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Abstract

The design phase of an algorithm’s implementation is confronted with the issues of efficiency,
flexibility, and ease-of-use. In this paper, we suggest a concept that greatly increases the flexi-
bility of an implementation without sacrificing its ease-of-use. The loss in terms of efficiency
is small.
We demonstrate the advantages of our concept at a C++ implementation of a simple rectangle-
intersection algorithm, which follows the well-known sweep-line paradigm. We lead the reader
from a naive interface in a step-by-step guide to an interface offering full flexibility. The gain
in flexibility can reduce implementation effort by facilitating code reusage. Reusability in turn
helps to achieve correctness since more users mean more testing.
Though most of the ingredients of our concept have already been suggested elsewhere, to our
knowledge this is the first time that they are applied vigorously in a geometric setting.
We include a thorough experimental analysis on random and real world data that arouse in the
context of map labeling.
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1 Introduction

The design phase of an algorithm is of utmost importance for an implementation. The key issues are
efficiency, flexibility, and ease-of-use. While focusing on flexibility, we demonstrate that there is no reason
for sacrificing ease-of-use. Furthermore, we show that a gain in flexibility does not necessarily cause a loss
in efficiency.

In this paper we use design concepts based on generic programming. Generic programming is about
making programs more flexible by making them more general. Abstracting from concrete in- or output data
representation is an example of generic programming. In contrast to normal programs, the parameters of
generic programs are often quite rich in structure. Such parameters might be other programs, types or type
constructors, or even programming paradigms [BS98]. The specific concepts we rely on were introduced
in [GHJV95], [MS96], [Küh96], and [KW97]. The current state-of-the-art is discussed in [Wei97]. So far,
these concepts have been applied predominantly to graph problems. Exceptions as [Wei98, Ket98] deal
with the representation of geometric objects. In order to show the relevance of generic programming for
geometric algorithms, we apply our concepts to a well-understood problem of computational geometry,
namely that of finding all intersecting pairs in a set of axis-parallel rectangles. In a step-by-step manner
we lead the reader from an inflexible, naive interface towards a truly generic, flexible, and thus reusable
design. Reusability helps to lower implementation costs in the long run and to achieve correctness — for
the simple reason that more users mean more testing.

In order to support our concept with experimental data, we implemented a sweep-line algorithm for
the rectangle intersection problem in C++ in two ways; (a) using straight-forward object orientation and
(b) following our design concepts. We compare the runtime of both implementations, as well as the size
of their source code and executables. The data we used for the runtime comparison stems from random
generators as well as from real world instances. The example classes have been used for an experimental
analysis of map-labeling algorithms and are described in detail in [WW98]. The source code of our im-
plementations, the documentation of the interfaces, the test data and its description are accessible via the
WWW1.

Our concepts were inspired by the Standard Template Library (STL) [MS96]. The STL is a C++ library
of generic components, i.e. of algorithms, data containers, and iterators mediating between the former two.
The main merit of the STL is that these iterators decouple algorithms from the type of data container they
operate on. By becoming part of the C++ standard, the STL has attracted considerable attention and has
itself set a standard for good design.

Another C++ library, LEDA, the Library of Efficient Data Types and Algorithms [NM90], was de-
signed having mostly object-orientation and ease-of-use in mind. The resulting short-comings in terms of
interfacing with user-defined data structures are investigated in [Küh96]. This has led to the implementation
of a LEDA extension package for graph iterators [NW96].

A recent report about the design of CGAL, the Computational Geometry Algorithms Library, includes
a section about the pros and cons of generic versus object-orientated programming [FGK �98].

This paper is structured as follows. In Section 2, we describe our example algorithm for the rectangle-
intersection problem. In Section 3, we present a naive interface for this algorithm, investigate its disadvan-
tages and modify it step-by-step to a generic and thus flexible interface. Finally, in Section 4, we compare
the implementations of the naive and the most flexible interface of the previous section.

2 Algorithm

We demonstrate our design concepts at the example of a sweep-line algorithm for detecting all intersections
among a set of axis-parallel rectangles in the plane [Ede80]. Our sweep line will be a vertical line sweeping
the plane from left to right. As usual, the sweep line is supported by two data structures, the event-point
schedule and the sweep-line status.

Event points are the x-values where the sweep line must stop because either its status changes or
intersections have to be reported. In our case all event points are known before the sweep begins: they
are the x-values of the left and right edges of the rectangles. Thus a sorted list suffices to implement our

1see http://www.inf.fu-berlin.de/map-labeling/design/
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event-point schedule. An event point must be stored in such a way that it is clear whether it refers to a left
or right edge of a rectangle.

The sweep-line status stores intervals corresponding to the intersections of the sweep line with the
given rectangles. The endpoints of the intervals are the y-values of the lower and upper edges of the input
rectangles. Initially the sweep-line status is empty. When a left edge of a rectangle is encountered during
the sweep, the interval corresponding to the edge is inserted into the sweep-line status. A rectangle is
reported if its interval is currently in the sweep-line status and intersects the new interval. When a right
edge of a rectangle is encountered, the corresponding interval is deleted from the sweep-line status.

This reduces the rectangle intersection problem to the problem of maintaining a set of intervals such
that intervals can be efficiently inserted and deleted, and interval-intersection queries can be answered
quickly. To achieve this, we implement our sweep-line status with the interval-tree data structure [Ede80].
We have implemented a semi-static version, which must be initialised with the endpoints of all intervals
it is going to contain during the sweep. The preprocessing, namely sorting the points and building up an
empty balanced tree, takes ��� ����� time, where � is the number of intervals. Inserting intervals can
then be done in ������� time, deleting in constant time, while a query takes ��� � ����� steps, where �
is the number of intervals reported. Since every interval is stored only once in the interval tree, the storage
consumption is linear.

3 Step by Step Towards Good Design

In this section we start with a naive interface for the algorithm described in the previous section. Then
we consider the limitations of this approach and show how these can be overcome. We will improve the
straight-forward solution in several steps, each of which is independent of the others. Note that the naive
interface could easily be implemented without explicit data conversion by all of the subsequent solutions —
if that was our goal.

3.1 The Naive Approach

How would a naive programmer interface an algorithm for the rectangle intersection problem described?
He might implement a function, whose input would be an array of rectangles and their number. The output
could either consist of a list of pairs of intersecting rectangles, or, more user-friendly, of a so-called conflict
graph. In this graph, each rectangle is represented by a node, and two nodes are connected by an edge, if
the corresponding rectangles intersect. This is the interface described in Program 3.1.

class Rectangle;
class Graph;
Graph* rectangle_intersection(Rectangle* rectangle_array, int n);

Program 3.1: a naive functional interface

This interface would force the programmer to implement the data structures Rectangle and Graph.
On the other hand, it would force the user in most cases to convert his rectangles into those required by
the interface, and, after calling rectangle intersection, extract the desired information from the
conflict graph. In order to do so, the user would have to study the interfaces of the in- and output data
structures. Another disadvantage of the naive interface is that it wouldn’t even allow the user to hand over
rectangles in a container different from an array, like a list or a set.

3.2 Decoupling Algorithm and Data Organisation

The most obvious disadvantage of our previous interface is the tight link between the algorithm and its
in- and output data structures. In order to decouple algorithm and data organisation, we must solve two
problems.

(P1) container independence, i.e. we do not want to force the user to hand over an array of rectangles.



A Generic Design Concept for Geometric Algorithms 4

(P2) representation independence, i.e. we should not require the use of a fixed representation of rectangles
or graphs, but rather accept any representation fulfilling certain requirements.

The first problem can be solved with the help of iterators. Iterators are a generalisation of pointers; they
are light-weight objects that point to other objects. As the name suggests, iterators are used to iterate over a
range of objects: if an iterator points to an element in a range, it can be incremented so that it points to the
next element or to an end-of-range marker. Iterators can also be tested for equality, e.g. to test whether the
end of a range is reached. They represent an extremely versatile link between containers and algorithms.
If an algorithm’s interface takes iterators as arguments, then the algorithm can be applied to any container
that provides access to its elements via iterators. This is the central concept introduced by the STL [MS96].

Consequently, our next interface will expect iterators to manage the input. Handling the output via
iterators is not so simple, as the conflict graph is not a linear structure. This problem is attacked in the
following section. For the time being, we ask the user to provide his definition of a graph as a template
parameter to our interface. Of course, this definition must fulfill some requirements. The implementation
expects the following member functions for inserting nodes and edges.

class User_Rectangle;
class User_graph<User_Rectangle*>;
typedef User_graph<User_Rectangle*> Graph;
// requirements
typedef Graph::node_type node;
node Graph::insert_node (User_Rectangle*);
void Graph::insert_edge (node&, node&);

Note that the user is not forced to write his own graph data structure; he can use that of any library and
write a simple wrapper that implements our requirements with the help of the library graph.

In order to solve the second problem, we use so-called data accessors. While iterators realise access to
objects, data accessors are used to access the data associated with these objects [KW97]. Data accessors
have two parts, a data accessing function, which is responsible for the actual access, and a light-weight
object. This object is also referred to as the data accessor. It encapsulates the data type to be accessed
and is used to select the correct data accessing function. Our next interface will require the user to provide
such data accessors for his representation of the input data. Assume that the user declares the following
User Rectangle type.

typedef CoordType double;
struct User_Rectangle { CoordType llx, lly, urx, ury; };
typedef User_Rectangle* User_iterator;

where llx, lly, urx, and ury represent the coordinates of the lower left and upper right corner of
the rectangle, respectively. The data accessor for the x-coordinate of the lower left corner can then be
defined as follows.

// data accessor
struct LLXDA { typedef CoordType value_type };
// data accessing function
CoordType get(LLXDA const& da, User_iterator const& it)
{ return (*it).llx; }

All our algorithm needs to know about the user’s rectangles are the coordinates of their corners. This is
exactly what the data accessors will supply. Note the interplay between data accessing function and its
arguments, namely the data accessor and the iterator, in Program 3.2.

3.3 Tightening Control

Suppose the user of our implementation is only interested in a tiny fraction of the output, like the number
of intersections or all rectangles intersecting a given rectangle. Or suppose he would like to abort the
execution of the algorithm when the sweep line reaches a certain x-value or if another condition becomes
true. With the interface suggested in the previous subsections, he would not be able to take advantage of
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template < class Iterator, class Graph,
class LLXDA, class LLYDA, class URXDA, class URYDA >

void rectangle_intersection(Iterator begin, Iterator end, Graph& graph,
LLXDA llxda, LLYDA llyda, URXDA urxda, URYDA uryda)

{
for (Iterator rect_it = begin; rect_it != end; ++rect_it)

typename LLXDA::value_type lower_x = get(llxda, rect_it);
// ......
Iterator rect_it1, rect_it2; // ......
typename Graph::node_type node1 = graph.insert_node(rect_it1),

node2 = graph.insert_node(rect_it2);
graph.insert_edge(node1, node2); // ......

}

Program 3.2: a functional, data-organisation independent interface

such a situation. It is clear that a functional implementation cannot provide such a degree of interaction
between the user and the algorithm. Thus we will switch to a class interface, which allows us to have a
state and offer the user more information about the algorithm’s progress.

The key to more control is the loop kernel [Küh96, Wei97]. The loop kernel is a method which encap-
sulates the body of the central loop of the algorithm. It can be advanced in single steps and informs the user
about the current state of the algorithm. The loop kernel makes the whole algorithm look like an iterator
that can be incremented until the execution is finished.

For our example algorithm, we would define the following states: none at the beginning, done at the
end, rectangle begin when the sweep line hits the left edge of a rectangle, and rectangle end
when a right edge is reached. We implement the loop kernel by a member function step() that advances
the sweep line to the next event point and returns the current state, see Program 3.3.

The concept of the loop kernel would be incomplete without the idea of full logical inspectability. An
algorithm is fully logically inspectable if the user can access all important intermediate results during the
execution. In our example this would mean access to the content of the whole sweep-line status, not just
to those rectangles that intersect the current one. Hence we offer two pairs of iterators, one referring to the
whole sweep-line status, and one marking just the range of current intersections. Their type is discussed in
Section 3.5.

Note that the user can still get the output in a graph representation as before, but the existence of a
graph data structure is no longer a prerequisite to using the algorithm. (This can also be achieved without
templated member functions like run(), which are standard conform, but not yet supported by all C ++
compilers.)

3.4 Influencing Critical Decisions

Another important question is the following. Which definition of “intersection” do we implement? Does
touching already imply an intersection? What about inclusion? Of course, the answers to these questions
will differ from application to application. Instead of trying to cover all possible interpretations, we leave
the definition of an intersection to the user. To do so, we must isolate the decision making parts of our
implementation such that no information local to the algorithm is needed. Then the user can provide
function objects, with which the algorithm is parameterised.

Our rectangle intersection algorithm has two basic data structures, the event-point schedule and the
sweep-line status. The order of event points decides, whether the projections of the corresponding rectan-
gles intersect on the x-axis. Similarly, a query of the sweep-line status returns rectangles, whose projections
intersect that of the current rectangle on the y-axis. To differentiate between these two categories of inter-
sections, we require the user to provide two function objects, one for sorting the event-point schedule and
the other for determining the behaviour of the interval tree that implements the sweep-line status.

In the following we give examples of function objects that view rectangles as topologically open and
thus do not report rectangles touching each other. To sort the event points accordingly, we just have to make
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template < class Iterator,
class LLXDA, class LLYDA, class URXDA, class URYDA >

class Rectangle_intersection {
public:

// constructor
Rectangle_intersection(Iterator begin, Iterator end);
// return the result in user supplied graph
template <class Graph> void run(Graph& graph);
// loop kernel
enum state { none, rectangle_begin, rectangle_end, done };
bool valid() { return (state != done); }
state step();
// full logical inspectability
Iterator current(); // rectangle represented by current event point
typedef /* ...... */ Solution_iterator;
Solution_iterator begin();
Solution_iterator end();
// queries: report all rectangles intersecting the current rectangle
Solution_iterator current_begin();
Solution_iterator current_end();

};

Program 3.3: a class interface

sure that an event point �� corresponding to the left edge of a rectangle will be inserted into the schedule
after all event points that belong to right edges with the same x-coordinate. Then all of the latter rectangles
are already removed from the sweep-line status and will not be reported when we reach � �.

Since an event point is internal to our algorithm, it cannot be accessed directly by the user. Thus we
have to isolate the information needed to sort the event points. If two event points have the same x-value, we
need to know whether each corresponds to a left or right edge of the respective rectangle. This information
can easily be obtained via the x-coordinate of the event point plus the iterator pointing to the corresponding
rectangle. Their types are of course known to the user. Thus we require a function object, which realises a
comparison between two pairs of the corresponding types, see Program 3.4.

class Compare_x {
public:

typedef pair<CoordType, User_iterator> Pair;
bool operator()(const Pair& p, const Pair& q) {

bool before = true;
if (p.first == q.first)
{
// p is the x-coordinate of the left edge of a rectangle
if (p.first == p.second->llx) before = false;

}
else before = (p.first < q.first);
return before;

}
};

Program 3.4: compare function object for sorting the event-point schedule

The function object for the interval tree is quite simple, see Program 3.5.
Note the difference of this technique to the approach of implementing the most general definition of

intersection and then filtering out all undesired information. Our function objects have the potential to
reduce the complexity not just of the output, but also of the computation.
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class Compare_y {
public:

bool operator()(CoordType const y1, CoordType const y2)
{ return (y1 < y2); }

};

Program 3.5: compare function object for querying the sweep-line status

3.5 The Complete Interface

Program 3.6 shows the interface resulting from our successive improvements. At first sight it might look
more complicated than the naive interface. To guarantee a smooth learning curve for users not familiar
with generic programming and the algorithm we implemented, a good library would provide a concrete
representation of rectangles and graphs, say Our rectangle and Our graph, as well as defaults for
the other template parameters. This would make it possible to use our algorithm as in Program 3.7.

Note that the constructor has been parameterised by objects of each of the class’s template parameters.
This allows to instantiate our algorithm with objects that may be constructed other than by their default
constructor. The data accessors URXDA and URYDA for the coordinates of the upper right corner of the
input rectangles might for example be parameterised with a given height and width of the rectangles,
which could change from instantiation to instantiation of the intersection algorithm.

Of course, we have also implemented the interval tree for the sweep-line status with the concepts
presented here. This is the point where the flexibility of our algorithms bears fruit, since we do not have to
convert any rectangles into intervals to construct the interval tree. This is due to the fact that the endpoints
of the intervals we want to store in the tree correspond to the y-coordinates of the corners of our input
rectangles. Thus we just parameterise the nested interval tree class with a subset of the template parameters
of the class Rectangle intersection. The required parameters are the types of the rectangle iterator
and the compare function object for y-coordinates as well as the data accessors LLYDA and URYDA, see the
private definition of the type Interval tree in Program 3.6. So in a way, the class Interval tree
considers our input rectangles to be nothing but intervals, namely the rectangles’ projection on the y-axis.

The iterator Solution iterator needed to traverse the sweep-line status is provided by the class
Interval tree. Dereferencing a Solution iterator supplies the user with an iterator of the type,
with which he has parameterised the class Rectangle intersection.

Program 3.8 shows how the data structures required by our algorithm could be declared. Our example
demonstrates one of the advantages of using data accessors. If the input consists of squares of common
size, the user has to store only the coordinates of their lower left corners. When our algorithm needs a
coordinate of the opposite corner, the corresponding data accessing function computes it on the fly. This
reduces the storage consumption of the input by 50%.

Note that not all compilers support the pointer-to-member mechanism for template parameters we used
here. The obvious workaround is to declare explicitly all four data accessors and accessing funtions re-
quired by the generic implementation.

The intersection algorithm for squares can then be declared as in Program 3.9.
Program 3.10 shows how the types declared in Programs 3.8 and 3.9 are plugged into our interface.

4 Experiments

We compare two different implementations of the rectangle intersection problem in terms of run-time. The
implementations are characterised as follows.

1. the object-oriented approach encapsulates the interface of Section 3.1 in a class. Its implementation
requires a fixed type of rectangle. Similarly, the underlying interval tree is a class requiring a fixed
type of interval.

2. the generic approach implements the generic interface of Section 3.5. All data structures are imple-
mented according to the concepts suggested in this paper.
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class Our_rectangle; class Our_graph;
class Our_lxda; class Our_lyda; class Our_hxda; class Our_hyda;
class Our_compare_x; class Our_compare_y;

template < class Iterator = Our_rectangle*,
class LLXDA = Our_lxda, class LLYDA = Our_lyda,
class URXDA = Our_hxda, class URYDA = Our_hyda,
class CompareX = Our_compare_x,
class CompareY = Our_compare_y >

class Rectangle_intersection
{

// type of the sweep-line status
typedef Interval_tree<Iterator, LLYDA, URYDA, CompareY>

Sweep_line_status;
public:

// type of rectangle coordinates
typedef typename LLXDA::value_type value_type;
// type of iterator used to return intersections
typedef typename Sweep_line_status::iterator Solution_iterator;
// constructor
Rectangle_intersection(Iterator begin, Iterator end,

LLXDA lxda = LLXDA(), LLYDA lyda = LLYDA(),
URXDA hxda = URXDA(), URYDA hyda = URYDA(),
CompareX comp_x = CompareX(),
CompareY comp_y = CompareY() );

// loop kernel
enum state { none, rectangle_begin, rectangle_end, done };
bool valid() const { return (state != done); };
state step();
// full logical inspectability
Iterator current(); // rectangle represented by current event point
value_type current_sweep_line_position() const;
Solution_iterator begin();
Solution_iterator end();
// queries: report all rectangles intersecting the current rectangle
Solution_iterator current_begin();
Solution_iterator current_end();
// miscellaneous member functions
int number_of_intersections() const;
// return conflict graph of input rectangles
template <class Graph> void run (Graph& graph);

};

Program 3.6: flexible interface of the class Rectangle intersection

Our_rectangle rectangles[10];
Our_graph our_graph;
// ......
// declare and run the rectangle intersection algorithm
Rectangle_intersection rectangle_intersection(rectangles, rectangles+10);
rectangle_intersection.run(our_graph);

Program 3.7: Ease-of-use: applying Rectangle intersection to library-supplied data structures
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// representation of a square
typedef int CoordType;
const CoordType length = 50;
struct Square { CoordType x, y; };

// data accessors for the above representation
template<CoordType Square::*member>
struct CoordLowDA { typedef CoordType value_type; };
template<CoordType Square::*member>
struct CoordHighDA { typedef CoordType value_type; };

// data accessing functions
template <CoordType Square::*member>
inline CoordType get(CoordLowDA<member> const&, User_iterator const& it)
{ return (*it).*member; };
template <CoordType Square::*member>
inline CoordType get(CoordHighDA<member> const&, User_iterator const& it)
{ return (*it).*member + length; };

// compare function objects as defined above
class Compare_x; class Compare_y;

Program 3.8: Flexibility: user-supplied types for applying Rectangle intersection

// algorithm
typedef Rectangle_intersection< User_iterator,

CoordLowDA<&(Square::x)>,
CoordLowDA<&(Square::y)>,
CoordHighDA<&(Square::x)>,
CoordHighDA<&(Square::y)>,
Compare_x, Compare_y >

Square_intersection_algo;
// iterator for access to the solution
typedef typename Square_intersection_algo::Solution_iterator Solution_it;

Program 3.9: declaration of the class Rectangle intersection for squares of common size

main()
{

Square squares[10]; // input of squares......
Square_intersection_algo my_algo(squares, squares+10);
while (my_algo.valid())

if (my_algo.step() == Square_intersection_algo::rectangle_begin) {
Square* curr = my_algo.current();
// assuming output operator for Square
cout << *curr << " intersects: " << endl;
Solution_it end = my_algo.current_end();
for (Solution_it it = my_algo.current_begin(); it != end; ++it)

cout << *it << endl;
}

}

Program 3.10: a toy application for user-supplied data structures
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4.1 Example Classes

We ran both implementations on the following eight example classes. These benchmarks have also been
used to compare the quality of map labeling algorithms experimentally [WW98] and are available from our
Web page.

RandomRect. We choose � points uniformly distributed in a square of size ��� � ���. Each point
corresponds to the lower left corner of a rectangle. To determine the size of each rectangle, we choose the
length of both edges independently under normal distribution, take its absolute value and add 1 to avoid
non-positive values. Finally we multiply both rectangle dimensions by 10.

DenseRect. Here we try to place as many rectangles as possible on an area of size � �

�
� � ��

�
�. ��

is a factor chosen such that the number of successfully placed rectangles is approximately �, the number
of sites asked for. We do this by randomly selecting the rectangle size as above and then trying to place
the rectangle 50 times. If we don’t manage, we select a new rectangle size and repeat the procedure. If
none of 20 different sized rectangles could be placed, we assume that the area is well covered, and stop.
For each rectangle we placed successfully, we return its height and width. To generate (a limited amount
of) intersections, we randomly choose a corner and use that as the position of the lower left corner of the
rectangle we return.

RandomMap and DenseMap. These example classes try to imitate a real map using the same methods
as RandomRect and DenseRect for placing the lower left corner of the rectangles, but more realistic rectan-
gle sizes. We assume a distribution of 1:5:25 of cities, towns and villages. After randomly choosing one of
these three classes according to the assumed distribution, we set the rectangle height to 12, 10 or 8 points
accordingly. The length of the rectangle text then follows the distribution of a set of 377 German Railway
station names. We assume a typewriter font and set the rectangle length to the number of characters times
the font size times 2/3. The multiplicative factor reflects the ratio of character width to height.

VariableDensity. This example class was suggested in an experimental map labeling paper by Chris-
tensen et al. [CMS95]. There, the points are distributed uniformly on a rectangle of size 	
� � ���. All
rectangles are of equal size, namely �� 	.

HardGrid. In principle we use the same method as for Dense, that is, trying to place as many rectangles
as possible into a given area. In order to do so, we use a grid of �� �

�
������

�
�� cells with edge lengths

�. Again, �� is a factor chosen such that the number of successfully placed squares is approximately �. In
a random order, we try to place a square of edge length � into each of the cells. This is done by randomly
choosing a point within the cell and putting the lower left corner of the square on it. If it overlaps any of
the squares placed before, we repeat at most 10 times before we turn to the next cell. Finally, we choose a
random corner of the square we placed and use that as the lower left corner of the square we return.

RegularGrid. We use a grid of ���� � ���� square grid cells. For each cell, we randomly choose a
corner and place a point with a small constant offset near the chosen corner. On this point, we place a
square with an edge length of grid cell size minus the offset.

MunichDrillholes. The municipal authorities of Munich provided us with the coordinates of roughly
19,400 ground-water drill holes within a 10 by 10 kilometer square centered approximately on the city
center. From these sites, we randomly pick a center point and then extract a given number of sites closest
to the center point according to the maximum norm. Thus we get a rectangular section of the map. Its
size depends on the number of points asked for. The drill-hole labels are abbreviations of fixed length. By
scaling the x-coordinates, we make these rectangular labels into squares and subsequently apply an exact
solver for label size maximisation. The label size determined in this way is the size of the squares we
return. We place them with their lower left corner on the scaled drill holes.
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Figures 17 to 24 show an important parameter of these example classes, namely their average number
of intersections. We did not count pairs of touching rectangles, like in the example implementation of the
compare function objects in Section 3.4. We used examples of 250, 500,... up to 3000 rectangles. For each
of the example classes and each example size, we averaged the runtime and the number of intersections
over 30 files.

4.2 Results

In Figures 1 to 24, the average example size is shown on the x-axis. On the y-axis, Figures 1 to 8 show the
average runtime for both implementations for the interesting special case that the user is merely interested
in the number of intersections. This is slightly favourable for the generic implementation since there, no
information about which rectangles are in fact intersecting, has to be stored. In this setting, the running
times were nearly identical.

Figures 9 to 16 show the runtime when all intersections are stored in adjacency lists during the execution
of the two programs. Here the generic implementation took between 0 and 60% longer than the object-
oriented version. Note however that this gap is smaller — not more than 20% — when the two example
classes RegularGrid and MunichDrillholes with the lowest density are ignored, i.e. those with the smallest
ratio of the number of rectangles and the number of intersections, see Figure 22 and 23.

The average runtime is given in CPU seconds. It was measured on a Sparc-Ultra-1 machine; the
programs were compiled with the SUN CC-4.2 compiler with optimiser option -fast. On our Web page,
we provide graphs for the same test suite run on an SGI IP27 with the mipsPRO CC-7.1 compiler. The
results were comparable.

While the generic and the object-oriented implementation do differ much in their source code size, we
listed the sizes of executables for identical test programs for both implementations in Table 1. The source
code is available via our Web page as well.

test program for � � � size of executable in KBytes

object-oriented interval tree 63
generic interval tree 74
object-oriented rectangle intersection 128
generic rectangle intersection 120

Table 1: sizes of the executables

It is interesting to note that although the executable of a simple test program for the generic version
of the interval tree is slightly larger than that of its object-oriented counterpart, it is opposite for the cor-
responding versions of the rectangle intersection data structure. The reason for this seems to be that the
generic implementation does not need to convert and store the input data for the interval tree explicitly.
This difference in the sizes of the executables may become substantial in case of larger class hierarchies.
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Conclusion

We have presented a toolbox of concepts which helps to turn inflexible into generic and thus reusable
interfaces. We have exemplified this transition at a geometric algorithm, namely a sweep-line algorithm
for the rectangle intersection problem. On the road from a naive to a flexible interface for this algorithm,
we suggested to decouple algorithms from the organisation of their in- and output data. Then we presented
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the loop kernel as an important means to gain control over the execution of an algorithm. Full logical
inspectability introduced additional transparence. Finally, we came up with function objects as a way to
parameterise algorithms with information that can be used to influence critical decisions.

In our experiments, we compared a generic to an object-oriented implementation of the rectangle in-
tersection algorithm. We investigated the runtime of the two implementations on eight example classes
from random and real world sources and in two different settings. In the first setting, which was favourable
for the generic implementation, the running times were nearly identical. In the second setting, the generic
implementation was just 20% slower than its competitor on all example classes but the two least dense. We
do not think that this is too high a price for the gain of flexibility achieved by the generic interface.

The slowdown caused by an object-oriented library like LEDA is of a different order of magnitude. In
[MN92], the runtime of Dijkstra’s algorithm using LEDA Fibonacci heaps is compared to an implementa-
tion using special integer Fibonacci heaps. For this example, the authors report a slowdown by a factor of
3.
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Appendix A: Runtimes for Computing the Number of Intersections
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Figure 1: RandomMap

�

���

���

���

���

���

���

� ��� ���� ���� ���� ���� ����

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

Figure 2: RandomRect
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Figure 3: DenseMap
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Figure 4: DenseRect
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Figure 5: HardGrid
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Figure 6: RegularGrid
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Figure 7: MunichDrillholes
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Figure 8: VariableDensity
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Appendix B: Runtimes for Generating Adjacency Lists
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Figure 9: RandomMap
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Figure 10: RandomRect
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Figure 11: DenseMap
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Figure 12: DenseRect
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Figure 13: HardGrid
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Figure 14: RegularGrid
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Figure 15: MunichDrillholes
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Figure 16: VariableDensity
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Appendix C: Numbers of Intersecting Rectangles
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Figure 17: RandomMap
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Figure 18: RandomRect
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Figure 19: DenseMap
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Figure 20: DenseRect
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Figure 21: HardGrid
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Figure 22: RegularGrid
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Figure 23: MunichDrillholes
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Figure 24: VariableDensity


