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Abstract� The distance between two permutations of the same set X is the number
of pairs of elements being in di�erent order in the two permutations� Given a poset
P � �X���	 a pair L�� L� of linear extensions is called a diametral pair if it maximizes
the distance among all pairs of linear extensions of P � The maximal distance will be
called the linear extension diameter of P and is denoted led�P �� Alternatively led�P �
is the maximum number of incompararable pairs of a two�dimensional extension of P �
In the 
rst part of the paper we discuss upper and lower bounds for led�P �� These
bounds relate led�P � to well studied parameters like dimension and height� We prove
that led�P � is a comparability invariant and determine the linear extension diameter
for the class of generalized crowns� For the Boolean lattices we have partial results�

A diametral pair generates a minimal two�dimensional extension of P or equiv�
alently a maximal interval in the graph of linear extensions of P � Studies of such
intervals lead to the de
nition of new classes of linear extensions� We give three char�
acterizations of the class of extremal linear extensions which contains the greedy linear
extensions� With complementary linear extensions we introduce a class contained in
the set of super�greedy linear extensions� The complementary linear extension of L
is the linear extension L� obtained by taking the reverse of L as priority list in the
generic algorithm for linear extensions� A complementary pair is a pairs L�M of lin�
ear extensions with M � L� and L � M�� Iterations of the complementary mapping
starting from an arbitrary linear extension eventually leads to a complementary pair�

Mathematics Subject Classi�cations ������� ��A�	 ��C���
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� Introduction and Alternate Formulations

The distance between permutations �� � of the same setX� denoted dist��� ��� is
the number of pairs of elements being in di�erent order in the two permutations�
Given a poset P � �X���� a pair L�� L� of linear extensions is called a diametral

pair if it maximizes the distance among all pairs of linear extensions of P �
The maximal distance will be called the linear extension diameter of P and is
denoted led�P �� In �Reu	
b� the linear extension graph G�P � was de�ned as the
graph with vertices the linear extensions of P and two vertices connected by an
edge if the linear extensions di�er by an adjacent transposition only� Figure 
shows the six element poset called chevron and its linear extension graph� An

�� Juni ����





easy fact about G�P � is that any pair L�� L� of linear extensions is connected in
G�P � by a path whose length equals the distance between L� and L�� Hence�
led�P � is exactly the graph diameter of the linear extension graph G�P ��
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Figure � The chevron and its linear extension graph�
This poset has linear extension diameter 
�

The intersection of a collection A � fL�� � � � � Lkg of linear extensions of P is
a poset PA which is an extension of P � The graph G�PA� is an induced subgraph
of G�P �� Interestingly subgraphs of G�P � corresponding to extensions of P are
exactly the convex subgraphs of G�P � �see �BW	� or �Reu	
b���

Let inc�P � denote the number of incomparable pairs of P � If L�� L� is a di�
ametral pair for P then PfL��L�g is a two�dimensional extension of P and L�� L�

is a diametral pair for PfL��L�g� i�e�� led�PfL��L�g� � led�P �� The incomparable
pairs of PfL��L�g are exactly the pairs being in di�erent order in L� and L��
therefore� led�PfL��L�g� � inc�PfL��L�g� � dist�L�� L��� where inc�P � denotes
the number of incomparable pairs of P �

We call a two�dimensional extension Q of P a minimum two�dimensional

extension of P if Q has a minimal number of comparable pairs that are in�
comparable in P � Dually� a minimum two�dimensional extension maximizes
inc�PfL��L�g�� Together with the previous paragraph this proves the following
Theorem�

Theorem � The linear extension diameter of P equals the number of incom�

parable pairs of a minimum two�dimensional extension of P �

By de�nition inc�Q� � inc�P � for every extension Q of P � As a consequence
of the theorem we have the general bound

led�P � � inc�P �� ��

Equality in inequality �� is a characterization of two�dimensional posets�

Theorem � For a poset P the following two statements are equivalent�

dim�P � � � and led�P � � inc�P ��

�



Proof� We have already seen that led�P � � inc�P � for two�dimensional posets�
If P is one�dimensional then led�P � � � � inc�P ��

For the converse suppose led�P � � inc�P � and let L�� L� be a diametral pair�
The number of pairs being in di�erent order in L� and L� is inc�P �� Therefore�
P is the intersection of L� and L� which proves dim�P � � ��

Inequality �� is only sharp for two�dimensional posets but as shown with
the standard examples the following inequality may be sharp in any dimension

led�P � � inc�P �� �dim�P �� ��� ���

Proof� Take a diametral pair L�� L� and add one by one linear extensions such
that

Tj
i�� Li �

Tj��
i�� Li until fL�� � � � � Lkg is a realizer of P � Since k � dim�P �

and each Lj contributes a new incomparability to the intersection the poset
PfL��L�g has at most inc�P �� �dim�P �� �� incomparable pairs�

In the next section we give several lower bounds on the linear extension
diameter� These bounds relate the new parameter to width� dimension and
fractional dimension of the poset� In Section � we investigate the e�ect of
small changes at the poset on its linear extension diameter� We also show that
led is a comparability invariant� In Section � we deal with special classes of
posets� In particular we determine the linear extension diameter of generalized
crowns� Section � introduces the concept of complementary linear extensions
as a heuristic for �nding pairs of linear extensions of large distance� We prove
some properties of complementary linear extensions that seem to be interesting
in their own right�

� Lower Bounds on the Linear Extension Diameter

Given a poset P � �X��� and disjoint subsets A�B � X we say A is over
B and write A�B in a linear extension L if a � b in L for all incomparable
pairs ajjb with a � A and b � B� It is well known �see e�g� �Tro	�� p� 	�� that
for every chain C there exist linear extensions with C�X and X�C� Such a
pair of linear extensions has distance at least

P
x�C inc�x� where inc�x� denotes

the number of elements incomparable to x� Generalizing notation by de�ning
inc�C� �

P
x�C inc�x� for every chain C we have proven our �rst lower bound

max
C chain

inc�C� � led�P �� ���

Equality holds for the chevron and for all width two posets� The value of
this lower bound is easily computable by a maximum weighted chain algorithm�
Consider a chain partitionC�� ���� Cw of P � Obviouslywidth�P ��maxC inc�C�� �Pw

i�� inc�Ci� � �inc�P �� Hence our upper and lower bounds on led in �� and
��� are only apart by a factor depending on the width of P �

d
�inc�P �

width�P �
e � led�P � � inc�P �� ���

Another lower bound relates the linear extension diameter to the dimension
dim�P �� Take a realizer R � fL�� � � � � Ldg with d � dim�P � for P � Choose at

�



random a pair S�� S� of di�erent linear extensions from R� the probability that
an incomparable pair xjjy is incomparable in S� � S� is at least �d � ��

�d
�

�
�

Therefore� the expected number of incomparable pairs in S� � S� is at least
�inc�P ��d� This proves the bound

d
�inc�P �

dim�P �
e � led�P �� ���

Since dim�P � � width�P � this bound ��� implies ���� Brightwell and Schein�
erman �BS	�� introduced the fractional dimension of a poset �fdim�P �� as
the least rational number df such that there is a m and a multiset realizer
M � fL�� � � � � Lmg of P � such that for every incomparable pair x� y we have
x � y in Li for at least m�df of the linear extensions� If we choose at random
a pair S�� S� of linear extensions from M the probability that an incompara�
ble pair xjjy is incomparable in S� � S� is at least m�df �m � �m�df ���

�m
�

�
�

��m�df � ����m � �d�f � � ��df � ���d�f �� Since fractional dimension can be
substantially smaller than dimension the next bound seems worth to be stated

d
��fdim�P �� �inc�P �

fdim�P ��
e � led�P �� �
�

A class of orders where dimension and fractional dimension get far apart
are the interval orders� The dimension of interval orders grows unbounded �see
e�g�� �Tro	��� but the fractional dimension is bounded by � �see �BS	���� In fact�
as shown recently by Trotter and Winkler �TW	
� the fractional dimension of
interval orders can be arbitrarily close to �� From the above bound we thus
obtain that led�I� � �����inc�I� for every interval order I� However� we can
easily do better� It was shown by Rabinovich ��Tro	�� page 	
��� that an
interval order I � �X��� has a linear extension with A��X nA� for every subset
A of X� Choose a random subset A of X and consider two linear extensions
with A��X n A� and �X n A��A� The expected number of incomparabilities in
the intersection of the two linear extensions is at least ����inc�I�� Hence for
every interval order I

����inc�I� � led�I�� ���

The next bound relates inc�P � and the height h � height�P �� Let A�� � � � � Ah

be an antichain partition of P and let ai � jAij� The weak order with Ai as
ith level is a two�dimensional extension of P � The number of incomparabilities
is
P

i

�ai
�

�
which is at least h

�n�h
�

�
� hence� led�P � � n�n� h���h� For inc�P � we

have the obvious bound inc�P � �
�n
�

�
�
�h
�

�
� Therefore inc�P � � n���� h��� �

n� � �����n� � h�� � n� � nh� Comparing the two inequalities we obtain

d
inc�P �

�height�P �
e � led�P �� ���

The bounds of this section compare led�P � to certain fractions of inc�P ��
Graham Brightwell �personal communication� suggested a family Pn of random
posets showing that the gap between inc�P � an led�P � can indeed be large�
Formally� led�Pn� � o��inc�Pn��

�



� Removals and Substitutions

Consider the removal of a point x from P � Let L�� L� be a diametral pair for
P � x� there exist linear extensions L�

i of P such that removing x gives Li for
i � � �� The distance of L�

�� L
�
� is at least as large as the distance of L� and

L�� hence led�P � x� � led�P �� For a lower bound on led�P � x� consider
a two�dimensional extension Q of P such that inc�Q� � led�P �� Q � x is a
two�dimensional extension of P � x and the incomparabilities of Q are those of
Q� x plus those containing element x� The incomparabilities of Q containing
x are at most as many as the incomparabilities of P containing x� i�e� inc�x��
Hence� led�P � x� � inc�x� � led�P ��

Theorem � led�P � � led�P � x� � led�P � � inc�x� and both inequalities can

be sharp�

Proof� It remains to show that equality may occur� Equality on both sides
happens if inc�x� � �� However� there are less trivial examples� On the left
side take as x one of the minimal elements of C or D �these are posets from
the list of ��irreducible posets �see e�g� �Tro	�� p� 
���� D is the chevron�� On
the right side equality is attained for every two�dimensional P �

Abusing notation we write P�r for the poset resulting from P after removal
of a single covering relation r� P � r has more linear extensions then P � more
precisely� G�P � is a subgraph of G�P�r�� Hence� led�P � � led�P�r�� Equality
is again possible� let P be the chevron augmented by the comparability r �
� � �� �see Figure �� A lower bound for led�P � r� can be obtained from the
lower bound for point removal� Let r be a relation involving x� then led�P � �
led�P � x� � led��P � r�� x� � led�P � r�� �inc�x� � �� The example of the
crown An shows �see Section �� that removing r can increase led by as much
as �����inc�x� � ��

Theorem � Let r � �x � y� be a covering relation of P � then led�P � �
led�P � r� � led�P � � min�inc�x�� inc�y�� � �

Let P � �X��P � and Q � �Y��Q� be posets on disjoint sets� Standard
constructions are the parallel composition P �Q � �X � Y��P � �Q� and the
series composition P 	Q � �X � Y��P � �Q ��X 
 Y ��� In both cases the led

of the composition is easily determined by the components�

� led�P �Q� � led�P � � led�Q� � jXjjY j�

� led�P 	Q� � led�P � � led�Q��

Let x be an element of P and let PQ
x be the poset obtained by substituting

Q for x in P � To be more speci�c� PQ
x � ��X � x� � Y��� with a � b i�

a� b � X�x and a �P b or a� b � Y and a �Y b or a � X�x� b � Y and a �P x
or a � Y� b � X � x and x �P b�

Theorem � led�P � � led�Q� � �led�P � � led�P � x���jQj � � � led�PQ
x � �

led�P � � led�Q� � inc�x��jQj � ��

�



Proof� Let L�� L� be a diametral pair for P and N�� N� be a diametral pair for
Q� Consider the linear extensions �L��

N�
x and �L��

N�
x � Compute the distance

between �L��
N�
x and �L��

N�
x as the number of adjacent transpositions necessary

to change �L��
N�
x into �L��

N�
x and note that changing L� into L� requires at

least led�P � � led�P � x� adjacent transpositions involving element x� This
leads to the lower bound on led�PQ

x ��
For the upper bound select an element y � Y and count the incompara�

bilities of a two�dimensional extension of led�PQ
x � in three parts� There are at

most led�P � incomparabilities between two elements in X � x � y� there are
at most led�Q� incomparabilities between two elements in Y and� �nally� there
are at most inc�x��jQj � � incomparabilities between elements of X � x and
elements of Y � y�

Another interesting aspect of led is the question of comparability invari�
ance� Reuter �Reu	
a� observed that the linear extension graph G�P � is not a
comparability invariant� Nevertheless� as will be shown next the linear exten�
sion diameter is a comparability invariant� The proof is based on the following
lemma�

Lemma � The linear extension diameter of PQ
x is attained by a pair L�� L� of

linear extensions in both of which the elements of Q appear consecutively�

Proof� Let L�� L� be a diametral pair of PQ
x � Let Q � �Y��Q� and choose

y � Y such that in PfL��L�g element y is incomparable to the maximal number
of elements z �� Y � Let L�

� be obtained from L� by �rst removing the elements
of Y from L� and then reinserting them at the original position of y so that
their internal order remains unchanged� Let L�

� be obtained from L� by the
same procedure� From the choice of y it follows that the distance of L�

� and L
�
�

is at least as large as the distance of L� and L�� Therefore� L
�
�� L

�
� is a diametral

pair and the elements of Q appear consecutively in L�
� and in L�

��

Theorem � Linear extension diameter is a comparability invariant�

Proof� A consequence of Gallai�s work �Gal
��� made explicit in �DPW���� is
a simple scheme for proving the comparability invariance of a property� It has
only to be shown that for all posets P and Q and elements x of P the property
is unable to distinguish between PQ

x and PQd

x where Qd denotes the dual of Q�
i�e�� y � y� in Qd i� y� � y in Q�

Given a linear extension of PQ
x in which the elements of Q appear consecu�

tively we obtain a linear extension of PQd

x by reversing the order of the elements
of Q� Hence� if L�� L� is a diametral pair linear extensions of PQ

x as in Lemma 


we obtain a pair attaining the same distance for PQd

x � Since the converse also

works the linear extension diameters of PQ
x and PQd

x are equal�

� Generalized Crowns and Boolean Lattices

In this section we �rst deal with a class of posets where we can determine
the linear extension diameter exactly� Trotter de�nes generalized crowns as a






class of posets that interpolates between the ��irreducible crowns An and the
standard examples Sn� For n � k � � de�ne Ck

n as the height two poset with
minimal elements f�� � � � � � �n��g and maximal elements f��� �� � � � � �n���g�
Element i� is larger then the elements fi�b�k����c� i�b�k����c�� � � � � i�
bk��cg where indices are taken modulo n�

Lemma � can be found in �Tro	�� p� ���� for the translation note that Ck
n

equals Trotter�s Sn�k��k�� � In particular C�
n � An� C

n��
n � Sn and Ck

n is k
regular�

Lemma 	 A linear extension L of a generalized crown Ck
n can have i� � j in

L for at most
�n�k��

�

�
pairs �i�� j��

Consider a pair L�� L� of linear extensions of C
k
n� Since each linear extension

is reversing at most
�n�k��

�

�
of the �i�� j� pairs� the poset PfL��L�g has at most

�n � k � ��n � k� incomparable pairs i�jjj� Adding the min�min and the
max�max pairs we obtain �n� k � ��n� k� � n�n� � as an upper bound on
led�Ck

n�� This upper bound can be attained� For L� take the minimal elements
of Ck

n in the order �� ��� ����� � � � and sort in the maximal elements as early
as possible� When all minimal elements have been used there are k maximal
elements left� depending on the parity of k we have taken the maximal elements
in the order ��� ����� ��� � � � �k odd� or in the order ������ ������ � � � �k even�
continue this pattern for the remaining maximal elements� For L� begin with
the reverse ordering on the minimal elements and again sort in the maximal
elements as early as possible� The �nal k maximal elements are taken in the
reverse of their order in L�� Figure � illustrates the drawings of generalized
crowns resulting from this process�

0 1 -1 2 -2 3 -3 4

0’ -1’ 1’ -2’ 2’ -3’3’ 4’

0 1 -1 2 -2 3 -3 4

0’ 1’ -1’ 2’ -2’ 3’ -3’ 4’

0 1 -1 2 -2 3 -3 4

0’ -1’ 1’ -2’ 2’ -3’3’ 4’

0 1 -1 2 -2 3 -3 4

0’ 1’ -1’ 2’ -2’ 3’ -3’ 4’

Figure �� Drawings of the generalized crowns C�
��C

�
��C

�
� and C

�
��

Dotted lines indicate comparabilities of minimum two�dimensional extensions�

Remark
 A nice way of visualizing the construction is to use the diametral
linear extensions as the row and column indices for the bipartite adjacency
matrix of the Ck

n� The results for C
�
n and C�

n are displayed next� An entry 	 at
position �i� j�� indicates that ijjj� in the crown but i � j� in the two�dimensional
extension�
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Theorem � For each n � k � � the linear extension diameter of the general�

ized crown Ck
n is given by�

led�Ck
n� � �n�n� k� � k�k � ��

Proof� We have shown that �n�k���n�k��n�n�� � �n�n�k��k�k��
is an upper bound on led�Ck

n�� As for the lower bound we have described a pair
L�� L� of linear extensions� From the above matrices it is easy to see that these
two linear extensions have distance �n� k � ��n� k� � n�n� ��

Corollary �� For the crown An and the standard example Sn this gives

� led�An� � ��n� �� � inc�An�� �n� �� and

� led�Sn� � n� � �n� �� � inc�Sn�� �n� ���

We now turn to the Boolean lattices� Unfortunately� we only have partial results
for this seemingly simple class of posets� The goal of our investigations was a
proof of the following conjecture�

Conjecture � The linear extension diameter of the Boolean lattice Bn is

led�Bn� � ��n�� � �n� ��n���

Proposition �� led�Bn� � ��n�� � �n� ��n���

Proof� Let L be the reverse lexicographic order on the subsets of �n�� i�e��
A �L B if the smallest element of the symmetric di�erence of A and B is in B�
Clearly� L is a linear extension of Bn� Now revert the order on � ��� n and let
L� be the corresponding lexicographic order� L� is sometimes called the reverse
antilexicographic order and can be described byA �L� B if the largest element
of the symmetric di�erence is in B� Reverse lexicographic and antilexicographic
order are hereditary� i�e�� if X � �n� then L restricted to the subsets of X is the
reverse lexicographic order of these sets�

Let X be the �rst half of elements of L�� i�e�� the set of subsets of �n� not
containing n� and let Y be the complement of X� We count the incomparable
pairs of PL�L� in three parts� The number of incomparable pairs �A�B� with
A � X and B � X is led�Bn��� � ��n�� � n�n�� by induction� The same
is true for the pairs �A�B� with A � Y and B � Y � It remains to count the
incomparable pairs �A�B� with A � X and B � Y � since A precedes B in L�

we count pairs A�B with n �� A� n � B and B �L A� This number is
�
�n��

�

�
since A �L B i� A �L B � n�

�



Figure �� The drawing of B�� B� and B
 obtained from reverse lexicographic
and reverse antilexicographic linear extensions�

Lemma �� Reverse lexicographic and reverse antilexicographic linear exten�

sions are a diametral pair of Bn for n � ��

Proof� For n � � this is trivial� Let n � � we know that at least two of the
incomparabilities of the standard example S� contained in B� are comparable in
the two�dimensional poset corresponding to a diametral pair� In the standard
labeling of B� with binary vectors we may assume that these two relations are
����� � ��� and ����� � ���� Let fB� denote the poset after addition
of these two relations�

Consider the following nine induced subposets of fB�� The �rst is the sub�
poset induced by ������ ������ ����� ����� ���� ���� The other eight
are denoted Qi�j and are obtained by inserting i at position j in each of the
vectors ����� ����� ����� ���� ���� ��� for i � f�� g and j � � �� �� ��
Each of these 	 posets is a ��crown and it is easily checked that no two of these
crowns have a critical pair in common� It follows that in any two�dimensional
extension of B� at least one of the � critical pairs of each ��crown is comparable�
This gives a total of � � 	 additional comparabilities in any two�dimensional
extension of B�� i�e�� led�B�� � inc�B��� � ��� The construction of Proposi�
tion  gives a two�dimensional extension of B� with �� incomparabilities which
is thus optimal�

We have not been able to generalize the proof of the previous lemma to
the general case� There is� however� an easy property that should be true for
diametral pairs that would imply the Conjecture � We �rst state the property
as a conjecture� Then we prove the implication in Lemma �� A more detailed
discussion of properties of diametral pairs will be subject of the next section�

Conjecture � Let L�L� be a diametral pair of a poset P then at least one of

the two linear extensions L�L� reverts a critical pair of P �

Lemma �� Conjecture � implies Conjecture ��

	



Proof� Let L�L� be a diametral pair for Bn� We may assume �Conjecture ��
that L� reverts the critical pair �f� ��� n � g� fng�� As in the construction we
let X and Y be the sets of the �rst and second half of L�� Again X is the set
of subsets of �n� not containing n� The number of incomparable pairs �A�B� in
PL�L� with A � X and B � X is at most led�Bn���� The same holds for pairs
with A � Y and B � Y �

It remains to estimate the number of incomparable pairs �A�B� with A � X
and B � Y that are reversed by L� i�e�� pairs �A�B� with n �� A� n � B and
B �L A� Let �A�B� be such a pair and let mate�A�B� � �B � n�A� n�� note
that B � n � X and A � n � Y � Since mate is an involution mate de�nes a
pairing of the pairs �A�B� � X
Y � At most one of �A�B� and mate�A�B� can
be reversed by L� otherwise� B �L A �L A�n �L B�n �L B a contradiction�
A pair ��A�B��mate�A�B�� that may contribute a reversal is characterized by
A�B � n and these are di�erent subsets of �n � �� Therefore� the number of

reversals contributed by pairs �A�B� � X
Y is at most
�jXj
�

�
�
�
�n��

�

�
� Putting

things together

led�Bn� � �led�Bn��� �

�
�n��

�

�
�

Induction completes the proof�

� Intervals in G�P � and Diametral Pairs

For two linear extensions M�N of P let the interval �M�N � in G�P � consist of
all linear extensions on shortest path between M and N � put di�erently it is
the set of linear extensions of PfM�Ng� We call M�N an extremal pair if there is
no interval �M �� N �� properly containing �M�N �� Note that �M �� N ��  �M�N �
implies dist�M �� N �� � dist�M�N�� Hence� diametral pairs are extremal� A
locally extremal pair is a pair M�N such that �M�N � is not properly contained
in �M �� N �� with M � a neighbor of M or M � � M and N � a neighbor of N or
N � � N � Figure � illustrates the de�nitions� It is immediate that for pairs
M�N of linear extensions the following implications hold

diametral �� extremal �� locally extremal�
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��
��
��
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Figure �� The N and its linear extension graph� The pair ��������� is locally
extremal� the unique extremal pair is ����������

�



Those diametral pairs we understand best are the minimal realizers of two�
dimensional posets� Kierstead and Trotter �KT�	� observed that the linear
extensions of such a ��realizer are super�greedy� The de�nition of greedy and
super�greedy can be based on the following generic algorithm for linear exten�
sions�

Linear Extension

for i �  to n do
choose xi �Min�P � fx�� ��� xi��g�

output x�� x�� � � � � xn

� For greedy linear extensions xi is chosen from Min�P � fx�� ��� xi��g� �
succ�xi��� whenever this set is nonempty�

� For super�greedy linear extensions xi is chosen fromMin�P�fx�� ��� xi��g��
succ�xj� where j � i is maximal such that this set is nonempty�

Lemma �� Let P be a poset and L a super�greedy linear extension� Either P
is a chain or L reverses a critical pair�

Proof� We may assume that P has more then one minimal element� Let xi be
the minimal element of P that comes last in L � x�� � � � � xn� Since L is super�
greedy P � fx�� ��� xig � succ�xi� and� hence� succ�xi��� � succ�xi�� Since
pred�xi� � � � pred�xi��� the pair �xi� xi��� is a critical pair reversed by L�

��� Extremal Linear Extensions

Call M an extremal linear extension if there is a linear extension N such that
there is no interval �M �� N � properly containing �M�N �� Interestingly� extremal
linear extension are exactly the linear extensions participating in locally extreme
pairs�

Proposition �� For a linear extension M the following is equivalent�

� M is an extremal linear extension�

� There exists a linear extension N such that M�N is locally extremal�

Proof� Let M be an extremal linear extension with witness N � We de�ne a
partial order on G�P � with respect to a linear extensionM as follows� L �M L�

if the set of pairs of L� which are in reverse order relative to M contains the
corresponding set for L� This is equivalent to saying that the interval �M�L��
contains the interval �M�L�� If we choose N � as a maximal element above N
with respect to �M � then M�N � is a locally extremal pair� M is extremal with
respect to N � because N � �N � N �N � M �N � M � implies �M�N � � �M �� N ��
Since� N is a witness for M �s extremality this requires M � M �� The other
direction is obvious from the de�nitions�

With the next proposition we characterize extremal linear extensions� Re�
call that a jump in a linear extension L � x�� x�� � � � � xn is a pair xi� xi�� of





consecutive elements in L that are incomparable in P � If xi� xi�� are compara�
ble in P we call the pair a bump of P � The bump decomposition of L is obtained
by cutting L in each bump� This gives an ordered partition L � ��� ��� � � � � �k
such that each block �i is a maximal interval of elements xij � ��� xij���� such
that consecutive elements in �i form a jump�

Example
 Let P be the chevron labeled as in Figure � In M � ����
 there
are three jumps and two bump� the bumps are ���� and ��
��� The bump
decomposition is �� � ��� �� � ��� �� � 
�

Proposition �� A linear extension L of P is extremal i� every block �i of the
bump decomposition ��� ��� � � � � �k of L induces an antichain in P �

Proof� Let N be such that L�N is a locally extremal pair� Assume that some
block �i does not induce an antichain and let x� y � �i with x � y in P � Not
all the adjacent pairs of �i can be in reverse order to N � because this would
imply y � x in N � Hence some adjacent pair can be switched in �i to increase
the distance to N � a contradiction�

In order to prove the other direction let N be the word resulting from L
by reversing every block of the bump decomposition of P � If all blocks induce
antichains in P � then N is a linear extension of P � Moreover� L is extremal
with respect to N � since only the switch of an adjacent pair of some block yields
a neighboring linear extension of L� But such a linear extension is closer to N
as L is�

Corollary �� Every greedy linear extension is extremal�

Proof� If L is not extremal� then there exist x� y in some block �i of L with x
being covered by y in P � Observe that x and y cannot be adjacent in �i� Now�
L is not greedy� since y is a candidate to be chosen right after x�

In general� however� the class of extremal linear extensions contains non�
greedy linear extensions� Even both linear extensions of a locally extremal
pair may be non�greedy� Take for example the ��crown C�

� on f�� � �� �
� � �� ��g

�element i� is larger then i� i � � the pair ��� � �� ��� ��� ��� ��� � �� � � ��� ��� is
extremal but neither is greedy� Due to their vast amount extremal pairs seem
to be rather useless for heuristics or approximations of the linear extension
diameter� In the next subsection we discuss a much stronger property�

��� Complementary Linear Extensions

Let L be a linear extension of P and specify the choice function in Algorithm
Linear Extension so that in each round xi is the last element of Min�P � in
L� i�e�� take the reverse of L as preference list for the construction of a new
linear extension M � We call M the complementary linear extension of L and
denote the complementary mapping by 	� i�e�� 	 � L � M � L�� The k fold
iterated complementary map of L is L�k�

Example
 Let P be the chevron labeled as in Figure � If L � ����
 then
L� � ��
���

�



The intuition is that L� tends to have many pairs in the reverse order of L�
hence� the distance from L to L� should be large�

Proposition �	 Complementary linear extensions are super�greedy�

Proof� Let y�� ��� yt be an initial segment of L�� For element x � Min�P �
fy�� ��� ytg� let i�x� � max�i � x � yi�� We have to prove that yt�� is an element
x� with i�x�� maximal� Suppose not� yt�� � x� but i�x�� � r � i�x� � s� The
choice of x� implies that x �M x�� Consider the situation when ys was chosen
and note that at this time x� was available� Since ys � x we have ys �M x�

contradicting the choice of ys�

Corollary �� For linear extensions the following implications hold

complementary �� super�greedy �� greedy �� extremal�

As it is the case with super�greedy linear extensions complementary linear
extensions may be constructed by an algorithm based on a stack� To construct
the complementary linear extension of L begin with an empty stack S� Push
the elements of Min�P � onto S in the order induced by L on this set� For
i � � ��� n repeat� xi � pop�S� and push the new minimal elements� i�e�� the
elements of the set Ci � Min�P � fx�� ��� xig� �Min�P � fx�� ��� xi��g� onto
S� The order in which elements of Ci are pushed is again the order induced
by L on this set� The complementary linear extension L� of L is x�� � � � � xn�
i�e�� the elements ordered by the time of their pop� The formal proof that the
stack algorithm applied to L constructs the complementary linear extension L�

is very similar to the proof of Proposition ��
We illustrate the two procedures for complementary linear extensions with

the following example �Table �� Let P be the chevron with the labeling of
Figure  and let L � ����
� In the left column of the table we have L with
elements already used for L� removed� Underlined elements are the elements of
Min�P � fx�� ��� xi��g� and bold are the elements of Ci� i�e�� the new minimal
elements� The next three columns correspond to the stack based construction
and explain themselves� Finally� there is a column with the growing L�� We
like to remark that yet another way of interpreting the construction of L� is as
a certain depth��rst�search on the diagram of P with a least element � added�
The corresponding spanning tree consist of the edges �xi� y� for y � Ci�

L Stack pop Ci L�

� � � � � � �� � � �

� � � � � � � f�� �g � �

� �� � �� � f�g � � �

� � � �� � � � � � �

� � � � f�g � � � � �

� � � � � � � � � �

Table � Demonstrating the construction of a complementary linear extension�
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A complementary pair is a pair L�M of linear extensions with M � L� and
L � M�� Continuing with the example L � ����
 we saw L� � ��
�� and
compute L� � ����
 and L�� � ��
��� Since L�� � L� the pair L�� L�� is a
complementary pair� In this case it is a diametral pair as well�

Proposition �� A realizer L�L� of a two�dimensional poset is a complemen�

tary pair�

Proof� In L� the elements of Min�P � are in the reverse of their order in L�
Therefore� L� and L� are equal in the �rst element x� Since L� � x� �L� x��

and L� x�L� � x is a realizer of P � x induction shows L� � L��

From the de�nition it is not obvious that every poset has a complementary
pair this� however� is an immediate consequence of the following �convergence�
theorem�

Theorem �� Let P be a poset of height h and L be a linear extension then

L��h�� � L��h��� in other words L��h��� L��h is a complementary pair of P �

The proof of the theorem will be based on two lemmas�

Lemma �� Let I be a down�set of P � The complementary linear extension of

the restriction of L to the suborder induced by P on I equals the restriction of

L� to I� With LjX denoting the restriction of L to a subset X of P this can be
written as �LjI�� � L�jI�

Proof� The proof is by induction on n � jP j� Let x be the last minimal element
of P in L and note that x is the �rst element of L�� Consider P � x� With
M � Lj�P � x� we have L� � xM��

If x �� I then M jI � LjI and

L�jI �M�jI � �M jI�� � �LjI��

with the second equality being the induction hypothesis� Else� if x � I then

L�jI � xM�j�I � x� � x�M j�I � x��� � �LjI��

with the second equality being the induction hypothesis�

Lemma �� Let P be a poset� A � Max�P � and Q � P � A� If L is a linear

extension of P with L�jQ � L��jQ then L�� � L���

Proof� For t �  let L�t � xt�� x
t
�� � � � � x

t
n and use the superscript t to denote

structures involved in the stack based construction of L�t� For example the
elements of the set Ct

i �Min�P �fxt�� ��� x
t
ig��Min�P �fxt�� ��� x

t
i��g� are the

elements pushed onto stack St after the pop of xti�
By Lemma �� L�jQ � L��jQ implies that L�jQ�L��jQ is a complementary

pair for Q� If xti �� Q then obviously Ct
i � �� Hence� for t� t� of the same parity

�both odd or both even� the same sets are pushed in the same order onto the

�



stacks St and St
�

� More formally� if qti denotes the index of the ith element of
Q in L�t then Ct

qt
i

� Ct�

qt
�

i

for t � t� mod � and  � i � jQj� Using the simpli�ed

notation Cti � Ct
qti
�with calligraphic C� we restate this fact�

Fact� Cti � Ct
�

i for t � t� mod � and  � i � jQj�

The linear extension L�t is completely determined by the evolution of the stack
St� From Cti � Ct

�

i we could conclude that L�t only depends on the parity of t if
the order in which the elements of Cti are pushed onto St remained unchanged
or equivalently if the order of the elements of Cti in L�t remained unchanged�
This will be proved for t � ��

Let Dij � C�i � C
�
j � Coi � C

e
j for o odd and e even and note that there is an

order �ij of the elements of Dij such that in the sequence L�t the order of these
elements alternates between �ij for t odd and the reverse of �ij for t even�

Claim� Let j � k and y � Dij� x � Dik� For t � �� t odd� x precedes y in L�t�

Proof of Claim� Assume the existence of o � � odd such that y precedes x
in L�o� we shorten notation writing y �o x for this fact� Since x� y � Coi we
conclude that x �o�� y� Let e � o�  and recall j � k and y � Cej and x � Cek�
Hence� y was pushed onto stack Se earlier then x and since x �e y element y
was still buried in Se when x was pushed� Inspection shows that there was a
z � Cej with z � x and z was pushed after y onto Se� It follows that the order
of x� y� z in L�e�� is y �e�� z �e�� x�

From x� y � Ce��i � Coi and y �e�� x we obtain that x was pushed before y
onto Se��� Since z � x element z was pushed onto Se�� before x and y�

To obtain y �e�� z �e�� x the stack Se�� would thus get the elements
pushed in order z� x� y and pop them o� in order y� z� x� This� however� corre�
sponds to a ��element permutation that cannot be realized with a stack� This
contradiction concludes the proof of the claim� �

It follows that for t � �� t odd the order of the elements of Coi in L�t is
�i�n�� �t �i�n�� �t � � � �t �i��� This completely determines the evolution of the
stack� hence� L�� � L�� � L�� � � ��

Proof �Theorem ���� Let A�� A�� � � � � Ah be the canonical antichain partition of
P with height�P � � h� i�e�� Ai�� � Min�P � A� � � � � � Ai� and

Sh
� Ai � P �

Let A�k � A� �A� � � � � �Ak and note that A�k is a down�set�

Claim� L��k��jA�k � L��k��jA�k for k � � � � � � h�

Proof of Claim� By Lemma �� it su�ces to prove �LjA�k�
��k�� � �LjA�k�

��k���
For k �  this is trivially true� Since Ak �Max�A�k� we can use Lemma ��

with L � L��k��jA�k for the induction step� �

Since A�h � P this implies the theorem�

Proposition �� If M�N is a complementary pair� then the interval �M�N � is
locally extreme in G�P ��

Proof� Assume that there is neighbor N � of N such that �M�N � � �M�N ���
Let �x� y� be the unique pair with x �N y and y �N � x� Since N � M� and
both x and y were minimal elements when x was chosen we �nd that y �M x�

�



This implies that N � is on a shortest path from M to N � a contradiction to
�M�N � � �M�N ��� Similar arguments disprove the other cases�

A diametral pair need not be a complementary pair� An example is given
in Figure ��
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Figure �� Left� P and its unique minimum two�dimensional extension�
Middle and right� The two complementary two�dimensional extensions of P �
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