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� Introduction

The unique ellipsoid of smallest volume enclosing a compact set P in d�space 	also known
as the L�owner�John ellipsoid of P 
���� has appealing mathematical properties which make
it theoretically interesting and practically useful In typical applications� a complicated
body needs to be covered by a simple one of similar shape and volume� in order to simplify
certain tests For convex bodies 	eg the convex hull of a �nite point set�� the smallest
enclosing ellipsoid � unlike the isothetic bounding box or the smallest enclosing sphere �
guarantees a volume approximation ratio that is independent of the shape of the covered
body This follows from the following property of it� �rst proved by John 	who also
established existence and uniqueness� 
���� if the smallest enclosing ellipsoid of a compact
convex body K is scaled about its center with factor ��d� the resulting ellipsoid lies
completely inside K Let us mention three concrete applications

Ray tracing� Given a scene of objects in ��space and a ray� �nd the �rst object hit
by the ray This problem occurs in computer graphics� when the scene is rendered in
presence of various light sources Since many rays need to be processed� the query has
to be answered fast In order to test whether a given object is hit by a ray� we can �rst
test with a bounding volume 	which we have precomputed� � if the ray misses it� it misses
the object as well 
�� section ������ As bounding volumes� boxes� spheres but also
ellipsoids 
�� are useful� depending on the kind of objects

Motion planning� In a similar spirit� bounding volumes are applied in robotics� when
a collision�free motion of a robot among a set of obstacles is sought After enclosing the
robot and�or the obstacles by simple shapes� the problem becomes easier� and if a valid
motion is found in the simpli�ed environment� this motion is also valid in the original
setting It is clear that this heuristic is the more successful� the tighter the bounding
volumes approximate the objects 
��

Statistics� In a di�erent way� the smallest enclosing ellipsoid is applied in statistics
Given a cloud of measure points in d�space� one wants to identify and peel o� �outliers��
often repeatedly One heuristic peels o� the vertices of the convex hull 
�� A �ner peeling
is obtained by choosing the boundary points of the smallest enclosing ellipsoid 
���� whose
number typically depends only on d

��� Previous Work

Several algorithms for computing the smallest enclosing ellipsoid of an n�point set in
d�space have been proposed On the one hand� there are iterative methods which em�
ploy standard optimization techniques 	such as gradient descent�� adapted to the problem

��� ��� These algorithms usually work on a dual problem� known as D�optimal design 
���
On the other hand� there are �nite methods which �nd the desired ellipsoid within a
bounded number of steps For �xed d� the algorithm of Post 
��� has complexity O	n��
An optimal deterministic O	n� algorithm has been given by Dyer 
��� randomized O	n�
methods are due to Adler and Shamir 
�� and Welzl 
��� Since the problem is LP�type in
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the sense of 
���� generic algorithms for this class of problems can be applied as well� see 
��
In any case� the runtime dependence on d is exponential A method for the case d � ��
without time analysis� has been developed by Silverman and Titterington 
���

All these �nite methods have the property that actual work is done only for problem
instances whose size is bounded by a function in d Assuming that d is constant� such
instances can be solved in constant time However� as far as explicit formulae for these
primitive operations have been given � which is the case only for d � � � they are quite
complicated and rely on solving third�degree polynomials 
��� ��� ��� This makes them
expensive to evaluate and only leads to approximate solutions� unless specialized number
types allowing exact manipulations of expressions involving roots 	like LEDA�s number
type real 
���� are used

��� Our Contribution

The goal of this paper is to show that in case of Welzl�s algorithm for d � �� the primitive
operations can be implemented in rational arithmetic This means� they can be performed
exactly� if multiple precision integers 	like LEDA�s number type integer 
��� or the GNU
Multiple Precision Arithmetic Library�� are used Even if the computations are done
in �oating point arithmetic� the simple rational expressions we get guarantee that the
primitives are easier to code and more e�cient to evaluate than in previous methods

In the two�dimensional case we treat here� the constant�size problems involve smallest
ellipses de�ned by up to � points� where the di�cult case arises when the ellipse is de�ned
by � points As we show below� even if the points have rational coordinates� the ellipse
will typically have not� so in order to stay with rational expressions� an explicit evaluation
of the ellipse has to be avoided

The main problem now is to perform the crucial primitive of Welzl�s method� namely
to test whether a point lies inside a given ellipse� where this ellipse may have irrational
coordinates and is therefore not explicitly given

Below we reduce this in�ellipse test to a sign evaluation of a certain derivative� and this
leads to an elegant and e�cient method whose computational primitives are in�ellipse
tests over rational ellipses and evaluations of derivatives at rational values Plugged into
Welzl�s algorithm� this solves the whole problem of computing smallest enclosing ellipses
in rational arithmetic

� Smallest Enclosing Ellipsoids

Let us brie�y review Welzl�s randomized algorithm for computing the smallest enclosing
ellipsoid of an n�point set in d�space 
��� The algorithm is very simple and achieves an
optimal expected runtime of O	n� if d is constant

Given a point c � R
d and a symmetric� positive de�nite� matrix A � R

d�d � the set of

�available by anonymous ftp from from prep�ai�mit�edu� The �le name is �pub�gnu�gmp�M�N�tar�gz
�i�e� xTAx � � for x �� �



�

points p � Rd satisfying

	p� c�TA 	p� c� � � 	��

de�nes an ellipsoid with center c The function f	p� � 	p � c�TA 	p � c� is called the
ellipsoid function� the set E � fp � R

d j f	p� � �g is the ellipsoid body Given a point
set P � fp�� � � � � png � R

d � we are interested in the ellipsoid body of smallest volume
containing P  Identifying the body with its generating ellipsoid� we call this the smallest

enclosing ellipsoid of P � SmEll	P � 	If the a�ne hull of P is not equal to Rd � SmEll	P �
is a lower�dimensional ellipsoid �living� in the a�ne hull�

The idea of Welzl�s algorithm for computing SmEll	P � is as follows� if P is empty�
SmEll	P � is the empty set by de�nition If not� choose a point q � P and recursively de�
termine E �� SmEll	P nfqg� If q � E� then E � SmEll	P � and we are done Otherwise�
q must lie on the boundary of SmEll	P �� and we get SmEll	P � � SmEll	P n fqg� fqg��
the smallest enclosing ellipsoid of P n fqg with q on the boundary 	Figure �� Computing
the latter 	in the same way� is now an easier task because one degree of freedom has
been eliminated The generic call of the algorithm computes SmEll	Q�R�� the smallest
ellipsoid enclosing Q that has R on the boundary Before we give a detailed description�
let us state a few important facts 	proofs of which may be found in 
��� ����

SmEll�Pnfqg	

q

SmEll�P 	

Figure �� The inductive step in Welzl�s algorithm

Proposition ���
�i� If there is any ellipsoid with R on its boundary that encloses Q� then SmEll	Q�R�
exists and is unique�

�ii� If E � SmEll	Q�R� exists and q �� SmEll	Qnfqg� P �� then SmEll	Qnfqg� R�fqg�
exists and equals SmEll	Q�R��
�iii� If SmEll	Q�R� exists� then there is S � Q with jSj � max	�� d	d � ���� � jRj� and

SmEll	Q�R� � SmEll	S�R� � SmEll	�� S �R��

By 	iii�� a smallest enclosing ellipsoid is always determined by at most � �� d	d � ����
support points Incidentally� � is the number of free variables in the ellipsoid parameters
A and c

If the point q to be removed for the recursive call is chosen uniformly at random among
the points in Q� we arrive at the following randomized procedure
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Algorithm ��� �computes SmEll	Q�R�� if it exists�

SmEll	Q�R��
IF Q � � OR jRj � � THEN

RETURN SmEll	�� R�
ELSE

choose q � Q uniformly at random
E �� SmEll	Q n fqg� R�
IF q � E THEN

RETURN E
ELSE

RETURN SmEll	Q n fqg� R � fqg�
END

END

To compute SmEll	P �� we call the algorithm with the pair 	P� �� Termination of the
procedure is immediate because the recursive calls decrease the size of Q Correctness
follows from the proposition and the observation that the algorithm � when called with
	P� �� � maintains the invariant �SmEll	Q�R� exists� To justify the termination criterion
�jRj � ��� we need the following lemma proving that in this case only one ellipsoid E
with R on the boundary exists� so that we must have E � SmEll	�� R� � SmEll	Q�R�
This is remarkable� because in general� an ellipsoid is not uniquely determined by any �
points on the boundary 	for example� consider � � � points on the boundary of a 	d� ���
dimensional ellipsoid E� and some additional point q� then there are many d�dimensional
ellipsoids through E and q�

Lemma ��� Whenever R attains cardinality � during a call to SmEll	P� ��� exactly one

ellipsoid E with R on its boundary exists�

Proof� By expanding 	��� we see that an ellipsoid is a special second order surface of the
form

fp � Rd j pTMp � �pTm � w � �g�
de�ned by � � � parameters M � Rd�d 	symmetric�� m � Rd � w � R

For a point set R � R
d let S	R� denote the set of 	� � ���tuples of parameters that de�ne

second order surfaces through all points in R It is clear that S	R� is a vector space� and
we de�ne the degree of freedom wrt R to be dim	S	R�� � � Obviously� the degree of
freedom is at least ��jRj� since any point in R introduces one linear relation between the
parameters

We now claim that during Algorithm ��� the degree of freedom wrt R is always exactly
� � jRj This is clear for R � � Moreover� if q is added to R in the second recursive call
of the algorithm� the degree of freedom goes down� which proves the claim To see this�
assume on the contrary that dim	S	R�� � dim	S	R � fqg��� hence S	R� � S	R � fqg�
Then it follows that q already lies on any second order surface through R� in particular
on SmEll	Q n fqg� R� But then the second recursive call would not have been made� a
contradiction



�

Now the claim of the lemma follows� if jRj � �� the degree of freedom is �� ie S	R� has
dimension � Since a second order surface is invariant under scaling its parameters� this
means that there is a unique second order surface� in this case an ellipsoid� through R �

To measure the expected performance of the algorithm� we count the number of primitive

operations These are the ellipsoid computations 	�SmEll	�� R��� and the in�ellipsoid tests

	�q � E�� In the subsequent sections we concentrate on these primitive operations in the
case d � � For the sake of this section� let us adopt the asymptotic point of view� if d is
constant� the primitive operations can be implemented in constant time as well� so their
overall number determines the actual runtime of Algorithm �� up to a constant multiple

Let cj	m� 	resp tj	m�� denote the expected number of ellipsoid computations 	resp
in�ellipsoid tests� in a call to SmEll	Q�R� with jQj � m and jRj � � � j We get
cj	�� � c�	m� � �� tj	�� � t�	m� � �� and for m� j � �

cj	m� � cj	m� �� �
j

m
cj��	m� ���

tj	m� � tj	m� �� � � �
j

m
tj��	m� ���

where j�m is an upper bound for the probability of making the second recursive call
Why� Choose S according to Proposition �� 	iii� We have jSj � j� and the second
recursive call becomes necessary only if q � S By induction one can show that

cj	m� � 	� � Hm�j � 	� � lnm�j �

Hm � � � ��� � � � �� ��m the m�th harmonic number� and

tj	m� �
�

jX
k��

�

k 

�
j m � 	e� ��j m�

e the Euler constant Thus� the expected number of primitive operations necessary to
compute SmEll	P � is bounded by

c�	n� � t�	n� � 	� � lnn�� � 	e� ��� n�

which is O	n� for constant d

The move�to�front heuristic� There are point sets on which the algorithm does not
perform substantially better than expected� on such point sets� the exponential behavior
in � � !	d�� leads to slow implementations already for small d Although for d � � the
actual runtime is still tolerable for moderately large n� a dramatic improvement 	leading
to a practically e�cient solution for large n as well� is obtained under the so�called move�

to�front heuristic This variant keeps the points in an ordered list 	initially random� In
the �rst recursive call� q is chosen to be the last point in the list 	restricted to the current
subset of the points� If the subsequent in�ellipsoid test reveals q �� SmEll	Qnfqg� R�� p is
moved to the front of the list� after the second recursive call to SmEll	Q n fqg� R � fqg�
has been completed See 
��� for further details and computing times
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� Conics

In the sequel we elaborate on the primitive operations of Welzl�s algorithm in the case
d � � To prepare the ground� we look at ellipses from the more general perspective of
arbitrary conics

A conic C 	second order curve� quadratic form� in linear form is the set of points
p � 	x� y�T � R� satisfying the quadratic equation

C	p� �� rx� � sy� � �txy � �ux � �vy � w � �� 	��

r� s� t� u� v� w being real parameters Note that C is invariant under scaling the vector
	r� s� t� u� v� w� by any nonzero factor After setting

M ��

�
r t
t s

�
�m ��

�
u
v

�
�

the conic assumes the form

C � fpTMp � �pTm � w � �g� 	��

If a point c � R
� exists such that Mc � �m� C is symmetric about c and can be written

in center form as

C � f	p� c�TM	p� c�� z � �g� 	��

where z � cTMc�w If det	M� �� �� a center exists and is unique Conics with det	M� � �
are ellipses� for det	M� � � we get hyperbolas If det	M� � �� C de�nes a parabola which
has a center 	and then in�nitely many� only in the case where C degenerates to a pair of
parallel lines

If C is an ellipse� ie det	M� � �� we can without loss of generality assume that M is
positive de�nite 	which in the �d�case just means det	M� � � and r� s � �� For this� note
that det	M� � � implies that r� s have the same sign� so 	�� can be scaled in such a way
that r� s both become positive In this case� a point q � 	x� y�T lies inside resp outside the
ellipse if C	q� � � resp C	q� � � Also� if C is in center form 	��� then we either have z � �
in which case C is the trivial ellipse C � fcg� or z � � holds In the latter case� we may
as well assume z � �� after scaling M and z accordingly This takes us back to the form
of 	��� with A �� M�z

Of particular importance is the linear combination of conics If C�� C� are two conics� the
linear combination C �� �C��	C� is given by C	p� � �C�	p��	C�	p�� �� 	 � R Obviously�
if a point q belongs to both C� and C�� q also belongs to C

Conics through four points� A unique conic goes through any �ve points p�� � � � � p�
	see eg 
����� while any four points p�� � � � � p� determine a one�dimensional bundle of
conics� which is given as the linear span of two particular conics C�� C� We may choose C�
as the pair of lines p�p� and p�p�� and C� as the pair of lines p�p� and p�p�� see Figure �

These are indeed conics 	namely degenerate hyperbolas� which can be seen as follows



�

p�

p�
p�

p�

C�

C�

Figure �� Two special conics through four points

For three points q� � 	x�� y��� q� � 	x�� y��� q� � 	x�� y��� de�ne


q�q�q�� �� det

�
x� � x� x� � x�
y� � y� y� � y�

�
�

It is well�known 	and easy to verify� that 
q�q�q�� records the orientation of the point
triple Let 
 be the oriented line through q� and q� It holds that

q� lies

��
�

to the left of
on

to the right of

�	

 
 	
 
q�q�q��

��
�

� �
� �
� �

�

Consequently�

C�	p� � 
p�p�p�
p�p�p�� C�	p� � 
p�p�p�
p�p�p��

and these turn out to be quadratic expressions as required in the conic equation 	��

Given another point q� the unique conic through p�� p�� p�� p�� q is easily computed as
�C� � 	C�� with

� � C�	q�� 	 � �C�	q�� 	��

� Primitive Operations

In the planar case� the primitive operations of Welzl�s algorithm are

� computation of the smallest ellipse with k points on the boundary� k � �� and

� in�ellipse tests involving ellipses of the former kind and arbitrary points

Recall that for k � � the ellipse is degenerate� ie it is the empty set� a point or a segment�
in which case the tests are easy Subsequently we assume � � k � �
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How can we tell the area of an ellipse E� If E is given in center form 	��� we have

Vol	E� �
�p

det	A�
� 	��

which can easily be seen by choosing the coordinate system according to the principal axes
of E� such that A becomes diagonal� see eg 
��� This means� in order to minimize the
area� we have to maximize det	A�

We pursue di�erent approaches� depending on the value of k First recall that Welzl�s
algorithm guarantees that some ellipse through the given set of boundary points exists In
particular� the points are in convex position For k � �� the smallest ellipse has a rational
representation and turns out to be easy to compute in center form� see below If k � ��
the smallest ellipse is just the unique conic C through these points� and we have shown in
Section � how to �nd the linear form of C� see 	�� In both cases we get explicit rational
coordinates� so in�ellipse tests are straightforward

The di�cult case is k � � The smallest ellipse might have irrational coordinates� making
exact in�ellipse tests nontrivial One could try to work with a symbolic representation of
the ellipse in terms of explicit algebraic numbers 	such a representation always exists��
however� the computation of this representation as well as the subsequent in�ellipse tests
over it are di�cult� computationally expensive� and � as we will see � unnecessary Rather�
we present a method to decide the in�ellipse test without knowing the ellipse� all we need
to know are the four support points� implicitly representing the ellipse

Before we start with this� let us do an example involving four concrete points On the one
hand� this illustrates the notions introduced so far� on the other hand it shows that the
smallest ellipse may indeed have irrational coordinates

Consider the points p� � 	�� ��T � p� � 	�� ��T � p� � 	���� ��T � and p� � 	�� ��T � see Figure �
	we always assume that the four points are given in counterclockwise order� as already
anticipated by Figure �� The two conics C�	p� � 
p�p�p�
p�p�p� and C�	p� � 
p�p�p�
p�p�p�
assume the form

C�	p� � �y��� � y���

C�	p� � x� � xy��� x�

and the linear combination C � �C� � 	C� is obtained as

C	p� � 	x� � �

�
y� �

	

�
xy � 	x �

�

�
y�

Thus� in the form of 	��� C is de�ned by

M �

�
	 	��
	�� ����

�
� m �

� �	��
���

�
� w � ��

If C is an ellipse� M is regular� and the center c is obtained as

c � M��m �
�

�� � 	

�
��

�� � �	

�
�



��

This leads to the center form 	��� with

z � cTMc �
�		� ��

�� � 	
�

The area of the ellipse is minimized if

D	�� 	� �� det	A� � det	M�z� � � �

��

		�� � 	��

��		� ���

is maximized Thus� the smallest ellipse is determined by values �� 	 such that the gradi�
ent rD vanishes This happens if �� � �	 	where we get D � �� and if �� � 	���p���	
In case of ���� D  ������ is obtained 	and C is a hyperbola�� in case of ��� we get
D  ����� showing that any pair of nonzero coe�cients 	�� 	� with �� � �	� �

p
���	

determines the smallest ellipse with p�� � � � � p� on the boundary Note that no matter how
�� 	 are scaled� the linear form of this ellipse contains irrational coe�cients The same is
true for the center form In particular� the center evaluates to c � 	xc� yc� with

xc �
� � �

p
��

�� � �
p

��
 ����� yc �

� �
p

��

� � �
p

��
 �����

see Figure �

p� p�

p�p�

c

Figure �� Irrational smallest ellipse through four points

��� Three Support Points

The smallest ellipse with three points on the boundary is represented in center form 	��
We conceptually apply an a�ne transformation T on S � fp�� p�� p�g� such that the
triangle " with vertices T 	p��� T 	p��� T 	p�� is equilateral Since the a�ne transformation T
scales any area by det	T �� the smallest ellipse through S is transformed into the smallest
ellipse through T 	S� This ellipse exists and is therefore unique 	Proposition �� 	i���
hence it is the circumcircle of " Applying the inverse transformation to the circumcircle
yields

c �
�

�

�X
i��

pi� M�� �
�

�

�X
i��

	pi � c�	pi � c�T � z � �� 	��
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For details see 
��� The same formulae follow from design theory by consideration of the
dual problem 
���

The in�ellipse test with point q is done by evaluating the sign of C	q� � 	q�c�TM	q�c��z
If and only if C	q� � � then q � E For this� note that 	�� always yields a positive de�nite
matrix M 

��� Four Support Points

Ellipse computation� The smallest ellipse with four points on the boundary is not
represented explicitly 	remember that the coe�cients of either representation may be
irrational� Instead we represent the bundle of conics C through the four points
pi � 	xi� yi�

T � i � �� �� �� � using C� and C� with

C�	p� �� 
p�p�p�
p�p�p�� C�	p� �� 
p�p�p�
p�p�p��

In the linear form 	��� C� and C� have matrices

M� �

�
r� t�
t� s�

�
� M� �

�
r� t�
t� s�

�

with

r� � 	y� � y��	y� � y���

s� � 	x� � x��	x� � x���

t� � �		x� � x��	y� � y�� � 	y� � y��	x� � x�����

and

r� � 	y� � y��	y� � y���

s� � 	x� � x��	x� � x���

t� � �		x� � x��	y� � y�� � 	y� � y��	x� � x������

De�ning

�� �� 		x� � x��	y� � y��� 	y� � y��	x� � x������

�� �� 		x� � x��	y� � y��� 	y� � y��	x� � x�����
	��

results in

det	Mi� � risi � t�i � ���i � �� i � �� ��

This shows� that the conics C� and C� are indeed hyperbolas 	or pairs of parallel lines� ie
degenerate parabolas�

As mentioned in Section �� the type of C � �C� �	C� is determined by the sign of det	M��
M � �M� � 	M�� and we get

det	M� � det	�M� � 	M��

� 	r�s� � t����
� � 	r�s� � t���	

� � 	r�s� � r�s� � �t�t���	

� �� � �	� � ��	� 	��

with  �� det	M��� � �� det	M�� and � �� r�s� � r�s� � �t�t�



��

In�ellipse test� To test a query point q� we �rst compute the unique conic

C� � ��C� � 	�C�

through the �ve points p�� p�� p�� p�� q according to 	�� and determine its type via
det	M�� � det	��M� � 	�M�� We distinguish two cases� concerning the type of C�

Case �� Hyperbola�Parabola� This case is easy� as the following lemma shows

Lemma 	�� If C� is not an ellipse� then exactly one of the following holds�

�i� q lies inside all ellipses through p�� p�� p�� p��
�ii� q lies outside all ellipses through p�� p�� p�� p��

Let us give some intuition� before we formally prove the lemma Since no three of the
four support points are collinear� there exist two 	possibly degenerate� parabolas through
these points 	see Figure �� These parabolas cut the plane into regions which determine
the type of C� Only if q lies strictly inside one parabola and strictly outside the other�
C� is an ellipse Otherwise� q either lies inside both parabolas in which case q also lies
inside all ellipses through p�� p�� p�� p�� or q lies outside both parabolas� also being outside
all the ellipses

p�

p�

p�p�

Figure �� The two parabolas through four points

Proof� Assume there exist two ellipses Ein and Eout through the four points� Ein contain�
ing q� Eout not containing q� equivalently Ein	q� � �� Eout	q� � � Then choose � � 
�� ��
such that

E	q� �� 	�� ��Ein	q� � �Eout	q� � ��

Since the convex combination of two positive de�nite matrices is also positive de�nite�
E is an ellipse through p�� p�� p�� p�� q� thus E � C� holds� which is a contradiction to C�
being not an ellipse �
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Consequently� p either lies inside all ellipses or outside all ellipses through the four support
points Thus� all we need to do is test q against an arbitrary ellipse through the four
support points To get such an ellipse� we choose the linear combination �C� � 	C� with
coe�cients

� �� �� � �� 	 �� �� ��

which by 	�� gives

det	M� � 	�� � ���	 � � � ��

We will show that both factors have negative sign� thus proving that the choice of � and
	 indeed yields an ellipse E To see this� we �rst check that

�� � �� � �
p�p�p��
p�p�p��
p�p�p��
p�p�p���

Since p�� p�� p�� p� are in counterclockwise order� each bracketed term has positive sign�
ie �� � �� � � holds On the other hand� we have

 � � � � � 
p�p�p��
p�p�p��� 	�� � ���
��

with ��� �� as de�ned in 	�� The �rst term is negative because p� and p� lie on di�erent
sides of the diagonal p�p� It follows that  � � � � � � and �nally det	M� � �

If M is not yet positive de�nite� we scale E by �� Then q lies inside E 	and hence inside
the smallest ellipse through p�� p�� p�� p�� if and only if E	q� � �

Case �� Ellipse� C� is an ellipse E� and we need to check the position of q relative to
E�� the smallest ellipse through p�� p�� p�� p�� given as

E� � ��C� � 	�C��

with unknown parameters ��� 	� In the form of 	��� E is given by 	r�� s�� t�� u�� v�� w���
where

r� � ��r� � 	�r��

r� and r� the respective parameters of C� and C� By scaling the representation of E�

accordingly� we can also assume that

r� � ��r� � 	�r�

holds In other words� E� is obtained from E by varying its parameters ��� 	� along the
line f�r� � 	r� � r�g� �

��

	�

�
�

�
��
	�

�
� ��

� �r�
r�

�
� 	���

De�ne

E� �� 	�� � �r��C� � 		� � �r��C��



��

Then E� � E�E�� � E� The function g	�� � E� 	q� is linear� hence we get

E�	q� � ��
�

��
E� 	q�

����
���

� � ���

� � C�	q�r� � C�	q�r� Assuming that E is scaled such that r� � �� this means that q lies
inside E� i� ��� � �

It remains to determine the sign of ��� in other words� starting from E� �in which direction�
lies E�� The following lemma has been proved in 
��� see also 
���

Lemma 	�� Consider two ellipses E�� E�� and let

E� � 	�� ��E� � �E�

be their convex combination� � � 
�� ��� Then E� is an ellipse satisfying

Vol	E�� � max	Vol	E���Vol	E����

for all � � 	�� ���

Since E� is a convex combination of E and E� for � ranging between � and ��� the volume
of E� decreases as � goes from � to ��� hence

sgn	��� � �sgn

�
�

��
Vol	E� �

����
���

�
�

If A� is the matrix of E� in center form 	��� the volume formula 	�� gives

sgn

�
�

��
Vol	E� �

����
���

�
� �sgn

�
�

��
det	A� �

����
���

�
�

and det	A� � is easily expressed as a function of �  For this� recall that if M�m�w are the
parameters of E� in the form of 	��� c � M��m the center� we get

A� � M�z� z � mTM��m� w�

where M�m�w are functions of � 	which we omit in the sequel for the sake of readability�

Noting that

M�� �
�

det	M�

�
s �t

�t r

�
�

we get

z �
�

det	M�
	u�s� �uvt � v�r�� w�

Let us introduce the following abbreviations

d �� det	M�� Z �� u�s� �uvt � v�r�
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With primes 	d�� Z � etc� we denote derivatives wrt �  Now we can write the derivative
in question as

�

��
det	A� � �

�

��
det	M�z� � 	d�z��� �

d�z � �dz�

z�
� 	���

Since d	��� z	�� � � 	recall that these values refer to the ellipse E� � E�� this is equal in
sign to

� �� d	d�z � �dz���

at least when evaluated for � � �� which is the value we are interested in Furthermore�
we have

d�z � d�	
�

d
Z � w� �

d�

d
Z � d�w�

dz� � d	
Z �d� Zd�

d�
� w�� �

Z �d� Zd�

d
� dw��

Hence

� � d�Z � dd�w � �	Z �d� Zd� � d�w��

� �d�Z � d	�dw� � d�w � �Z ���

Rewriting Z as u	us� vt� � v	vr � ut� � uZ� � vZ�� we get

d � rs� t�� Z �
� � u�s � us� � v�t� vt��

d� � r�s� rs� � �tt�� Z �
� � v�r � vr� � u�t� ut��

and �nally

Z � � u�Z� � uZ �
� � v�Z� � vZ �

��

For � � �� all these values can be computed directly from r	��� � � � � w	�� 	the de�ning
values of E� and their corresponding primed values r�	��� � � � w�	�� For the latter we get
r�	�� � �� s�	�� � r�s� � r�s�� � � � � w

�	�� � r�w� � r�w� 	ri� � � � � wi the de�ning values of
Ci� i � �� �� Summarizing� we obtain that q lies inside E� i� sgn 	� �	��� � �

��� Five Support Points

It is not di�cult to check that in Welzl�s algorithm ��� R attains cardinality �ve only if
immediately before� a test �p � E� has been performed 	with a negative result�� where E
is determined by four support points In the process of doing this test� the unique conic
	which we know is an ellipse E� through the �ve points has already been computed� see
previous section Thus� given another point q� we can just �recycle� E for the in�ellipse
test with q



��

� Implementation

We have implemented the in�ellipse tests as subroutines of Welzl�s method with move�
to�front heuristic 
���� without any tuning so far� On a Sun SPARC�station ��� using
rational arithmetic over LEDA�s arbitrary length integers� the algorithm takes ��� seconds
to compute SmEll	P �� P a set of ������ points with random ���bit integer coordinates
Under �oating�point arithmetic� the computing time drops to � seconds� but the result
might be incorrect This gap 	suggesting successful usage of �oating�point �lters and
other techniques to combine fast arithmetic with exact computation� is explained by the
fact that numbers get large under rational arithmetic If the input coordinates are b�bit
integers� an exact evaluation of �	�� as in the previous section requires ��b � O	�� bits of
precision in the worst case

The algorithm�s output is a support set S� � � jSj � �� such that SmEll	P � � SmEll	S�
In addition� for jSj �� �� our method determines SmEll	S� explicitly For jSj � �� the value
of �� de�ning SmEll	S� via 	��� appears among the roots of 	���� a careful analysis 
��� ���
reduces this to a cubic polynomial in � � thus an exact symbolic representation or a �oating�
point approximation of �� and SmEll	S� can be computed in a postprocessing step

� Discussion

We have described an exact O	n� algorithm for computing the smallest enclosing ellipse of
a planar point set� obtained by implementing the primitives of Welzl�s method in rational
arithmetic

From a practical point of view� the three�dimensional version of the problem is probably
most interesting� and one might ask how our techniques apply to this case While Welzl�s
algorithm as described in Section � works in any dimension� the primitive operations are
already not su�ciently understood for d � � First of all� the number of basic cases is
larger� we need to do in�ellipsoid tests over ellipsoids de�ned by � � k � � boundary
points While the extreme cases k � �� � are easy 	they behave similar to the extreme
cases k � �� � for d � ��� no exact method for any other case is known Our ideas readily
generalize to the case k � �� here we can 	as in the planar case� use the fact that eight
points � if they appear as a set R during Algorithm �� � determine an ellipsoid up to
one degree of freedom� see the proof of Lemma �� Beyond that� it is not clear whether
the method generalizes In our fastest existing implementation for the case d � �� we use
the formerly mentioned gradient descent method of 
��� to compute the required ellipsoids
according to some prespeci�ed accuracy� for k � �� � � � � �� see 
���

In any dimension larger than two� an open problem is to prove the existence of a rational

expression whose sign tells whether a point q � Rd lies inside the smallest ellipsoid deter�
mined by d � � � k � d	d � ���� boundary points If such an expression exists� how can
it be computed� and what is its complexity�

�A tuned version will become part of the CGAL library see http���www�cs�ruu�nl�CGAL�
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