydro-
dynamic flow-field in the fluid thereby entraining bead i (Eq. 7.6). The second term in Eq. 7.13
is due to the spatial variation of the beads’ self-mobilities; it is introduced to compensate the
flux caused by the position dependent random velocity contributions vst

i [239, 280], which are
assumed to be Gaussian random vectors with hydrodynamic correlations according to the FDT

〈vst
i (t)⊗ vst

j (t
′)〉 = 2kB T←→µ ij δ(t− t′). (7.15)

The potential U ≡ UWLC + ULJ + Uconf determining the configuration-dependent forces felt by
the beads consists of three terms

UWLC =
γ

4a

M−1

∑
i=1

(ri+1,i − 2a)2 +
κ

2a

M−1

∑
i=2

(1− cos θi), (7.16)

ULJ = wrep ∑
i<j

Θ(2a− rij)

[(
2a
rij

)12

− 2
(

2a
rij

)6

+ 1

]

, (7.17)

Uconf =
g
2

M

∑
i=1

(zi − z0)
2 , (7.18)

where rij =
∣
∣ri − rj

∣
∣ denotes the separation between the centers of the beads i and j, and θi is

the angle between the bond vectors connecting beads i− 1 and i, and beads i and i + 1, respec-
tively. The shifted harmonic potential between adjacent beads of usual strength γ = 200 kBT/a
(cf. Sec. 7.3.2) keeps the contour length L = (M− 1)2a approximately fixed, a bending poten-
tial of strength κ between adjacent bonds takes care of the bending stiffness of the chain, and
the pairwise truncated repulsive Lennard-Jones potential ULJ of strength wrep = 3 kBT mim-
ics excluded volume effects and prevents significant bead overlap, which otherwise would be a
source of numerical instabilities. The harmonic potential Uconf of strength g = 1 kBT/a2 ensures
an average distance z0 of the polymer from the wall as illustrated in Fig. 7.4. By gradually vary-
ing the value of z0, the influence of the hydrodynamic boundary condition at the wall on the
motion of the polymer is sensitively resolved. In the limit of infinite separation from the wall
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Figure 7.4:
Schematic of the simulation setup: A polymer chain consisting of M monomers of radius a is confined
by the harmonic potential Uconf (Eq. 7.18) centered around z0 and acting in the z-direction only.

the usual RP tensor [238] (Eq. D.9 in Appendix D.3) is recovered as hydrodynamic interaction
tensor.

Eq. 7.13 is discretized and integrated numerically using a simple Euler algorithm. The time
discretized form of the Langevin equation for bead i reads

ri(t + δt) = ri(t) +

(
M

∑
j=1

←→µ ij · fj + kBT
[

dµRPB
⊥ (z)
dz

]

z=zi

êz

)

δt + δrst
i (t), (7.19)

where the time step is denoted by δt, and the stochastic contributions δrst
i are Gaussian dis-

tributed random vectors with vanishing mean and correlations

〈δrst
i (t)⊗ δrst

j (t)〉 = 2kBT←→µ ijδt. (7.20)

In the case of collisions with the wall, the z-component is reflected about z = a, while the
updating scheme for the other components remains unchanged. The correlated stochastic con-
tributions of Eq. 7.15 are obtained from uncorrelated Gaussian noise by means of a Cholesky
decomposition of the hydrodynamic matrix←→µ (Eq. 7.14). In all the results below, lengths are
measured in units of the bead radius a, energies in units of thermal energy kBT and time in
units of the monomeric time scale τmon ≡ a2/(kBTµ0).

7.2.2 Hydrodynamic mean-field theory

For the theoretical description of the polymer motion, we apply a dynamic mean-field approach
which has proven useful for the description of semiflexible polymer dynamics in three dimen-
sions in various contexts ranging from DNA end-monomer diffusion [56, 57] to DNA-protein
binding dynamics [xi] and the dynamic force-response of pre-stressed filaments [287].

The simplest description of a semiflexible polymer is the worm-like chain (WLC) model: The
polymer is represented by a continuous, differentiable space curve r(s) of contour length L. The
associated elastic energy UWLC, the continuum analogue of Eq. 7.16, is given by [288]

UWLC[r(s)] =
κ

2

∫ L/2

−L/2
ds
(

∂u(s)
∂s

)2

. (7.21)

Here, the arc-length variable ranging from −L/2 to L/2 is denoted by s, and the tangent vector
u ≡ ∂r/∂s is constrained by local inextensibility to unit length, u2(s) = 1, ∀ s ∈ [−L/2, L/2].
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The bending rigidity κ is related to the persistence length ldD
p , the typical length scale on which

tangent-tangent correlations decay

〈
u(s) · u(s′)

〉
= e−|s−s′|/ldD

p , ldD
p ≡

2κ

(d− 1)kBT
, (7.22)

where d is the dimension. Here, we consider the case of two-dimensional confinement (d = 2);
the configurational space being reduced compared to three dimensions, a polymer with given
bending rigidity κ therefore appears stiffer in confinement: lp ≡ l3D

p = l2D
p /2.

The constraint in the tangent vector length leading to nonlinear equations of motion, an al-
ternative, approximate model is required. Within a mean-field approach [289, 290] the local
constraint is relaxed and replaced by the global and end-point conditions

〈∫
ds u2(s)

〉
= L

and
〈
u2(±L/2)

〉
= 1. The resulting Gaussian mean-field Hamiltonian incorporates a finite

extensibility in addition to the bending term

UMF[r(s)] =
ǫ

2

∫ L/2

−L/2
ds
(

∂u(s)
∂s

)2

+ ν
∫ L/2

−L/2
ds u2(s) + ν0

(
u2 (−L/2) + u2 (L/2)

)
, (7.23)

where the MFT parameters

ǫ = l2D
p kBT, ν =

kBT
2l2D

p
, and ν0 =

kBT
2

, (7.24)

are chosen so that the most prominent static equilibrium properties of the WLC, the tangent-
tangent correlation function in Eq. 7.22 and other derived quantities such as the mean square
end-to-end distance, are correctly reproduced [291].

The dynamic theory for the Gaussian semiflexible polymer is based on the hydrodynamic
pre-averaging approach [292], analogous to that used for the Zimm model [241] in the case of
flexible chains. Within that approximation, the time evolution of the position-vector of point s
on the polymer contour within the x-y-plane is governed by the Langevin equation

∂

∂s
r(s, t) = −

∫ L/2

−L/2
ds′ ←→µ avg(s, s′; z)

δUMF

δr(s′, t)
+ vst(s, t),

〈
vst(s, t)⊗ vst(s′, t′)

〉
= 2kB T←→µ avg(s, s′; z) δ(t− t′).

(7.25)

Here the pre-averaged mobility tensor←→µ avg is used, which is a function of the contour points
s and s′ only and which does not depend on the actual spatial positions r(s, t) and r(s′ , t). The
pre-averaged tensor takes the diagonal form

←→µ avg(s, s′; z) =
[

2aµRPB
‖ (z)δ(s− s′) + Θ(

∣
∣s− s′

∣
∣− 2a) µRPB

avg(s, s′; z)
]←→

1 , (7.26)

thus incorporating the self-mobility µRPB
‖ parallel to the boundary (Eq. 7.8), and the pre-averaged

HI between different parts of the polymer contour µRPB
avg, which are cut off for distances |s− s′| <

2a by the unit step function Θ. In Eq. 7.26, the 2× 2 unit matrix is denoted by
←→
1 . The pre-

averaged HI are obtained by averaging the 2× 2 sub-block of the RP level of the Blake tensor
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(Eq. 7.6) corresponding to the x- and y-components over all equilibrium configurations of the
polymer

←→µ RPB
avg(s, s′; z) =

∫

dR←→µ RPB(R; z) Peq(R; s, s′) = µRPB
avg(s, s′; z)

←→
1 , (7.27)

with the Gaussian equilibrium probability density function of (two dimensional) distances R
between s and s′

Peq(R; s, s′) =
1

πσ2(s− s′)
e−R2/σ2(s−s′),

σ2(∆s) ≡ 2l2D
p

(

∆s− l2D
p (1− e−∆s/l2D

p )
)

.

(7.28)

Note that the steric effect of the wall does not need to be accounted for, since polymer configu-
rations are anyways restricted to a two-dimensional layer. The explicit functional form of µRPB

avg
entering the Eqs. 7.26 and 7.27 is found in Eq. D.16 in Appendix D.3.

The pre-averaged Langevin Eq. 7.25 can be solved through a normal mode decomposition,
with the eigenmodes fulfilling free-end boundary conditions at s = ±L/2. Since the MFT-
parameters (Eq. 7.24) are all just multiplied by the constant factor 2/3 compared to three di-
mensions, the free-end boundary conditions and the form of the normal modes described in
detail elsewhere [56] remain unchanged. The eigenmode expansion yields a set of ordinary
differential equations coupled by a hydrodynamic interaction matrix; once this matrix is di-
agonalized [56, 241], the problem is reduced to simple Langevin equations for the decoupled
normal mode amplitudes Pn(t) with stochastic contributions Qn(t)

∂

∂t
P0(t) = Q0(t),

∂

∂t
Pn(t) = −ΛnPn(t) + Qn(t), n = 1, . . . , N,

〈Qn(t)⊗Qm(t′)〉 = 2kB TδnmMn
←→
1 δ(t− t′).

(7.29)

The two-dimensional vectors Pn(t) and Qn(t) are related to the polymer conformation r(s, t)
and to the stochastic velocities vst(s, t) through the expansions

r(s, t) =
N

∑
n=0

Pn(t)Ψn(s), vst(s, t) =
N

∑
n=0

Qn(t)Ψn(s), (7.30)

where the scalar functions Ψn(s) are the decoupled normal modes. The modes are ordered in
such a way that the eigenvalues Λn (inverse relaxation times) increase with n. We set the high-
frequency cutoff N for the mode number to N = ⌈L/8a⌉, which has previously been shown
to give good agreement at small scales with BD simulations in three dimensions [56], [xi]. The
precise choice of the mode number cutoff does not influence the polymer motion on length
scales much larger than the monomer radius a and is therefore only relevant on time scales
t . τmon. The inverse relaxation times Λn and the fluctuation-dissipation parameters Mn can
directly be derived from the tensor←→µ RPB

avg evaluated numerically in the normal mode basis. Full
details of this procedure together with the explicit form of the normal modes Ψn(s) have been
given before [56].
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Using the Langevin equations in Eq. 7.29 and the normal mode decomposition (Eq. 7.30), we
obtain the MSD of the polymer’s ends

〈(∆re(t))
2〉 ≡ 〈

(
re(t′ + t)− re(t′)

)2〉 = 〈
(
r
(
±L/2, t′ + t

)
− r

(
±L/2, t′

))2〉

= 4D2D
polt + 4kBT

N

∑
n=1

Mn

Λn
Ψ2

n (±L/2)
(

1− e−Λnt
)

,
(7.31)

where the (z-dependent) center-of-mass diffusion constant of the polymer is

D2D
pol ≡ kBTM0Ψ2

0 (±L/2) . (7.32)

Similarly, the MSD of the end-to-end vector is expressed in terms of the MFT normal modes

〈(∆Ree(t))
2〉 ≡ 〈(Ree(t)− Ree(0))

2〉

= 〈((r (L/2, t)− r (−L/2, t)
)− (r (L/2, 0)− r (−L/2, 0)

))2〉

= 4kBT
N

∑
n=1, odd

Mn

Λn

(

Ψn (L/2)−Ψn (−L/2)
)2 (

1− e−Λnt
)

,

(7.33)

where the reference time t′ has for simplicity been set to 0.
Note that the polymer’s bending stiffness and the z-dependent HI enter the above equations

via the parameters Mn and Λn as well as via the normal modes Ψn. The temporal dependence
of the dynamic quantities in the Eqs. 7.31 and 7.33 for different distances z from the no-slip wall
are compared to BD results in Sec. 7.3.1.

7.3 Results and Discussion

In the following, we discuss the results from extensive hydrodynamic BD simulations of poly-
mers of contour length L/a = 100 (corresponding to M = 51 beads) and three dimensional
persistence lengths lp/a ranging from 40 to 320 at various average distances z0 from the wall;
a simulation snapshot of two polymer conformations is shown in Fig. 7.5. The simulation time
step is δt = 0.06 a/(µ0γ), which corresponds to δt = 3 · 10−4 τmon for the stretching elasticity
γ = 200 kBT/a used in all hydrodynamic and most of the free-draining simulations. Observ-
ables are averaged over up to 16 trajectories of length 3 · 105 τmon each, after an initial thermal-
ization period of 3 · 103 τmon. For comparison, we also perform free-draining BD simulations,
using a diagonal hydrodynamic matrix ←→µ ij = µ0δij

←→
1 in the Eqs. 7.14 and 7.15, and also set

up a free-draining version of the MFT by replacing←→µ avg(s, s′) by 2aµ0δ(s− s′)
←→
1 in Eq. 7.26.

7.3.1 End-monomer and end-to-end vector dynamics

We first discuss the time dependence of the end-monomer and the end-to-end vector MSDs and
their sensitivity to bending stiffness and hydrodynamic screening. As is illustrated in the inset
of Fig. 7.5, the end-monomer MSD 〈(∆re)

2〉 reduces to the center-of-mass MSD, 4D2D
polt, once the
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Figure 7.5:
BD simulation snapshot showing conformations of a polymer consisting of 51 beads (contour length
L/a = 100) and persistence length lp/a = 40 subject to a harmonic confining potential centered
around z0/a = 10 (blue) and z0/a = 2 (orange). The graph displays MFT results for the end-monomer
MSD 〈(∆re)

2〉 (Eq. 7.31, solid lines) and the end-to-end vector MSD (Eq. 7.33, dashed lines).

largest relaxation time Λ−1
1 is reached, while the end-to-end vector MSD 〈(∆Ree)

2〉 levels off at
twice the equilibrium mean square end-to-end distance σ2(L) for times t & Λ−1

1 (cf. Eq. 7.28).

The end-monomer MSD 〈(∆re)
2〉 in the x-y-plane for polymers of contour length L/a = 100

and four different persistence lengths lp are shown in Fig. 7.6, in which symbols denote hydro-
dynamic and free-draining simulation results and the lines correspond to the MFT expression
in Eq. 7.31. The overall match of simulations and MFT is good, in agreement with our previous
results for the bulk case [56, 57, 270]. Note that no fitting parameter is used in the MFT. Two
distinct effects are clearly identified in both simulation and theory: (i) when decreasing the dis-
tance to the wall, the curves are shifted to larger times, i.e., the overall dynamics are slowed
down, and (ii) the slope of the curves on the double-logarithmic scale corresponding to the ex-
ponent of the underlying power law decreases. These are non-trivial effects, since they depend
on the subtle interplay between wall-induced self-mobility and HI, which both decrease when
approaching the wall as shown in the Figs. 7.1 and 7.3. The curves in the double-logarithmic
representation show deviations from perfect straight lines, we adopt the concept of a local ex-
ponent [56], which in analogy to Sec. 3.2.3 is defined as

α(t) ≡ d log f (t)
d log t

, (7.34)

for a general function f (t). The time dependent local exponent α(t) is estimated at each time
t by fitting straight lines to the double logarithmic plot of MSD data points at times ti within
a small range around t, defined by the condition

∣
∣log10 (ti/t)

∣
∣ < 0.15. The local exponents of

the end-point MSDs are shown in the panels below the MSD data in Fig. 7.6. For short times,
they exhibit plateaus extending over several decades in time; a crossover to the center-of-mass
exponent 1 sets in around the largest polymer relaxation time Λ−1

1 , which is designated by
a vertical arrow in the Figs. 7.6 and 7.7 and increases by approximately a factor 5 when HI

are gradually turned off. Note that even for shorter times than Λ−1
1 the exponents start to

oscillate; these extended crossover-regions reflect rotations of the entire polymer which for stiff
filaments are captured by the first eigenmode [57, 291]. Insufficient sampling leads to statistical
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Figure 7.6:
In-plane dynamics of polymers of length L/a = 100 and various persistence lengths lp/a held at an
average distance z0 from a no-slip wall. The dynamics are characterized in terms of the end-monomer
MSDs (Eq. 7.31, top panels) and the corresponding local exponents (Eq. 7.34, bottom panels). Symbols
denote results of hydrodynamic and free-draining BD simulations and lines predictions of the two
dimensional MFT. Vertical arrows designate the largest MFT-relaxation times Λ−1

1 .
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Figure 7.7:
Same as Fig. 7.6 but for the end-to-end vector MSDs (Eq. 7.33, top panels) and the corresponding local
exponents α (Eq. 7.34, bottom panels).
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noise in the simulated local exponents for times t & 103 τmon so that the crossovers are only
partially seen in the simulation data. When decreasing the distance to the wall, the values of the
exponent are continuously reduced and approach the scaling behavior of the free-draining limit,
where for very stiff and inextensible polymers without HI a typical scaling exponent of 3/4 is
expected [56, 292]. We briefly recall previous results for the the scale-dependent dynamics of
semiflexible polymers in bulk [56, 57, 270]: In the weak stiffness range a < lp < L, the exponent
α for the end-point MSD has been shown to continuously change as a function of time and
to show a pronounced minimum roughly at the largest internal polymer time scale. Only in
the limit a ≪ L ≪ lp asymptotic scaling is observed and in the absence of HI, the classical
WLC exponent α ≈ 3/4 is realized for times t < Λ−1

1 . In the presence of HI, all exponents
are increased by a constant shift of roughly 0.1 and thus the asymptotic WLC exponent is more
on the order α ≈ 0.85. Those results from hydrodynamic simulations and hydrodynamic MFT

could be rationalized by scaling theory and eigenmode analysis [56] and have quantitatively
been compared to experimental time-resolved data for DNA [57, 270].

Remarkably, the dynamic crossover from hydrodynamic to free-draining behavior in Fig. 7.6
sets in at relatively small distances z0 from the wall. Indeed, the dynamics for z0/a = 2, i.e., at a
monomeric separation of the polymer from the wall, are characterized by a considerably higher
exponent than the free-draining one, meaning that HI—though screened—still contribute sub-
stantially to the relaxation dynamics. Note that this is not an artifact due to the use of approx-
imate self-mobilities and HI of finite sized beads in hydrodynamic simulations and the MFT,
since even at separations of two monomer radii from the wall these approximations compare
well to the exact expressions in Fig. 7.1. Similar trends are seen in the MSD of the end-to-end
vector 〈(∆Ree)

2〉 in Fig. 7.7, which saturates at twice the mean square end-to-end distance of
the polymer for t ≫ Λ−1

1 . Again a slow-down of the dynamics and a decrease of the local ex-
ponent are observed when HI are reduced due to the nearby wall; local exponents are reversely
ordered due to this slow-down for t & Λ−1

1 .

The quantitative agreement of the MSDs in BD simulations and in the MFT is less impressive
in the confined geometry than in the three-dimensional case [57], the MSDs generally being
overestimated by the theory. The reasons for the reduced accuracy of the theory in the present
case are manifold: (i) Within the MFT the polymer is treated as completely confined to two di-
mensions, while small out of plane fluctuations are possible in the simulation, (ii) as has been
argued in Ref. [57], long ranged HI are one factor for the success of the MFT in three dimen-
sions; conversely, a worsening of the theory is thus expected, when the wall is approached and
in consequence HI are gradually weakened, (iii) in analogy with the critical behavior of lattice
spin systems [293], mean-field theory and similarly also the pre-averaging approximation of
the hydrodynamic tensor are expected to perform better in higher dimension; the reduced ac-
curacy of the two-dimensional theory can therefore be, at least in part, attributed to the lower
dimension. However, the general trends induced by the interaction with the no-slip boundary,
which are best seen in the local exponents (bottom panels in the Figs. 7.6 and 7.7), are reliably
reproduced by the MFT.

Considerably stiffer and longer chains, where the different dynamic regimes are clearly sepa-
rated in time, are not accessible yet by means of simulations because of the overwhelming com-
putational costs. In contrast, the mean-field approach is equally applicable here. MFT results
for a chain with L/a = lp/a = 500 shown in Fig. 7.8 confirm the previous observations: When
approaching the wall, hydrodynamic screening shifts the crossovers to larger times and simul-
taneously decreases the (local) exponent, though not quite reaching the free-draining limit with
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Figure 7.8:
MFT results for in-plane dynamics of a polymer of contour and persistence lengths L/a = lp/a = 500:
The top panels show the end-monomer MSD (left, Eq. 7.31) and the end-to-end vector MSD (right,
Eq. 7.33) and the bottom panels the corresponding local exponents (Eq. 7.34) for various distances z
from the wall as well as in the free-draining limit. Vertical arrows designate the largest MFT-relaxation
times Λ−1

1 .

exponent 3/4 even at wall-separations on the order of the monomer size. Clearly, the strength
of the HI is the most relevant parameter for determining the dynamic scaling exponents in the
Figs. 7.6-7.8, while the ratio lp/L, ranging from 0.4 to 3.2, is of comparatively minor importance
for the MSDs of the vectorial quantities considered so far.

7.3.2 Dynamics of the scalar end-to-end distance

Experimentally, end-to-end relaxation dynamics have been studied using end-labeled f-actin
filaments [79], which are enclosed in a 1 µm thick chamber to keep the fluorescent markers in
the focal plane of the microscope. The dynamics of filaments of contour lengths L ranging from
5.9 to 25.6 µm and persistence length lp ≈ 15.7 µm [79] have been quantified in terms of the
MSD of the (scalar) end-to-end distance

〈(∆ |Ree| (t))2〉 ≡ 〈(
∣
∣Ree(t′ + t)

∣
∣−

∣
∣Ree(t′)

∣
∣
)2〉

= 〈
(∣
∣r
(

L/2, t′ + t
)
− r

(
−L/2, t′ + t

)∣
∣−

∣
∣r
(

L/2, t′
)
− r

(
−L/2, t′

)∣
∣
)2〉,

(7.35)

which obviously differs from the end-to-end vector MSD in Eq. 7.33. In their work, Le Goff et al.
suggest a linear rescaling of the time and MSD variables in order to collapse the MSD data set
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Figure 7.9:
a) Experimental MSDs of the scalar end-to-end distance of f-actin filaments of contour length L =
5.9, 10.4, 10.7, 11.8, 11.8, 11.9, 12.9, and 25.6 µm (from bottom to top, data digitized from the inset of
Fig. 3 in Ref. [79]; only those parts of the data set are used, which could unambiguously be assigned
to a certain contour length L). Assuming a persistence length lp ≈ 15.7µm [79], the ratio lp/L varies
between 0.61 and 2.66 (from top to bottom). b) Corresponding local exponents (Eq. 7.34).

onto a single master curve, which at short times reduces to a power law scaling with exponent
α = 3/4. Interestingly, our re-analysis of the experimental data in terms of local exponents
reveals smooth crossovers from values between 0.8 and 1.0 at short times to values around 0.7
before the exponents quickly drop towards 0. The original data as well as the corresponding
local exponents, both affected by significant statistical noise, are shown in Fig. 7.9. Plateau
regions with an approximately constant exponent (cf. Figs. 7.6-7.8) are not observed. Note
that a linear rescaling of time t̃ ≡ ctt and of the dynamic observable f̃ (t̃) ≡ c f f (ctt) with ct

and c f constants, leaves the local exponent (Eq. 7.34) unchanged: α̃(t̃) = α(ctt). The rescaling
therefore cannot be the reason for the apparent plateaus of the exponents in the original data
analysis. Rather, the graphical averaging over various filament lengths seems to wash out the
variations of the exponent as a function of time and when comparing different filament lengths
with each other.

Unfortunately, the isotropic MFT in the formulation of Sec. 7.2.2 does not allow the evaluation
of the scalar end-to-end distance MSD measured in the experiments. Also, a direct comparison
of experiments and hydrodynamic simulations is unfeasible because of the immense computa-
tional costs associated with contour lengths L/a ∼ O(103). The MSD of the scalar end-to-end
distance from BD simulations of chain length L/a = 100 are shown in Fig. 7.10. As in the case
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Figure 7.10:
Scalar end-to-end distance MSD from hydrodynamic BD simulations of a polymer of length L/a = 100
and varying stiffness lp/L for several average distances z0 from the confining wall (top panels) as well
as corresponding the local exponents α (bottom panels). For comparison results from free-draining
BD simulations are shown using red triangles.
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of the end-to-end vector MSD in Fig. 7.7, the weakening of the HI leads to a slowdown of the
overall relaxation dynamics, the saturation crossover being shifted to larger times. However,
the scalar end-to-end distance saturates at considerably smaller times since the slow rotational
mode of the entire filament is factored out in this observable. In accordance with the experi-
mental data in Fig. 7.9, the local exponents are rather characterized by smooth crossovers than
by constant values. Most strikingly, the comparison of the simulation results in Fig. 7.10 re-
veals a strong dependence of the local exponents on the ratio lp/L: Typical values of α & 0.8 for
lp/L = 0.4, α ≈ 0.7− 0.75 for lp/L = 0.8, α ≈ 0.65 for lp/L = 1.6, and α ≈ 0.5 for lp/L = 3.2 are
identified, in agreement with results previously obtained for the fluctuations of unconstrained
filaments [57]. For a fixed ratio lp/L, the strength of the HI varying with the distance z0 from the
boundary only slightly affects the local exponents. Hydrodynamics thus seem to be of minor
importance for the dynamic scaling of the scalar end-to-end distance MSD, in contrast to the
vectorial MSDs in the Figs. 7.6 and 7.7. This is not surprising, as hydrodynamics most strongly
affect the center-of-mass translation and the rotation of the filament, both of which are factored
out in the scalar end-to-end distance. This finding suggests to use free-draining simulations for
a more detailed analysis of the dynamic scaling behavior of the scalar end-to-end distance.

The fact that the local exponents in Fig. 7.10 tend towards 1/2 instead of 3/4 with increas-
ing ratio lp/L is easily understood by realizing that we keep the harmonic bond-stretching
parameter in Eq. 7.16 constant at a value γ = 200 kBT/a in our simulations, while varying the
bending stiffness κ. As a consequence, the free-draining scalar end-to-end relaxation becomes
dominated by stretching relaxation [294] with characteristic exponent 1/2 in the limit κ → ∞,
whereas the weakly-bending WLC exponent 3/4 is expected only in the idealized limit of a per-
fectly inextensible semiflexible chain. To substantiate this suggestion, we compare the scalar
end-to-end MSDs of free-draining simulations with γ = 200 kBT/a and γ = 1000 kBT/a in
Fig. 7.11a-b. Indeed, for lp/L & one finds higher exponents in the less extensible cases denoted
by open symbols in Fig. 7.11a-b. In turn, variations of the chain extensibility only marginally
affect end-to-end relaxation dynamics in the flexible regime lp/L . 1, since here the relaxation
is dominated by bending fluctuations. For biopolymers probed experimentally, the stretching
and bending stiffness constants are not independent quantities. Rather, the ratio of the stretch-
ing and bending energy parameters,

γa2

4κ
, (7.36)

presumably is rather constant and on the order of unity as in the case of an isotropic elastic
cylinder [295]. Since higher values of the stretching parameter γ require a reduced simulation
time step δt (cf. beginning of Sec. 7.3), an increase of γ is currently unfeasible for simulations
including HI (the simulation time for a single hydrodynamic trajectory with 109 time steps
lasting approximately 40 days on a standard single-core computer). We therefore continue our
discussion with free-draining simulations, which does not seem to be a serious restriction since
the results in Fig. 7.10 indicate that HI are rather unimportant for the MSD of the scalar end-
to-end distance anyways. In Fig. 7.11c-d, we show results from free-draining simulations, in
which γ and κ have simultaneously been modified to keep the ratio in Eq. 7.36 equal to 1.25. As
is clearly seen, the trends observed in Fig. 7.10 remain unchanged: when increasing the ratio
lp/L, the local exponents gradually decrease (below 3/4), in qualitative agreement with the
experimental data shown in Fig. 7.9.

We cautiously remark that experimentally the ratio lp/L is varied by choosing filaments of
different contour lengths L while keeping the persistence length lp fixed. In our simulations,
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Figure 7.11:
a) Influence of the stiffness lp/L and the stretching force constant γ on the end-to-end distance MSD
(Eq. 7.35) and b) corresponding local exponents (Eq. 7.34) in free-draining BD simulations of a polymer
of length L/a = 100. Results obtained with the standard stretching force constant γ = 200 kBT/a
(filled symbols) and γ = 1000 kBT/a (open symbols) are compared. c) and d) Same as (a) and (b) but
from simulations with a constant ratio of bending and stretching energy parameters in Eq. 7.36.

the persistence length lp is varied while keeping L fixed. These two scenarios are not strictly
equivalent since an additional length scale, the monomer radius a, is present in the problem,
giving a second dimensionless length-scale ratio L/a. In order to look into this, we show in
Fig. 7.12 MFT results of the end-monomer and end-to-end vector MSDs for filaments of varying
length to monomer radius ratio L/a but constant ratio lp/L = 1. The dependence on the
monomer radius a can be scaled out in the free-draining limit or, in other words, free-draining
relaxation dynamics are characterized by the ratio lp/L only as is clearly seen from the dashed
lines in the bottom panels of Fig. 7.12, where the data is rescaled by the polymer length L. On
the other hand, HI give rise to a genuine logarithmic dependence of the dynamics on the ratio
L/a as is seen from the solid lines in the bottom panels of Fig. 7.12.

The dilemma is that our simulations do not span a large enough range of ratios lp/L and
L/a in order to extract the full scaling behavior, while the MFT cannot be used to calculate the
experimentally measured scalar end-to-end distance MSD. Nevertheless, it is conceivable that
the scaling in terms of one parameter only, namely the ratio lp/L, observed in the MFT for the
MSDs of the vectorial observables without HI (Fig. 7.12), also holds for the scalar end-to-end
distance MSD, for which the hydrodynamic effects have been shown to be rather unimportant
in simulations (Fig. 7.10). This suggestion is enforced by the observation that experimental and
simulation results for the scalar end-to-end distance MSD in the Figs. 7.9 and 7.11c-d show sim-
ilar behavior for matching values of lp/L, although the values of L/a are very different. Based
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Figure 7.12:
Top left: MFT results for the end-monomer position vector MSD (Eq. 7.31) with HI (solid lines) and in
the free-draining (FD) limit (dashed lines) for filaments of varying contour length L and persistence
length lp but constant ratio lp/L = 1. Bottom left: A rescaling of time and MSD by the polymer length
L yields a collapse of the free-draining MSDs on a master curve, deviations at small times arise from
differences in the mode-number cutoff N, cf. Sec. 7.2.2. In the presence of HI, no collapse is obtained.
Right: Corresponding plots for the end-to-end vector MSD (Eq. 7.33).

on the similar qualitative trends seen in the restricted experimental and simulation data sets dis-
played in Fig. 7.9 and Fig. 7.11c-d, we are led to the following tentative conclusions: (i) Local
exponents for the scalar end-to-end distance MSD do not show characteristic plateau values but
rather continously decrease with increasing time, and (ii) the dynamic scaling varies with poly-
mer stiffness lp/L, where values of α & 3/4 are observed for more flexible chains (lp/L < 1),
while exponents α . 3/4 are characteristic for stiffer filaments (lp/L > 1). These observations
crucially depend on the presence of stretching fluctuations, as indeed experimentally present
for elastic biopolymers. The strength of the HI, which have sizeable effects on the MSDs of vec-
torial observables, mainly reduces to a temporal rescaling for the case of the scalar end-to-end
distance MSD. Given these results, the collapse of experimental scalar end-to-end MSDs for dif-
ferent lp/L on a single master-curve [79], calls for further experimental investigations in light
of the presence of stretching fluctuations as described by an extensible WLC model with a finite
ratio of the bending and stretching stiffnesses (Eq. 7.36).
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7.4 Conclusions

In summary, we have presented results from hydrodynamic and free-draining BD simulations
of a single semiflexible filament in the vicinity of a hydrodynamic no-slip wall. By varying
the distance to the boundary, the influence of hydrodynamic screening on typical dynamic
quantities such as the end-monomer and end-to-end vector MSD of the polymer filament have
been resolved. The weakening of the HI when approaching the wall is clearly reflected in these
observables. Though being less accurate than in the three dimensional case, the adaptation of
the hydrodynamic MFT captures the trends seen in the simulations, i.e., the slowing down of the
overall dynamics and the crossover towards free-draining dynamic scaling when approaching
the wall. In addition, the theoretical approach allows to consider polymer lengths inaccessible
in simulations.

Our analysis reveals that (screened) HI contribute differently to different dynamic variables:
MSDs of vectorial quantities such as the end-monomer position and the end-to-end vector show
distinct plateaus in their local exponents, which are similar over a broad range of bending stiff-
nesses and gradually decrease when approaching the surface. Nevertheless, hydrodynamics
continue to be important at polymer-wall separations on the order of the monomer-size and
the free-draining limit therefore remains an inaccurate approximation to the actual dynamics,
even very close to planar surfaces. To what extent similar reservations hold in other geometries
or in non-dilute polymer solutions remains for future investigations.

On the other hand, rotations of the entire filament are factored out in the scalar end-to-end
distance MSDs, and the corresponding dynamic scaling exponents rather result from an inter-
play of stretching and bending stiffness, while the role of hydrodynamic screening is mainly
reduced to a temporal rescaling. The non-universal dependence of the scaling exponent on the
persistence length to contour length ratio lp/L seen in the free-draining simulations qualita-
tively agrees with a similar dependence seen in our reanalysis of experimental data for f-actin
filaments [79] and crucially depends on the fact that chain stretching fluctuations are included
in the theoretical modeling, as appropriate for elastic biopolymers.

On the basis of our findings, the characterization of previous experimental data in terms of a
single dynamic scaling exponent appears oversimplified. Experiments resolving more dynamic
observables than the usual scalar end-to-end MSD, extending the analysis to a larger range of
stiffnesses lp/L, and rigorously identifying the hydrodynamic influence of nearby boundaries
would certainly be helpful in shed more light on the rich and complex relaxation dynamics of
semiflexible polymers.



CHAPTER 8

BOTTOM-UP APPROACH TO THE
VISCOELASTICITY OF POLYMER NETWORKS

Bibliographic information: Parts of this chapter and of Appendix G have previously been pub-
lished. Reprinted from Ref. [i]. With kind permission of The European Physical Journal (EPJ).

The salient mechanical properties of biological materials such as proteins [296], the cytoskele-
ton [80, 297] and bone-like materials [298] have spurred interest in the question how the vis-
coelasticity of materials result from the underlying constituents and the materials’ structures.
Experimentally, the viscoelastic properties of a variety of hard and soft, complex materials
are nowadays probed by micro- and macroscopic techniques [299–301], which have continu-
ously been refined over the last decades. Given the complexity of the—often hierarchical—
naturally occurring structures, the influence of individual building blocks on the materials’
large-scale properties has been addressed experimentally by studying reconstituted model sys-
tems [302, 303].

On the theoretical side, typical features of the viscoelasticity of polymeric networks could be
linked to the properties of the constituting semiflexible polymers [304, 305]. Various models
for randomly placed semiflexible filaments [306, 307] and site-diluted random networks of fil-
aments supporting both stretching forces and bending torques have been studied numerically
and analytically in the quasi-static (zero-frequency) limit with a focus on the rigidity perco-
lation threshold, the crossover between affine and non-affine elastic response and nonlinear
elastic effects [308–312]. Despite ever increasing computational resources, explicit numerical
calculations for large-scale structures remain time-consuming and have therefore mostly been
restricted to probing quasi-static response properties. In recent work, the phonon spectrum and
the frequency-dependent shear modulus of disordered central-force-lattices close to the rigidity
limit have been studied [313, 314]. However, many details of how the micro- and macrorheo-
logical properties of a material result from characteristics of the structural building blocks still
remain elusive.

Here, we present a theoretical framework that allows to explicitly calculate the entire fre-
quency spectrum of the linear micro- and macro-viscoelastic response functions in complex
networks of arbitrary topology. The input to our dynamic convolution theory (DCT) are the
rheological properties of the structural components and the connectivity of the network. We
focus on polymeric networks, where the dynamical properties of the individual semiflexible
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filaments forming the network are either known theoretically or can be accessed via single-
molecule experiments [79] or explicit simulations [287]. The viscoelastic properties of the
constituting filaments are characterized by frequency-dependent self- and cross-response func-
tions between all pairs of orientational and translational degrees of freedom at the filaments’
ends. The connectivity of the network is encoded in the topology matrix; though applicable
to arbitrary structures, we only consider square lattices in our explicit calculations. The me-
chanical properties of the network nodes modeling the crosslinker molecules play a central
role [311, 315]: Depending on the network’s topology, the angular constraints imposed by the
crosslinkers quantitatively or even qualitatively affect the resulting viscoelastic properties of
the network as is explicitly shown. We consider both microrheological and macrorheological
properties: In the former a point force is applied on the lattice and the local response is mea-
sured, in the latter the network is sheared or compressed by uniform force distributions acting
on the network boundaries. By a mapping on continuum viscoelastic theory we also determine
the corresponding viscoelastic bulk moduli. The actual dynamic convolution step is performed
numerically, the computational costs however are moderate even for networks consisting of
hundreds of nodes.

For simplicity, we restrict the discussion to two dimensions, but it is straightforward to ex-
tend the formalism to three dimensions. The chapter is organized as follows: The DCT is for-
mulated in Sec. 8.1, the linear force-response properties of individual semiflexible filaments are
studied in Sec. 8.2 and used in Sec. 8.3 to calculate the micro- and macrorheological properties
of crosslinked semiflexible polymer networks. Our main results are summarized in Sec. 8.4,
while complementary considerations about viscoelastic continua are found in Appendix G.

8.1 Dynamic Convolution Theory

In the following, we present a DCT for two dimensional mechanical networks, thereby gen-
eralizing the one dimensional theory used in the context of single-molecule experiments [ix].
Linear force response properties of the constituents of the network are covered in Sec. 8.1.1, the
convolution step resulting from connecting the end-points of isolated elements is explained in
Sec. 8.1.2, and the overall procedure is summarized in Sec. 8.1.3. Possible applications as well
as limitations of the theory are discussed in Sec. 8.1.4; an explicit example for the reorientation
effects of mechanical elements is given in Sec. 8.1.5.

8.1.1 Dynamic linear force response of individual elements

We consider two dimensional networks built of mechanical elements consisting of a discrete
number of end-points denoted by capital black letters, e.g., A, B, C, D, etc. Networks result
from coupling the end-points of various mechanical elements as described in Sec. 8.1.2. In the
following, we focus on two-point elements of type AB, CD, etc., which we call basic elements
and which serve as building blocks for more complex structures.

The state of a basic element of type AB is characterized by the Cartesian end-point coordi-
nates xA, yA, xB, and yB as well as the two terminal tangent angles ϕA and ϕB. Motion in this
six-dimensional coordinate space is due to thermal fluctuations as well as internal and external
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forces. In frequency space, the linear response of the system to external forces fAx , fAy , fBx , and
fBy and torques τA and τB acting on the end-points and -orientations is given by

〈











xA(ω)
yA(ω)
ϕA(ω)
xB(ω)
yB(ω)
ϕB(ω)











〉

=

(
JAA(ω) JAB(ω)
JBA(ω) JBB(ω)

)

·











fAx (ω)
fAy (ω)

τA(ω)
fBx (ω)
fBy (ω)

τB(ω)











, ω 6= 0, (8.1)

with the 3× 3 response matrices

Jab(ω) ≡




Jxx
ab (ω) Jxy

ab
(ω) Jxϕ

ab
(ω)

Jyx
ab
(ω) Jyy

ab
(ω) Jyϕ

ab
(ω)

Jϕx
ab
(ω) Jϕy

ab
(ω) Jϕϕ

ab
(ω)



 , a, b ∈ {A,B}, (8.2)

where 〈. . .〉 in Eq. 8.1 denotes an average with respect to the thermal fluctuations and ω 6= 0
is the oscillation frequency, which is typically omitted in the following to simplify the nota-
tion. JAA and JBB being symmetric and JAB = JT

BA due to time-reversal symmetry, the linear
response properties of such a two-point element are encoded in 21 in principle independent
complex functions of frequency ω.

Local and global coordinate frames

In general, the linear response matrices Jab depend on the (average) orientation of the element
in the global coordinate frame (x, y). To unmask this orientational dependence, it is convenient
to define a local orthogonal coordinate frame (‖,⊥), where the ‖-direction points from A to B.
The relationship between the local frame and the global one is established via a rotation matrix

T(Φ) =





cos Φ − sin Φ 0
sin Φ cos Φ 0

0 0 1



 , (8.3)

where Φ is the angle between the x- and the ‖-direction, see Fig. 8.1a for a schematic. Clearly,
the forces and coordinates in the respective coordinate frames are related via





xa

ya

ϕa



 = T(Φ) ·





ra‖
ra⊥
ϕa



 ,





f ax
f ay
τa



 = T(Φ) ·





f a‖
f a⊥
τa



 , a ∈ {A,B}. (8.4)

Note that the terminal angle ϕa is not transformed, since we focus on average oscillation ampli-
tudes at non-zero frequency only. Indeed, time-averaged values of the angular variables, which
obviously depend on the orientation Φ of the element, are reflected in the ω = 0 component,
which is not considered here. Accordingly, the relationship between the response matrices in
the local and the global frames is given by

Jab = T(Φ) · J̃ab · T(−Φ), a, b ∈ {A,B}, (8.5)
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Figure 8.1:
a) Two-point elements of type AB and CD including the local coordinate frames (‖,⊥) with orien-
tation Φ with respect to the global coordinate frame (x, y). b), c), and d) Networks resulting from a
serial alignment of AB and CD as discussed in Sec. 8.1.2; network nodes are denoted by 1, 2, 3, and 4.

where response matrices in the local coordinate frame (‖,⊥) are denoted by a tilde.

Symmetry

Symmetry reduces the number of non-vanishing and independent response functions. For ob-
jects, which (on average) are mirror-symmetric with respect to the⊥-axis, the response matrices
in the local coordinate frame take the form

J̃ab ≡






J‖‖
ab

0 0
0 J⊥⊥ab J⊥ϕ

ab

0 Jϕ⊥
ab

Jϕϕ
ab




 , a, b ∈ {A,B}, (8.6)

and according to Eq. 8.5, the response matrices in the global coordinate frame are then given by

Jab =






J‖‖
ab

cos2 Φ + J⊥⊥
ab

sin2 Φ (J‖‖
ab
− J⊥⊥

ab
) cos Φ sin Φ −J⊥ϕ

ab
sin Φ

(J‖‖
ab
− J⊥⊥

ab
) cos Φ sin Φ J‖‖

ab
sin2 Φ + J⊥⊥

ab
cos2 Φ J⊥ϕ

ab
cos Φ

−Jϕ⊥
ab

sin Φ Jϕ⊥
ab

cos Φ Jϕϕ
ab




 , a, b ∈ {A,B}. (8.7)

The overall number of independent and non-vanishing response functions is thus reduced to
13: eight self-response functions relating forces/torques on and translational/angular motion
of one of the ends: J‖‖

AA
, J⊥⊥AA , J‖‖

BB
, J⊥⊥BB (translation), Jϕϕ

AA
, Jϕϕ

BB
(orientation), J⊥ϕ

AA
, J⊥ϕ

BB
(orientation-

translation coupling) and five cross-response functions relating forces/torques on and trans-
lational/angular motion of different ends: J‖‖

AB
, J⊥⊥AB (translation), Jϕϕ

AB
(orientation), J⊥ϕ

AB
, Jϕ⊥

AB

(orientation-translation coupling), where the latter two are in general independent.
For elements with equivalent end-points A and B, the number of independent response func-

tions is further reduced to eight, since J‖‖
BB

= J‖‖
AA

, J⊥⊥BB = J⊥⊥AA , Jϕϕ
BB

= Jϕϕ
AA

, J⊥ϕ
BB

= −J⊥ϕ
AA

, and
Jϕ⊥
AB

= −J⊥ϕ
AB

. For the case of a single, homogeneous semiflexible filament the eight independent
linear response functions are resolved and discussed in Sec. 8.2.
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As has been stressed above, the linear response properties of a particular element in the
global Cartesian coordinate frame depend on its (average) orientation Φ in the network (cf.
Eqs. 8.5 and 8.7). We therefore use different labels, e.g., AB and CD, for differently oriented
elements of the same type, thereby unambiguously relating a label, e.g., AB, to a particular
set of dynamic linear response matrices JAA(ω), JAB(ω) and JBB(ω) in the global coordinate
frame.

8.1.2 Connection of individual elements

To simplify the notation, we define generalized force and position vectors

Fa(ω) ≡




f ax (ω)
f ay (ω)

τa(ω)



 , Ra(ω) ≡




xa(ω)
ya(ω)
ϕa(ω)



 , a ∈ {A,B}, (8.8)

and inverting Eq. 8.1, we obtain

(

FA(ω)
FB(ω)

)

=

(

GAA(ω) GAB(ω)
GBA(ω) GBB(ω)

)

· 〈
(

RA(ω)
RB(ω)

)

〉 ≡
(

JAA(ω) JAB(ω)
JBA(ω) JBB(ω)

)−1

· 〈
(

RA(ω)
RB(ω)

)

〉,
(8.9)

with dynamic stiffness matrices GAA, GBB, and GAB of dimension 3 × 3 each. Building net-
works out of isolated elements implies coupling their translational and angular degrees of free-
dom. Various coupling mechanisms, which give rise to pairwise coupling forces between the
end-points a and b of different or the same element, are conceivable:

1. Harmonic coupling around an equilibrium position/orientation R0 ≡
(

x0, y0, ϕ0
)T im-

plies a potential energy

U(t) =
1
2
(Rb(t)− Ra(t)− R0)

T · Γ · (Rb(t)− Ra(t)− R0) , (8.10)

where the matrix

Γ ≡




γr 0 0
0 γr 0
0 0 γϕ



 , (8.11)

contains the harmonic spring constants for translational and angular degrees of freedom
γr and γϕ. In frequency domain, such a harmonic coupling implies additional nodal
forces

Fharm
a (ω) = Γ · (Rb(ω)− Ra(ω)) , Fharm

b (ω) = −Fharm
a (ω), ω 6= 0, (8.12)

which are independent of the equilibrium state R0 for ω 6= 0.

2. Coupling due to internal friction [67] generates additional nodal forces

Ffrict
a (ω) = −i ω Z · (Rb(ω)− Ra(ω)) , Ffrict

b (ω) = −Ffrict
a (ω), (8.13)
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where the matrix

Z ≡




ζr 0 0
0 ζr 0
0 0 ζϕ



 , (8.14)

contains the friction coefficients for translational and angular degrees of freedom denoted
by ζr and ζϕ, respectively.

3. Combinations of harmonic and internal frictional coupling [316] as defined in the Eqs. 8.12
and 8.13.

The underlying assumption behind the DCT is that the range of validity of the linear force
response equations (Eqs. 8.1 or 8.9) extends to the sum of (arbitrarily small) external forces Fa
and coupling forces. This is indeed true for linear systems and is a very good approximation if
the effect of the nonlinearities is small, cf. discussion in Sec. 6.4.2.

In the following, we consider two elements of type AB and CD, which are arranged in series
and in parallel, before describing the procedure for arbitrary network types. To distinguish the
degrees of freedom of the end-points of isolated elements and those of the nodes in the network,
the latter ones are denoted by arabic numbers 1, 2, 3, etc.

Serial alignment

A serial alignment of the elements AB and CD is achieved by harmonically coupling the endsB
and C as schematically shown in Fig. 8.1b, where the network’s degrees of freedom are R1 ≡ RA,
R2 ≡ RB, R3 ≡ RC, and R4 ≡ RD. Under the above assumptions, the dynamic force balance in
the network is







F1
F2
F3
F4







=







FA
FB
FC
FD







=







GAA GAB 0 0
GBA GBB + Γ −Γ 0

0 −Γ GCC + Γ GCD

0 0 GDC GDD






· 〈







R1
R2
R3
R4






〉, (8.15)

where the degree of coupling between the nodes 2 and 3 is tuned by the spring constants γr

and γϕ in the matrix Γ (Eq. 8.11).
In the limit of large coupling constants, i.e., for γr, γϕ → ∞, the number of independent

degrees of freedom is reduced by three, since the degrees of freedom at the nodes 2 and 3
then are identical. After this decimation of degrees of freedom (DDF), the remaining degrees of
freedom of the network visualized in Fig. 8.1d are R1 ≡ RA, R2 ≡ RB = RC, R3 ≡ RD, and the
dynamic force balance is




F1
F2
F3



 =





FA
FB
0



+





0
FC
FD



 =









GAA GAB 0
GBA GBB 0

0 0 0



+





0 0 0
0 GCC GCD

0 GDC GDD







 · 〈




R1
R2
R3



〉, (8.16)

where external forces FB and FC on the central node add up. The total linear force response of
the network is contained in the grand-response matrix of dimension 9× 9

J
serial =





GAA GAB 0
GBA GBB + GCC GCD

0 GDC GDD





−1

. (8.17)
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An intermediate scenario (γr → ∞, γϕ finite) with two translational and two angular degrees
of freedom at the central node after the DDF, is schematically shown in Fig. 8.1c.

Parallel alignment

Similarly, AB and CD can be aligned in parallel by harmonically coupling A to C and B to D;
employing the same notation for the network nodes as above, the dynamic force balance is







F1
F2
F3
F4







=







FA
FB
FC
FD







=







GAA + Γ GAB −Γ 0
GBA GBB + Γ 0 −Γ

−Γ 0 GCC + Γ GCD

0 −Γ GDC GDD + Γ






· 〈







R1
R2
R3
R4






〉, (8.18)

assuming the same coupling matrix Γ (Eq. 8.11) for both ends. Similarly as above, in the limit of
large coupling constants, i.e., for γr, γϕ → ∞, the number of independent degrees of freedom
is reduced by six. After this DDF, the remaining network nodes are R1 ≡ RA = RC and R2 ≡
RB = RD and we obtain the dynamic force balance

(
F1
F2

)

=

(
FA
FB

)

+

(
FC
FD

)

=

((
GAA GAB

GBA GBB

)

+

(
GCC GCD

GDC GDD

))

· 〈
(

R1
R2

)

〉, (8.19)

where individual external forces on both network nodes sum up. The linear force response of
the network is consequently encoded in the grand-response matrix of dimension 6× 6

J parallel =

(
GAA + GCC GAB + GCD

GBA + GDC GBB + GDD

)−1

. (8.20)

Arbitrary networks

Mechanical networks of arbitrary complexity can be constructed by softly coupling or decimat-
ing the degrees of freedom of the isolated building blocks. The underlying rules for calculating
the network’s grand-stiffness matrix G ≡ J −1 remain unchanged: The DDF implies identical
oscillation amplitudes of the corresponding degrees of freedom, and the forces in the network
arise from the superposition of the individual external forces and soft coupling forces. Formally,
the entries of the grand-stiffness matrix for a network consisting of N nodes are

G ij(ω) = ∑
a,b

(

T ia ·Gab(ω) ·T jb
T
)

+
1
2

(

C ij + C ji
T
)

, i, j ∈ {1, . . . , N}, (8.21)

where the indices a and b run over all different kinds of end-points in the network, i.e., A,
B, C, etc., and the topology matrices T ia relate the degrees of freedom of the element’s end-
point a to those of the network node i and thus in particularly specify which of the degrees
of freedom are decimated. Soft coupling due to harmonic potentials and/or internal friction
effects between the degrees of freedom of network nodes i and j are encoded in the matrices C ij
entering Eq. 8.21. The pairwise character of the coupling forces (Eqs. 8.12 and 8.13) implies

∑
j

∑
l

(
C ij
)

kl = 0 ⇔ (C ii)kk = −∑
j

∑
l

(1− δijδkl)
(
C ij
)

kl , ∀ i, k, (8.22)
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where the indices i and j refer to nodes and the indices k and l to the corresponding degrees
of freedom. The definition of a network node is rather flexible: In the following, we define a
network node as the set of two translational degrees of freedom (along x and y) and one or
more angular degrees of freedom. The grand-response and stiffness matrices J and G thus are
of dimension 3N × 3N or larger.

Coming back to the serial and parallel examples for illustration purposes, the networks of
the harmonically coupled elements AB and CD (Eqs. 8.15 and 8.18) correspond to the simple
topology matrices







A B C D

1 13×3 0 0 0
2 0 13×3 0 0
3 0 0 13×3 0
4 0 0 0 13×3







= T serial = T parallel, 13×3 ≡




1 0 0
0 1 0
0 0 1



 , (8.23)

translating between alphabetical and numerical indices in this trivial network, in which each
end-point by itself forms a network node. For the serial case, the non-vanishing coupling ma-
trices are

C serial
22 = C serial

33 = −C serial
23 = −C serial

32 = Γ, (8.24)

specifying that the degrees of freedom of nodes 2 and 3 are coupled via Γ (Eq. 8.11), and

C
parallel

11 = C
parallel
22 = C

parallel
33 = C

parallel
44 =

− C
parallel
13 = −C parallel

24 = −C parallel
31 = −C parallel

42 = Γ,
(8.25)

in the parallel scenario, where the nodes 1 and 3 as well as 2 and 4 are coupled respectively. In
turn, the grand-stiffness matrices for the serial and parallel alignment of the elements AB and
CD after the DDF (Eqs. 8.16 and 8.19) follow via Eq. 8.21 from the topology matrices





A B C D

1 13×3 0 0 0
2 0 13×3 13×3 0
3 0 0 0 13×3



 = T serial,
(

A B C D

1 13×3 0 13×3 0
2 0 13×3 0 13×3

)

= T parallel, (8.26)

indicating that for the serial alignment the degrees of freedom of the end-points B and C are
decimated and form the network node 2. For the parallel alignment, the degrees of freedom of
the end-points A and C as well as B and D are forced to coincide and after the DDF form the
network nodes 1 and 2, respectively. In both cases, the coupling matrices vanish, i.e.,

C serial
ij = C

parallel
ij = 0, ∀ i, j. (8.27)

The formulation in Eq. 8.21 is however not restricted to networks built out of two-point ele-
ments. As an example for a more complex network structure, which can be studied within the
DCT framework, we consider the network structure schematically drawn in Fig. 8.2b. The build-
ing blocks shown in Fig. 8.2a are: (i) the two-node elements of type AB and CD, which could
represent linear objects such as unbranched polymers, (ii) a single-node element E, which could
represent a small globular molecule or a colloid, and (iii) a three-node element FGH, which
could represent a branched polymer.



8.1 Dynamic Convolution Theory 147

Figure 8.2:
a) Individual elements of type AB, CD, E, and FGH. b) Complex network of 8 mobile and 2 anchored
nodes constructed from the elements shown in (a) as well as various coupling elements, see Sec. 8.1.2
for details.

The topology matrices corresponding to the network structure in Fig. 8.2b are















A B C D E F G H

1 13×3 0 0 0 0 0 0 0
2 0 0 0 0 13×3 0 0 0
3 0 0 13×3 0 0 0 0 0
4 0 0 0 13×3 0 13×3 0 0
5 0 0 0 0 0 13×3 13×3 0
6 0 0 1′4×3 0 0 0 0 14×3
7 0 0 0 13×3 0 0 0 0
8 0 13×3 0 0 0 0 0 0















= T , (8.28)

with

14×3 ≡







1 0 0
0 1 0
0 0 1
0 0 0







, 1′4×3 ≡







1 0 0
0 1 0
0 0 0
0 0 1







. (8.29)

Eq. 8.28 specifies that the network node 1 is of type A, node 2 of type E, node 3 of type C, node
7 of type D, and node 8 of type B. Moreover, end-points of type D and F form node 4 after the
DDF, and similarly F and G form node 5. Network node 6 is special in the sense that it comprises
four degrees of freedom, since the translational degrees of freedom of the end-points of type C

and H are decimated, while the angular ones remain independent; this property is encoded in
the matrices 14×3 and 1′4×3 in Eq. 8.28. Two of the network nodes in Fig. 8.2b are anchored, i.e.,
they are externally held fixed: In the upper right, the node formed by end-points of type B and
G is immobile and therefore does not enter the grand-stiffness matrix. The same applies to the
network node in the lower left formed by end-points of type A and H.
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The only non-vanishing coupling matrices in the network shown in Fig. 8.2b are

C11 = −C12 = −C21 =





γr − i ω ζr 0 0
0 γr − i ω ζr 0
0 0 0



 ,

C22 =





2γr − i ω ζr 0 0
0 2γr − i ω ζr 0
0 0 0



 , C33 = −C23 = −C32 =





γr 0 0
0 γr 0
0 0 0



 ,

C66 =







0 0 0 0
0 0 0 0
0 0 γϕ −γϕ

0 0 −γϕ γϕ







, C77 = C88 = −C78 = −C87 =





γr 0 0
0 γr 0
0 0 γϕ



 ,

(8.30)

and reflect the viscoelastic coupling indicated by springs and dashpots in Fig. 8.2b: The transla-
tional degrees of freedom of the network nodes 2 and 3 are harmonically coupled via the force
constant γr, those of the network nodes 1 and 2 are in addition subject to internal friction with
a friction coefficient ζr. In addition, the translational degrees of freedom of the network nodes
7 and 8 are harmonically coupled via the force constant γr and the angular ones via the torque
constant γϕ. The latter is also the case for the two angular degrees of freedom of network node
6, which resembles node 2 in Fig. 8.1c, where translational degrees of freedom of B and C are
decimated, while the angles are harmonically coupled.

Network response and boundary conditions

Once all elements of G(ω) for a specific frequency ω are calculated according to Eq. 8.21, the
dynamic force balance in the network reads








F1(ω)
F2(ω)

...
FN(ω)








= G(ω) · 〈








R1(ω)
R2(ω)

...
RN(ω)







〉. (8.31)

The linear force response in the network

〈








R1(ω)
R2(ω)

...
RN(ω)







〉 = J (ω) ·








F1(ω)
F2(ω)

...
FN(ω)








, (8.32)

is encoded in the grand linear response matrix J (ω), which is obtained by inversion of G(ω).
Individual entries of the grand-response matrix J (ω) or linear combinations thereof de-

scribe the dynamic linear force response of the nodes to a given external force distribution on
the network. For example, J ii(ω) specifies the frequency dependent translational and orienta-
tional response of the network node i to a force and torque acting on it, and J ji(ω) quantifies
the response of the network node j to a force and torque on node i. Similarly, linear shear,
compression and twist response between network nodes i and j are encoded in the entries of
(J ii(ω) + J jj(ω)− J ij(ω)− J ji(ω))/2. This also means that if external forces are applied
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to a subset of the nodes only and only the motion of these nodes is of interest, the dimension
of the grand-response matrix J can be reduced by retaining only the corresponding rows and
columns as is easily seen from Eq. 8.32.

As has been mentioned above, anchored nodes do not enter the grand-stiffness matrix G.
Inversely, the process of anchoring nodes in the network is equivalent to discarding the cor-
responding rows and columns from the grand-stiffness matrix G in Eq. 8.31. Note that the
operations of reducing the dimension of a matrix and inverting it do in general not commute,
which reflects the fact that the two kinds of boundary conditions, no external force vs no motion,
are in general different.

8.1.3 Dynamic convolution theory in a nutshell

We summarize the steps to be taken to calculate the linear force response in networks of arbi-
trary topology and complexity:

1. Identify the network’s building blocks, i.e., the isolated elements of type AB, CD, etc., and
determine their linear response matrices Jab(ω), which depend on the average orientation
of the element in the network according to Eq. 8.5. Linear response properties can be
obtained either from theory or based on equilibrium simulations using the fluctuation-
dissipation theorem (FDT). For elements with internal symmetries, the linear response
matrices Jab(ω) can be calculated from the smaller set of independent response functions
using Eq. 8.7.

2. Identify the network’s structure, i.e., the number of non-anchored network nodes N, the
network’s topology matrices T ia and the coupling matrices C ij.

3. For each frequency ω of interest:

a) Calculate the entries of the grand dynamic stiffness matrix G according to Eq. 8.21.

b) Obtain the grand-response matrix J = G
−1 by numerical inversion and calculate

the network’s response to an external force/torque distribution via Eq. 8.32.

Multi-step approach

The computational costs for the inversion of the grand-stiffness matrix quickly increase with its
dimension. Under certain conditions, the following multi-step approach based on the discus-
sion in Sec. 8.1.2 may be more efficient but still exact:

1. Divide the overall network into smaller subnetworks. For each of these subnetworks:

a) Calculate the response matrix J sub as described above.

b) Obtain a matrix J ′sub of reduced dimension by discarding rows and columns in
J sub, which correspond to network nodes, which fulfill all of the following proper-
ties:

• These nodes are not connected to elements of other subnetworks in any of the
following steps.

• No external forces are applied to these nodes.

• Resolving the response of these nodes is not desired.
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See Sec. 8.1.2 for why the reduction in dimensionality is possible under these circum-
stances.

2. Use the subnetwork matrices of reduced dimension {J ′sub} as input to calculate the
grand-response matrix of the overall network.

The above procedure can be applied recursively, i.e., the grand-response matrix obtained in (2.)
can be used as input J sub in (1.a) to study even larger structures. This multi-step approach is of
particular interest for hierarchical structures, in which the number of relevant network nodes
does not considerably increase in each iteration step.

8.1.4 Applicability and limitations of the dynamic convolution theory

The DCT framework being very general, it can serve to study the micro- and macrorheologi-
cal properties of a whole spectrum of systems including colloidal suspensions as well as cy-
toskeletal networks. While pairwise (hydrodynamic) interactions between the colloids are the
constitutive elements in the first case, the linear force response properties of polymeric mesh-
works result from the characteristics of the isolated filaments and the crosslinkers as is shown
in Sec. 8.3.

As mentioned above, the constraints at the network nodes are enforced on average only and
the force balance is based on average oscillation amplitudes within the DCT (Eq. 8.21 and 8.31).
The DCT can therefore be viewed as a dynamic mean-field theory, which is exact for linear
elements, for which the linear force response (Eq. 8.1) is valid for arbitrary force amplitudes,
as well as for deterministic dynamics, where Ri = 〈Ri〉. If nonlinear contributions are small,
the DCT generally provides a good first-order approximation, for which correction terms can
systematically be derived, cf. Sec. 6.4.2.

Being a linear theory, the range of validity of the DCT is determined by the linear response
regime of the network’s constituents. For networks of nonlinear elements such as semiflexible
filaments, the DCT can only provide insight into the linear response around the equilibrium
structure of the network, which however can easily be determined using well-established tech-
niques [309]. For the case of a polymer network under external prestress, the dynamic linear
force response functions of the filaments parametrically depend on the applied force. Similarly,
the DCT does not account for changes of the overall orientation of individual elements, specified
by the angle Φ in the Eqs. 8.5 and 8.7 and in Fig. 8.1a, due to thermal forces. Consequently, the
DCT provides an accurate estimate over the full frequency range only as long as the fluctuations
Ri are small enough so that changes in the orientation angles Φ remain negligible.

The effects of orientational changes can be taken into account by averaging the network’s
grand-response matrix J over the equilibrium distribution of the components’ orientations.
Note however that the predictions of the DCT are accurate only for frequencies, which are
larger than the typical (macroscopic) reorientation frequencies of the network, see Sec. 8.1.5
for an explicit example. Similarly, the force response of networks with multiple topologies can
be studied using the DCT by averaging the elements of the grand-response matrix over the
equilibrium ensemble of different network topologies. Again, this approach is restricted to the
range of frequencies, which are larger than the frequencies at which topological changes of the
network occur.
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Figure 8.3:
Schematic of the simple model system treated in Sec. 8.1.5: The node is characterized by the
anisotropic mobilities µ‖ and µ⊥ for motion along the two axis of the local coordinate frame (defined
by the angle Φ). The node is attached via a harmonic spring of strength γR and equilibrium length R0
to an anchored reference point, around which it is free to rotate.

8.1.5 Reorientation of a mechanical element

As discussed in Sec. 8.1.4, one important assumption for the derivation of the DCT is that the
size of the thermal and force-induced fluctuations of the mechanical components are so small
that changes of the overall element orientations can be neglected. If this is not the case, one
can average the resulting grand-response matrix J , which explicitly depends on the spatial
orientations of the individual components (Eq. 8.5), over the equilibrium distribution of the
orientations. Note however that this approach is adequate only in the frequency range ω ≫
ωorient, where 1/ωorient is the smallest time scale for the reorientation of individual components
in the network.

As a simple example, we consider the system schematically drawn in Fig. 8.3: The mobile
end-point is connected via a harmonic spring of equilibrium length R0 and spring constant
γR to the origin of the coordinate frame and is free to rotate around it. The motion of the
object along the two local axes (‖,⊥) is characterized by the mobilities µ‖ and µ⊥ respectively.
The linear force response functions in the local coordinate frame are obtained from the linear,
overdamped equations of motion and read

J‖‖(ω) = µ‖
µ‖γR + i ω

(µ‖γR)2 + ω2 , J⊥⊥(ω) =
i µ⊥
ω

. (8.33)

In the following, we focus on situations where R2
0γR/(kBT) ≫ 1, i.e., we assume that the

magnitude of the thermal equilibrium fluctuations along the ‖-direction are much smaller than
the equilibrium length of the spring R0. Under these conditions, the problem can be solved
analytically, since the orientational dynamics captured by the angle Φ ≈ r⊥/R0 and the radial
dynamics of R ≡ R0 + r‖ decouple. The Green’s functions for (i) free angular diffusion on
the periodic interval [0, 2π) with diffusion coefficient DΦ ≈ kBTµ⊥/R2

0 and (ii) overdamped
elongational diffusion with mobility µ‖ in a harmonic potential of strength γR centered around
R0 can be obtained analytically [36, 38]. It is then straightforward to calculate the equilibrium
correlation function for the spatial coordinates

x = R cos Φ, y = R sin Φ, (8.34)
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yielding

〈x(t)x(0)〉R,Φ = 〈y(t)y(0)〉R,Φ = 〈R(t)R(0)〉R 〈cos (Φ(t)) cos (Φ(0))〉Φ

=
1
2

(
kBT
γR

e−µ‖γRt + R2
0

)

e−DΦt.
(8.35)

Using the FDT, we deduce the frequency dependence of the linear force response functions

Jxx(ω) = Jyy(ω) =
1
2

(

µ‖
µ‖γR + i ω

(µ‖γR)2 + ω2 + µ⊥
µ⊥kBT/R2

0 + i ω

(µ⊥kBT/R2
0)

2 + ω2

)

. (8.36)

As is easily seen, the above result indeed reduces to one of the Boltzmann averaged diagonal
entries of Eq. 8.7

Jxx(ω) ≈ 1
2

(

J‖‖(ω) + J⊥⊥(ω)
)

=
1

2π

∫ 2π

0
dΦ

(

J‖‖(ω) cos2 Φ + J⊥⊥(ω) sin2 Φ
)

(8.37)

in the range of frequencies ω ≫ ωorient ≡ µ⊥kBT/R2
0, where the right hand side of Eq. 8.37

corresponds to the Boltzmann average over the uniformly distributed angle Φ. For low fre-
quencies, on the other hand, temperature dependent contributions are found in Eq. 8.36, which
are not captured by the approximate expression in Eq. 8.37 and which point to the nonlinear
intrinsic nature of the system, cf. Sec. 6.1.2.

Similarly, the high-frequency response of the system in Fig. 8.3, if preferentially oriented
due to an external potential depending on Φ, would result from the corresponding Boltzmann-
weighted average of Eq. 8.7 with internal response functions given in Eq. 8.33.

8.2 Dynamics of Isolated Semiflexible Filaments

We resolve the various linear force response functions of isolated semiflexible polymers, which
are then used in Sec. 8.3 to study the rheological properties of extended network structures.

8.2.1 Brownian dynamics simulations

Similarly as in Sec. 7.2.1, semiflexible filaments are modeled as standard bead-spring polymers,
in which the M beads representing individual monomers interact via the wormlike chain (WLC)
potential

UWLC =
γ

4a

M−1

∑
i=1

(|ri+1 − ri| − 2a)2 +
κ

2a

M−1

∑
i=2

(1− cos θi), (8.38)

where the stretching elasticity is denoted by γ and the bending stiffness by κ, yielding a persis-
tence length lp ≡ κ/kB T in three dimensions. In Eq. 8.38, the monomer positions are denoted
by ri and the angles between consecutive bonds by θi, similarly as in Sec. 7.2.1. In the BD sim-
ulations, the beads move according to the overdamped and free-draining stochastic equations
of motion

dri(t)
dt

= −µi
∂UWLC(r1, . . . , rM)

∂ri
+ vst

i (t), i ∈ {1, . . . , M}, (8.39)
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〈vst
i (t)⊗ vst

j (t
′)〉 = 2kBTµiδij

←→
1 δ(t− t′), i, j ∈ {1, . . . , N}, (8.40)

where kBT denotes the thermal energy and vst
i the stochastic contribution to the velocity of bead

i. The beads’ self-mobilities are

µi = µ0 (1 + δi1 + δiM) , (8.41)

where the Stokes self-mobility of a sphere of radius a in a solvent of shear viscosity η0 is µ0 ≡
1/(6πη0a) [16] and δij denotes the Kronecker symbol. The end-momoners in the simulation
are modeled as beads of radius a/2 and all others as beads of radius a; in this way, the serial
alignment of several polymers gives rise to a longer polymer with uniform mobility µ0 for all
monomers except the ones at the two ends.

The equations of motion (Eq. 8.39) together with the WLC potential (Eq. 8.38) are intrinsically
nonlinear equations in the monomer coordinates. However, in the case of stiff filaments with
κ/(LkBT) = lp/L≫ 1, the linearization of the equations of motion around the state of minimal
configurational energy yields the dominant contribution to the linear response function of the
filament as is shown in Sec. 8.2.3.

In contrast, Gaussian polymers described by the potential

Ugauss =
3kBT
2r2

0

M−1

∑
i=1
|ri+1 − ri|2 , (8.42)

with average squared bond lengths r2
0, yield linear equations of motion. The dynamic force

response of a Rouse polymer is consequently purely linear and independent of the thermal
noise strength, cf. Sec. 6.1.2.

8.2.2 Correlation analysis

We identify the first and the Mth monomer with the points A and B of the equivalent mechani-
cal element AB: The ‖-direction of the local coordinate frame is then defined by the filament’s
end-to-end vector rM − r1 and the end-orientations are specified by the end-tangents, i.e., the
orientations of the bonds between the two terminal beads r1 − r2 and rM − rM−1.

As explained in Sec. 8.1.1, due to symmetry there are only eight independent and non-van-
ishing linear response functions in the local coordinate frame: the four self-response functions
J‖‖
BB

, J⊥⊥BB, Jϕϕ
BB

, J⊥ϕ
BB

as well as the cross-response functions J‖‖
AB

, J⊥⊥AB , J⊥ϕ
AB

, and Jϕϕ
AB

. In the ab-
sence of thermal forces (kB T = 0), these are simply obtained by linearizing the equations of
motion (Eq. 8.39) around the state of minimal configurational energy UWLC = 0 correspond-
ing to a straight polymer configuration with relaxed bond lengths, cf. Sec. 6.1.2. This set of
response functions is denoted as athermal in the following. At finite thermal noise strength, lin-
ear response functions are obtained from the (cross-)correlations in the local coordinate frame
resolved from numerical simulations of Eq. 8.39

C̃ab(t) ≡
〈
∆R̃a(t)⊗ ∆R̃b(t)

〉
=
〈(

R̃a(t)− R̃a(0)
)
⊗
(

R̃b(t)− R̃b(0)
)〉

, (8.43)
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where the reference time has been set to 0 for simplicity. Similarly as in Sec. 2.2.2, the temporal
increments of the local coordinates (denoted by a tilde) are defined via the integral over the
velocities

∆R̃a(t) ≡




∆ra‖(t)
∆ra⊥(t)
∆ϕa(t)



 =
∫ t

0
dt′





ṙa‖(t
′)

ṙa⊥(t
′)

ϕ̇a(t′)



 , a ∈ {A,B}, (8.44)

in the coordinate frame (‖,⊥), which is defined by the filament’s end-to-end orientation and
fluctuates over time. See Fig. 8.4 for a simulation snapshot showing the six fluctuating time
series forming the basis for computing the correlations in Eq. 8.43. We make use of the FDT

J̃ab(t) =

{
1

2kB T
d
dt C̃ab(t), t > 0,

0, t < 0,
a, b ∈ {A,B}, (8.45)

to convert the information content of the correlation functions into linear response functions.
Note the factor −1/2 in the above formulation of the FDT compared to Eq. 5.2, which involves
the correlations of the positional variables rather than the correlations of the temporal incre-
ments in the coordinates considered here.

In practice, each of the correlation functions in Eq. 8.43 is approximated by an expression of
the type

C(t) ≈ c0 |t|+
n

∑
j=1

cj(1− e−λj|t|), (8.46)

where c0, c1, λ1, c2, λ2, etc. are constants used as fit parameters. According to the FDT (Eq. 8.45),
the corresponding response functions in frequency space take the form

J(ω) ≈ i c0

2kBTω
+

1
2kB T

n

∑
j=1

cjλj

λj − i ω
. (8.47)

Given the A-B-symmetry of the filaments, odd relaxation modes along the polymer contour
yield contributions of opposite signs to the self- and cross-correlation functions in Eq. 8.43. The
correlations of symmetric/antisymmetric combinations of the end-point coordinates therefore
reflect contributions of the even/odd normal modes only. Fitting these combinations rather
than the self- and cross-correlation functions is advisable, since the number of independent fit
parameters in each fit is reduced and the results consequently more reliable [317].

8.2.3 Linear force response of single filaments

We consider filaments of M beads, corresponding to an (average) contour length L = (M− 1)2a;
the stretching elasticity is set to γ = 400 kBT/a and the bending stiffness to the value κ =
100 kBT a expected for an isotropic elastic cylinder, cf. Eq. 7.36. A BD simulation snapshot and
sample trajectories of the six fluctuating degrees of freedom of the polymer ends are shown in
Fig. 8.4, the corresponding movie is included as supplementary material [318].

For short filaments of M = 4 beads with a corresponding ratio of persistence to contour
length lp/L ≈ 16.7, self- and cross-correlation functions from 50 independent BD simulations
of up to 1011 integration steps of duration 10−4 a2/(µ0kBT) are shown in Fig. 8.5 together with
best fits to the data (Eq. 8.46) displayed as black lines. Real and imaginary parts of the result-
ing linear force response functions in frequency space (Eq. 8.47) are shown as red and blue
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Figure 8.4:
Snapshot of a BD simulation of M = 7 beads and lp/L ≈ 8.3 including the six fluctuating end-point
coordinates. The corresponding movie is included as supplementary material [318].

lines in Fig. 8.6, where positive values are displayed by solid and negative by dashed lines. In
the high-frequency range (ω → ∞), cross-response functions relating force and displacements
on different ends of the filament are clearly suppressed compared to the corresponding self-
response functions revealing that the effect of forces/torques is mostly restricted to the direct
proximity of the respective monomer. In the quasi static limit (ω → 0) in turn, forces and
torques induce translations and/or rotations of the entire filament and self- and cross-response
functions therefore are of comparable magnitude.

Athermal force response functions from linearizing the equations of motion around the per-
fectly straight polymer configuration with relaxed bond lengths are included as orange and
light blue lines in Fig. 8.6; in fact, they are almost perfectly superimposed by the red and
blue lines from BD simulations discussed above. Minor differences are discernible in the low-
frequency regime of the parallel response, as is best seen in the insets of Fig. 8.6a displaying an
8-fold magnification of the data. These deviations are due to contributions of bending fluctua-
tions to the parallel response, a finite temperature effect, which by definition is not contained in
the athermal response functions. For the force response involving the perpendicular and orien-
tational degrees of freedom in Fig. 8.6b-d, both sets of response functions agree even better; the
residual differences in the cross-response functions at higher frequencies are attributed to inac-
curacies in the fit parameters. In summary, the comparison of both sets of response functions
certifies that temperature dependent contributions are small and restricted to the parallel direc-
tion as expected for such a high ratio lp/L. We therefore expect the DCT to produce accurate
results as discussed in Sec. 6.4.2. The set of linear force response functions for a longer filament
(L/a = 12) are shown in Fig. 8.8 and discussed in Sec. 8.3.1.
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Figure 8.5:
Temporal correlations (Eq. 8.43) of an isolated semiflexible filament of contour length L/a = 6
(4 beads) and persistence length lp/a = 100. Symbols denote estimates from numerical simulations
and black lines best fits to the data as described in Sec. 8.2.2, red lines denote athermal response func-
tions (mostly superimposed by the BD fits). Positive/negative values are displayed as circles/squares
and solid/dashed lines, respectively. The estimated relative errors of self-/cross-correlations from sim-
ulations are less than 0.5 %/10 %.
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Figure 8.6:
Self- and cross-response of an isolated semiflexible filament of contour length L/a = 6 and lp/L ≈
16.7: Linear response functions obtained from the correlation functions in Fig. 8.5 via the FDT (Eq. 8.45)
are compared to the athermal ones, which are almost perfectly superimposed by the BD data. Posi-
tive/negative values are displayed as solid/dashed lines. Magnified parts of the graphs are shown in
the insets.
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8.3 Semiflexible Polymer Networks

Starting from semiflexible filaments described in Sec. 8.2, we use the DCT of Sec. 8.1 to resolve
the viscoelastic properties of polymeric networks. We discuss the serial alignment of two fil-
aments as a test case in Sec. 8.3.1 and calculate micro- and macrorheological properties of ex-
tended crosslinked polymeric networks in the Secs. 8.3.2 and 8.3.3.

As is known from studies on reconstituted systems of filamentous actin and various actin
binding proteins (ABPs), the types of crosslinks and network structures formed depend drasti-
cally on the kind and concentration of the ABPs [80, 81]. As an example, the degrees of freedom
of actin filaments crosslinked by heavy meromyosin (HMM) are only loosely coupled [81], corre-
sponding to the situation schematically shown in Fig. 8.1b with finite γr but small or vanishing
γϕ. In small concentrations, ABPs such as α-actinin or filamin tend to form crosslinks as de-
picted in Fig. 8.1c, where translational degrees of freedom are tightly coupled but fibers are not
preferentially oriented [81], corresponding to a small or vanishing value of γϕ. In turn, ABPs
such as fascin and Arp2/3 bind actin fibers under a preferential angle of 0◦ and 70◦, respec-
tively [319, 320] and can therefore be modeled via large values of γϕ.

In the following, we consider network nodes as schematically shown in Fig. 8.1c, where the
translational degrees of freedom of all filament ends at a given node are decimated (γr →
∞) and the degree of coupling between the end-tangent orientations depends on the coupling
strength γϕ. We consider three different cases: (i) γϕ = 0 called free, (ii) non-vanishing but finite
values of γϕ called flex, and (iii) the limiting case γϕ → ∞ called fix (corresponding to Fig. 8.1d).

8.3.1 Test case: Concatenating two short filaments

As a test of the DCT, we concatenate two semiflexible filaments of contour length L/a = 6
(4 beads) covered in Sec. 8.2 and compare the force response predictions to results from explicit
simulations of a semiflexible filament of contour length L/a = 12 (7 beads). The DCT network
results from the serial alignment of two identical elements as schematically indicated in Fig. 8.7
and, depending on the type of crosslinker, formally corresponds to the topology matrices





A B

1 13×3 0
2 13×3 13×3
3 0 13×3



 = T fix,





A B

1 13×3 0
2 1′4×3 14×3
3 0 13×3



 = T flex = T free, (8.48)

where the matrices 14×3 and 1′4×3 are defined in Eq. 8.29. For crosslinkers of type flex and
free, the node 2 thus consists of two translational and two angular degrees of freedom. For a
crosslinker of type flex, the latter ones are coupled by the only non-vanishing coupling matrix

C
flex
22 ≡







0 0 0
0 0 0
0 γϕ −γϕ

0 −γϕ γϕ







. (8.49)

In the following, we compare the frequency dependence of the eight linear response func-
tions of the composed filament resulting from the DCT calculation to those from explicit BD sim-
ulations and to the set of athermal response functions arising from linearizing the equations of
motion along the polymer conformation of minimal configurational energy.
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Figure 8.7:
a) BD and DCT representations of a short semiflexible polymer consisting of 4 beads and contour
length L/a = 6. b) BD representation of a semiflexible filament of contour length L/a = 12 and the
corresponding DCT representation resulting from concatenating two of the short filaments from (a).
The end-tangent orientations at the central node are coupled by a harmonic potential of strength γϕ.

BD and athermal response functions are shown as lines in Fig. 8.8: Similarly as in Sec. 8.2.3,
the athermal response functions are mostly superimposed by lines from BD simulations; notice-
able differences are again restricted to the parallel response shown in Fig. 8.8a. The ratio of
persistence to contour length lp/L ≈ 8.3 being reduced by a factor of 2 compared to Sec. 8.2.3,
the deviations due to finite temperature contributions are more pronounced compared to those
in Fig. 8.6a. In turn, the athermal response functions are again excellent estimates for the re-
maining response functions involving translations along the perpendicular direction and end-
tangent orientations as is seen from Fig. 8.8b-d.

The DCT calculation is based on the response functions of the short filament (L/a = 6) as re-
solved from BD simulations (red and blue lines in Fig. 8.6). DCT results for the polymer of length
L/a = 12 are shown as symbols in Fig. 8.8, where different colors correspond to different types
of crosslinkers at the central network node in Fig. 8.7b: The crosslinker of type flex corresponds
to an angular coupling strength γϕ = κ/2a = 50 kBT (red and blue symbols), a crosslinker
of type free to the case of totally independent end-tagents, i.e., γϕ = 0, (golden and light blue
symbols), and a crosslinker of type fix to the limiting case γϕ → ∞ (brown and green symbols),
which formally corresponds to the serial connection discussed in Sec. 8.1.2 with CD = AB.

The overall agreement between self- and cross-response functions from explicit simulations
and from the DCT with the appropriately chosen value γϕ = κ/2a (flex, cf. Eq. 8.38) is excellent.
Small deviations are only found in the low frequency range of the parallel response as is best
seen in the insets of Fig. 8.8a, where the red circles are displaced from the red line. Note that the
DCT results based upon the finite temperature BD response functions from Fig. 8.6 still are better
than the athermal estimates, which are displayed as orange and light blue lines, cf. inset of
Fig. 8.8a. The agreement between the blue/red symbols and lines in Fig. 8.8b-d corresponding
to response functions involving translations along the perpendicular direction and end-tangent
orientations is excellent.

The DCT estimates corresponding to crosslinkers of type fix and free do only agree with the
parallel BD response functions in Fig. 8.8a, where brown/golden and green/light blue symbols
are hidden behind red/blue symbols corresponding to a crosslinker of type flex. Indeed, the
parallel response of the filament is independent of the crosslinker type due to symmetry. In
contrast, the other response properties of the filament in Fig. 8.8b-d deviate from the DCT esti-
mates for crosslinkers of type fix and free. Deviations for the crosslinker of type fix are mostly
quantitative and highlighted in the insets of Fig. 8.8b-d showing magnified parts of the re-
sponse functions at intermediate frequencies. For the crosslinker of type free on the other hand,



160 8 Bottom-Up Approach to the Viscoelasticity of Polymer Networks

10−4

10−3

10−2

10−1

100

101

J
‖
‖

B
B

[a
2
/
(k

B
T
)]

self-response

Re[J ] (athermal)

Im[J ] (athermal)

Re[J ] (bd fit)

Im[J ] (bd fit)

3x

cross-response

Re[J ] (dct fix)

Im[J ] (dct fix)

Re[J ] (dct free)

Im[J ] (dct free)

2x
10−4

10−3

10−2

10−1

100

101

J
‖
‖

A
B

[a
2
/
(k

B
T
)]

10−5

10−4

10−3

10−2

10−1

100

101

102

J
⊥
⊥

B
B

[a
2
/
(k

B
T
)]

J (pos.)

J (neg.)

J (pos.)

J (neg.)

3x

Re[J ] (dct flex)

Im[J ] (dct flex)

2x

10−5

10−4

10−3

10−2

10−1

100

101

102

J
⊥
⊥

A
B

[a
2
/
(k

B
T
)]

10−5

10−4

10−3

10−2

10−1

100

101

J
⊥
ϕ

B
B

[a
·r
a
d
/
(k

B
T
)]

3x

2x

10−5

10−4

10−3

10−2

10−1

100

101

J
⊥
ϕ

A
B

[a
·r
a
d
/
(k

B
T
)]

10−2 10−1 100 101 102 103

ω [kBTµ0/a
2]

10−5

10−4

10−3

10−2

10−1

100

J
ϕ
ϕ

B
B

[r
a
d
2
/
(k

B
T
)]

3x

10−2 10−1 100 101 102 103

ω [kBTµ0/a
2]

2x

10−5

10−4

10−3

10−2

10−1

100

J
ϕ
ϕ

A
B

[r
a
d
2
/
(k

B
T
)]

(a)

(b)

(c)

(d)

Figure 8.8:
Self- and cross-response of an isolated semiflexible filament of contour length L/a = 12 (7 beads)
and lp/L ≈ 8.3: Lines show the response functions from BD correlation functions (red and blue lines,
correlation data not shown) and athermal ones (orange and light blue lines, mostly superimposed by
the BD data). Symbols denote DCT estimates based on the BD results of Fig. 8.6 for the serial alignment
of two filaments of contour length L/a = 6 as indicated in Fig. 8.7b with crosslinkers of type fix, free
and flex at the central network node, see Sec. 8.3.1 for details. Positive/negative values are displayed
as solid/dashed lines or circles/squares. Magnified parts of the graphs are shown in the insets.
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the perpendicular and orientational cross-response is not even qualitatively captured (wrong
sign in the low-frequency range in the right panels of Fig. 8.8b-d). The comparison underlines
the importance of angular degrees of freedom and the form of the coupling for the resulting
dynamic properties of concatenated objects.

The test of the DCT being successful, we now proceed to more extended networks, for which
we use the semiflexible filaments of contour length L/a = 12 (7 beads) discussed in this sec-
tion as building blocks. We use the athermal response functions from the linearization of the
equations of motion as input to the DCT, since they compare well to the thermal force response
functions of the polymer as shown in Fig. 8.8 and are not subject to fit inaccuracies. The fila-
ments are rather stiff, the ratio of persistence to contour length being lp/L ≈ 8.3, thus implying
a network mesh size ξ ≈ L.

We distinguish four different scenarios regarding the crosslinker flexibility: (i) γϕ = 0, i.e.,
end-tangents are free to move independently (free), (ii) a harmonic coupling of strength γϕ =
50 kBT between the end-tangent orientations of filaments facing each other at one node (flex_fil),
(iii) a harmonic coupling of strength γϕ = 50 kBT acting on the end-tangent orientations of all
pairs of neighboring filaments at one node (flex_all), (iv) no flexibility corresponding to the limit
γϕ → ∞, where after the DDF each node is characterized by a single angular variable only (fix).

8.3.2 Microrheology

In experimental microrheology, the motion of thermally fluctuating or externally driven col-
loidal particles are tracked to probe the viscoelastic properties of the surrounding medium [80,
210]. Instead of explicitly modeling a probe particle, we directly resolve both translational and
orientational linear response functions of individual network nodes using the DCT as explained
in Sec. 8.1.2.

In the following, we consider square arrays of semiflexible filaments as depicted in Fig. 8.9:
While the network in Fig. 8.9a is free to move as a whole in response to external forces, the
nodes on the edges of the array in Fig. 8.9b are externally held fixed, by this anchoring the
overall network. Using the DCT, we calculate the translational and orientational linear self-
response of the central node displayed in red in both networks in Fig. 8.9; we vary the size l of
the array and distinguish between crosslinkers of type fix and free.

Results for the network with free boundaries (Fig. 8.9a) are shown in Fig. 8.10, where real and
imaginary parts of the response are shown as solid and dashed lines, respectively. Because of
the square symmetry, the translational response is isotropic and labeled as Jtrans in Fig. 8.10,
while the orientational response to an external torque is labeled as Jorient. The response of the
network is viscous, i.e., Im [J] > Re [J], both in the limit of large and small frequencies. The
high-frequency response is determined by the local network structure around the central node
only and therefore independent of the network size; in contrast, the low-frequency response
results from macroscopic deformations of the network and thus shows a pronounced depen-
dence on the ratio of edge length to mesh size l/ξ. The influence of the crosslinker type is seen
by comparing results in the left and right panels of Fig. 8.10: while the qualitative behavior
remains similar, quantitative changes are observed over the entire frequency spectrum. For
large frequencies, the microrheological response is more pronounced in the networks, where
the filaments’ end-tangents at the network nodes are free to adjust independently to the im-
posed stress, compared to the networks with crosslinkers of type fix. For the latter ones, at
low frequencies the entire network is constrained to move/rotate uniformly in response to the
force/torque on the central node (left panels of Fig. 8.10). For crosslinkers of type free on the
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Figure 8.9:
Square arrays of edge length l built of crosslinked semiflexible filaments, the mesh size is denoted by
ξ. The meshwork is a) free to diffuse and b) anchored by the edge-nodes, which are held fixed. The
linear response of the red central nodes to forces and torques indicated by the purple and green arrows
is resolved by means of the DCT. The corresponding response functions are shown in the Figs. 8.10
and 8.11.

other hand, a quasi-static force on the central node in Fig. 8.9a induces a uniform motion of
all filaments in a row only and therefore yields a larger imaginary part of the response in the
right panels of Fig. 8.10. For intermediate frequencies and increasing array size, we observe the
appearance of a viscoelastic regime, i.e., Re [J] ≈ Im [J], in the translational response. For both
types of crosslinkers, the frequency dependence in this regime is roughly 1/

√
ω as expected

for a predominantly elastic medium embedded in a viscous environment, see Appendix G.3,
where a 1/

√
ω behavior is obtained for the response of a Maxwell and Kelvin-Voigt material in

the respective frequency ranges. This intermediate 1/
√

ω-regime is however shifted to lower
frequencies for crosslinkers of type fix.

The orientational response at intermediate frequencies is characterized by real and imaginary
parts with different frequency dependences: The imaginary part tends to fall off with a slightly
smaller exponent than the real part of the response, as indicated by the dashed lines ∝ ω−3/4

and ∝ ω−1/2 in the bottom panels of Fig. 8.10. Moreover, the characteristic minimum of the
imaginary part is more pronounced for crosslinkers of type fix. Increasing the array size l leads
to a reduction of the imaginary part of the orientational response at low frequencies, while the
real part is almost independent of the array size over the whole range of frequencies.

Corresponding results for the anchored network of Fig. 8.9b are shown in Fig. 8.11: The high-
frequency response of the central node in the network is not influenced by the boundary con-
dition on the edges of the square arrays. It however induces an elastic low-frequency response,
Re [J] ≫ Im [J], reflecting the fact that overall translations/rotations of the array are inhibited.
The influence of the different types of crosslinkers is of qualitative nature only in both the trans-
lational and the orientational response. Note that the orientational response quickly converges
with increasing array size l over the overall range of frequencies in contrast to the translational
response of the network.
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Figure 8.10:
Translational (top) and orientational (bottom) linear self-response of the central node in the unan-
chored square network of semiflexible filaments shown in Fig. 8.9a for various ratios of edge length
to mesh size l/ξ and crosslinkers of type fix (left) and free (right); real/imaginary parts are displayed
as solid/dashed lines.

8.3.3 Macrorheology

Next, the macrorheological properties of crosslinked polymeric networks are studied using
the DCT: In this scenario, slabs of varying thickness d and infinite lateral extension subject to
interfacial shear or compression stress are considered. As known from continuum viscoelastic
theory, cf. Appendix G.1, the response generally depends on the orientation of the network
with respect to the slab axes. We consider rectangular networks as shown in Fig. 8.12, where
the angle between the slab axes and the filaments in the polymeric network is denoted by
ϑ. By applying forces of opposite sign parallel/perpendicular to the slab orientation on the
interfacial networks nodes (red nodes in Fig. 8.12), the linear shear/compression response of
the polymeric slabs is probed. Due to the translational invariance of the problem, only one unit
cell of width w with periodic boundary conditions (marked by dashed vertical lines in Fig. 8.12)
needs to be considered within the DCT calculation.

The linear shear response of slabs of various thicknesses d is shown in Fig. 8.13 for all four
types of crosslinkers. The high-frequency response, which is a probe of the slab’s interfacial
structure only, varies little with respect to network orientation and crosslinker type and is in-
dependent of the ratio of slab thickness to mesh size d/ξ. In turn, we observe a prominent
dependence on the slab dimension in the low-frequency regime. As to the influence of the net-
work geometry and the crosslinkers, the comparison of the left and right panels of Fig. 8.13
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Figure 8.11: Same as Fig. 8.10 but for the anchored network shown in Fig. 8.9b.

Figure 8.12:
Slabs of thickness d and infinite lateral extension constructed from square networks of semiflexible
polymers. The orientation of the network structure with respect to the slab is: a) ϑ = 0◦, b) ϑ = 45◦.
Macroscopic rheological properties are resolved by means of the DCT by applying forces of opposite
direction on the interfacial network nodes (red): Shear stress is indicated by the purple arrows in (a),
compression by the green arrows in (b). Unit cells of width w and with periodic boundary conditions
used in the calculation are indicated by dashed vertical lines. Corresponding shear and compression
response functions are shown in the Figs. 8.13 and 8.15.
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Figure 8.13:
Linear shear response of slabs of rectangular crosslinked semiflexible polymer networks with orienta-
tion ϑ = 0◦ (left) and ϑ = 45◦ (right) with respect to the slab axes as shown in Fig. 8.12 for various
ratios of slab thickness to mesh size d/ξ and crosslinkers of type fix, flex_all, flex_fil and free (from top
to bottom); real/imaginary parts are displayed as solid/dashed lines.
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Figure 8.14:
Frequency-dependent viscoelastic moduli of an equivalent continuum model (Appendix G) associ-
ated with the shear response of Fig. 8.13. Shear moduli for the networks with crosslinkers of type fix
(left) and of type free (right), both with orientation ϑ = 0◦ are shown. Colors denote the slab thickness
d, where green and blue curves are mostly hidden behind the purple ones. Solid and dashed lines denote
the real and the negative imaginary parts of the moduli respectively.

reveals that the slab response depends drastically on the crosslinker type for ϑ = 0◦, while it
is crosslinker type independent for ϑ = 45◦ as will be discussed below. The frequency depen-
dence of the slabs’ shear response allows to classify the networks by comparison to results from
continuum viscoelasticity, as detailed in Appendix G.3.

For ϑ = 0◦ (left panels of Fig. 8.13), the low-frequency behavior of the slab’s shear response
for fix and flex_all, J(ω) ≈ a1 + i ωa2 with constants a1 and a2, points towards a predominantly
elastic material, where the quasi-static shear modulus slightly depends on the crosslinker type,
cf. Eq. G.29 in Appendix G.3. In contrast, the shear response for flex_fil and free, J(ω) ≈ a1 +
i a2/ω with constants a1 and a2, is completely different, indicating a predominantly viscous
material at small frequencies, cf. Eq. G.25 in Appendix G.3. In the latter case, the shear stress
is balanced by the rotation of the filaments oriented perpendicular to the slab interface ("soft
mode"): For crosslinkers of type flex_fil, the bending rigidity along the filaments induces a non-
zero elastic coupling between the two interfaces and the low-frequency response thus depends
on the slab thickness d. In turn, for crosslinkers of type free the low-frequency shear response is
independent of the slab thickness for d/ξ ≥ 2, since the effect of the shear stress remains limited
to the two interfacial regions only. The latter observation is in agreement with predictions
from continuum theory for a viscous material embedded in a viscous solvent, cf. Eq. G.25 in
Appendix G.3.

For all type of crosslinkers, the response in the intermediate frequency range is characterized
by power laws with different exponents as indicated by the black dotted lines in Fig. 8.13 and
pronounced plateaus in the real part of the response function. The shear response functions
of the discrete networks can further be rationalized by a mapping on the viscoelastic modulus
Cshear of an equivalent continuum via Eq. G.23, as explained in Appendix G.4. For the two
extreme cases in Fig. 8.13, i.e., the crosslinker types fix and free in the top left and bottom left
panels, the corresponding viscoelastic moduli are shown in Fig. 8.14: Apart from the smallest
slab with d/ξ = 1, the viscoelastic moduli for different slab thicknesses agree relatively well
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over the entire frequency range. The comparison of the left and right panels of Fig. 8.14 reveals
the influence of the crosslinker type: While for crosslinkers of type fix both low- and high-
frequency moduli are of the Kelvin-Voigt type, i.e., CKV ≃ µ − i ωη with constants µ and η,
the low-frequency moduli of the network with crosslinkers of type free correspond to those
of a Maxwell material with CM ≃ −i ωη + ω2η2/µ (again with constants µ and η), which is
predominantly viscous at small frequencies.

Note that the results in Fig. 8.13 correspond to the linear response of networks with (ap-
proximately) orthogonally oriented filaments at all network nodes as indicated in Fig. 8.12. To
quantitatively predict the response measured in actual shear experiments, an average over all
equilibrium configurations of the network orientations would be necessary, see discussion in
the Secs. 8.1.4 and 8.1.5. Based on Fig. 8.13, we expect only minor changes for the networks
with crosslinkers of type fix and flex_all, but more pronounced changes for the networks with
crosslinkers of type flex_fil and free. For the latter ones, the appearance of the characteristic "soft
mode" discussed above is however expected to survive also in these disordered networks.

For ϑ = 45◦, the symmetry of the network (cf. Fig. 8.12b) implies the same deformations
for all filaments’ end-tangents at a network node in response to applied shear stress. In conse-
quence, the crosslinker type penalizing differences in the end-tangents’ orientations has no in-
fluence at all on the linear shear response of the slab; indeed, the response functions in the right
panels of Fig. 8.13 are independent of the crosslinker type. The low-frequency response of the
slabs is elastic, while intermediate frequency regimes are characterized by a roughly Rouse-like
frequency dependence 1/

√
ω resembling the high-frequency response of a Maxwell material

(Eq. G.27) or the intermediate frequency response of a Kelvin-Voigt material embedded in a
viscous solvent, cf. Appendix G.3.

In Fig. 8.15, we display the compression response of the same polymeric slabs shown in
Fig. 8.12. Unlike the case of applied shear, no qualitative differences of the slab response are
observed: The slabs show an elastic low-frequency response independently of the orientation
of the polymers and of the crosslinker type. We therefore only display results for crosslinkers
of type fix and free in Fig. 8.15. For ϑ = 0◦ (left panels of Fig. 8.15), the crosslinker type has
no influence on the low-frequency compression response of the slab and induces only minor
changes for larger frequencies, e.g., marginally different power law exponents in the intermedi-
ate viscoelastic frequency regime. For ϑ = 45◦ (right panels of Fig. 8.15), the constraints on the
filaments’ end-tangents lead to a stiffening of the slab, which is reflected in a slightly reduced
response over the entire frequency range for crosslinkers of type fix compared to those of type
free.
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Figure 8.15:
Same as Fig. 8.13 but displaying the linear compression response of the polymeric slabs shown in
Fig. 8.12.
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8.4 Conclusions

In summary, we have presented a DCT, which provides a general framework for calculating
micro- and macrorheological properties of extended networks of various types using as unique
input the dynamic linear response properties of the network’s building blocks as well as the
network structure. The strength of the DCT consists in the accurate and numerically efficient
prediction of the frequency dependent viscoelastic properties of extended networks, for which
the computational costs of explicit simulations are overwhelming. The DCT thus bridges the
gap between the dynamics of isolated network components, which are theoretically well un-
derstood, and large-scale structures probed experimentally.

Here, we have focused on crosslinked networks of semiflexible polymers as model systems
for the cytoskeleton. In a first step, we have resolved the linear force response properties of
isolated semiflexible filaments from explicit BD simulations. Using the DCT, we then have calcu-
lated the rheological properties of regular networks of crosslinked filaments. We have resolved
the linear force/torque response of individual nodes in extended networks to study the mi-
crorheological properties, and have characterized the linear shear and compression response of
polymeric slabs, which are so-called macrorheological quantities. Depending on the network
size and geometry as well as on the crosslinker flexibility, we find new emerging viscoelastic
behavior in the networks that markedly differs from the force response of isolated polymers.
The crosslinkers, which couple the angular degrees of freedom at the network nodes—ranging
from fix (rigid constraint) to free (no coupling)—have been found to quantitatively and in some
cases also qualitatively alter the resulting micro- and macrorheological properties of the mesh-
work. Our results demonstrate that angular degrees of freedom and the specific properties of
the crosslinking proteins are essential for the understanding of the viscoelasticity of crosslinked
semiflexible polymer networks. These effects therefore should be taken into consideration in
future theoretical approaches to cytoskeletal mechanics.

Within this chapter, we have restricted the analysis to rectangular networks of a single fil-
ament type, but—with the DCT as a versatile tool at hand—revealing the influence of the fil-
aments’ bending stiffness and stretching modulus as well as of the network’s topology and
mesh size on the rheological properties of the network is straightforward. Future lines of in-
vestigations will include studying the effect of static prestress on the dynamic response of
crosslinked semiflexible meshworks and extending the present analysis to multi-component
and disordered networks, thereby focusing on the biologically relevant influence of structural
heterogeneity and topological defects.
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CHAPTER 9

SUMMARY AND OUTLOOK

The aim of the work described in the preceding chapters has been to quantitatively evaluate, in-
terpret and model the stochastic dynamics of biophysical systems. Based on several examples,
we have shown how the improved statistical analysis of fluctuating time series from simula-
tion or experiment can serve to reveal new information and to provide microscopic insights.
Furthermore, theoretical concepts have been developed to analytically capture the dynamics of
nonlinear and polymeric systems.

In the first part of the thesis, we have evaluated the trajectories of atomistic molecular dy-
namics (MD) simulations. The mapping of the stochastic dynamics onto the Fokker-Planck (FP)
equation with coordinate dependent diffusivity based on a mean first-passage time (MFPT) anal-
ysis turned out to be a versatile tool for disentangling free-energetic and friction contributions.

We have studied the dynamics of bulk water in Chapter 2 and have found a pronounced
translational and rotational anisotropy in the diffusional dynamics by analyzing the MD trajec-
tories of individual water molecules. Furthermore, applying the MFPT method to the relative
separation dynamics of pairs of water molecules we have revealed a six-fold higher friction
for tightly coordinated water compared to molecules at large relative separations. This fric-
tion increase can be interpreted in terms of a dominant reaction path that involves additional
orthogonal coordinates. Our findings reflect the complex character of the dynamics in liquid
water and are expected to be relevant for the hydration of ions and other solutes [250, 321] as
well as for cellular and molecular processes involving the binding or the transfer of individual
water molecules.

The diffusional dynamics of water molecules in the hydration layer of a lipid membrane
have been explored in Chapter 3: In the vicinity of the bilayer, the diffusivity perpendicular to
the membrane is reduced by a factor ∼ 20 compared to bulk, while the lateral water motion
exhibits anomalous dynamics up to several nanoseconds and is characterized by diffusion co-
efficients which are even smaller than the perpendicular ones. This is in sharp contrast to the
water diffusion at solid, homogeneous surfaces, which are quantitatively predicted by bound-
ary hydrodynamic theory. By comparison with coarse-grained simulations, we have explained
this reversed anisotropy compared to homogenous surfaces by the transient, corrugated free
energy landscape imposed by the slowly rearranging lipids. The characteristics of the dynam-
ics at biological interfaces found for water are expected to also apply to small solutes and thus
to be important for a variety of physiological transport processes ranging from intercellular
signaling to drug delivery.
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In Chapter 4, the influence of the salts KCl, NaCl, and NaI on the α-helical folding kinet-
ics of an alanine-based oligopeptide has been investigated. Average folding and unfolding
times in MD simulations turned out to be highly salt-specific: In particular, the folding times
increase about one order of magnitude for the sodium salts. The drastic slowing down could
be traced back to long-lived, compact configurations of the partially folded peptide, in which
sodium ions are tightly bound by several carbonyl and carboxylate groups. The analysis of
α-helical folding in the framework of diffusion in a one-dimensional free energy landscape fur-
ther showed that the salts not only specifically modify equilibrium properties, but also induce
kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide’s
configurational diffusivity decreases about one order of magnitude, demonstrating the highly
specific action of ions and highlighting the intimate coupling of intramolecular friction and
solvent effects in protein folding.

In the second part of the thesis, theoretical concepts have been developed for a refined spec-
tral analysis of experimental time series and for quantifying the influence of nonlinearities on
the dynamics of fluctuating systems. Moreover, we have studied the dynamics of semiflexi-
ble polymers based on coarse grained simulations and have devised an analytical bottom-up
approach to the viscoelasticity of polymeric networks.

Chapter 5 focuses on the thermal fluctuations of micron-sized beads in dual trap optical
tweezer experiments. To quantitatively interpret the spectral properties of the measured sig-
nals, which contain complete dynamic information about the viscoelastic properties of the
embedding medium and, if present, macromolecular constructs connecting the two beads, a
detailed understanding of the instrumental characteristics is required. To this end, we have pre-
sented a theoretical description of the signal processing including polarization crosstalk and
instrumental noise. To infer unknown parameters from experimental time series, a maximum-
likelihood method based on the statistical properties of the stochastic signals has been derived.
We have tested our approach for a simple model system, a pair of unconnected but hydro-
dynamically interacting spheres. The comparison to theoretical predictions based on instanta-
neous as well as retarded hydrodynamic interactions (HI) emphasizes the importance of hydro-
dynamic retardation effects due to vorticity diffusion in the fluid. Overall, the accurate mod-
eling of the stochastic signals in dual trap optical tweezers in conjunction with our Bayesian
inference method provides a new framework for the quantitative spectral analysis of single-
molecule experiments.

The effects of nonlinearities in the equations of motion of thermally fluctuating systems have
been investigated in Chapter 6: We identified the first terms in the expansions of equilibrium
correlation and force response functions in powers of the thermal noise strength. For simple
model systems, our analytical results have been validated by comparison to numerical simula-
tions. Our approach also exposes the limitations of the dynamic convolution theory (DCT) from
Ref. [ix], for which we have derived a first-order correction. Clarifying the role of nonlinearities
in the dynamics of thermally fluctuating systems is of fundamental importance and a prerequi-
site to assess the restrictions of the dynamical analysis based on strictly linear models, which is
common in numerous contexts.

In Chapter 7, we have studied the dynamics of single semiflexible polymers by means of
Brownian dynamics (BD) simulations and hydrodynamic mean-field theory (MFT). Special
attention has been drawn to the influence of hydrodynamic screening near planar surfaces:
When gradually decreasing the polymer-wall separation, a crossover from Zimm-type towards
Rouse-type polymer dynamics is induced. This crossover is however rather weak and the free-
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draining limit is not completely reached even at monomeric distances from the wall. Remark-
ably, the effect of surface-induced screening of HI sensitively depends on the type of the dy-
namic observable: For mean square displacements (MSDs) of vectorial quantities like the end-
to-end-vector, HI are important and surface screening effects therefore are sizeable, while for
MSDs of a scalar quantity like the end-to-end-distance HI are less important, but a pronounced
dependence of dynamic scaling exponents on the persistence length to contour length ratio
becomes noticeable in agreement with results from single-molecule experiments on f-actin [79].

Finally, we have developed an efficient method to link the equilibrium fluctuations of iso-
lated semiflexible filaments to the viscoelasticity of extended polymeric networks in Chapter 8.
The generalized DCT takes the anisotropic translational and orientational response functions
of the filaments and the network structure as unique input. We have revealed new emerging
viscoelastic behavior in the networks that markedly differs from the force response of isolated
polymers and have found a particular influence of the crosslinker stiffness as well as the net-
work geometry on the micro- and macrorheological properties of the crosslinked polymeric net-
works. The DCT thus bridges the gap between the dynamics of isolated network components,
which are theoretically well understood, and large-scale structures probed experimentally.

Summarizing, this thesis demonstrates how new insights into the dynamics of complex bio-
physical systems, ranging from individual molecules to macromolecular assemblies, can be
obtained via advanced stochastic models and methods. Throughout, our results have been
validated by comparison to results from simulations and, whenever possible, to experimental
data—a crucial measure to identify possible artifacts and to assess the limits of applicability
of our analysis methods and analytical results. Based on these tests, we conclude that the the-
oretical concepts developed within the preceding chapters are complex enough to provide a
quantitative understanding of the dynamics under consideration.

Yet, the systems and conditions studied in this thesis without doubt only reflect small parts
of the complexity of actual biological structures and kinetics. Although bottom-up approaches
combined with multiscale modeling provide a promising strategy for an overall understanding
of the intricate phenomena in living cells, the present results obviously only constitute a first
step on the path towards reaching this goal. Needless to say that our results are partially based
on approximations, whose validity may deserve further attention in the future.

Prospective research efforts therefore could be targeted at extending our analysis to a broader
class of systems, at including more (biologically relevant) details which are missing in the cur-
rent description, and at combining and enhancing the various methods developed in this the-
sis. Possible directions for future investigations based on the present work are exposed in the
remainder of this chapter.

Dynamics of water and solutes: SPC/E water molecules have been found to be characterized
by anisotropic translational and rotational diffusion coefficients in MD simulations (Sec. 2.2).
Clarifying the influence of the water model and extending the analysis to simulations reflect-
ing the quantum nature of water represent possible lines for future investigations. The analysis
method employed in Sec. 2.2 is however not restricted to water; revealing the anisotropy in the
translational and rotational motion of other molecules employing the same method is straight-
forward and will hopefully contribute to a better understanding of the experimentally probed
dynamics of solvent and solute molecules.

Furthermore, elucidating the relation between the internal anisotropy of the diffusional dy-
namics and the anisotropy of the motion observed at interfaces (Chapter 3) or, more generally,
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the interplay of external fields and internal diffusional anisotropy for the resulting dynamics of
individual molecules may be interesting subjects for future research.

Hydrogen-bond formation and breakage in liquids: The mapping of the relative dynamics
of pairs of water molecules in MD simulations on the FP equation points towards the fact that
orthogonal—presumably orientational [84, 322]—degrees of freedom, are involved in the pro-
cess of hydrogen-bond formation and breakage in liquid water (Sec. 2.3). Preliminary results
for the relative dynamics of water-solute pairs based on a similar kind of trajectory analysis
indicate a pronounced influence of solute size and charge (data not shown).

To uncover the precise molecular mechanisms of bond formation and breakage in liquids an
extension of the present one-dimensional analysis is required. Appropriate tools to investigate
dynamics in a larger configuration space comprise Markov models [126], transition path sam-
pling [108, 323], transition path theory [107], and techniques targeted at determining dominant
reaction paths [324, 325]. For the latter, we expect the anisotropic diffusion coefficients of water
molecules resolved in Sec. 2.2 to be of particular relevance.

Probing molecular friction: The DCT developed in Ref. [ix] provides an iterative approach to
disentangle the contributions of various components to the thermal fluctuations in a complex
mechanical network. Complemented by the Bayesian inference method and the modeling of
the optical tweezer instrument (Chapter 5), a theoretical framework is available to quantita-
tively evaluate the information contained in the spectral properties of the fluctuating signals
recorded with single-molecule force spectroscopic techniques applied to proteins and other
complex macromolecules, and thereby to ultimately probe (internal) friction on the molecular
scale.

Nonlinear effects: For one-dimensional systems, the influence of nonlinearities on the spec-
tral properties of the thermal fluctuations has extensively been discussed (Chapter 6). The
underlying analytical approach being very general, an extension of the formalism to more com-
plex systems is conceivable. This would allow to assess the impact of approximations and
linearizations, which are common in the analysis of stochastic dynamics, and to determine lim-
its of applicability and corrections for linear theories such as the DCT from Ref. [ix] as well as
its generalization to two dimensions in Chapter 8.

Semiflexible polymers: Studying polymer dynamics relative to an internal, comoving refer-
ence frame (Chapter 8) offers the possibility to reveal the anisotropic response properties of
semiflexible filaments without the need of external forces orienting the filament in the sim-
ulation. Extending the present analysis to more flexible filaments with persistence to con-
tour length ratio lp/L . 1 and to simulations including HI is straightforward. Moreover, an
anisotropic dynamic MFT along the lines of Ref. [287], which captures the thermal fluctuations
of the filament in the internal coordinate frame is conceivable. This would allow to consider
filament lengths, which are probed experimentally [79] but inaccessible in BD simulations.

Rheology of polymeric meshworks: The generalized DCT has been used to calculate the rhe-
ological properties of regular semiflexible polymer networks in Chapter 8. The method being
efficient and very general, the viscoelasticity of other network structures can equally be stud-
ied: Quantifying the effect of irregularities on the structural, geometrical, or crosslinker level in
the meshwork would constitute the next logical step towards understanding the complexity of
biological structures [326]. On the other hand, an extension of the method to include additional
effects such as crosslinker (un-)binding would be conceptually interesting and particularly im-
portant for a quantitative explanation of experimental findings [81].



APPENDIX A

NOTATION

Given the diversity of topics covered within this thesis, the notation is not completely uniform
across the chapters. The meaning of the symbols used to denote certain physical quantities is
therefore specified separately within each chapter.

A.1 Acronyms and Symbols

Lists of frequently used acronyms and symbols are found in Tab. A.1 and A.2 respectively.

A.2 Fourier Transformation

Throughout the thesis, the following definition of the Fourier transformation F and its inverse
F−1 for a function f (t) are used

f (ω) = F [ f (t)] ≡
∫ ∞

−∞
dt f (t)eiωt,

f (t) = F−1[ f (ω)] ≡ 1
2π

∫ ∞

−∞
dω f (ω)e−iωt.

(A.1)

Functions in time and frequency domain are denoted by the same variables. Using the above
convention the convolution theorem takes the form

F [ f ∗ g (t)] = f (ω)g(ω), (A.2)

F [ f (t)g(t)] =
1

2π
f ∗ g (ω), (A.3)

where the convolution between the functions f and g is defined as

f ∗ g (t) ≡
∫ ∞

−∞
dt′ f (t′)g(t− t′). (A.4)
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Acronym Meaning
BD Brownian dynamics
DFT Discrete Fourier transform
DCT Dynamic convolution theory
FDT Fluctuation-dissipation theorem
FP Fokker-Planck
FPT First-passage time
GROMACS Groningen machine for chemical simulations
HI Hydrodynamic interactions
LJ Lennard-Jones
MD Molecular dynamics
MFPT Mean first-passage time
MSD Mean square displacement
PDF Probability density function
PSD Power spectral density
RC Reaction coordinate
RP Rotne-Prager
RPB Rotne-Prager-Blake
SPC/E Extended simple point charge model [90]
VMD Visual molecular dynamics [110]
WLC Wormlike chain

Table A.1: List of frequently used acronyms.

Symbol Meaning
D Diffusion coefficient, diffusivity
F Free energy
kBT Thermal energy
a Bead radius
µ0, ζ0 Quasi-static mobility, quasi-static friction coefficient
η Shear viscosity
ζ,
←→
ζ Friction coefficient, (tensorial) friction density

γ, κ Stretching and bending elasticity
∆x(t) Temporal increment of the observable x
J, J1 Thermal linear force response function
S Power spectral density

Table A.2:
List of frequently used symbols, which are decorated with indices and/or superscripts depending on
the specific context in the various chapters.
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OVERDAMPED MOTION OF A RIGID BODY

Steady flows around single particles of particular shapes and the resulting resistance and mo-
bility functions have extensively been discussed in the literature [102, 103]. Here we take a com-
plementary approach and derive relations for the diffusion coefficients of a rigid body, which
is characterized by a certain tensorial friction density

←→
ζ rather than by a particular shape of

its surface, to derive the functional form of the grand-diffusivity matrix in Sec. 2.2.2.
We consider a rigid-body undergoing quasi-static, overdamped translational motion with

velocity V and rotational motion with angular velocity Ω with respect to a reference point R.
The velocity field within the body

v(r) = V + Ω× (r− R), (B.1)

implies a local force density

f (r) =
←→
ζ (r) · v(r) =←→ζ (r) · (V + Ω× (r− R)) , (B.2)

where
←→
ζ denotes the local tensorial friction density. The resulting overall force

F =
∫

dr f (r) =
∫

dr
←→
ζ (r) · (V + Ω× (r − R)) , (B.3)

and torque

M =
∫

dr (r− R)× f (r) =
∫

dr (r− R)×
(←→

ζ (r) · (V + Ω× (r− R))
)

, (B.4)

acting on the body are obtained by integration. These are linearly related to the rigid body
translational and angular velocities via

(
F
M

)

=

(
ZFV ZFΩ

ZMV ZMΩ

)

·
(

V
Ω

)

, (B.5)

where the entries of the 6× 6-dimensional grand-friction matrix are

ZFV
ij =

∫

dr ζij(r) = ZFV
ji , i, j ∈ {1, 2, 3}, (B.6)
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ZFΩ
ij = ∑

k,l
ǫkjl

∫

dr ζik(r) (rl − Rl) , i, j ∈ {1, 2, 3}, (B.7)

ZMV
ij = ∑

k,l
ǫilk

∫

dr ζkj(r) (rl − Rl) = ZFΩ
ji , i, j ∈ {1, 2, 3}, (B.8)

ZMΩ
ij = ∑

k,l,m,n
ǫikmǫjln

∫

dr ζkl(r) (rm − Rm) (rn − Rn) = ZMΩ
ji , i, j ∈ {1, 2, 3}, (B.9)

where the entries of the Levi-Civita tensor (Eq. 2.8) are denoted by ǫijk and where the symme-
try of the tensorial friction density ζij = ζ ji has been used. The grand-friction matrix being
symmetric, the motion of the rigid-body thus in general depends on the 21 independent matrix
entries specified above.

The matrix entries coupling torque and translational motion or force and angular motion
linearly depend on the coordinates of the reference point R (Eqs. B.7 and B.8), while the matrix
entries coupling torque and angular motion quadratically depend on the Ri (Eq. B.9). Note
however that—unlike in the related but simpler problem of inertial motion of a rigid body—a
diagonalization of the grand-friction matrix via an appropriate choice of the reference point
R and the orientation of the coordinate frame is in general not possible due to the tensorial
character of friction.

B.1 Grand-Friction and -Diffusivity Matrices for SPC/E Water

The rigid SPC/E water molecule considered in Sec. 2.2.2 is mirror-symmetric with respect to the
x = 0 and y = 0 planes of the internal coordinate frame shown in Fig. 2.4. The friction density
therefore fulfills

ζij(R + r) = (1− 2δki)
(
1− 2δkj

)
ζij(R+ r(k)), r(k)i ≡ (1− 2δik)ri, i, j ∈ {1, 2, 3}, (B.10)

for k = 1 and k = 2, where R denotes the origin of the internal coordinate frame in Fig. 2.4.
With this, one obtains the diagonal elements of the grand-friction matrix

ZFV
ii =

∫

dr ζii(r), i ∈ {1, 2, 3}, (B.11)

and

ZMΩ
11 =

∫
dr
[
ζ22(r)(r3 − R3)2 + ζ33(r)(r2 − R2)2 − 2ζ23(r)(r2 − R2)(r3 − R3)

]
, (B.12)

ZMΩ
22 =

∫
dr
[
ζ11(r)(r3 − R3)2 + ζ33(r)(r1 − R1)

2 − 2ζ13(r)(r1 − R1)(r3 − R3)
]

, (B.13)

ZMΩ
33 =

∫
dr
[
ζ11(r)(r2 − R2)2 + ζ22(r)(r1 − R1)

2 − 2ζ12(r)(r1 − R1)(r2 − R2)
]

, (B.14)

where the symmetry of the friction tensor, ζij = ζ ji, has been used to simplify the integrands.
The only non-zero off-diagonal elements of the grand-friction matrix are

ZFΩ
12 = ZMV

21 =
∫

dr [ζ11(r)(r3 − R3)− ζ13(r)(r1 − R1)] , (B.15)
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ZFΩ
21 = ZMV

12 =
∫

dr [ζ23(r)(r2 − R2)− ζ22(r)(r3 − R3)] . (B.16)

For the remaining freedom in the R3-coordinate of the reference point, various possibilities
exist: It can be chosen to make ZFΩ

12 = ZMV
21 vanish and ZMΩ

22 minimal by setting it to

R′3 ≡
∫

dr [ζ11(r)r3 − ζ13(r)(r1 − R1)]
∫

dr ζ11(r)
, (B.17)

or to make ZFΩ
21 = ZMV

12 vanish and ZMΩ
11 minimal by setting it to

R′′3 ≡
∫

dr [ζ22(r)r3 − ζ23(r)(r2 − R2)]
∫

dr ζ22(r)
. (B.18)

In general, it will however not be possible to meet both conditions and thus to completely
decouple translational and angular motions by an appropriate choice of the reference point.
Alternatively, one could select the value of R3 which minimizes the norm of the grand-friction
matrix, i.e., the sum of squared matrix elements.

The inversion of the grand-friction matrix yields the grand-mobility matrix, which up to a
factor kBT corresponds to the diffusivity matrix. In dependence of R3, the grand-diffusivity
matrix takes the form

D =











D0
x + Drot

y (R3 − R′3)
2 0 0 0 Drot

y (R3 − R′3) 0
0 D0

y + Drot
x (R3 − R′′3 )

2 0 −Drot
x (R3 − R′′3 ) 0 0

0 0 D0
z 0 0 0

0 −Drot
x (R3 − R′′3 ) 0 Drot

x 0 0
Drot

y (R3 − R′3) 0 0 0 Drot
y 0

0 0 0 0 0 Drot
z











, (B.19)

where the minimal translational diffusion coefficients are

D0
x =

kBT
∫

dr ζ11(r)
, D0

y =
kBT

∫
dr ζ22(r)

, D0
z =

kBT
∫

dr ζ33(r)
. (B.20)

The angular diffusion coefficients in Eq. B.19 are

Drot
x

kBT
=

(
∫

dr
[
ζ22(r)(r3 − R′′3 )

2 + ζ33(r)(r2 − R2)
2 − 2ζ23(r)(r2 − R2)(r3 − R′′3 )

]

)−1

=

(
∫

dr
[

ζ22(r)
(

r2
3 −

(
R′′3
)2
)

+ ζ33(r)(r2 − R2)
2 − 2ζ23(r)(r2 − R2)r3

]
)−1

,

(B.21)

Drot
y

kBT
=

(
∫

dr
[
ζ11(r)(r3 − R′3)

2 + ζ33(r)(r1 − R1)
2 − 2ζ13(r)(r1 − R1)(r3 − R′3)

]

)−1

=

(
∫

dr
[

ζ11(r)(r2
3 −

(
R′3
)2
) + ζ33(r)(r1 − R1)

2 − 2ζ13(r)(r1 − R1)r3

]
)−1

,

(B.22)
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which reflect the minimal values of the Eqs. B.12 and B.13 with respect to R3 and where the
coordinates R′3 and R′′3 are given in the Eqs. B.17 and B.18, as well as

Drot
z

kBT
=

(
∫

dr
[

ζ11(r)(r2 − R2)
2 + ζ22(r)(r1 − R1)

2 − 2ζ12(r)(r1 − R1)(r2 − R2)
]
)−1

. (B.23)

The functional form of the grand-diffusivity matrix in Eq. B.19 serves as starting point for the
analysis of the diffusional properties of SPC/E molecules in bulk water in Sec. 2.2.2. The corre-
spondence between Eq. B.19 on the one hand and the Eqs. 2.9, 2.12 and 2.13 on the other one
is: R3 − R′3 = δz − δz′ and R3 − R′′3 = δz − δz′′. The resulting values for the diagonal and
off-diagonal elements of the grand-diffusivity matrix are found in Tab. 2.3.



APPENDIX C

FIRST-PASSAGE TIMES

Based on data from Chapter 2, we discuss the influence of the time resolution of a trajectory
on the estimated mean first-passage times (MFPTs) in Sec. C.1. The numerical solution of the
Fokker-Planck (FP) equation, which serves to calculate MFPTs and first-passage time (FPT) dis-
tributions associated with a given free energy and diffusivity profile, is reviewed in Sec. C.2.

C.1 Finite Time Resolution of a Trajectory

Several MFPT curves obtained from the same simulation run by only varying the time resolution
δt employed for the MFPT analysis in Sec. 2.3.2 are shown in Fig. C.1: We observe that MFPTs
obtained for δt = 1 ps are, depending on the target Rt, roughly 2− 6 ps larger than the estimates
from the analysis with δt = 0.02 ps. As we show in the following, the reason for the differences
between the MFPT curves, are excursions beyond Rt and back, which are not registered due to
the finite time resolution δt. Since the first observed passage time possibly by far exceeds the
actual FPT, the finite time resolution thus also affects the estimate of the MFPT. Note that the
curves in Fig. C.1 are mainly shifted vertically with respect to each other and that within the
statistical uncertainty the choice of a specific time resolution had no visible effect on the shape
of the resulting diffusivity profile, which according to Eq. 2.21 depends on the slope of the MFPT

curves only (comparison not shown).
Note that the vertical shifts in Fig. C.1 are larger than the resolution δt of the trajectories. To

demonstrate the influence of δt on the observed MFPT curves, we use a simple model system:
free diffusion of a particle along the coordinate x with diffusion constant Dp, where a reflecting
boundary at x = 0 restricts the particle position to the positive part of the coordinate axis. The
corresponding Green’s function is

G(x|x0; t) =
1

√
4πDpt

(

e−
(x−x0)

2

4Dp t + e−
(x+x0)

2

4Dpt

)

Θ(x), (C.1)

where Θ(x) denotes the Heaviside step function. Since the process is Markovian, the probabil-
ity density function (PDF) of finding the particle at position x at time t + δt depends on the PDF

at time t only

P(x; t + δt) =
∫ ∞

0
dx′ G(x|x′; δt)P(x′; t). (C.2)
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Figure C.1:
Dependence of the MFPT curves τfp on the time resolution δt of the underlying trajectories. Results for
several target separations Rt = 1.2 nm (orange), Rt = 0.8 nm (green) and Rt = 0.4 nm (blue) determined
from molecular dynamics (MD) simulation data at T = 300 K.

According to Eq. 2.20 the MFPT of reaching xt when starting out from x for a flat diffusivity
D(x) = Dp and free energy profiles F(x) = const. is given by

τfp(x, xt) = τd

(

1−
(

x
xt

)2
)

, (C.3)

where τd ≡ x2
t /(2Dp) denotes the characteristic time for diffusion over the length xt.

We show in Fig. C.2 that MFPTs obtained from a trajectory with finite time resolution differ
from the MFPT calculated in the continuum, because paths will possibly cross the target and
come back many times before a position x ≥ xt is first recorded in the trajectory with finite time
resolution. A lower bound for MFPT estimates based on trajectories with finite time resolution
is obtained by the following numerical procedure:

1. At time t = 0 the particle is located at x0, i.e., the PDF and the probability of finding the
particle left of the target read

P(x; t = 0) = δ(x− x0), Pleft(t = 0) = 1. (C.4)

Since no transitions beyond the target have been observed yet, the current MFPT estimate
is τ̃fp = 0. The PDF at time t = δt according to Eq. C.2 thus simply is

P(x; t = δt) = G(x|x0; δt), (C.5)

which is evaluated numerically along x with a resolution δx/xt = 0.03.

The following steps are repeated until the exit condition is met:
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Figure C.2:
MFPT curves for reaching xt in the case of free diffusion next to a reflecting wall at x = 0 for differ-
ent time resolutions δt of the underlying trajectory: Solid colored lines are obtained by the numerical
procedure described in Sec. C.1, the dashed black line denotes the continuum MFPTs (Eq. C.3). The
characteristic diffusion time is τd ≡ x2

t /(2Dp), where Dp denotes the particle’s diffusion constant.

2. Linearly interpolate the discrete values of P(x; t) to obtain a continuous function and cal-
culate the probability of still finding the particle left of the target by numerical integration

Pleft(t) =
∫ xt

0
dx P(x, t). (C.6)

The fraction ∆Pleft = Pleft(t − δt) − Pleft(t) of particles is thus found on the right of the
target (x > xt) for the first time.

3. The fraction ∆Pleft has crossed the target between time t− δt and time t and contributes
to the observed MFPT, which is updated accordingly: τ̃fp = τ̃fp + (t− δt)∆Pleft.

4. If Pleft(t) < 0.001, i.e., if less than 0.1 % of the particles have not been observed right of
the target at least once, then exit the loop and return the MFPT estimate τ̃fp. Otherwise :

a) Starting from the linearly interpolated version of the current PDF P(x; t), calculate
the PDF P(x; t + δt) on a discrete grid with δx/xt = 0.03 by numerically integrating
Eq. C.2. Use xt as upper integration limit thereby neglecting the fraction of particles
∆Pleft which have been found right of the target.

b) Set t = t + δt and go back to (2).

The MFPT curves resulting from the procedure described above are shown in Fig. C.2 and reveal
the same characteristics as the MFPT curves from MD simulation data in Fig. C.1: Increasing δt
shifts up vertically the curves and distortions of the curves are only observed for δt & τfp. As
is clearly seen, one has τ̃fp > τfp + δt for the smaller values of δt: The deviations are thus not
caused because the FPT is recorded with an uncertainty on the order of the time resolution, but
because the first observed passage time in the discretely sampled trajectory can exceed by far
the FPT in the continuous trajectory.
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C.2 Numerical Solution of the Fokker-Planck Equation

We briefly review the numerical solution of the FP equation used to calculate MFPTs and FPT-
distributions associated with a given pair of free energy and diffusivity profiles.

When discretizing the spatial coordinate R into N bins of width δR, the FP equation (Eq. 2.19)
takes the form of a master equation [327]

∂Pi(t)
∂t

=
N

∑
j=1

WijPj(t), (C.7)

where Pi(t) denotes the probability of observing a relative separation R within bin i, i.e., R ∈
[Ri − δR/2, Ri + δR/2), at time t. The entries of the tridiagonal matrix of transition rates Wij
for a transition from bin j to bin i depend on both the free energy F and the diffusivity D

Wi,i+1 =
Di + Di+1

2 (δR)2 exp
(

−Fi − Fi+1

2kBT

)

, i = 1, . . . , N − 1 (C.8)

where Fi ≡ F(Ri) and Di ≡ DR(Ri). Due to detailed balance and probability conservation the
remaining non-zero transition rates of the tridiagonal matrix are

Wi+1,i = exp
(

−Fi+1 − Fi

kBT

)

Wi,i+1, Wii ≡ −∑
j 6=i

Wji = −Wi−1,i −Wi+1,i. (C.9)

The linear transformation P̃i(t) = exp (βFi/2)Pi(t) with β ≡ (kBT)−1 converts Eq. C.7 into a
simple differential equation involving a tridiagonal, symmetric matrix with entries W̃ij

∂P̃i(t)
∂t

=
N

∑
j=1

W̃ij P̃j(t) with W̃ij ≡ eβFi/2 Wij e−βFj/2, (C.10)

which is readily solved in terms of a matrix exponential

P̃i(t) =
N

∑
j=1

(

eW̃t
)

ij
P̃j(0) ⇔ Pi(t) =

N

∑
j=1

e−βFi/2
(

eW̃t
)

ij
eβFj/2Pj(0) ≡

N

∑
j=1

Gij(t)Pj(0), (C.11)

where the Green’s function Gij specifies the probability of ending up in bin i within a time in-
terval t given a start in bin j. The matrix exponential in Eq. C.11 is computed numerically by
diagonalization of the symmetric matrix W̃ = Q ·ΛΛΛ ·Q−1, with Q being the matrix of eigen-
vectors and ΛΛΛ being the diagonal matrix of eigenvalues of W̃. The matrix exponential is then
simply given by

eW̃t = Q · eΛΛΛt ·Q−1,
(

eΛΛΛt
)

ij
= δijeλit. (C.12)

For the case of relative SPC/E water dynamics, a bin width δR = 0.002 nm is used. A reflective
boundary condition (W0,1 = W1,0 = 0) is imposed at Rmin = 0.235 nm corresponding to a value
of the free energy F ≈ 18 kBT.

FPT distributions are obtained by imposing an absorbing boundary condition at the target
position Rt, thus disregarding paths in the time evolution of Gij which have already reached
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Figure C.3:
Same as Fig. 2.10b but for other target separations Rt: FPT distributions for water pairs starting within
the first coordination shell (R0 = 0.281 nm) from MD simulations at T = 300 K (colored circles) are
compared to the results from the numerical solution of the FP equation (Eq. C.15) with flat diffusivity
2DH2O (dashed black lines) and with diffusivity profiles DR(R) from Fig. 2.8c (solid black lines), vertical
arrows indicate the mean of the corresponding distributions (Eq. C.16).

the target beforehand: the total number N of bins is selected so that the target Rt is part of bin
N + 1 and the absorbing boundary condition is implemented by setting

WN,N = −WN−1,N −WN+1,N , (C.13)

but neglecting the backward flux WN,N+1PN+1(t) since PN+1(t) = 0 ∀t. The survival probability
Pj

surv for a start in bin j is

Pj
surv(t) =

N

∑
i=1

Gij(t) =
N

∑
i=1

e−βFi/2
(

eW̃t
)

ij
eβFj/2, (C.14)

which is evaluated numerically at times t ∈ [0, 200 ps] with time resolution δt = 0.1 ps. The
FPT distribution is approximated by the finite difference

ffp(t + δt/2; j) ≈ Pj
surv(t)− Pj

surv(t + δt)
δt

. (C.15)

The MFPT is obtained by taking the first moment of the FPT distribution

τfp =
∫ ∞

0
dt t ffp(t) =

∫ ∞

0
dt Psurv(t) ≈ δt

(

1 + Pj
surv(N δt)

2
+

N−1

∑
n=1

Pj
surv(n δt)

)

, (C.16)

where we have set the upper cutoff to N = 2000.
FPT histograms from MD data and from the numerical solution of the FP equation described

in this section for other target separations than the one shown in Fig. 2.10b are found in Fig. C.3.
No significant impact on the FPT distributions has been observed when refining the discretiza-
tion in space and/or time.
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APPENDIX D

LOW REYNOLDS NUMBER HYDRODYNAMICS AT
PLANAR INTERFACES

Interfaces alter the hydrodynamic flow field in a fluid and thus have implications on the motion
of nearby objects. In the following, various analytical results used in the Chapters 3 and 7 for
the quasi-stationary mobilities of spherical objects in a viscous and incompressible fluid next
to a planar interface are reproduced. The dependence of the self-mobilities on the distance to
the interface at surfaces with finite and vanishing slip-length are discussed in the Secs. D.1 and
D.2 respectively. Hydrodynamic interactions (HI) between spherical objects next to a no-slip
boundary described by the Rotne-Prager-Blake (RPB) tensor are covered in Sec. D.3.

D.1 Self-Mobilities at a Planar Interface with Finite Slip Length

Approximate expressions for the mobilities of a no-slip sphere of radius a at a distance h from
an interface with finite slip length b have been derived in Ref. [157] by Lauga and Squires (LS).
The mobility parallel to the interface is approximated by

µLS
‖ (h) = µ0

(

1 +
3a
8h

(1− 2J (Kn))
)

+O
(

a3

h3

)

, (D.1)

and the one perpendicular to the wall by

µLS
⊥ (h) = µ0

(

1− 3a
4h

(1 + 2I(Kn))
)

+O
(

a3

h3

)

. (D.2)

Here, the Knudsen number is Kn ≡ b/h and the functions

I(Kn) =
Kn(Kn− 1) + e1/KnΓ(0, 1/Kn)

8Kn3 , (D.3)

and

J (Kn) =
−Kn(3Kn + 1) + e1/Kn(1 + 2Kn)2 Γ(0, 1/Kn)

8Kn3 + 2
e2/Kn Γ(0, 2/Kn)

Kn
, (D.4)
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have been defined, which involve the incomplete Gamma function

Γ(γ, x) ≡
∫ ∞

x
dt tγ−1 e−t. (D.5)

Note that the factor 2 in front of the second summand in Eq. D.4 is missing in Eq. 34b of
Ref. [157] due to a typo.

The Eqs. D.1 and D.2 are used to approximate the diffusivity profiles of water molecules next
to a solid, homogeneous surface with finite slip length in Sec. 3.4: The continuum estimates for
the lateral and perpendicular diffusivities Dlat = kBTµLS

‖ and Dz = kBTµLS
⊥ are shown as solid

colored lines in Fig. 3.7d.

In the limit of vanishing slip length, b → 0, the Eqs. D.1 and D.2 reduce to the approximate
expressions for the mobilities of a sphere in the vicinity of a no-slip wall (Eqs. 7.8 and 7.9).

D.2 Self-Mobilities at a Planar No-Slip Interface

The expressions for the self-mobilities of a sphere of radius a at a distance h from a planar no-
slip interface, are reproduced: The approximate expression for the self-mobility parallel to the
interface obtained by Perkins and Jones [285] (PJ) reads

µPJ
‖ (h) = µ0

(

1− 8
15

log
(

1− a
h

)

+ 0.029
a
h
+ 0.04973

( a
h

)2
− 0.1249

( a
h

)3
+ . . .

)−1

. (D.6)

In turn, Stimson’s and Jeffery’s (SJ) exact result for the self-mobility perpendicular to the sur-
face [103, 286] is given by

µSJ
⊥(h) =

3µ0

4 sinh ρ
×

(
∞

∑
n=1

n(n + 1)
(2n− 1)(2n + 3)

[

2 sinh ((2n + 1)ρ) + (2n + 1) sinh (2ρ)

4 sinh2 ((n + 1
2 )ρ
)
− (2n + 1)2 sinh2 (ρ)

− 1

])−1

,

(D.7)

with ρ ≡ cosh−1 (h/a).

The above expressions are used to approximate the diffusivity profiles of water molecules
next to solid, homogeneous surfaces characterized by a stagnation layer in Sec. 3.4: The contin-
uum estimates for the lateral and perpendicular diffusivities Dlat = kBTµPJ

‖ and Dz = kBTµSJ
⊥

are shown as solid colored lines in Fig. 3.7e-f. Furthermore, the Eqs. D.6 and D.7 are compared
to approximate expressions (Eqs. 7.8 and 7.9) in Fig. 7.1 setting h = z.
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D.3 Hydrodynamic Interactions at a Planar No-Slip Interface

Entries of the Rotne-Prager level of the Blake tensor

As outlined in Sec. 7.1 the Rotne-Prager level of the Blake tensor describing the approximate
HI of finite sized particles near a planar no-slip wall at z = 0 is obtained from the Blake tensor←→µ B by the operation

←→µ RPB(ri, rj) =

[(

1 +
a2

6
∇2

r +
a2

6
∇2

r′

)

←→µ B(r, r′)
]

r=ri,r′=r j

=←→µ RP(ri − rj)−←→µ RP(ri − r̄j) +
←→
∆µ(ri, rj),

(D.8)

where r̄j = (xj, yj,−zj)
T is the image position of particle j and where the definition of the Blake

tensor (Eq. 7.2) as well as of the Rotne-Prager (RP) tensor [238]

←→µ RP(R) =
1

8πη0R

[←→
1 +

R⊗ R

r2

]

+
a2

4πη0R3

[←→
1

3
− R⊗ R

R2

]

, (D.9)

are used. Compared to the case of an unbounded fluid, the hydrodynamic drag on bead i
resulting from an external force acting on bead j is thus modified by two terms: (i) the RP-
interaction with the image of bead j (second term in Eq. D.8) and (ii) the RP-level of the Stokes
and source doublets (cf. Eqs. 7.4 and 7.5) at the position of the image

←→
∆µ(ri, rj) ≡

[(

1 +
a2

6
∇2

r +
a2

6
∇2

r′

)(←→µ D(r − r̄′)−←→µ SD(r− r̄′)
)]

r=ri,r′=r j

, (D.10)

for which we report the explicit entries in the following. Note that our expressions differ from
a previously reported version of the tensor [328].

The indices α, β and z specify the entries of the matrix
←→
∆µ and the elements of the vector

R =
(

Rx, Ry, Rz
)T

=
(

xi − xj, yi − yj, zi + zj
)T. The diagonal matrix entries are given by

∆µαα =
1

4πη0

(

−zizj

R
3

(

1− 3
R

2
α

R
2

)

+
a2R

2
z

R
5

(

1− 5
R

2
α

R
2

))

, α ∈ {x, y, z}, (D.11)

∆µzz =
1

4πη0

(

zizj

R
3

(

1− 3
R

2
z

R
2

)

− a2R
2
z

R
5

(

3− 5
R

2
z

R
2

))

, (D.12)

the off-diagonal ones read

∆µαβ =
1

4πη0

(

3zizjRαRβ

R
5 − 5a2 RαRβR

2
z

R
7

)

, α 6= β ∈ {x, y, z}, (D.13)

∆µαz =
1

4πη0

(

zjRα

R
3

(

1− 3
ziRz

R
2

)

− a2RαRz

R
5

(

2− 5
R

2
z

R
2

))

, α ∈ {x, y, z}, (D.14)
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∆µzα =
1

4πη0

(

zjRα

R
3

(

1 + 3
ziRz

R
2

)

− 5
a2RαR

3
z

R
7

)

, α ∈ {x, y, z}. (D.15)

Altogether, the HI described by the Eqs. D.8- D.15 are equivalent to the expressions in Ref. [283].
Note the following typo in a previous publication by Kim and Netz [282]: In Eq. 2.14, the plus
sign in front of the last line should be replaced by a minus sign in order to obtain the above
expressions.

Pre-Averaged form of the Rotne-Prager level of the Blake tensor

For the two dimensional version of the mean-field theory in Sec. 7.2.2, the 2× 2-submatrix of←→µ RPB corresponding to the x- and y-coordinates is pre-averaged by using the two dimensional
Gaussian probability density function given in Eq. 7.28. The right hand side of Eq. 7.27 yields

µRPB
avg

µ0
=

√
π(4 + 9σ̃2)erfc (2/σ̃)

8σ̃3 − e−4/σ̃2

4σ̃2 +
e−4/σ̃2

4σ̃6 (1 + z̃2)5/2

(

64z̃4 (1 + z̃2)2

+8σ̃2 z̃2 (1 + z̃2)
(

4 + 6z̃2 + 3z̃4
)

+ σ̃4
(

1 + 7z̃2 + 15z̃4 + 6z̃6
))

−
√

π

8σ̃7

× e4z̃2/σ̃2
(

32z̃4(8 + 3σ̃2) + 4σ̃2 z̃2(32 + 9σ̃2) + σ̃4(4 + 9σ̃2)
)

erfc

(

2

√
1 + z̃2

σ̃

)

,

(D.16)

where σ̃2 ≡ σ2(|s− s′|)/a2 denotes the normalized mean square distance between s and s′

(Eq. 7.28), and z̃ ≡ z/a. Note that the positive exponential in the last row of Eq. D.16 is a source
of numerical error for values z/a & 25 when using double precision numbers. In this case, an
asymptotic expansion of the above expression for the limit z/a → ∞ can be used.



APPENDIX E

OPTICAL TWEEZERS – SIGNAL PROCESSING,
DATA ANALYSIS & STATISTICS

In the following, technical aspects of the spectral analysis of the optical tweezer experiments in
Chapter 5 are provided: Various filtering sources entering the signal processing are covered in
Sec. E.1, a minimal model explaining the observed crosstalk asymmetry is presented in Sec. E.2,
periodogram covariances are derived in Sec. E.3, the use of the discrete Fourier transform (DFT)
for the signal analysis is reviewed in Sec. E.4, and the appearance of normally distributed ran-
dom variables on logarithmic scales is discussed in Sec. E.5.

E.1 Possible Forms of Filtering

Signal filtering can occur due to a number of different reasons, some examples are discussed
in the following subsections. Subsequent application of various filters corresponds to the iter-
ative convolution of the original signal with the various filter kernels in time domain or, more
conveniently, to the multiplication with the product of transfer functions in frequency space, cf.
Eq. A.2.

Filtering of the position sensing device

Due to the transparency of silicon to the employed laser light of 1064 nm wavelength, the
electrical signal produced by the position sensing device differs from the actual dynamics of
the centroid of the laser spot intensity [244, 248]. This parasitic or "virtual" filtering can be
modeled [216, 248] via a transfer function

f pf
i (ω) = φi + i

1− φi

i + ωτi
, i ∈ {1, 2}, (E.1)

where φi is the fraction of fast (instantaneously detected) electrons and τi is the typical relax-
ation timescale of the slow electron fraction in channel i. Power spectral densities (PSDs) thus
are modified by factors

f pf
i (ω) f pf

j

⋆
(ω) = φiφj +

1− φiφj

1 + i ω(τj − τi) + τiτjω2 + i ω
φjτj(1− φi)− φiτi(1− φj)

1 + i ω(τj − τi) + τiτjω2 , (E.2)
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which for i = j reduce to

| f pf
i (ω)|2 = φi

2 +
1− φ2

i

1 + (ωτi)
2 , (E.3)

which is purely real. In contrast, even slight asymmetries in the filtering properties of the
two detectors result in a non-vanishing imaginary part of f pf

1 f pf
2

⋆
as discussed in Sec. 5.6, see

Fig. E.1a for typical frequency dependences.

Electric filter

The amplification device used in our setup acts as an 8th order Butterworth filter with f3dB =
200 kHz corresponding to transfer functions

f B8
i (ω) =

1
B8(i ω/(2π f3dB))

, (E.4)

with B8 being the 8th order Butterworth polynomial, so that

f B8
i (ω) f B8

j
⋆
(ω) =

1

1 + (ω/(2π f3dB))
16 . (E.5)

In Fig. E.1b, Butterworth filters are compared to first-order low-pass filters, for which

f lp
i (ω) f lp

j

⋆
(ω) =

1

1 + (ω/(2π f3dB))
2 . (E.6)

Temporal averaging

Temporal averaging also represents a form of low-pass filtering: For a uniform averaging of a
signal over a time window τav, i.e., a filter kernel

f av
i (t) =

1
τav

Θ(t)Θ(τav − t), (E.7)

where Θ denotes the Heaviside step function, one obtains

f av
i (ω) f av

i
⋆(ω) =

(
2

ωτav
sin
(ωτav

2

))2

, (E.8)

in frequency domain. In consequence, PSDs of the time-averaged signals are reduced in ampli-
tude compared to unfiltered PSDs for frequencies ω & 1/τav as is shown in Fig. E.1c.

Time delay between channels

The temporal shift of a signal by τdelay, i corresponds to

f del
i (t) = δ(t− τdelay, i), τdelay, i ≥ 0, (E.9)

and thus translates into
f del
i (ω) = exp (iωτdel, i). (E.10)
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Figure E.1:
Attenuation fi f ⋆j resulting from various filtering sources as discussed in Sec. E.1: (a) parasitic filtering
of the position sensing devices (Eq. E.2) using the parameters from Tab. 5.2 for the ⊥ direction, (b) dif-
ferent electric low-pass filters (Eqs. E.5 and E.6), (c) uniform averaging of signals over a time window
of duration τav (Eq. E.8), (d) time delay between the two recorded signals (Eq. E.11). Positive values
of fi f ⋆j are drawn as solid lines, negative ones are dashed.



194 E Optical Tweezers – Signal Processing, Data Analysis & Statistics

Auto-PSDs thus remain unaffected by time shifts, | fi(ω)|2 = 1, while the cross-PSDs are multi-
plied by a complex factor

f del
i (ω) f del

j
⋆
(ω) = cos

(
ω∆τdel i,j

)
+ i sin

(
ω∆τdel i,j

)
, (E.11)

with relative time delay between the channels

∆τdel i,j ≡ τdel, i − τdel, j. (E.12)

For ∆τdel i,j 6= 0, cross-PSDs are thus modified; two examples are shown in Fig. E.1d.

Overall transfer functions

Given the specifications of our signal recording hardware (Sec. 5.1), time averaging effects as
well as temporal delays in the signal detection are negligible. The overall filter function for
channel i is therefore given by

fi(ω) = f pf
i (ω) f B8

i (ω), (E.13)

accounting for the parasitic filtering of the position sensing device (Eq. E.1) and for the Butter-
worth filter of the amplification device (Eq. E.4). The above expression involves two parameters
φi and τi for each channel; these have been determined in the course of the instrumental cali-
bration in Sec. 5.6.

E.2 Crosstalk Asymmetry

The calibration in Sec. 5.6 yields values for ǫ11, ǫ12, ǫ21, and ǫ22, which reflect the sensitivity of
the recorded voltage signals to the motion of the beads in their respective traps. As is seen from
Tab. 5.2, the relative crosstalk amplitudes ǫ12/ǫ11 and ǫ21/ǫ22 vary considerably (ranging from
0.56 to 3.7 percent) and depend on the spatial direction α. Moreover, in channel 1 the impor-
tance of crosstalk is larger for the ‖-direction, while it is dominant for the⊥-direction in channel
2. In the following, we present a minimal model to explain this, at first sight counterintuitive,
asymmetry.

Minimal model

Due to depolarization in the optical path and the intrinsic non-perfect separation and conserva-
tion of polarization upon transmission through and reflection by the polarization beam splitters
(PBSs), the light in each of the two traps is not perfectly polarized. Distinguishing the polariza-
tions along two orthogonal spatial directions x and y, the light intensities in the traps are

Itrap 1 =

(
1− φx

φy

)

I0, Itrap 2 =

(
φx

1− φy

)

I0, (E.14)

where we have for simplicity assumed that the overall intensities in x- and y-polarization are
equal (= I0) and where φx ≪ 1 and φy ≪ 1 quantify the amount of light of "wrong" polarization
in each of the traps. The light in trap 1 is thus mainly x-polarized, the one in trap 2 mainly y-
polarized.
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The PBS between sample chamber and detectors (cf. Fig. 5.1) is responsible for sending x-
polarized light to detector 1 and y-polarized light to detector 2. However, due to the imperfect
properties of the PBS, the incident light intensities on the detector surfaces are

Idet 1, surface =

(
(1− ψx)(1− φx)

ψyφy

)

I0

︸ ︷︷ ︸

from trap 1

+

(
(1− ψx)φx

ψy(1− φy)

)

I0

︸ ︷︷ ︸

from trap 2

, (E.15)

Idet 2, surface =

(
ψx(1− φx)
(1− ψy)φy

)

I0

︸ ︷︷ ︸

from trap 1

+

(
ψxφx

(1− ψy)(1− φy)

)

I0

︸ ︷︷ ︸

from trap 2

, (E.16)

where ψx reflects the fraction of x-polarized light, which is erroneously sent to detector 2, and
ψy the fraction of y-polarized light arriving at detector 1. The experimentally recorded voltages
are

zi,α = ai,αVout
i,α = ai,α

V∆
i,α

VΣ
i,α

, i ∈ {1, 2}, α ∈ {‖,⊥}, (E.17)

where ai,α is the manually adjusted amplification factor of the corresponding channel, where
the sum signal VΣ

i,α is proportional to the overall light intensity, and where the difference signal
V∆

i,α is proportional to both the light intensity and the α-coordinate of the laser centroid on the
position sensing device [214, 329].

It is important to note that position sensing for the spatial directions ‖ and ⊥ occurs in two
different layers of the device (cf. Sec. 5.1). We assume without loss of generality that the detec-
tion of the ‖-direction occurs in the top layer and obtain signals

z1,‖ = a1,‖

(
(1− ψx)(1− φx) + ψyφy

)
r1,‖ +

(
(1− ψx)φx + ψy(1− φy)

)
r2,‖

(1− ψx) + ψy
, (E.18)

z2,‖ = a2,‖

(
ψx(1− φx) + (1− ψy)φy

)
r1,‖ +

(
ψxφx + (1− ψy)(1− φy)

)
r2,‖

ψx +
(
1− ψy

) . (E.19)

The relative crosstralk amplitudes are then given by

ǫ
‖
12

ǫ
‖
11

=
(1− ψx)φx + ψy(1− φy)

(1− ψx)(1− φx) + ψyφy
≈ φx + ψy, (E.20)

ǫ
‖
21

ǫ
‖
22

=
(ψx(1− φx) + (1− ψy)φy

ψxφx + (1− ψy)(1− φy)
≈ φy + ψx, (E.21)

where the approximations result from retaining only terms linear in φx, φy, ψx and ψy. Overall,
the crosstalk in channel 1 thus results from two effects: (i) the amount φx of x-polarized light in
trap 2 and (ii) the fact that the PBS between sample chamber and detectors erroneously reflects
or transmits a fraction ψy of the y-polarized light from trap 2 to detector 1. A certain part of the
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light intensity being absorbed in the top layer of the position sensing device the light intensities
relevant for the detection of the ⊥-direction are

Idet 1, 2nd layer =

(
ϑx(1− ψx)(1− φx)

ϑyψyφy

)

I0

︸ ︷︷ ︸

from trap 1

+

(
ϑx(1− ψx)φx

ϑyψy(1− φy)

)

I0

︸ ︷︷ ︸

from trap 2

, (E.22)

Idet 2, 2nd layer =

(
ϑxψx(1− φx)
ϑy(1− ψy)φy

)

I0

︸ ︷︷ ︸

from trap 1

+

(
ϑxψxφx

ϑy(1− ψy)(1− φy)

)

I0

︸ ︷︷ ︸

from trap 2

. (E.23)

where the transmission coefficients for the two polarizations are denoted by ϑx and ϑy, respec-
tively. The resulting signal amplitudes are

z1,⊥ = a1,⊥

(
ϑx(1− ψx)(1− φx) + ϑyψyφy

)
r1,⊥ +

(
ϑx(1− ψx)φx + ϑyψy(1− φy)

)
r2,⊥

ϑx (1− ψx) + ϑyψy
, (E.24)

z2,⊥ = a2,⊥

(
ϑxψx(1− φx) + ϑy(1− ψy)φy

)
r1,⊥ +

(
ϑxψxφx + ϑy(1− ψy)(1− φy)

)
r2,⊥

ϑxψx + ϑy
(
1− ψy

) , (E.25)

giving rise to relative crosstalk amplitudes

ǫ⊥12

ǫ⊥11
=

ϑx(1− ψx)φx + ϑyψy(1− φy)

ϑx(1− ψx)(1− φx) + ϑyψyφy
≈ φx +

ϑy

ϑx
ψy, (E.26)

ǫ⊥21

ǫ⊥22
=

(ϑxψx(1− φx) + ϑy(1− ψy)φy

ϑxψxφx + ϑy(1− ψy)(1− φy)
≈ φy +

ϑx

ϑy
ψx. (E.27)

Compared to Eqs. E.20 and E.26, the crosstalk contribution stemming from the PBS between
sample chamber and detectors is thus modified due to the polarization-dependent transmission
in the top layer of the position sensing device.

Conclusions

As is seen from the Eqs. E.20, E.21, E.26, and E.27, the relative crosstalk amplitudes for the two
spatial directions depend on five parameters: the fractions φx and φy of "wrong" polarization in
the traps, the properties ψx and ψy of the PBS between sample chamber and detectors, as well as
the ratio of transmission coefficients ϑx/ϑy of the top layer of the position sensing device. PBSs
are by construction asymmetric, i.e., in general φx 6= φy and ψx 6= ψy; the four relative crosstalk
amplitudes consequently are independent quantities. Note that in particular:

1. If the absorption in the first layer is polarization-independent (ϑx = ϑy), one obtains

ǫ⊥12/ǫ⊥11 = ǫ
‖
12/ǫ

‖
11 and ǫ⊥21/ǫ⊥22 = ǫ

‖
21/ǫ

‖
22, i.e., relative crosstalk amplitudes for both spatial

directions are equal in contradiction with our observations in Sec. 5.6.

2. If ǫ⊥12/ǫ⊥11 < ǫ
‖
12/ǫ

‖
11, then ϑy < ϑx as seen from the Eqs. E.20 and E.26. One thus expects

ǫ⊥21/ǫ⊥22 > ǫ
‖
21/ǫ

‖
22 from Eqs. E.21 and E.27 in accordance with the values in Tab. 5.2.
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We conclude that the relative crosstalk amplitudes measured in the experiment can be ex-
plained based on the minimal model presented above: The observed asymmetry results from
an interplay of three effects: (i) due to depolarization in the optical path and intrinsic non-
perfect separation and conservation of polarization upon transmission through and reflection
by the PBSs the light in the two traps is not perfectly polarized, (ii) non-perfect separation of
polarization by the PBS between sample chamber and detectors, as well as (iii) different trans-
mission properties of x- and y-polarized light in the top layer of the position sensing devices.
We expect this asymmetry to disappear, if the polarization directions x and y are rotated with
respect to the detectors in such a way that ϑx = ϑy.

E.3 Periodogram Covariances

We explicitly derive the periodogram covariances for an arbitrary number of signals zi(t) re-
corded over a time window T, again neglecting leakage effects (cf. Sec. E.4). According to the
Secs. 5.2.2 and 5.4, the Fourier components of the signals

zi(ωn) = ∑
j

Aij(ωn)vj(ωn), (E.28)

linearly depend on the stochastic Fourier components vj representing thermal forces and instru-
mental noise, where the Aij denote complex coefficients resulting from the underlying equa-
tions of motion and the signal processing in the instrument. For a stationary stochastic process,
the real and imaginary parts of the stochastic Fourier components are assumed to be normally
distributed random variables with vanishing mean and with (cross-)correlations

〈
Re [vi(ωn)]Re

[
vj(ωn′)

]〉
=
〈
Im [vi(ωn)] Im

[
vj(ωn′)

]〉
= Tσ2

ij(ωn)δnn′ , (E.29)

where σ2
ij denotes the corresponding variance and δnn′ the Kronecker symbol, meaning that

Fourier components corresponding to distinct frequencies are uncorrelated. Real and imagi-
nary parts of the vi components are independent due to time reversal symmetry and thus

〈
Re [vi(ωn)] Im

[
vj(ωn′)

]〉
= 0. (E.30)

Note that Eq. E.28 is quite general in the sense that it describes the electrical signals in any
experimental setup, where the thermal motion of the compounds is described by linear integro-
differential equations of motion (e.g., Eq. 5.8), the signal processing is linear (Eq. 5.19), and
instrumental noise contributing to the signal is additive (Eq. 5.20), and the number of stochastic
components vi is not restricted. As a result, the periodograms

Pij(ωn) ≡
1
T

zi(ωn)z⋆j (ωn) =
1
T ∑

k,l
Aik A⋆

jlvk(ωn)v⋆l (ωn), (E.31)

are again (complex) random variables, the statistics of which can be inferred from the properties
of the vi-components given above.

In the following, the frequency dependence is implicitly assumed, although the argument ωn

is omitted to keep the notation simple. Basic algebra and Gaussian statistics yield

〈viv
⋆
j 〉 = 2Tσ2

ij, (E.32)
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〈viv
⋆
j vkv⋆l 〉 = 4T2(σ2

ijσ
2
kl + σ2

ilσ
2
jk). (E.33)

Real and imaginary parts of a periodogram are given by

Re
[
Pij
]
=

1
2

1
T ∑

k,l

(

Aik A⋆
jlvkv⋆l + A⋆

ik Ajlv
⋆
k vl

)

, (E.34)

Im
[
Pij
]
=

1
2i

1
T ∑

k,l

(

Aik A⋆
jlvkv⋆l − A⋆

ik Ajlv
⋆
k vl

)

. (E.35)

In the limit T → ∞, their expectation values by definition (cf. Eqs. 5.23 and 5.27) correspond to
the real and imaginary parts of the corresponding PSDs

〈
Re
[
Pij
]〉

= 2 ∑
k,l

Re
[

Aik A⋆
jl

]

σ2
kl = Re

[
Sij
]

, (E.36)

〈
Im
[
Pij
]〉

= 2 ∑
k,l

Im
[

Aik A⋆
jl

]

σ2
kl = Im

[
Sij
]

. (E.37)

Similarly, making use of Eq. E.33, higher moments of real and imaginary parts of the peri-
odograms can be calculated. Gaussian statistics allow to reformulate the resulting expressions
in terms of real and imaginary parts of the PSDs yielding covariances

〈
Re
[
Pij
]

Re [Pkl]
〉
−
〈
Re
[
Pij
]〉
〈Re [Pkl]〉 =

1
2

(

Re [Sik]Re
[
Sjl
]
+ Im [Sik] Im

[
Sjl
]
+ Re [Sil]Re

[
Sjk
]
+ Im [Sil ] Im

[
Sjk
] )

, (E.38)

〈
Re
[
Pij
]

Im [Pkl]
〉
−
〈
Re
[
Pij
]〉
〈Im [Pkl]〉 =

1
2

(

Re [Sik] Im
[
Sjl
]
− Im [Sik]Re

[
Sjl
]
+ Im [Sil ]Re

[
Sjk
]
− Re [Sil ] Im

[
Sjk
] )

, (E.39)

〈
Im
[
Pij
]

Im [Pkl ]
〉
−
〈
Im
[
Pij
]〉
〈Im [Pkl]〉 =

1
2

(

Re [Sik]Re
[
Sjl
]
+ Im [Sik] Im

[
Sjl
]
−Re [Sil]Re

[
Sjk
]
− Im [Sil ] Im

[
Sjk
] )

. (E.40)

Again, these approximations are strictly exact only in the limit T → ∞. For the case of two
detected signals (k = i, l = j), the variances resulting from the above expressions are given
and discussed in Sec. 5.5.1; the overall covariance matrix for the averaged periodograms of two
signals is found in Eq. 5.36.

E.4 Discrete Fourier Transformation

Consider a continuous signal z(t) of infinite duration, which is sampled with a finite sampling
rate fsampl ≡ 1/∆t over a time window of duration T ≡ N∆t. Applying a DFT to z(t) yields N
discrete Fourier components

Z(n) ≡
N−1

∑
m=0

z(m∆t) ei 2πmn/N ≈ z(ωn)

∆t
, (E.41)

where z(ωn) denotes the value of the Fourier transformation of the original, continuous signal
of infinite duration at the angular frequency ωn ≡ 2πn/(N∆t) with n being integer. Due to
the finite time resolution and the overall duration of the signal, the correspondence between
discrete and continuous Fourier components in Eq. E.41 is only approximate. In the follow-
ing, we review the relationship between discrete and continuous Fourier transformations and
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point out which precautions have to be taken when working with DFTs [330]. Eq. E.41 can be
reformulated as

Z(n) =
∫ ∞

−∞
dt Pulse T(t)Comb∆t(t) z(t) ei ωnt, (E.42)

where we defined the functions

Pulse T(t) ≡ Θ(t + ∆t/2)Θ(−t + T − ∆t/2), (E.43)

Comb∆t(t) ≡
∞

∑
m=−∞

δ(t−m∆t). (E.44)

The discrete Fourier components Z thus correspond to the continuous Fourier transformation
of the product of the rectangular pulse function Pulse T, the Dirac comb function Comb∆t and
the continuous and infinite signal z. According to the convolution theorem (Eq. A.3)

Z(n) = (2π)−2 Pulse T ∗Comb∆t ∗ z (ωn), (E.45)

involving two convolutions: the first one arises from the finite window length T and is respon-
sible for spectral leakage of the DFT, the second one is due to the finite sampling time interval
∆t and causes aliasing.

Spectral leakage

The finite window time T causes a convolution with

Pulse T(ω) = 2
sin (ωT/2)

ω
ei ω(T−∆t)/2, (E.46)

a highly oscillating function with side-lobes decaying as 1/ω. Fourier components around ωn

(mainly in a region of width 2π/T) thus contribute to Z(n) defined in Eq. E.41. The effect
of spectral leakage can be reduced by using window functions [331], which smoothly fade in
and out the signal and thereby reduce the side lobe amplitudes in frequency space at the cost
of a wider central peak, see Appendix F.2 for an example. Spectral leakage causes prominent
artifacts in the DFTs of periodic signals in case of a mismatch of window time and period of the
signal. Since thermal PSDs however smoothly depend on frequency, leakage effects are of minor
importance for the spectral analysis in Chapter 5 and can be further minimized by increasing
the window length T.

Aliasing

The finite sampling interval ∆t causes the convolution of the continuous Fourier transformation
with

Comb∆t(ω) =
2π

∆t

∞

∑
m=−∞

δ

(

ω + m
2π

∆t

)

. (E.47)
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According to the sampling theorem, Fourier components with frequencies |ω| > 2π fNyq ≡
π/∆t are mapped onto Fourier components within the Nyquist interval. In the limit of large
sample sizes (N → ∞), Eq. E.45 reduces to

Z(n) =
1

∆t

∞

∑
m=−∞

z
(

ωn + m
2π

∆t

)

≡ 1
∆t

zal.(ωn), (E.48)

the aliased version of the continuous Fourier transformation. For functions which quickly de-
cay beyond the Nyquist interval, the effect of aliasing is most prominent at its edges (|ω| .
2π fNyq). Aliasing effects and the (mis-)use of anti-aliasing filters are discussed in detail in
Ref. [214].

Calculating periodograms via discrete Fourier transform

The (cross-)PSD of two signals zi and zj is estimated by averaging periodograms

Pij(n) ≡
∆t
N

Zi(n)Z⋆
j (n), (E.49)

where Zi and Zj denote the DFTs of the time series zi and zj, which in practice are efficiently
computed using a fast Fourier transformation algorithm. According to Eq. E.45 the expectation
value is

〈
Pij(n)

〉
=

∆t
2π

∫ ∞

−∞
dω Sij(ωn − ω)

1
N

(
sin (Nω∆t/2)
sin (ω∆t/2)

)2

, (E.50)

which, using Fejér’s theorem, in the limit of large sample sizes N, reduces to the aliased PSD

defined in Eq. 5.25

lim
N→∞

〈
Pij(n)

〉
=

∞

∑
m=−∞

Sij

(

ωn + m
2π

∆t

)

. (E.51)

The double-infinite sum is in our case approximated numerically using upper and lower cutoffs
mmax = −mmin = 5, where cutoff errors are negligible due to the attenuation characteristics of
the employed 8th order Butterworth filter, cf. Secs. 5.1 and E.1.

E.5 Normally Distributed Variables on Logarithmic Scales

As discussed in Sec. 5.5, the values of averaged periodograms P̄ij are normally distributed ran-
dom variables. The frequency dependence of periodograms and PSDs is generally displayed
on logarithmic graphs. A short calculation demonstrates what has to be kept in mind, when
interpreting such graphs.

The PDF for a normally distributed variable x with mean µ and variance σ2 is given by

P(x) =
1√

2πσ2
exp

(

− (x− µ)2

2σ2

)

, (E.52)

and thus random variables x scatter around µ, if a linear axis is used. However, in a logarithmic
plot, the variables shown are (taking into account the variable’s sign)

y± ≡ log(±x) ⇔ x = ± exp(y±). (E.53)
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This coordinate change affects the form of the PDF, which fulfills

P̃±(y±) |dy±| = P(x)dx. (E.54)

The PDFs for the variables y± therefore read

P̃±(y±) = P(x)
∣
∣
∣
∣

dx
dy±

∣
∣
∣
∣
=

1√
2πσ2

exp

(

y± − (± exp(y±)− µ)2

2σ2

)

. (E.55)

Note that P is peaked around x∗ = µ, while the PDFs P̃± are peaked around

y∗± = log

(

±µ +
√

µ2 + 4σ2

2

)

, (E.56)

with limiting cases (assuming µ positive)

lim
σ→0

exp (y∗+) = µ, lim
µ→0

exp (y∗±) = σ. (E.57)

As long as the statistical uncertainty is much smaller than the magnitude of the expectation
value, random variables accumulate as expected around µ on a logarithmic plot. In the op-
posite case, random variables tend to scatter (with varying sign) around σ. Depending on
the ratio of expectation value and statistical uncertainty, the absolute values of averaged cross-
periodograms may therefore reflect the frequency dependence of the cross-PSD or its statistical
uncertainty only as discussed in Sec. 5.7.2.
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APPENDIX F

DYNAMICS OF THERMALLY FLUCTUATING
NONLINEAR SYSTEMS – DETAILS

Additional information regarding the calculations and the analysis in Chapter 6 are provided:
The bulky relations between the ji- and gi-functions are found in Sec. F.1, details concerning the
spectral data analysis and the fitting procedures are given in Sec. F.2 and Sec. F.3 respectively,
the statistical threshold for verifying the hypothesis of strictly linear dynamics is derived in
Sec. F.4, and the Kramers’ approximation for inter-well dynamics is discussed in Sec. F.5.

F.1 Relation between the ji and gi-Functions

The relations between the gi- and ji-functions are obtained by inserting Eq. 6.5 into Eq. 6.4,
grouping together all terms with equal powers of x, and satisfying the equality term by term
for arbitrary x(ω). The five first resulting equations are

j1(ω)g1(ω) = 1, (F.1)

∑
P({ω,ω′})

[

j1(ω + ω′)g2(ω, ω′) + j2(ω, ω′)g1(ω)g1(ω
′)
]

= 0, (F.2)

∑
P({ω,ω′,ω′′})

[

j1(ω + ω′ + ω′′)g3(ω, ω′, ω′′) + 3j2(ω, ω′+ ω′′)g1(ω)g2(ω
′, ω′′)

+ j3(ω, ω′, ω′′)g1(ω)g1(ω
′)g1(ω

′′)
]

= 0,

(F.3)

∑
P({ω,ω′,ω′′,ω′′′})

[

j1(ω + ω′ + ω′′ + ω′′′)g4(ω, ω′, ω′′, ω′′′)

+ 4j2(ω, ω′+ ω′′ + ω′′′)g1(ω)g3(ω
′, ω′′, ω′′′)

+ 3j2(ω + ω′, ω′′ + ω′′′)g2(ω, ω′)g2(ω
′′, ω′′′)

+ 6j3(ω, ω′, ω′′ + ω′′′)g1(ω)g1(ω
′)g2(ω

′′, ω′′′)

+ j4(ω, ω′, ω′′, ω′′′)g1(ω)g1(ω
′)g1(ω

′′)g1(ω
′′′)
]

= 0,

(F.4)
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and

∑
P({ω,...,ωIV})

[

j1(ω + ω′ + ω′′ + ω′′′ + ωIV)g5(ω, ω′, ω′′, ω′′′, ωIV)

+ 5j2(ω, ω′+ ω′′ + ω′′′ + ωIV)g1(ω)g4(ω
′, ω′′, ω′′′, ωIV)

+ 10j2(ω + ω′, ω′′+ ω′′′ + ωIV)g2(ω, ω′)g3(ω
′′, ω′′′, ωIV)

+ 10j3(ω, ω′, ω′′+ ω′′′ + ωIV)g1(ω)g1(ω
′)g3(ω

′′, ω′′′, ωIV)

+ 15j3(ω, ω′+ ω′′, ω′′′ + ωIV)g1(ω)g2(ω
′, ω′′)g2(ω

′′′, ωIV)

+ 10j4(ω, ω′, ω′′, ω′′′ + ωIV)g1(ω)g1(ω
′)g1(ω

′′)g2(ω
′′′, ωIV)

+ j5(ω, ω′, ω′′, ω′′′, ωIV)g1(ω)g1(ω
′)g1(ω

′′)g2(ω
′′′)g1(ω

IV)
]

= 0,

(F.5)

where P({. . . }) denotes the ensemble of permutations of the elements in {. . . }. Solving the
above equations for j1, j2, etc. and taking the symmetry properties of the functions ji and gi into
account, one obtains the Eqs. 6.6-6.8 as well as similar expressions for j4 and j5, which however
are bulky and are therefore not shown.

F.2 Spectral Data Analysis

The spectral estimates from numerical simulations result from the statistical analysis of M =
Tsim/T non-overlapping time windows of duration T. We take the discrete Fourier transforma-
tion (DFT) of each of the evenly sampled time series as defined by

Xn ≡
N−1

∑
j=0

wj x(j∆t) ei 2π jn/N , (F.6)

where the number of data points per time window is N ≡ T/(∆t), where ∆t is the time resolu-
tion of the trajectory and where wj ≡ 1− (1− 2j/N)2 is the Welch window function employed
to reduce leakage effects [331]. Estimates for the aliased power spectral densities

Sal.(ωn) ≡
∞

∑
j=−∞

S
(

ωn + j
2π

∆t

)

, (F.7)

at the frequency ωn ≡ 2πn/(N∆t) are obtained by computing the sample averaged peri-
odogram

Pn ≡
∆t
W2

XnX−n =
∆t
W2

1
M

M−1

∑
m=0

X(m)
n X(m)

−n , W2 ≡
N−1

∑
j=0

w2
j , (F.8)

where X(m)
n denotes DFT-values for time window m and sample averages are denoted by over-

lines. For the aliased function

Yal.(ωn,−ωn, ωn) ≡ ∑
j,k,l

Y
(

ωn + j
2π

∆t
,−ωn + k

2π

∆t
, ωn + l

2π

∆t

)

, (F.9)
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the unbiased estimator [332] is given by

Ŷn ≡
(∆t)3

W4

(
M + 1
M− 1

|Xn|4 − 2
M

M− 1

(

|Xn|2
)2
)

, W4 ≡
N−1

∑
j=0

w4
j . (F.10)

F.3 Fits to a Linear Model

Strictly linear overdamped dynamics are characterized by the power spectral density (PSD)
given in Eq. 6.58. For the monostable potentials in the Secs. 6.2.2 and 6.2.3, the aliased PSD

Sal.
fit (ω) =

∞

∑
j=−∞

Sfit

(

ω + j
2π

∆t

)

=
∆t kB T sinh

(
αfit∆t/ζfit)

αfit (cosh (αfit∆t/ζfit)− cos(ω∆t))
, (F.11)

serves as fit function. For the dynamics in the double-well potential (dw) of Sec. 6.2.4, which
is approximated as the superposition of two independent stochastic processes in Sec. 6.4.1, the
aliased PSD is approximated by

Sal.
fit, dw(ω) =

∆t kB T sinh
(
αfit

1 ∆t/ζfit
1

)

αfit
1

(
cosh

(
αfit

1 ∆t/ζfit
1

)− cos(ω∆t)
) +

∆t kB T sinh
(
αfit

2 ∆t/ζfit
2
)

αfit
2

(
cosh

(
αfit

2 ∆t/ζfit
2

)− cos(ω∆t)
) , (F.12)

where αfit
1 , αfit

2 , ζfit
1 , and ζfit

2 are the fit parameters.
Similarly as in Chapter 5, individual periodograms are exponentially distributed [213] for

strictly linear dynamics and the statistical uncertainty of the averaged periodogram values
therefore is

σPn
=

1√
M

Sal.(ωn). (F.13)

Neglecting leakage effects [331], best fits to the data are therefore obtained by minimizing the
weighted sum of residuals

Σ2 =
N−1

∑
n=0

(

Pn − Sal.(ωn)

σPn

)2

= M
N−1

∑
n=0

(
Pn

Sal.(ωn)
− 1
)2

, (F.14)

thereby effectively penalizing relative deviations between numerical data and fit function as
seen on the logarithmic plots in the Figs. 6.7a, 6.8a, and 6.9a.

F.4 Verifying the Hypothesis of Strictly Linear Dynamics

For a strictly linear system, the expectation value 〈Ŷn〉 = Yal.(ωn,−ωn, ωn) = 0 (Eq. 6.22).
Individual values of Ŷn however are (for large enough M) normally distributed around 0 with
a standard deviation

σŶn
≡ 2

W2
2

W4
∆t

√

M + 1
M(M− 1)

(

Sal.(ωn)
)2
≈ W2

2
NW4

2T√
Tsim/T

(

Sal.(ωn)
)2

, (F.15)
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as again follows from the exponential distribution of periodograms and where W2
2 /(NW4) is

a numerical prefactor depending on the window function only: It equals ≃ 0.7 for the Welch-
window function employed in the present analysis and is 1 for a rectangular window function.
Consequently, the estimates for the spectral kurtosis

κ̂n ≡
Ŷn
(

Pn
)2 , (F.16)

are expected to scatter around 0 with standard deviation

σκ̂n ≈
W2

2
NW4

2T√
Tsim/T

. (F.17)

The hypothesis of strictly linear dynamics thus can only be rejected if the estimates κ̂n are in-
compatible with what is expected for a linear system from a statistical point of view. As a
reference, the 90%-confidence interval for ±κ̂n-values for a strictly linear system (0.063 σκ̂n .
±κ . 1.96 σκ̂n ) are shaded in gray in the Figs. 6.7b, 6.8b and 6.9b.

Note that, for a fixed simulation time Tsim, the statistical uncertainty for the κ̂n-values (Eq. F.17)
scales ∝ T3/2 with the duration of the time window employed for the spectral analysis. The
choice for the window length T therefore represents a compromise between increasing the fre-
quency range resolved in the analysis and minimizing leakage effects by increasing T on the
one hand (cf. App. E.4), and reducing the statistical uncertainty in the numerical estimate for
κ̂n thus allowing to uncover weaker nonlinear contributions to the dynamics by decreasing T
on the other hand. As is seen from Eq. F.17, a non-rectangular window function in Eq. F.6 thus
has—in addition to reducing leakage effects—the advantage of reducing the statistical uncer-
tainty of κ̂n.

F.5 Kramers’ Approximation for Inter-Well Dynamics

The Kramers’ escape rate [333] for the problem of overdamped diffusion in a double-well po-
tential discussed in Sec. 6.2.4 is

kinter =

√

−U′′minU′′max

2πζ0
e−∆U/kB T =

α0

2
√

2πζ0
e−∆Ũ, (F.18)

where U′′min = α0 and U′′max = −α0/2 are the curvatures of the potential U (Eq. 6.52) at the
positions of the potential minima and maxima. The PSD

Sinter(ω) =
(∆x)2kinter

4k2
inter + ω2

=
16
√

2π∆Uζ0e
∆U
kB T

α2
0 + 2π2ζ2

0ω2e
2∆U
kB T

, (F.19)

is associated with a stochastic process switching at rate kinter between the two potential minima
with a mutual distance

∆x ≡ 4
√

2∆U/α0. (F.20)

Equating Eq. F.19 and the Lorentzian fit function (Eq. 6.58) yields the expression for the fit
values given in Eq. 6.66.



APPENDIX G

LINEAR CONTINUUM VISCOELASTIC THEORY

The linear viscoelasticity of continua, which is of relevance in Chapter 8, is shortly reviewed:
Basic concepts and relations are introduced in Sec. G.1, the general response of a slab of finite
thickness is derived in Sec. G.2, and the results for representative viscoelastic model materials
are discussed in Sec. G.3.

G.1 Stress, Strain and Viscoelastic Moduli

We consider the continuum description of a viscoelastic medium: the reference configuration
being specified by coordinates r0, the displacement at time t is given by

u(r0, t) = r(r0, t)− r0. (G.1)

The following considerations apply to small deformations, i.e.,
∣
∣∂jui

∣
∣ ≪ 1, for which the rela-

tion between stress and strain tensors is linear

σij = ∑
k,l

Cijkl εkl , (G.2)

where the entries of the strain tensor are

ε ij ≡
1
2
(
∂iuj(t) + ∂jui(t)

)
. (G.3)

The symmetry of the strain and stress tensors imply that the entries Cijkl of the fourth order
viscoelastic tensor fulfill [334]

Cijkl = Cjikl = Cklij = Cijlk, ∀ i, j, k, l. (G.4)

In two dimensions, one is thus left with six independent moduli: C1111, C1112, C1122, C1212, C1222,
and C2222.
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Orthotropic materials

In the following, we consider materials with mutually orthogonal symmetry planes called or-
thotropic, for which

(1− δij)Cijkk = 0, ∀ i, j, k, (G.5)

holds. In two dimensions, the number of in general independent and non-vanishing viscoelas-
tic moduli is therefore reduced from six to four: C1111, C2222, C1122, and C1212. Examples are
hexagonal or square networks, which both possess mutually orthogonal symmetry planes. Em-
ploying the Voigt notation, the stress-strain relation is given by





σ11
σ22
σ12



 =





C1111 C1122 0
C1122 C2222 0

0 0 C1212



 ·





ε11
ε22

2ε12



 . (G.6)

Rotations of the coordinate frame

For rotations of the coordinate frame described by a rotation matrix T , the viscoelastic moduli
transform according to

C′ijkl = ∑
m,n,o,p

TimTjnTkoTlpCmnop . (G.7)

For orthotropic continua with a symmetry under rotations about π/2, e.g., square materials,
C2222 = C1111 and the stress-strain relation is thus characterized by only three independent
moduli. In turn, orthotropic continua with a symmetry under rotations about π/3, e.g., hexag-
onal materials, are examples for isotropic materials, for which C2222 = C1111 and C1122 =
C1111 − 2C1212, thus reducing the number of independent moduli to two: C1111 and C1212.

In order to determine all viscoelastic moduli of an orthotropic material via the shear and
compression response of a slab discussed in the following, one in general needs to probe the
material in two different orientations with respect to the slab axes. When for example rotated
about ±π/4, one probes the viscoelastic moduli

C′2222 =
1
4
(C1111 + C2222 + 2C1122) + C1212, (G.8)

C′1212 =
1
4
(C1111 + C2222 − 2C1122) , (G.9)

from which C1111 and C1122 can then be inferred.

G.2 Viscoelastic Slab Response

In Fourier domain, the overdamped equations of motion of a viscoelastic medium embedded
in a fluid are given by

− i ωζui = ∑
j

∂jσij + f ext
i , i = 1, 2, (G.10)

where f ext denotes the external force density and the frictional density ζ accounts for the in-
teraction of the network with the surrounding solvent. In the following, we consider two-
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dimensional slabs of thickness d in r2 direction subject to a laterally homogeneous compression
or shear force density acting with opposite sign on the bottom and top interfaces of the slab.

Compression

In the first case, the displacement profile is u = (0, u2(r2))T by symmetry and thus ε22 = ∂2u2
is the only non-vanishing element of the deformation tensor. The elements of the stress tensor
being

σ11(r2) = C1122∂2u2(r2), σ22(r2) = C2222∂2u2(r2), σ12 = σ21 = 0, (G.11)

the equations of motion take the form

−i ωζu1 = 0, (G.12)

−i ωζu2 = C2222 ∂2
2u2 + f ext

2 . (G.13)

Shear

In the case of an applied shear stress, the displacement profile is u = (u1(r2), 0)T and thus
ε12 = ε21 = ∂2u1/2 are the only non-vanishing elements of the deformation tensor. The stress
tensor elements therefore are σ11 = 0, σ22 = 0 and σ12(r2) = σ21(r2) = C1212∂2u1(r2) yielding
equations of motion

−i ωζu1 = C1212 ∂2
2u1 + f ext

1 , (G.14)

−i ωζu2 = 0. (G.15)

General notation and solution

Realizing that the equations for the deformations in response to compression and shear are of
the same type, we use the general notation

− i ωζu = C∂2
2u + f ext, (G.16)

in the following, where u = u2 and C = C2222 in the case of compression and u = u1 and
C = C1212 when shear is applied. The one-dimensional linear differential equation of the above
type is solved by Green’s function techniques as sketched in the following

− i ωζu0(r2, ω; r0)− C∂2
2u0(r2, ω; r0) = σ0 δ(r2 − r0). (G.17)

The Fourier transformation mediating between r2 and k2 yields

− i ωζu0(k2, ω; r0) + Ck2
2u0(k2, ω; r0) = σ0 eik2r0 , (G.18)

implying

u0(k2, ω; r0) =
σ0 eik2r0

−i ωζ + Ck2
2
=

σ0

−i ωζ

eik2r0

1 + k2
2/λ2

ve
, λ2

ve ≡
−i ωζ

C
. (G.19)
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Back transformation yields

u0(r2, ω; r0) =
λve

−i ωζ

σ0

2
e−λve|r2−r0|, Re [λve] > 0, (G.20)

where Re [λve] denotes the inverse viscoelastic penetration depth. For a slab geometry with op-
posite stresses acting on the top and bottom interface, a displacement profile, which is antisym-
metric with respect to the slab’s mid-plane (r2 = d/2), is obtained by the linear superposition
of two of the above solutions

u±(r2, ω) ≡ u0(r2, ω; d)− u0(r2, ω; 0) =
λve

−i ωζ

σ0

2

(

e−λve|r2−d| − e−λve|r2|
)

. (G.21)

For a slab of finite thickness d, the surface force density at the top interface is

σtop ≡ C ∂2u±(r2, ω)|r2=d =
σ0

2

(

1 + e−λved
)

, (G.22)

which for ω 6= 0 deviates from σ0. The interfacial response function of the continuum slab

Jcont.(ω) ≡ u±(d, ω)

σtop
=

λve

−i ωζ

1− e−λved

1 + e−λved =
λve

−i ωζ
tanh

(
λved

2

)

, (G.23)

reveals the influence of the slab thickness d, the frictional density ζ and of the viscoelastic
moduli C2222 and C1212, respectively.

Probing the viscoelastic moduli of an isotropic material thus requires the compression and
shear response of a single slab only. For anisotropic but orthotropic media, the material has
to be probed in two different orientations with respect to the slab axis: If the material is for
example rotated by π/4, shear and compression moduli C′2222 and C′1212 allow to recover C1111
and C1122 using the relations from Sec. G.1.

G.3 Representative Viscoelastic Model Materials

Popular models for viscoelastic media include the Maxwell (M) and Kelvin-Voigt (KV) materi-
als.

Maxwell material

Schematically, the Maxwell material results from the serial alignment of an elastic medium
(modulus µ) and a viscous medium (viscosity η). Its viscoelastic modulus is given by

CM ≡
(

1
µ
+

1
−i ωη

)−1

, (G.24)

i.e., at small frequencies (ω ≪ µ/η) the material behaves like a fluid, CM ∼ −i ωη, while it
shows elastic behavior, CM ∼ µ, at large frequencies (ω ≫ µ/η). Performing a low frequency
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expansion, one obtains a nonlinear deformation profile u±(r2), in which the typical penetration
depth is 1/λv ≡

√

η/ζ. The interfacial response is given by

JM(ω) =
i
ω

λv

ζ
tanh

(
λvd

2

)

+
λvd + sinh(λvd)

2λvµ(1 + cosh(λvd))
+O(ω), (G.25)

which in the limit of large slab thickness (dλv ≫ 1) simplifies to

lim
d→∞

JM(ω) =
i
ω

1
√

ζη
+

√
η

2
√

ζµ
+O(ω), (G.26)

which is dominated by the viscous properties of the material. In the limit of large frequencies,
one obtains

JM(ω) =
1 + i√

ω

1
√

2ζµ
− 1− i

ω3/2
1
2

√
µ

2ζη
+O(ω−5/2), (G.27)

where the dominant terms of the real and imaginary part are equal. This high frequency-
response is independent of the slab thickness d and dominated by the elastic material prop-
erties.

Kelvin-Voigt material

Similarly, the parallel alignment of an elastic medium (modulus µ) and a viscous medium (vis-
cosity η) gives rise to the Kelvin-Voigt material with viscoelastic modulus

CKV ≡ µ− i ωη, (G.28)

which acts as an elastic solid, CKV ∼ µ, for small frequencies (ω ≪ µ/η) and behaves fluid-like,
CKV ∼ −i ωη, at large frequencies (ω ≫ µ/η). Again, performing a low frequency expansion,
one obtains the low frequency response

JKV(ω) =
d

2µ
+ i ωd

ζd2 + 12η

24µ2 +O(ω2), (G.29)

which is dominated by the elastic properties of the slab. In contrast, for large frequencies the
interfacial response

JKV(ω) =
i
ω

λv

ζ
tanh

(
λvd

2

)

+
1

ω2
λvµ (λvd + sinh (λvd))

2ζη (1 + cosh (λvd))
+O(ω−3), λv ≡

√

ζ

η
, (G.30)

is dominated by the viscous material properties and reduces to

JKV(ω) =
i
ω

1
√

ζη
+

1
ω2

µ

2η
√

ζη
+O(ω−3), (G.31)

for large slap thicknesses λvd ≫ 1. Note that in an intermediate frequency range µ/(ζd2) ≪
ω ≪ µ/η, which becomes apparent for large enough slab thickness d, the response is char-
acterized by real and imaginary parts of equal magnitude and frequency dependence 1/

√
ω,

similarly to Eq. G.27.
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G.4 Relating the Response of Continuum Models and Discrete Networks

The comparison of the shear and compression responses of polymeric slabs resolved using the
dynamic convolution theory (DCT) in Chapter 8 and the predictions from continuum theory
discussed in the previous subsections is rather insightful: We have seen in Sec. 8.3.3 that the
Kelvin-Voigt and Maxwell materials indeed are good model systems for explaining the fre-
quency dependences of the response functions in the Figs. 8.13 and 8.15.

For a quantitative analysis, note the difference in units between the above continuum re-
sponse functions and the nodal response functions J in Sec. 8.3: The equivalence between
both is established via Jcont./w = J, where w denotes the width of the periodic unit cells in
Fig. 8.12. The friction density ζ results from the monomer density and equals ζ = L/(ξ2aµ0) ≈
1/(12µ0a2) for the square networks of filaments with contour length L/a = 12 considered in
Sec. 8.3.3. The low-frequency elastic moduli µ and η of a Kelvin-Voigt material can be obtained
from the slab response via Eq. G.29, and similarly those of a Maxwell-material result (for large
enough slab thickness d) from the the slab response via Eq. G.26.

An example for a one-to-one mapping of the DCT response functions onto the above con-
tinuum theory reproducing also the fine structure of the response over the whole frequency
range is shown in Fig. 8.14. Note that such a mapping can be challenging from a numerical
point of view, since Eq. G.23 cannot explicitly be solved for the complex modulus C. Also, it
is unclear whether a unique mapping J → C exists in all cases. Finally, the resulting moduli
should be interpreted with care, since any continuum theory is expected to break down once
the penetration depth |λve|−1 becomes comparable to the network mesh size ξ.
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ABSTRACT

Stochastic concepts are indispensable to understand the fluctuating dynamics of biological sys-
tems on the microscopic scale. Devising methods to reliably and efficiently extract the phys-
ically relevant information contained in stochastic signals therefore constitutes a major chal-
lenge in current biophysical research. In this work, the fluctuating dynamics of various systems
are investigated theoretically.

First, the diffusional motion of water molecules and the conformational dynamics of a short
peptide are studied based on the trajectories from atomistic simulations. We find a pronounced
diffusion anisotropy of water molecules in bulk as well as a remarkably structured diffusivity
profile for the relative motion of pairs of water molecules. Near lipid bilayers, water diffusion
is suppressed and, due to a coupling of lipids and water molecules, markedly different from the
diffusivity at solid surfaces. For the short alpha-helical peptide studied, both the free energy
and the diffusivity associated with the conformational dynamics are found to critically depend
on the type of co-solutes due to specific ion-peptide interactions.

Second, we establish refined methods to quantitatively analyze and predict the fluctuating
signals in biophysical experiments and simulations. We model the signal processing in optical
tweezer experiments and develop a Bayesian inference method for the auto- and cross-spectral
analysis of the recorded time series, thereby establishing a new framework for the quantitative
spectral analysis of single-molecule experiments. From a more fundamental perspective, we
investigate the influence of nonlinearities in the equations of motion on the resulting fluctua-
tions by expanding typical dynamic observables in powers of the thermal noise strength. The
single-trajectory approach taken also enables us to derive a first-order correction to a recently
introduced dynamic convolution theory.

Third, Brownian dynamics simulations and mean-field dynamic theory are used to study
the viscoelastic properties of single semiflexible filaments and of crosslinked meshworks. De-
pending on the dynamic observable, we find a pronounced influence either of hydrodynamic
interactions or of filament mechanical properties on the equilibrium fluctuations of single poly-
mers. Based on the anisotropic force response of individual filaments, we finally resolve the
rheological properties of extended, crosslinked semiflexible polymer networks using a general-
ized, two-dimensional dynamic convolution theory.
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KURZFASSUNG

Stochastische Konzepte sind unentbehrlich zum Verständnis der fluktuierenden Dynamik von
biologischen Systemen auf der Mikroskala. Die Entwicklung von Methoden, welche es erlau-
ben, die physikalisch relevanten Informationen zuverlässig und effizient aus stochastischen
Signalen zu extrahieren, stellt daher eine große Herausforderung in der aktuellen biophysika-
lischen Forschung dar. Gegenstand der vorliegenden Arbeit ist die theoretische Untersuchung
der fluktuierenden Dynamik in verschiedenen Systemen.

Erstens werden die Diffusionsbewegung von Wassermolekülen und die Konformationsdy-
namik eines kurzen Peptids, basierend auf den Trajektorien atomistischer Simulationen, unter-
sucht. Wir entdecken eine ausgeprägte Diffusionsanisotropie der Wassermoleküle im Bulk und
ein bemerkenswert strukturiertes Diffusivitätsprofil für die Relativbewegung von Paaren von
Wassermolekülen. In der Nähe von Lipidmembranen ist die Wasserdiffusion unterdrückt und
unterscheidet sich aufgrund der Kopplung von Lipid- und Wassermolekülen deutlich von der
Diffusivität an festen Oberflächen. Für das untersuchte alpha-helikale Peptid hängen aufgrund
spezifischer Wechselwirkungen zwischen Ionen und Peptid sowohl die freie Energielandschaft
als auch das zur Konformationsdynamik zugehörige Diffusivitätsprofil maßgeblich von der
Art der Ionen ab.

Zweitens werden verbesserte Methoden zur quantitativen Analyse und Vorhersage der fluk-
tuierenden Signale in biophysikalischen Experimenten und Simulationen entwickelt. Wir mo-
dellieren die Signalverarbeitung in Experimenten mit optischen Pinzetten und entwickeln ein
Bayessches Inferenzverfahren für die Analyse von Selbst- und Kreuzspektren der aufgezeich-
neten Zeitreihen, was eine quantitative spektrale Auswertung von Einzelmolekülexperimenten
ermöglicht. Der grundsätzliche Einfluss von Nichtlinearitäten in den Bewegungsgleichungen
auf die resultierenden Fluktuationen wird untersucht, indem typische dynamische Observa-
blen in Potenzen der thermischen Rauschintensität entwickelt werden. Die gewählte Einzeltra-
jektorienperspektive erlaubt zudem, eine Korrektur erster Ordnung für eine kürzlich eingeführ-
te dynamische Konvolutionstheorie herzuleiten.

Drittens dienen Brownsche-Dynamik-Simulationen und eine dynamische Molekularfeldtheo-
rie zur Untersuchung der viskoelastischen Eigenschaften einzelner sowie vernetzter semifle-
xibler Filamente. Wir stellen abhängig von der dynamischen Observablen einen ausgeprägten
Einfluss hydrodynamischer Wechselwirkungen oder der mechanischen Eigenschaften der Fi-
lamente auf die Gleichgewichtsfluktuationen einzelner Polymere fest. Schließlich werden, ba-
sierend auf den anisotropen Antwortfunktionen einzelner Polymere, die rheologischen Eigen-
schaften von ausgedehnten Netzwerken semiflexibler Polymere unter Verwendung einer auf
zwei Dimensionen verallgemeinerten dynamischen Konvolutionstheorie untersucht.
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