
2. Theoretical Background 
 
2.1 Overview of the computational procedures 
 

The final goal in our computation is to obtain the pKa for titratable groups or the 
redox potential Em for redox-active groups in protein, and to elucidate redox-active 
reactions, ET or PT whose details still remain unknown. Our research often covers 
reaction mechanisms of physiologically importance.  

 
2.1.1. Atomic coordinates 
The basis of our computation is the solution of the linearized Poisson-Boltzmann 

(LPB) equation (see 2.3) based on atomic coordinates of the protein crystal structures. 
The computed results are sensitively and faithfully determined by using the original 
atomic coordinates of the crystal structures. For this purpose, crystal structures at higher 
resolutions (preferentially, higher than ~3.0 Å) are suitable.  

 
2.1.2. Generation of hydrogen atoms  
Hydrogen atom positions are energetically optimized with CHARMM (Brooks et al., 

1983). During this procedure the positions of all non-hydrogen atoms are fixed, and all 
titratable groups are kept in their standard protonation states i.e. acidic groups ionized 
and basic groups (including titratable histidines) protonated. Residues that are ligands of 
cofactors (e.g. His for heme/Chla or Glu for the Fe-complex) are treated as 
non-titratable residues. Hereby, the redox state of the redox-active group should be 
treated with great care, because its different redox state often results in a different 
H-bond pattern for the H-bond partner or residues nearby (see 3.1, 3.2, 5.1, and 10.1).  

 
2.1.3. Variable charges of titratable groups 
Atomic partial charges of the amino acids were adopted from the all-atom 

CHARMM22 (MacKerell et al., 1998) parameter set. For carboxyl groups of Asp and 
Glu, the charges of the two oxygens are increased symmetrically by +0.5 unit charges to 
account implicitly for the presence of the proton, instead of attaching an explicit 
hydrogen atom on one of the oxygens in their protonated states. Similarly, upon the 
deprotonation of Arg and Lys, the charges of all protons at the corresponding basic 
group in their protonated states are diminished symmetrically by a total unit charge.  

Except for a few limited cases, the atomic charges of (redox-active) cofactors or 
pigments are not available in the CHARMM22 parameter set. In such cases, they are 
determined by first calculating the electronic wave functions and then fitting the 
resulting electrostatic potential in the neighborhood of these molecules by the RESP 
procedure (Bayly et al., 1993). The electronic wave functions are often calculated with 
the DFT module in JAGUAR (Jaguar4.2, 1991-2000) using the B3LYP functional with 
LACVP basis set (6-31G with effective core potentials on heavy atoms).  

 
2.1.4. Computation of protonation pattern, pKa and Em  
In our computation, pKa for titratable groups or Em for redox-active groups in protein 

are obtained as the sum “the pKa/Em in the model system (i.e. reference value of pKa/Em) 
+ the difference between the model system and protein ∆pKa/∆Em“. 

The computation of the energetics of the protonation pattern is based on the 
electrostatic continuum model, in which the LPB equation is solved by the program 
MEAD from Bashford and Karplus (Bashford and Karplus, 1990). To sample the 
ensemble of protonation patterns by a Monte Carlo (MC) method, we use our own 
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program Karlsberg (Rabenstein, 1999). 
The dielectric constant is set to εP = 4 inside the protein and εW = 80 for solvent and 

protein cavities corresponding to water. All computations are performed at 300 K, pH 
7.0 and an ionic strength of 100 mM. The LPB equation is solved by a three-step 
grid-focusing procedure with a starting grid resolution of 2.5 Å, an intermediate grid 
resolution of 1.0 Å, and a final grid resolution of 0.3 Å.  

The dielectric volume of a protein complex is the spatial region covered by molecular 
components of the protein that are polypeptide backbone, side chains and cofactors, but 
not water molecules. To facilitate direct comparison with our previous computational 
results, we uniformly use the same computational conditions and parameters such as 
atomic partial charges and dielectric constants. In general, all crystal waters are 
removed, because of lack of experimental information on hydrogen atom positions. 
Cavities resulting after removal of crystal water are uniformly filled with solvent 
dielectric of εW = 80. Accordingly, the effect of the removed water molecules is 
implicitly accounted for by the high value of the dielectric constant in these cavities. 

 
2.2. Force field  
 

The force field is generated by a set of energy function consisting of individual 
energy terms. In the CHARMM energy function (Brooks et al., 1983), the total energy 
of the system can be computed from a summation of the internal and external 
interaction terms.  

 
E = Einternal + Eexternal     (Eq. 2-1) 
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 (Eq. 2-3) 

 
The internal energy term includes the bond, bond angle, dihedral angle and improper 

torsion potentials. The improper torsional potential has been designed both to maintain 
the chirality (e.g. asymmetric carbon such as α-carbon of the protein backbone) and to 
maintain planarity (e.g. sp2 hybridized atoms such as double bond carbons). On the 
other hand, the external (non-bonded) energy term includes the electrostatic, van der 
Waals and H-bond interactions. The electrostatic potential is computed based on the 
atomic partial charges distributed to the atomic coordinates. Electrostatic interaction is 
effective over large distances. The van der Waals energy is often approximated by the 
Lennard-Jones potential (the 6-12 potential, the second term in the right side of eq. 2-3).  
A smoothing technique by a switching function that sets a cutoff distance is effective to 
reduce the number of pair interactions, without suffering from the discontinuity of 
energy conservation during the energy minimization (or molecular dynamics) that may 
arise from a mere usage of a cutoff distance.  

In the present study, the force field parameter mainly contribute to the energy 
minimization process to determine the geometry of hydrogen atomic coordinates, which 
are generated based on the CHARMM22 parameter set (MacKerell et al., 1998).  
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2.3. Poisson-Boltzmann equation 
 

The electrostatic potential of φ(r) generated by the charge density ρ(r) is described by 
the Poisson equation for a homogeneous dielectric medium as  

 

∇2φ(r) = –4π 
ρ(r)

ε      (Eq. 2-4) 

 
where ε is the dielectric constant in the region (r denotes vector).  
If ε is a function of r, Eq. 2-4 is written as  
 

∇(ε(r)∇φ(r)) = –4πρ(r)     (Eq. 2-5) 
 
On the other hand, if the system is solvated in a solvent with ions (i.e. forming the 

ionic solution), the charge density of the ions ρion(r) in the solvent can be described as a 
summation of the distribution of all kinds of ionic charges in the solution, according to 
the Debye-Hückel theory. Hereby, the ion distribution is subjected to the same potential 
φ(r):  

 
ρion(r) = Σ c(r) qi exp(–βqiφ(r))     (Eq. 2-6) 

 
where c(r) is the concentration of an ionic species in solution, q is the charge of the 
ionic species; and  β = 1/(kT) with the Boltzmann constant k.  

Since exp(–βqiφ(r)) ≈ 1 –βqi φ(r) (based on the Taylor expansion), Eq. 2-6 can be 
approximated to 
 

ρion(r) ≈ Σ c(r) qi –β Σ c(r) qi
2 ≈ –β Σ c(r) qi

2  (Eq. 2-7) 
 
The second part of the approximation in Eq. 2-7 is that the Debye-Hückel theory 
assumes charge neutrality in the solvent i.e., Σ c(r) qi = 0.  

Thus, if the charge density of the solvation is taken into account, Eq. 2-5 is extended 
to the linearized form of the Poisson-Boltzmann (LPB) equation (Eq. 2-8):  
 

∇(ε(r)∇φ(r)) –4πβ Σ c(r) qi
2 = –4πρ(r)   (Eq. 2-8) 

 
Using the definition of the ionic strength  

I(r) = 
1
2 Σ c(r) qi

2     (Eq. 2-9) 

Eq. 2-8 is also expressed as  
 

∇(ε(r)∇φ(r)) –8πβ I(r) = –4πρ(r)    (Eq. 2-10) 
 
2.4. Protonation probability  
 

In equilibrium a single acidic group (HA and A– for protonated and deprotonated 
states, respectively), where Ka is the equilibrium constant, can be defined as  

 
HA A– + H+      (Eq. 2-11) 
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Ka = 
[A–][H+]

[HA]        (Eq. 2-12) 

pKa = –log Ka      (Eq. 2-13) 
 
Hereby, protonation probability of this residue <x> is defined as  
 

< x > = 
[HA]

[HA] + [A–]     (Eq. 2-14) 

(for a basic group, A is to be replaced with B+).  
 

Thus, one can calculate pKa from the protonation probability of <x> as 
 

pKa = pH + 
1

ln 10 ln
<x>

1 – <x>    (Eq. 2-15) 

 
Alternatively, Eq. 2-15 is rewritten as  
 

< x > = 
exp(–ln 10(pH – pKa))

1 + exp(–ln 10(pH – pKa))    (Eq. 2-16) 

 
In general, the Gibbs energy shift ∆G corresponding to the shift ∆Ka (= pH – pKa) of 

a titratable group is  
 

∆G = –RT ln Ka (= – 
RT

log e log Ka) = 2.303kT pKa  (Eq. 2-17) 

 
In proteins there are often several titratable groups, which are interacting with each 

other. In this case, it is useful to introduce the intrinsic pKa of a titratable site µ 
(pKa-int,µ = ∆Gint,µ/(2.303 kT)): pKa-int,µ is obtained if all other titratable sites are 
electrically neutral (Bashford and Karplus, 1991). Then, protonation probability <xi> of 
a titratable group i is given by the thermodynamic average over all possible titratable 
sites in the protein.  
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where β = 1/(kT). Vector q is the total charge of titratable group i. xi is the unity/ zero if 
the titratable group is protonated/ deprotonated. Wµν is the electrostatic interaction 
between the two titratable groups if they are in their charged states i.e. protonated or 
deprotonated states for basic or acidic groups, respectively (summarized in ref. 
(Rabenstein et al., 1998)).  
 
2.5. Born energy and background charge  
 

The intrinsic pKa is divided into the following terms, using the pKa for a titratable 
group of the model system (pKa

model, for amino acid side-chains, preferentially the value 
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measured in aqueous solution).  
 

pKa-int = pKa
model + ∆pKa

Born + ∆pKa
background   (Eq. 2-19) 

 
where ∆pKa

Born and ∆pKa
background are the pKa shift originated from the difference of the 

Born energy and the background-charge energy between the model system and the 
protein (∆∆GBorn and ∆∆Gbackground), respectively. Here, the background charges of a 
titratable group refer to all the atomic charges that interact with this titratable group. 

∆∆GBorn is the protonation energy difference of the intramolecular interactions of the 
titratable group between model system and protein. This term is equal to the solvation 
energy difference of the titratable group between model system and protein. 
∆∆Gbackground is the protonation energy difference of the intermolecular interactions of 
the titratable group between the model system and protein. For further details, see ref. 
(Ullmann and Knapp, 1999).  
 
2.6. Solution to the protonation probability  
 

An attempt for numerical solution of Eq. 2-18 often fails if the protein contains a 
number of titratable groups. If a protein possesses n titratable sites, the possible 
protonation patterns amounts to 2n e.g. even 20 groups yields 220 ≈ 106 different 
protonation patterns (Rabenstein et al., 1998). Note that a monomer unit of bRC, PSI 
and PSII proteins possess ~170, ~450 and ~530 titratable sites, respectively. Thus, to 
solve Eq. 2-18, we used a Metropolis Monte Carlo (MC) method with the program 
KARLSBERG (Rabenstein, 1999), which was developed based on the program MCTI 
(Beroza et al., 1991).  

The MC method may be inefficient for sampling strongly interacting sites, where the 
change of protonation state is restricted to only one site. This may lead to a trap of MC 
trajectory in a local minimum due to the artifact of energy barriers, which reduces the 
sampling efficiency. To improve sampling efficiency, MCTI is able to change the 
protonation states of two strongly coupled titratable groups simultaneously in each set 
of MC move after the initial simple MC move (Beroza et al., 1991). However, such 
double move per MC scan may not be sufficiently effective for strongly coupled 
titratable sites of a protein where the relatively low value of 4 for its dielectric constant 
is used. KARLSBERG is further improved to perform triple moves for protonation 
states of the three titratable sites in each set of MC move. For further details see refs. 
(Rabenstein et al., 1998; Rabenstein, 1999).  

 

2.7. Computation of pKa of a titratable group in protein 
 

There are a few different ways to compute pKa. One should choose them depending 
on the system or referring to the experimental conditions (see refs. (Ishikita and Knapp, 
2005d; Ishikita et al., 2006)).  

In a straightforward approach a titratable residue is biased by an individual energy 
term to be 50% protonated, while the protonation states of the other titratable residues 
are fully relaxed at a fixed pH (for instance, pH 7). This bias energy can be used to 
define the pKa of this residue [Henderson-Hasselbalch pKa]. This pKa describes how 
much energy is needed to change the protonation state of this residue in its protein 
environment where the protonation pattern changes locally by equilibration due to the 
charge change of this residue without involving changes of solvent pH. This pKa 
definition is, for instance, useful to describe the energetics of adiabatic proton transfer 
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processes between different titratable groups. The protonation dependence of the 
considered titratable residue obeys the Henderson-Hasselbalch equation (equivalent to 
the Nernst equation for a redox-active group) as a function of the bias energy (see Eqs. 
2-15 and 2-20).  

The second approach to determine pKa values is to calculate it from the protonation 
pattern of all titratable residues as a function of solvent pH for a large pH range. Here, 
the pKa of the titratable residue under consideration can be defined as the pH value 
where this residue is to 50% protonated [effective pKa]. This is a more common pKa 
definition and corresponds to the conditions where pKa values of titratable groups in 
proteins are determined experimentally. When the molecular system contains only a 
single or several non-interacting titratable groups, the same pKa values are computed for 
both definitions.  

The third approach is to apply the protonation probability of a titratable group 
calculated at a single pH to Eq. 2-15 directly. Although this method is useful for initial 
estimation, it is not able to determine the pKa value when the protonation probability is 
nearly 0 or 1 (see the definition of Eq. 2-15). Furthermore, in protein regions containing 
clusters of titratable residues protonation probability of a titratable group versus pH (i.e. 
effective pKa) is often not fitted to the sigmoid curve, while even in the same case Eq. 
2-15 assumes the sigmoid curve. This gives rise to a significant discrepancy of the 
resulting values between the two approaches. Indeed, in contrast to Eq. 2-18, Eq. 2-16 
does not contain the interaction term that considers their protonation probability 
simultaneously. Therefore, the precise application of Eq. 2-15 to obtain the pKa holds 
true for the system that contains only a single titratable group.  

In a region rich with titratable residues, it is often hard to give a specific single value 
for effective pKa because of the moderate protonation change over a wider pH range. 
Thus, if otherwise not specified, we calculated pKa values as Henderson-Hasselbalch 
pKa at pH 7.0, while protonation probabilities are computed by coupling solvent pH at 
pH 7 to all titratable residues and not by using a bias energy term. Protonation 
probabilities obtained in this way qualitatively relate to the pKa definition effective pKa. 
But, there is no quantitative correspondence between these protonation probabilities and 
pKa derived from the simple Henderson-Hasselbalch relation because of possible strong 
electrostatic coupling between different titratable residues. Note that we do not consider 
possible structural changes of a protein upon pH changes. Such structural changes may 
occur more prominently in protein regions containing clusters of titratable residues 
(summarized in refs. (Ishikita and Knapp, 2005d; Ishikita et al., 2006)).  

 
2.8. Computation of the Em of a redox-active group in protein 
 

The shift of the Em upon insertion of a redox-active group from model system to 
protein originates from the same interactions that are to be considered in the pKa shift of 
a titratable group (see 2.4-2.5). In the ideal model system for a redox-active group, for 
instance, where the redox-active group is solely solvated in aqueous solution, the 
potential of the system is a function of the reduced and oxidized states ([Aox]/[Ared]), 
according to the Nernst equation (Eq. 2-20).  

 

E = E0 + 
RT
nF ln

[Aox]
[Ared]     (Eq. 2-20) 

 
where n denotes the number of electron involved in the redox reaction: and E0 denotes 
the standard potential of the group. When [Aox] = [Ared], the E of the system is called the 
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(midpoint) redox potential Em, which then equals to E0.  
In proteins, there often exist several titratable groups that interact with the 

redox-active group. As in the pKa computation, the Em computation for protein is 
required to consider protonation states of all titratable groups and redox states of all 
redox-active groups. Hereby, as an analogy to the protonation probability of titratable 
residues, the redox probability of redox-active groups is obtained from a solution of Eq. 
2-18. Also in the protein, when [Aox] = [Ared], the potential E (i.e. solution potential) is 
identical to the Em for the redox-active group.  

 
2.9. Influence of ionic strength on Em  
 

We uniformly used the ionic strength of 100 mM for computations. The ionic strength 
has a tendency to screen the influence of atomic charges on the protein surface. Large 
ionic strength diminishes the influence of surface atomic charges. This indicates that the 
ionic strength stabilizes the charged state of the redox-active group e.g. 
reduced/oxidized states for anionic/cationic redox-active groups, leading to the 
up-shift/down-shift in their Em. However, in actual computations, the changes of ionic 
strength often result in little effect on the Em. Such resulting tiny changes in the Em are 
pronounced especially when the redox-active group is located either in a region rich 
with titratable residues or a region highly shielded from bulk solvent. The former case is 
due to compensation effects by small changes in protonation of several residues in 
response to the change in ionic strength, implying a buffer effect of titratable residues. 
Therefore, unless the redox-active group is on the protein surface and simultaneously 
isolated from other titratable residues, its Em remains essentially unchanged in the 
presence of a sufficient amount of titratable residues. For actual examples, see ref. 
(Ishikita and Knapp, 2005d).  

 
2.10. Estimation of the ET rate 
 

The rate of ET from an electron donor D to an electron acceptor A can be estimated 
based on the values of Em(D) and Em(A) by evaluating the following empirical rate 
expressions (Page et al., 1999). They describe ET processes at T = 300K, which are 
downhill in energy (exergonic)  

 
λλ /)(1.3)6.3(6.013
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10 +∆−−−−
= = GRTexergonicE

KTk    (Eq. 2-21) 
 

or uphill in energy (endergonic)  
 

06.0//)(1.3)6.3(6.013
300

2

10 GGRETendergonic
KTk ∆−+∆−−−−

= = λλ   (Eq. 2-22) 
 

where R (> 3.6 Å) is the edge-to-edge distance, ∆G the Em difference of the 
participating electron donor and acceptor groups and λ the reorganization energy. In 
these rate expressions the energy parameters ∆G and λ are given in units of eV and R in 
units of Å.  
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