The Linear-Extension-Diameter of a Poset

Stefan Felsner ${ }^{1}$ and Klaus Reuter ${ }^{2}$
${ }^{1}$ Freie Universität Berlin, Fachbereich Mathematik und Informatik, Takustr. 9, 14195 Berlin, Germany
E-mail: felsner@inf.fu-berlin.de
${ }^{2}$ Mathematisches Seminar, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
E-mail: reuter@math.uni-hamburg.de

Abstract

The distance between two permutations of the same set X is the number of pairs of elements being in different order in the two permutations. Given a poset $P=(X, \leq)$, a pair L_{1}, L_{2} of linear extensions is called a diametral pair if it maximizes the distance among all pairs of linear extensions of P. The maximal distance will be called the linear extension diameter of P and is denoted led (P). Alternatively led (P) is the maximum number of incompararable pairs of a two-dimensional extension of P. In the first part of the paper we discuss upper and lower bounds for led (P). These bounds relate led (P) to well studied parameters like dimension and height. We prove that $\operatorname{led}(P)$ is a comparability invariant and determine the linear extension diameter for the class of generalized crowns. For the Boolean lattices we have partial results.

A diametral pair generates a minimal two-dimensional extension of P or equivalently a maximal interval in the graph of linear extensions of P. Studies of such intervals lead to the definition of new classes of linear extensions. We give three characterizations of the class of extremal linear extensions which contains the greedy linear extensions. With complementary linear extensions we introduce a class contained in the set of super-greedy linear extensions. The complementary linear extension of L is the linear extension L^{*} obtained by taking the reverse of L as priority list in the generic algorithm for linear extensions. A complementary pair is a pairs L, M of linear extensions with $M=L^{*}$ and $L=M^{*}$. Iterations of the complementary mapping starting from an arbitrary linear extension eventually leads to a complementary pair.

Mathematics Subject Classifications (1991). 06A07, 05 C 12.
Key Words. Poset; Linear extension; Diameter; Greedy.

1 Introduction and Alternate Formulations

The distance between permutations π, σ of the same set X, denoted $\operatorname{dist}(\pi, \sigma)$, is the number of pairs of elements being in different order in the two permutations. Given a poset $P=(X, \leq)$, a pair L_{1}, L_{2} of linear extensions is called a diametral pair if it maximizes the distance among all pairs of linear extensions of P. The maximal distance will be called the linear extension diameter of P and is denoted led (P). In [Reu96b] the linear extension graph $G(P)$ was defined as the graph with vertices the linear extensions of P and two vertices connected by an edge if the linear extensions differ by an adjacent transposition only. Figure 1 shows the six element poset called chevron and its linear extension graph. An

[^0]easy fact about $G(P)$ is that any pair L_{1}, L_{2} of linear extensions is connected in $G(P)$ by a path whose length equals the distance between L_{1} and L_{2}. Hence, $l e d(P)$ is exactly the graph diameter of the linear extension graph $G(P)$.

Figure 1: The chevron and its linear extension graph. This poset has linear extension diameter 6.

The intersection of a collection $A=\left\{L_{1}, \ldots, L_{k}\right\}$ of linear extensions of P is a poset P_{A} which is an extension of P. The graph $G\left(P_{A}\right)$ is an induced subgraph of $G(P)$. Interestingly subgraphs of $G(P)$ corresponding to extensions of P are exactly the convex subgraphs of $G(P)$ (see [BW91] or [Reu96b]).

Let inc (P) denote the number of incomparable pairs of P. If L_{1}, L_{2} is a diametral pair for P then $P_{\left\{L_{1}, L_{2}\right\}}$ is a two-dimensional extension of P and L_{1}, L_{2} is a diametral pair for $P_{\left\{L_{1}, L_{2}\right\}}$, i.e., $\operatorname{led}\left(P_{\left\{L_{1}, L_{2}\right\}}\right)=\operatorname{led}(P)$. The incomparable pairs of $P_{\left\{L_{1}, L_{2}\right\}}$ are exactly the pairs being in different order in L_{1} and L_{2}, therefore, $\operatorname{led}\left(P_{\left\{L_{1}, L_{2}\right\}}\right)=\operatorname{inc}\left(P_{\left\{L_{1}, L_{2}\right\}}\right)=\operatorname{dist}\left(L_{1}, L_{2}\right)$, where $\operatorname{inc}(P)$ denotes the number of incomparable pairs of P.

We call a two-dimensional extension Q of P a minimum two-dimensional extension of P if Q has a minimal number of comparable pairs that are incomparable in P. Dually, a minimum two-dimensional extension maximizes $\operatorname{inc}\left(P_{\left\{L_{1}, L_{2}\right\}}\right)$. Together with the previous paragraph this proves the following Theorem.

Theorem 1 The linear extension diameter of P equals the number of incomparable pairs of a minimum two-dimensional extension of P.

By definition $\operatorname{inc}(Q) \leq \operatorname{inc}(P)$ for every extension Q of P. As a consequence of the theorem we have the general bound

$$
\begin{equation*}
\operatorname{led}(P) \leq \operatorname{inc}(P) \tag{1}
\end{equation*}
$$

Equality in inequality (1) is a characterization of two-dimensional posets:
Theorem 2 For a poset P the following two statements are equivalent:

$$
\operatorname{dim}(P) \leq 2 \quad \text { and } \quad \operatorname{led}(P)=\operatorname{inc}(P)
$$

Proof. We have already seen that $\operatorname{led}(P)=\operatorname{inc}(P)$ for two-dimensional posets. If P is one-dimensional then $\operatorname{led}(P)=0=\operatorname{inc}(P)$.

For the converse suppose led $(P)=\operatorname{inc}(P)$ and let L_{1}, L_{2} be a diametral pair. The number of pairs being in different order in L_{1} and L_{2} is $\operatorname{inc}(P)$. Therefore, P is the intersection of L_{1} and L_{2} which proves $\operatorname{dim}(P) \leq 2$.

Inequality (1) is only sharp for two-dimensional posets but as shown with the standard examples the following inequality may be sharp in any dimension

$$
\begin{equation*}
\operatorname{led}(P) \leq \operatorname{inc}(P)-(\operatorname{dim}(P)-2) \tag{2}
\end{equation*}
$$

Proof. Take a diametral pair L_{1}, L_{2} and add one by one linear extensions such that $\bigcap_{i=1}^{j} L_{i} \supset \bigcap_{i=1}^{j+1} L_{i}$ until $\left\{L_{1}, \ldots, L_{k}\right\}$ is a realizer of P. Since $k \geq \operatorname{dim}(P)$ and each L_{j} contributes a new incomparability to the intersection the poset $P_{\left\{L_{1}, L_{2}\right\}}$ has at most $\operatorname{inc}(P)-(\operatorname{dim}(P)-2)$ incomparable pairs.

In the next section we give several lower bounds on the linear extension diameter. These bounds relate the new parameter to width, dimension and fractional dimension of the poset. In Section 3 we investigate the effect of small changes at the poset on its linear extension diameter. We also show that led is a comparability invariant. In Section 4 we deal with special classes of posets. In particular we determine the linear extension diameter of generalized crowns. Section 5 introduces the concept of complementary linear extensions as a heuristic for finding pairs of linear extensions of large distance. We prove some properties of complementary linear extensions that seem to be interesting in their own right.

2 Lower Bounds on the Linear Extension Diameter

Given a poset $P=(X, \leq)$ and disjoint subsets $A, B \subset X$ we say A is over B and write A / B in a linear extension L if $a>b$ in L for all incomparable pairs $a \| b$ with $a \in A$ and $b \in B$. It is well known (see e.g. [Tro92, p. 19]) that for every chain C there exist linear extensions with C / X and X / C. Such a pair of linear extensions has distance at least $\sum_{x \in C} \operatorname{inc}(x)$ where inc (x) denotes the number of elements incomparable to x. Generalizing notation by defining $\operatorname{inc}(C)=\sum_{x \in C} \operatorname{inc}(x)$ for every chain C we have proven our first lower bound

$$
\begin{equation*}
\max _{C \text { chain }} \operatorname{inc}(C) \leq \operatorname{led}(P) \tag{3}
\end{equation*}
$$

Equality holds for the chevron and for all width two posets. The value of this lower bound is easily computable by a maximum weighted chain algorithm. Consider a chain partition C_{1}, \ldots, C_{w} of P. Obviously width $(P)\left(\max _{C} \operatorname{inc}(C)\right) \geq$ $\sum_{i=1}^{w} \operatorname{inc}\left(C_{i}\right)=2 \operatorname{inc}(P)$. Hence our upper and lower bounds on led in (1) and (3) are only apart by a factor depending on the width of P,

$$
\begin{equation*}
\left\lceil\frac{2 \operatorname{inc}(P)}{\operatorname{width}(P)}\right\rceil \leq \operatorname{led}(P) \leq \operatorname{inc}(P) . \tag{4}
\end{equation*}
$$

Another lower bound relates the linear extension diameter to the dimension $\operatorname{dim}(P)$. Take a realizer $R=\left\{L_{1}, \ldots, L_{d}\right\}$ with $d=\operatorname{dim}(P)$ for P. Choose at
random a pair S_{1}, S_{2} of different linear extensions from R, the probability that an incomparable pair $x \| y$ is incomparable in $S_{1} \cap S_{2}$ is at least $(d-1) /\binom{d}{2}$. Therefore, the expected number of incomparable pairs in $S_{1} \cap S_{2}$ is at least $2 \operatorname{inc}(P) / d$. This proves the bound

$$
\begin{equation*}
\left\lceil\frac{2 \operatorname{inc}(P)}{\operatorname{dim}(P)}\right\rceil \leq \operatorname{led}(P) \tag{5}
\end{equation*}
$$

Since $\operatorname{dim}(P) \leq w i d t h(P)$ this bound (5) implies (4). Brightwell and Scheinerman [BS92] introduced the fractional dimension of a poset $(f d i m(P))$ as the least rational number d_{f} such that there is a m and a multiset realizer $M=\left\{L_{1}, \ldots, L_{m}\right\}$ of P, such that for every incomparable pair x, y we have $x<y$ in L_{i} for at least m / d_{f} of the linear extensions. If we choose at random a pair S_{1}, S_{2} of linear extensions from M the probability that an incomparable pair $x \| y$ is incomparable in $S_{1} \cap S_{2}$ is at least $m / d_{f}\left(m-\left(m / d_{f}\right)\right) /\binom{m}{2}=$ $2\left(m\left(d_{f}-1\right) /\left((m-1) d_{f}^{2}\right) \geq 2\left(d_{f}-1\right) /\left(d_{f}^{2}\right)\right.$. Since fractional dimension can be substantially smaller than dimension the next bound seems worth to be stated

$$
\begin{equation*}
\left\lceil\frac{2(\operatorname{fdim}(P)-1) \operatorname{inc}(P)}{\operatorname{fdim}(P)^{2}}\right\rceil \leq \operatorname{led}(P) . \tag{6}
\end{equation*}
$$

A class of orders where dimension and fractional dimension get far apart are the interval orders. The dimension of interval orders grows unbounded (see e.g., [Tro92]) but the fractional dimension is bounded by 4 (see [BS92]). In fact, as shown recently by Trotter and Winkler [TW96] the fractional dimension of interval orders can be arbitrarily close to 4 . From the above bound we thus obtain that $\operatorname{led}(I) \geq(3 / 8) \operatorname{inc}(I)$ for every interval order I. However, we can easily do better. It was shown by Rabinovich ([Tro92, page 196]), that an interval order $I=(X, \leq)$ has a linear extension with $A /(X \backslash A)$ for every subset A of X. Choose a random subset A of X and consider two linear extensions with $A /(X \backslash A)$ and $(X \backslash A) / A$. The expected number of incomparabilities in the intersection of the two linear extensions is at least (1/2)inc(I). Hence for every interval order I

$$
\begin{equation*}
(1 / 2) \operatorname{inc}(I) \leq \operatorname{led}(I) \tag{7}
\end{equation*}
$$

The next bound relates inc (P) and the height $h=\operatorname{height}(P)$. Let A_{1}, \ldots, A_{h} be an antichain partition of P and let $a_{i}=\left|A_{i}\right|$. The weak order with A_{i} as i th level is a two-dimensional extension of P. The number of incomparabilities is $\sum_{i}\binom{a_{i}}{2}$ which is at least $h\binom{n / h}{2}$, hence, $\operatorname{led}(P) \geq n(n-h) / 2 h$. For inc (P) we have the obvious bound $\operatorname{inc}(P) \leq\binom{ n}{2}-\binom{h}{2}$. Therefore inc $(P) \leq n^{2} / 2-h^{2} / 2=$ $n^{2}-(1 / 2)\left(n^{2}+h^{2}\right) \leq n^{2}-n h$. Comparing the two inequalities we obtain

$$
\begin{equation*}
\left\lceil\frac{\operatorname{inc}(P)}{2 \operatorname{height}(P)}\right\rceil \leq \operatorname{led}(P) . \tag{8}
\end{equation*}
$$

The bounds of this section compare led (P) to certain fractions of inc (P). Graham Brightwell (personal communication) suggested a family P_{n} of random posets showing that the gap between $\operatorname{inc}(P)$ an $\operatorname{led}(P)$ can indeed be large. Formally, $\operatorname{led}\left(P_{n}\right)=o(1) \operatorname{inc}\left(P_{n}\right)$.

3 Removals and Substitutions

Consider the removal of a point x from P. Let L_{1}, L_{2} be a diametral pair for $P-x$, there exist linear extensions L_{i}^{\prime} of P such that removing x gives L_{i} for $i=1,2$. The distance of $L_{1}^{\prime}, L_{2}^{\prime}$ is at least as large as the distance of L_{1} and L_{2}, hence led $(P-x) \leq \operatorname{led}(P)$. For a lower bound on $\operatorname{led}(P-x)$ consider a two-dimensional extension Q of P such that $\operatorname{inc}(Q)=\operatorname{led}(P) . Q-x$ is a two-dimensional extension of $P-x$ and the incomparabilities of Q are those of $Q-x$ plus those containing element x. The incomparabilities of Q containing x are at most as many as the incomparabilities of P containing x, i.e. $\operatorname{inc}(x)$. Hence, $\operatorname{led}(P-x)+\operatorname{inc}(x) \geq \operatorname{led}(P)$.

Theorem $3 \operatorname{led}(P) \geq \operatorname{led}(P-x) \geq \operatorname{led}(P)-\operatorname{inc}(x)$ and both inequalities can be sharp.

Proof. It remains to show that equality may occur. Equality on both sides happens if $\operatorname{inc}(x)=0$. However, there are less trivial examples. On the left side take as x one of the minimal elements of \mathbf{C} or \mathbf{D} (these are posets from the list of 3 -irreducible posets (see e.g. [Tro92, p. 62]), \mathbf{D} is the chevron). On the right side equality is attained for every two-dimensional P.

Abusing notation we write $P-r$ for the poset resulting from P after removal of a single covering relation $r . P-r$ has more linear extensions then P, more precisely, $G(P)$ is a subgraph of $G(P-r)$. Hence, $\operatorname{led}(P) \leq \operatorname{led}(P-r)$. Equality is again possible: let P be the chevron augmented by the comparability $r=$ $(1<3)$ (see Figure 1). A lower bound for led $(P-r)$ can be obtained from the lower bound for point removal: Let r be a relation involving x, then $\operatorname{led}(P) \geq$ $\operatorname{led}(P-x)=\operatorname{led}((P-r)-x) \geq \operatorname{led}(P-r)-(\operatorname{inc}(x)+1)$. The example of the crown \mathbf{A}_{n} shows (see Section 4) that removing r can increase led by as much as $(1 / 2)(\operatorname{inc}(x)+1)$.

Theorem 4 Let $r=(x<y)$ be a covering relation of P, then $\operatorname{led}(P) \leq$ $\operatorname{led}(P-r) \leq \operatorname{led}(P)+\min (\operatorname{inc}(x), \operatorname{inc}(y))+1$.

Let $P=\left(X, \leq_{P}\right)$ and $Q=\left(Y, \leq_{Q}\right)$ be posets on disjoint sets. Standard constructions are the parallel composition $P+Q=\left(X \cup Y, \leq_{P} \cup \leq_{Q}\right)$ and the series composition $P * Q=\left(X \cup Y, \leq_{P} \cup \leq_{Q} \cup(X \times Y)\right)$. In both cases the led of the composition is easily determined by the components.

- $\operatorname{led}(P+Q)=\operatorname{led}(P)+\operatorname{led}(Q)+|X||Y|$.
- $\operatorname{led}(P * Q)=\operatorname{led}(P)+\operatorname{led}(Q)$.

Let x be an element of P and let P_{x}^{Q} be the poset obtained by substituting Q for x in P. To be more specific, $P_{x}^{Q}=((X-x) \cup Y, \leq)$ with $a \leq b$ iff $a, b \in X-x$ and $a \leq_{P} b$ or $a, b \in Y$ and $a \leq_{Y} b$ or $a \in X-x, b \in Y$ and $a \leq_{P} x$ or $a \in Y, b \in X-x$ and $x \leq_{P} b$.

Theorem $5 \operatorname{led}(P)+\operatorname{led}(Q)+(\operatorname{led}(P)-\operatorname{led}(P-x))(|Q|-1) \leq \operatorname{led}\left(P_{x}^{Q}\right) \leq$ $\operatorname{led}(P)+\operatorname{led}(Q)+\operatorname{inc}(x)(|Q|-1)$.

Proof. Let L_{1}, L_{2} be a diametral pair for P and N_{1}, N_{2} be a diametral pair for Q. Consider the linear extensions $\left(L_{1}\right)_{x}^{N_{1}}$ and $\left(L_{2}\right)_{x}^{N_{2}}$. Compute the distance between $\left(L_{1}\right)_{x}^{N_{1}}$ and $\left(L_{2}\right)_{x}^{N_{2}}$ as the number of adjacent transpositions necessary to change $\left(L_{1}\right)_{x}^{N_{1}}$ into $\left(L_{2}\right)_{x}^{N_{2}}$ and note that changing L_{1} into L_{2} requires at least $\operatorname{led}(P)-\operatorname{led}(P-x)$ adjacent transpositions involving element x. This leads to the lower bound on $\operatorname{led}\left(P_{x}^{Q}\right)$.

For the upper bound select an element $y \in Y$ and count the incomparabilities of a two-dimensional extension of $\operatorname{led}\left(P_{x}^{Q}\right)$ in three parts. There are at $\operatorname{most} \operatorname{led}(P)$ incomparabilities between two elements in $X-x+y$, there are at $\operatorname{most} \operatorname{led}(Q)$ incomparabilities between two elements in Y and, finally, there are at most $\operatorname{inc}(x)(|Q|-1)$ incomparabilities between elements of $X-x$ and elements of $Y-y$.

Another interesting aspect of led is the question of comparability invariance. Reuter [Reu96a] observed that the linear extension graph $G(P)$ is not a comparability invariant. Nevertheless, as will be shown next the linear extension diameter is a comparability invariant. The proof is based on the following lemma.

Lemma 6 The linear extension diameter of P_{x}^{Q} is attained by a pair L_{1}, L_{2} of linear extensions in both of which the elements of Q appear consecutively.

Proof. Let L_{1}, L_{2} be a diametral pair of P_{x}^{Q}. Let $Q=\left(Y, \leq_{Q}\right)$ and choose $y \in Y$ such that in $P_{\left\{L_{1}, L_{2}\right\}}$ element y is incomparable to the maximal number of elements $z \notin Y$. Let L_{1}^{\prime} be obtained from L_{1} by first removing the elements of Y from L_{1} and then reinserting them at the original position of y so that their internal order remains unchanged. Let L_{2}^{\prime} be obtained from L_{2} by the same procedure. From the choice of y it follows that the distance of L_{1}^{\prime} and L_{2}^{\prime} is at least as large as the distance of L_{1} and L_{2}. Therefore, $L_{1}^{\prime}, L_{2}^{\prime}$ is a diametral pair and the elements of Q appear consecutively in L_{1}^{\prime} and in L_{2}^{\prime}.

Theorem 7 Linear extension diameter is a comparability invariant.
Proof. A consequence of Gallai's work [Gal67], made explicit in [DPW85], is a simple scheme for proving the comparability invariance of a property. It has only to be shown that for all posets P and Q and elements x of P the property is unable to distinguish between P_{x}^{Q} and $P_{x}^{Q^{d}}$ where Q^{d} denotes the dual of Q, i.e., $y \leq y^{\prime}$ in Q^{d} iff $y^{\prime} \leq y$ in Q.

Given a linear extension of P_{x}^{Q} in which the elements of Q appear consecutively we obtain a linear extension of $P_{x}^{Q^{d}}$ by reversing the order of the elements of Q. Hence, if L_{1}, L_{2} is a diametral pair linear extensions of P_{x}^{Q} as in Lemma 6 we obtain a pair attaining the same distance for $P_{x}^{Q^{d}}$. Since the converse also works the linear extension diameters of P_{x}^{Q} and $P_{x}^{Q^{d}}$ are equal.

4 Generalized Crowns and Boolean Lattices

In this section we first deal with a class of posets where we can determine the linear extension diameter exactly. Trotter defines generalized crowns as a
class of posets that interpolates between the 3-irreducible crowns \mathbf{A}_{n} and the standard examples \mathbf{S}_{n}. For $n \geq k \geq 2$ define \mathbf{C}_{n}^{k} as the height two poset with minimal elements $\{0,1, \ldots,(n-1)\}$ and maximal elements $\left\{0^{\prime}, 1^{\prime}, \ldots,(n-1)^{\prime}\right\}$. Element i^{\prime} is larger then the elements $\{i-\lfloor(k-1) / 2\rfloor, i-\lfloor(k-1) / 2\rfloor+1, \ldots, i+$ $\lfloor k / 2\rfloor\}$ where indices are taken modulo n.

Lemma 8 can be found in [Tro92, p. 35], for the translation note that \mathbf{C}_{n}^{k} equals Trotter's \mathbf{S}_{k+1}^{n-k-1}. In particular $\mathbf{C}_{n}^{2}=\mathbf{A}_{n}, \mathbf{C}_{n}^{n-1}=\mathbf{S}_{n}$ and \mathbf{C}_{n}^{k} is k regular.

Lemma 8 A linear extension L of a generalized crown \mathbf{C}_{n}^{k} can have $i^{\prime}<j$ in L for at most $\binom{n-k+1}{2}$ pairs $\left(i^{\prime}, j\right)$.

Consider a pair L_{1}, L_{2} of linear extensions of \mathbf{C}_{n}^{k}. Since each linear extension is reversing at most $\binom{n-k+1}{2}$ of the $\left(i^{\prime}, j\right)$ pairs, the poset $P_{\left\{L_{1}, L_{2}\right\}}$ has at most $(n-k+1)(n-k)$ incomparable pairs $i^{\prime} \| j$. Adding the \min / min and the $\max /$ max pairs we obtain $(n-k+1)(n-k)+n(n-1)$ as an upper bound on $\operatorname{led}\left(\mathbf{C}_{n}^{k}\right)$. This upper bound can be attained. For L_{1} take the minimal elements of \mathbf{C}_{n}^{k} in the order $0,1,-1,2,-2, \ldots$ and sort in the maximal elements as early as possible. When all minimal elements have been used there are k maximal elements left, depending on the parity of k we have taken the maximal elements in the order $0^{\prime}, 1^{\prime},-1^{\prime}, 2^{\prime}, \ldots$ (k odd) or in the order $0^{\prime},-1^{\prime}, 1^{\prime},-2^{\prime}, \ldots(k$ even $)$ continue this pattern for the remaining maximal elements. For L_{2} begin with the reverse ordering on the minimal elements and again sort in the maximal elements as early as possible. The final k maximal elements are taken in the reverse of their order in L_{1}. Figure 2 illustrates the drawings of generalized crowns resulting from this process.

Figure 2: Drawings of the generalized crowns $\mathbf{C}_{8}^{2}, \mathbf{C}_{8}^{3}, \mathbf{C}_{8}^{4}$ and \mathbf{C}_{8}^{5}. Dotted lines indicate comparabilities of minimum two-dimensional extensions.

Remark. A nice way of visualizing the construction is to use the diametral linear extensions as the row and column indices for the bipartite adjacency matrix of the \mathbf{C}_{n}^{k}. The results for \mathbf{C}_{n}^{3} and \mathbf{C}_{n}^{4} are displayed next. An entry * at position (i, j^{\prime}) indicates that $i \| j^{\prime}$ in the crown but $i<j^{\prime}$ in the two-dimensional extension.

Theorem 9 For each $n \geq k \geq 2$ the linear extension diameter of the generalized crown \mathbf{C}_{n}^{k} is given by:

$$
\operatorname{led}\left(\mathbf{C}_{n}^{k}\right)=2 n(n-k)+k(k-1)
$$

Proof. We have shown that $(n-k+1)(n-k)+n(n-1)=2 n(n-k)+k(k-1)$ is an upper bound on $\operatorname{led}\left(\mathbf{C}_{n}^{k}\right)$. As for the lower bound we have described a pair L_{1}, L_{2} of linear extensions. From the above matrices it is easy to see that these two linear extensions have distance $(n-k+1)(n-k)+n(n-1)$.

Corollary 10 For the crown \mathbf{A}_{n} and the standard example \mathbf{S}_{n} this gives

- led $\left(\mathbf{A}_{n}\right)=2(n-1)^{2}=\operatorname{inc}\left(\mathbf{A}_{n}\right)-(n-2)$ and
- led $\left(\mathbf{S}_{n}\right)=n^{2}-(n-2)=\operatorname{inc}\left(\mathbf{S}_{n}\right)-(n-2)$.

We now turn to the Boolean lattices. Unfortunately, we only have partial results for this seemingly simple class of posets. The goal of our investigations was a proof of the following conjecture.

Conjecture 1 The linear extension diameter of the Boolean lattice B_{n} is

$$
\operatorname{led}\left(B_{n}\right)=2^{2 n-2}-(n+1) 2^{n-2}
$$

Proposition $11 \operatorname{led}\left(B_{n}\right) \geq 2^{2 n-2}-(n+1) 2^{n-2}$.
Proof. Let L be the reverse lexicographic order on the subsets of [n], i.e., $A<_{L} B$ if the smallest element of the symmetric difference of A and B is in B. Clearly, L is a linear extension of B_{n}. Now revert the order on $1, . ., n$ and let L^{\prime} be the corresponding lexicographic order, L^{\prime} is sometimes called the reverse antilexicographic order and can be described by $A<_{L^{\prime}} B$ if the largest element of the symmetric difference is in B. Reverse lexicographic and antilexicographic order are hereditary, i.e., if $X \subset[n]$ then L restricted to the subsets of X is the reverse lexicographic order of these sets.

Let X be the first half of elements of L^{\prime}, i.e., the set of subsets of $[n]$ not containing n. and let Y be the complement of X. We count the incomparable pairs of $P_{L, L^{\prime}}$ in three parts. The number of incomparable pairs (A, B) with $A \in X$ and $B \in X$ is $\operatorname{led}\left(B_{n-1}\right)=2^{2 n-4}-n 2^{n-3}$ by induction. The same is true for the pairs (A, B) with $A \in Y$ and $B \in Y$. It remains to count the incomparable pairs (A, B) with $A \in X$ and $B \in Y$, since A precedes B in L^{\prime} we count pairs A, B with $n \notin A, n \in B$ and $B<_{L} A$. This number is $\binom{2^{n-1}}{2}$ since $A<_{L} B$ iff $A<_{L} B-n$.

Figure 3: The drawing of B_{4}, B_{5} and B_{6} obtained from reverse lexicographic and reverse antilexicographic linear extensions.

Lemma 12 Reverse lexicographic and reverse antilexicographic linear extensions are a diametral pair of B_{n} for $n \leq 4$.

Proof. For $n \leq 3$ this is trivial. Let $n=4$ we know that at least two of the incomparabilities of the standard example S_{4} contained in B_{4} are comparable in the two-dimensional poset corresponding to a diametral pair. In the standard labeling of B_{4} with binary vectors we may assume that these two relations are $(0100)<(1011)$ and $(0010)<(1101)$. Let $\widetilde{B_{4}}$ denote the poset after addition of these two relations.

Consider the following nine induced subposets of $\widetilde{B_{4}}$: The first is the subposet induced by $(0001),(1000),(0110),(1001),(1110),(0111)$. The other eight are denoted $Q_{i, j}$ and are obtained by inserting i at position j in each of the vectors $(001),(010),(001),(110),(101),(011)$ for $i \in\{0,1\}$ and $j=1,2,3,4$. Each of these 9 posets is a 3 -crown and it is easily checked that no two of these crowns have a critical pair in common. It follows that in any two-dimensional extension of B_{4} at least one of the 3 critical pairs of each 3 -crown is comparable. This gives a total of $2+9$ additional comparabilities in any two-dimensional extension of B_{4}, i.e., led $\left(B_{4}\right) \leq \operatorname{inc}\left(B_{4}\right)-11=44$. The construction of Proposition 11 gives a two-dimensional extension of B_{4} with 44 incomparabilities which is thus optimal.

We have not been able to generalize the proof of the previous lemma to the general case. There is, however, an easy property that should be true for diametral pairs that would imply the Conjecture 1 . We first state the property as a conjecture. Then we prove the implication in Lemma 13. A more detailed discussion of properties of diametral pairs will be subject of the next section.

Conjecture 2 Let L, L^{\prime} be a diametral pair of a poset P then at least one of the two linear extensions L, L^{\prime} reverts a critical pair of P.

Lemma 13 Conjecture 2 implies Conjecture 1.

Proof. Let L, L^{\prime} be a diametral pair for B_{n}. We may assume (Conjecture 2) that L^{\prime} reverts the critical pair $(\{1, . ., n-1\},\{n\})$. As in the construction we let X and Y be the sets of the first and second half of L^{\prime}. Again X is the set of subsets of $[n]$ not containing n. The number of incomparable pairs (A, B) in $P_{L, L^{\prime}}$ with $A \in X$ and $B \in X$ is at $\operatorname{most} \operatorname{led}\left(B_{n-1}\right)$. The same holds for pairs with $A \in Y$ and $B \in Y$.

It remains to estimate the number of incomparable pairs (A, B) with $A \in X$ and $B \in Y$ that are reversed by L, i.e., pairs (A, B) with $n \notin A, n \in B$ and $B<_{L} A$. Let (A, B) be such a pair and let $\operatorname{mate}(A, B)=(B-n, A+n)$, note that $B-n \in X$ and $A+n \in Y$. Since mate is an involution mate defines a pairing of the pairs $(A, B) \in X \times Y$. At most one of (A, B) and mate (A, B) can be reversed by L, otherwise, $B<_{L} A<_{L} A+n<_{L} B-n<_{L} B$ a contradiction. A pair $((A, B), \operatorname{mate}(A, B))$ that may contribute a reversal is characterized by $A, B-n$ and these are different subsets of $[n-1]$. Therefore, the number of reversals contributed by pairs $(A, B) \in X \times Y$ is at most $\binom{|X|}{2}=\binom{2^{n-1}}{2}$. Putting things together

$$
\operatorname{led}\left(B_{n}\right) \leq 2 \operatorname{led}\left(B_{n-1}\right)+\binom{2^{n-1}}{2}
$$

Induction completes the proof.

5 Intervals in $G(P)$ and Diametral Pairs

For two linear extensions M, N of P let the interval $[M, N]$ in $G(P)$ consist of all linear extensions on shortest path between M and N, put differently it is the set of linear extensions of $P_{\{M, N\}}$. We call M, N an extremal pair if there is no interval $\left[M^{\prime}, N^{\prime}\right]$ properly containing $[M, N]$. Note that $\left[M^{\prime}, N^{\prime}\right] \supseteq[M, N]$ implies $\operatorname{dist}\left(M^{\prime}, N^{\prime}\right) \geq \operatorname{dist}(M, N)$. Hence, diametral pairs are extremal. A locally extremal pair is a pair M, N such that $[M, N]$ is not properly contained in $\left[M^{\prime}, N^{\prime}\right]$ with M^{\prime} a neighbor of M or $M^{\prime}=M$ and N^{\prime} a neighbor of N or $N^{\prime}=N$. Figure 4 illustrates the definitions. It is immediate that for pairs M, N of linear extensions the following implications hold

$$
\text { diametral } \Longrightarrow \text { extremal } \Longrightarrow \text { locally extremal. }
$$

Figure 4: The N and its linear extension graph. The pair $(1243,2134)$ is locally extremal, the unique extremal pair is $(1234,2413)$.

Those diametral pairs we understand best are the minimal realizers of twodimensional posets. Kierstead and Trotter [KT89] observed that the linear extensions of such a 2-realizer are super-greedy. The definition of greedy and super-greedy can be based on the following generic algorithm for linear extensions.

Linear Extension
for $i=1$ to n do
choose $x_{i} \in \operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i-1}\right\}\right)$
output $x_{1}, x_{2}, \ldots, x_{n}$

- For greedy linear extensions x_{i} is chosen from $\operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i-1}\right\}\right) \cap$ $\operatorname{succ}\left(x_{i-1}\right)$ whenever this set is nonempty.
- For super-greedy linear extensions x_{i} is chosen from $\operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i-1}\right\}\right) \cap$ $\operatorname{succ}\left(x_{j}\right)$ where $j<i$ is maximal such that this set is nonempty.

Lemma 14 Let P be a poset and L a super-greedy linear extension. Either P is a chain or L reverses a critical pair.

Proof. We may assume that P has more then one minimal element. Let x_{i} be the minimal element of P that comes last in $L=x_{1}, \ldots, x_{n}$. Since L is supergreedy $P-\left\{x_{1}, . ., x_{i}\right\}=\operatorname{succ}\left(x_{i}\right)$ and, hence, $\operatorname{succ}\left(x_{i-1}\right) \subseteq \operatorname{succ}\left(x_{i}\right)$. Since $\operatorname{pred}\left(x_{i}\right)=\emptyset \subseteq \operatorname{pred}\left(x_{i-1}\right)$ the pair $\left(x_{i}, x_{i-1}\right)$ is a critical pair reversed by L.

5.1 Extremal Linear Extensions

Call M an extremal linear extension if there is a linear extension N such that there is no interval $\left[M^{\prime}, N\right]$ properly containing $[M, N]$. Interestingly, extremal linear extension are exactly the linear extensions participating in locally extreme pairs.

Proposition 15 For a linear extension M the following is equivalent:

- $\quad M$ is an extremal linear extension.
- There exists a linear extension N such that M, N is locally extremal.

Proof. Let M be an extremal linear extension with witness N. We define a partial order on $G(P)$ with respect to a linear extension M as follows: $L \leq_{M} L^{\prime}$ if the set of pairs of L^{\prime} which are in reverse order relative to M contains the corresponding set for L. This is equivalent to saying that the interval $\left[M, L^{\prime}\right]$ contains the interval $[M, L]$. If we choose N^{\prime} as a maximal element above N with respect to \leq_{M}, then M, N^{\prime} is a locally extremal pair. M is extremal with respect to N^{\prime} because $N^{\prime} \leq_{N^{\prime}} N \leq_{N^{\prime}} M \leq_{N^{\prime}} M^{\prime}$ implies $[M, N] \subseteq\left[M^{\prime}, N\right]$. Since, N is a witness for M 's extremality this requires $M=M^{\prime}$. The other direction is obvious from the definitions.

With the next proposition we characterize extremal linear extensions. Recall that a jump in a linear extension $L=x_{1}, x_{2}, \ldots, x_{n}$ is a pair x_{i}, x_{i+1} of
consecutive elements in L that are incomparable in P. If x_{i}, x_{i+1} are comparable in P we call the pair a bump of P. The bump decomposition of L is obtained by cutting L in each bump. This gives an ordered partition $L=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that each block α_{i} is a maximal interval of elements $x_{i_{j}}, \ldots, x_{i_{j+1}-1}$ such that consecutive elements in α_{i} form a jump.
Example. Let P be the chevron labeled as in Figure 1. In $M=132456$ there are three jumps and two bump, the bumps are (24) and (56)). The bump decomposition is $\alpha_{1}=132, \alpha_{2}=45, \alpha_{3}=6$.

Proposition 16 A linear extension L of P is extremal iff every block α_{i} of the bump decomposition $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ of L induces an antichain in P.

Proof. Let N be such that L, N is a locally extremal pair. Assume that some block α_{i} does not induce an antichain and let $x, y \in \alpha_{i}$ with $x<y$ in P. Not all the adjacent pairs of α_{i} can be in reverse order to N, because this would imply $y<x$ in N. Hence some adjacent pair can be switched in α_{i} to increase the distance to N, a contradiction.

In order to prove the other direction let N be the word resulting from L by reversing every block of the bump decomposition of P. If all blocks induce antichains in P, then N is a linear extension of P. Moreover, L is extremal with respect to N, since only the switch of an adjacent pair of some block yields a neighboring linear extension of L. But such a linear extension is closer to N as L is.

Corollary 17 Every greedy linear extension is extremal.
Proof. If L is not extremal, then there exist x, y in some block α_{i} of L with x being covered by y in P. Observe that x and y cannot be adjacent in α_{i}. Now, L is not greedy, since y is a candidate to be chosen right after x.

In general, however, the class of extremal linear extensions contains nongreedy linear extensions. Even both linear extensions of a locally extremal pair may be non-greedy. Take for example the 3 -crown \mathbf{C}_{3}^{2} on $\left\{0,1,2,0^{\prime}, 1^{\prime}, 2^{\prime}\right\}$ (element i^{\prime} is larger then $i, i-1$) the pair $\left(2,1,0,0^{\prime}, 2^{\prime}, 1^{\prime}\right),\left(0,1,2,1^{\prime}, 2^{\prime}, 0^{\prime}\right)$ is extremal but neither is greedy. Due to their vast amount extremal pairs seem to be rather useless for heuristics or approximations of the linear extension diameter. In the next subsection we discuss a much stronger property.

5.2 Complementary Linear Extensions

Let L be a linear extension of P and specify the choice function in Algorithm Linear Extension so that in each round x_{i} is the last element of $\operatorname{Min}(P)$ in L, i.e., take the reverse of L as preference list for the construction of a new linear extension M. We call M the complementary linear extension of L and denote the complementary mapping by $*$, i.e., $*: L \rightarrow M=L^{*}$. The k fold iterated complementary map of L is $L^{* k}$.
Example. Let P be the chevron labeled as in Figure 1. If $L=132456$ then $L^{*}=315624$.

The intuition is that L^{*} tends to have many pairs in the reverse order of L, hence, the distance from L to L^{*} should be large.

Proposition 18 Complementary linear extensions are super-greedy.
Proof. Let $y_{1}, . ., y_{t}$ be an initial segment of L^{*}. For element $x \in \operatorname{Min}(P-$ $\left.\left\{y_{1}, . ., y_{t}\right\}\right)$ let $i(x)=\max \left(i: x>y_{i}\right)$. We have to prove that y_{t+1} is an element x^{\prime} with $i\left(x^{\prime}\right)$ maximal. Suppose not, $y_{t+1}=x^{\prime}$ but $i\left(x^{\prime}\right)=r<i(x)=s$. The choice of x^{\prime} implies that $x<_{M} x^{\prime}$. Consider the situation when y_{s} was chosen and note that at this time x^{\prime} was available. Since $y_{s}<x$ we have $y_{s}<_{M} x^{\prime}$ contradicting the choice of y_{s}.

Corollary 19 For linear extensions the following implications hold complementary \Longrightarrow super-greed $y \Longrightarrow$ greed $y \Longrightarrow$ extremal.

As it is the case with super-greedy linear extensions complementary linear extensions may be constructed by an algorithm based on a stack. To construct the complementary linear extension of L begin with an empty stack S. Push the elements of $\operatorname{Min}(P)$ onto S in the order induced by L on this set. For $i=1, . . n$ repeat: $x_{i} \leftarrow \operatorname{pop}(S)$ and push the new minimal elements, i.e., the elements of the set $C_{i}=\operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i}\right\}\right)-\operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i-1}\right\}\right)$ onto S. The order in which elements of C_{i} are pushed is again the order induced by L on this set. The complementary linear extension L^{*} of L is x_{1}, \ldots, x_{n}, i.e., the elements ordered by the time of their pop. The formal proof that the stack algorithm applied to L constructs the complementary linear extension L^{*} is very similar to the proof of Proposition 18.

We illustrate the two procedures for complementary linear extensions with the following example (Table 1). Let P be the chevron with the labeling of Figure 1 and let $L=132456$. In the left column of the table we have L with elements already used for L^{*} removed. Underlined elements are the elements of $\operatorname{Min}\left(P-\left\{x_{1}, . ., x_{i-1}\right\}\right)$ and bold are the elements of C_{i}, i.e., the new minimal elements. The next three columns correspond to the stack based construction and explain themselves. Finally, there is a column with the growing L^{*}. We like to remark that yet another way of interpreting the construction of L^{*} is as a certain depth-first-search on the diagram of P with a least element 0 added. The corresponding spanning tree consist of the edges $\left(x_{i}, y\right)$ for $y \in C_{i}$.

L	Stack	pop	C_{i}	L^{*}
$\underline{\mathbf{1}} \underline{\mathbf{3}} 456$	13	3	\emptyset	3
$\underline{\mathbf{1}} 2456$	1	1	$\{2,5\}$	31
$\underline{\mathbf{2}} 4 \underline{\mathbf{5}} 6$	25	5	$\{6\}$	315
$\underline{\mathbf{2}} 4 \underline{\mathbf{6}}$	26	6	\emptyset	3156
$\underline{\mathbf{2}} 4$	2	2	$\{4\}$	31562
$\underline{\mathbf{4}}$	4	4	\emptyset	315624

Table 1: Demonstrating the construction of a complementary linear extension.

A complementary pair is a pair L, M of linear extensions with $M=L^{*}$ and $L=M^{*}$. Continuing with the example $L=132456$ we saw $L^{*}=315624$ and compute $L^{2}=125346$ and $L^{* 3}=315624$. Since $L^{* 3}=L^{*}$ the pair $L^{*}, L^{* 2}$ is a complementary pair. In this case it is a diametral pair as well.

Proposition 20 A realizer L, L^{\prime} of a two-dimensional poset is a complementary pair.

Proof. In L^{\prime} the elements of $\operatorname{Min}(P)$ are in the reverse of their order in L. Therefore, L^{\prime} and L^{*} are equal in the first element x. Since $L^{*}=x+(L-x)^{*}$ and $L-x, L^{\prime}-x$ is a realizer of $P-x$ induction shows $L^{\prime}=L^{*}$.

From the definition it is not obvious that every poset has a complementary pair this, however, is an immediate consequence of the following 'convergence' theorem.

Theorem 21 Let P be a poset of height h and L be a linear extension then $L^{* 2 h-1}=L^{* 2 h+1}$, in other words $L^{* 2 h-1}, L^{* 2 h}$ is a complementary pair of P.

The proof of the theorem will be based on two lemmas.
Lemma 22 Let I be a down-set of P. The complementary linear extension of the restriction of L to the suborder induced by P on I equals the restriction of L^{*} to I. With $L \mid X$ denoting the restriction of L to a subset X of P this can be written as $(L \mid I)^{*}=L^{*} \mid I$.

Proof. The proof is by induction on $n=|P|$. Let x be the last minimal element of P in L and note that x is the first element of L^{*}. Consider $P-x$. With $M=L \mid(P-x)$ we have $L^{*}=x M^{*}$.

If $x \notin I$ then $M|I=L| I$ and

$$
L^{*}\left|I=M^{*}\right| I=(M \mid I)^{*}=(L \mid I)^{*}
$$

with the second equality being the induction hypothesis. Else, if $x \in I$ then

$$
L^{*}\left|I=x M^{*}\right|(I-x)=x(M \mid(I-x))^{*}=(L \mid I)^{*}
$$

with the second equality being the induction hypothesis.

Lemma 23 Let P be a poset, $A \subseteq \operatorname{MAx}(P)$ and $Q=P-A$. If L is a linear extension of P with $L^{*}\left|Q=L^{* 3}\right| Q$ then $L^{* 3}=L^{* 5}$.

Proof. For $t \geq 1$ let $L^{* t}=x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t}$ and use the superscript t to denote structures involved in the stack based construction of $L^{* t}$. For example the elements of the set $C_{i}^{t}=\operatorname{Min}\left(P-\left\{x_{1}^{t}, . ., x_{i}^{t}\right\}\right)-\operatorname{Min}\left(P-\left\{x_{1}^{t}, . ., x_{i-1}^{t}\right\}\right)$ are the elements pushed onto stack S^{t} after the pop of x_{i}^{t}.

By Lemma $22 L^{*}\left|Q=L^{* 3}\right| Q$ implies that $L^{*}\left|Q, L^{* 2}\right| Q$ is a complementary pair for Q. If $x_{i}^{t} \notin Q$ then obviously $C_{i}^{t}=\emptyset$. Hence, for t, t^{\prime} of the same parity (both odd or both even) the same sets are pushed in the same order onto the
stacks S^{t} and $S^{t^{\prime}}$. More formally, if q_{i}^{t} denotes the index of the i th element of Q in $L^{* t}$ then $C_{q_{i}^{t}}^{t}=C_{q_{i}^{t^{\prime}}}^{t^{\prime}}$ for $t=t^{\prime} \bmod 2$ and $1 \leq i \leq|Q|$. Using the simplified notation $\mathcal{C}_{i}^{t}=C_{q_{i}^{t}}^{t}($ with calligraphic $\mathcal{C})$ we restate this fact.
FACT. $\mathcal{C}_{i}^{t}=\mathcal{C}_{i}^{t^{\prime}}$ for $t=t^{\prime} \bmod 2$ and $1 \leq i \leq|Q|$.
The linear extension $L^{* t}$ is completely determined by the evolution of the stack S^{t}. From $\mathcal{C}_{i}^{t}=\mathcal{C}_{i}^{t^{\prime}}$ we could conclude that $L^{* t}$ only depends on the parity of t if the order in which the elements of \mathcal{C}_{i}^{t} are pushed onto S^{t} remained unchanged or equivalently if the order of the elements of \mathcal{C}_{i}^{t} in $L^{* t}$ remained unchanged. This will be proved for $t \geq 3$.

Let $D_{i j}=\mathcal{C}_{i}^{1} \cap \mathcal{C}_{j}^{2}=\mathcal{C}_{i}^{o} \cap \mathcal{C}_{j}^{e}$ for o odd and e even and note that there is an order $\alpha_{i j}$ of the elements of $D_{i j}$ such that in the sequence $L^{* t}$ the order of these elements alternates between $\alpha_{i j}$ for t odd and the reverse of $\alpha_{i j}$ for t even.
Claim. Let $j<k$ and $y \in D_{i j}, x \in D_{i k}$. For $t \geq 3, t$ odd, x precedes y in $L^{* t}$.
Proof of Claim. Assume the existence of $o \geq 3$ odd such that y precedes x in $L^{* o}$, we shorten notation writing $y<_{o} x$ for this fact. Since $x, y \in \mathcal{C}_{i}^{o}$ we conclude that $x<_{o-1} y$. Let $e=o-1$ and recall $j<k$ and $y \in \mathcal{C}_{j}^{e}$ and $x \in \mathcal{C}_{k}^{e}$. Hence, y was pushed onto stack S^{e} earlier then x and since $x<_{e} y$ element y was still buried in S^{e} when x was pushed. Inspection shows that there was a $z \in \mathcal{C}_{j}^{e}$ with $z<x$ and z was pushed after y onto S^{e}. It follows that the order of x, y, z in $L^{* e-1}$ is $y<_{e-1} z<_{e-1} x$.

From $x, y \in \mathcal{C}_{i}^{e-1}=\mathcal{C}_{i}^{o}$ and $y<_{e-1} x$ we obtain that x was pushed before y onto S^{e-1}. Since $z<x$ element z was pushed onto S^{e-1} before x and y.

To obtain $y<_{e-1} z<_{e-1} x$ the stack S^{e-1} would thus get the elements pushed in order z, x, y and pop them off in order y, z, x. This, however, corresponds to a 3 -element permutation that cannot be realized with a stack. This contradiction concludes the proof of the claim.

It follows that for $t \geq 3, t$ odd the order of the elements of \mathcal{C}_{i}^{o} in $L^{* t}$ is $\alpha_{i, n-1}<_{t} \alpha_{i, n-2}<_{t} \ldots<_{t} \alpha_{i, 1}$. This completely determines the evolution of the stack, hence, $L^{* 3}=L^{* 5}=L^{* 7} \ldots$.
Proof (Theorem 21). Let $A_{1}, A_{2}, \ldots, A_{h}$ be the canonical antichain partition of P with $\operatorname{height}(P)=h$, i.e., $A_{i+1}=\operatorname{Min}\left(P-A_{1}-\ldots-A_{i}\right)$ and $\bigcup_{1}^{h} A_{i}=P$. Let $A_{\leq k}=A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ and note that $A_{\leq k}$ is a down-set.
Claim. $L^{* 2 k-1}\left|A_{\leq k}=L^{* 2 k+1}\right| A_{\leq k}$ for $k=1, \ldots, h$.
Proof of Claim. By Lemma 22 it suffices to prove $\left(L \mid A_{\leq k}\right)^{* 2 k-1}=\left(L \mid A_{\leq k}\right)^{* 2 k+1}$.
For $k=1$ this is trivially true. Since $A_{k} \subseteq \operatorname{Max}\left(A_{\leq k}\right)$ we can use Lemma 23 with $L=L^{* 2 k-4} \mid A_{\leq k}$ for the induction step.

Since $A_{\leq h}=P$ this implies the theorem.

Proposition 24 If M, N is a complementary pair, then the interval $[M, N]$ is locally extreme in $G(P)$.

Proof. Assume that there is neighbor N^{\prime} of N such that $[M, N] \subset\left[M, N^{\prime}\right]$. Let (x, y) be the unique pair with $x<_{N} y$ and $y<_{N^{\prime}} x$. Since $N=M^{*}$ and both x and y were minimal elements when x was chosen we find that $y<_{M} x$.

This implies that N^{\prime} is on a shortest path from M to N, a contradiction to $[M, N] \subset\left[M, N^{\prime}\right]$. Similar arguments disprove the other cases.

A diametral pair need not be a complementary pair. An example is given in Figure 5.

Figure 5: Left: P and its unique minimum two-dimensional extension. Middle and right: The two complementary two-dimensional extensions of P.

Acknowledgment. We thank Michael Naatz for careful proof reading and suggesting improvements.

References

[BS92] G. Brightwell and E. Scheinerman. Fractional dimension of partial orders. Order, 9:139-158, 1992.
[BW91] A. Björner and M. Wachs. Permutation statistics and linear extensions of posets. J. of Comb. Th. (A), 58:85-114, 1991.
[DPW85] B. Dreesen, W. Poguntke, and P. Winkler. Comparability invariance of the fixed point property. Order, 2:269-274, 1985.
[Gal67] T. Gallai. Transitiv orientierbare Graphen. Acta. Math. Acad. sci. Hungar., 18:25-66, 1967.
[KT89] H. Kierstead and W.T. Trotter. Super-greedy linear extensions of ordered sets. Annals of the NY Acad. Sci., 555:262-271, 1989.
[Reu96a] K. Reuter. The comparability graph and the graph of linear extensions of a poset. Preprint, 1996.
[Reu96b] K. Reuter. Linear extensions of a poset as abstract convex sets. Preprint, 1996.
[Tro92] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Press, 1992.
[TW96] W.T. Trotter and P. Winkler. Ramsey theory and sequences of random variables. Preprint, 1996.

[^0]: 5. Juni 1997
