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Abstract

We present two splitting formulas for calculating the Tutte polynomial of a matroid.
The first one is for a generalized parallel connection across a 3-point line of two
matroids and the second one is applicable to a 3-sum of two matroids. An important
tool used is the bipointed Tutte polynomial of a matroid, an extension of the pointed
Tutte polynomial introduced by Thomas Brylawski in [Bry71].
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1 Introduction

It is known that determining the Tutte polynomial of a matroid (or even of a planar
graph) is #P-hard, and therefore also many other quantities such as the chromatic
and flow polynomials of a graph or the Jones and Kauffman bracket polynomials
of an alternating link ( [JVW90], [BO91], [Wel93]). The natural question is how
can we restrict the considered class of matroids in order to obtain polynomial-time
algorithms for computing the Tutte polynomials.

The paper [OW92] of Oxley and Welsh shows that one such class are the ac-
cessible matroids of bounded width (for example the series-parallel matroids). The
crucial idea of their paper was to break down an input matroid M in some not too
small pieces (derived from parts of a 2-sum) and to calculate the Tutte polynomial
of M from the Tutte polynomials of these pieces. For each piece the same proce-
dure is applied recursively. A splitting formula is actually an arithmetic rule, which
states how to obtain the Tutte polynomial of M from the Tutte polynomials of these
smaller matroids. In [OW92] a splitting formula for 2-sums is used.

In this paper we obtain a splitting formula for a generalized parallel connection
across a 3-point line and later a splitting formula for 3-sums. A 2-sum cannot be
3-connected but is 2-connected, while a 3-sum cannot be 4-connected but may be
3-connected. Therefore we can obtain more complex matroids by successive applica-
tions of the operations of 3-sums, 2-sums and direct sums than by applying only the
operations of 2-sums and direct sums. Thus, the presented splitting formulas are
tools for faster computation of the Tutte polynomials of matroid class more complex
than given in [OW92].

It is worth mentioning that in case of Tutte polynomials of graphs Seiya Negami
( [Neg87]) has obtained splitting formulas for graphs of any (fixed) connectivity.

This paper is organized as follows. In Section 3 we introduce the Tutte polyno-
mial and some fundamental definitions linked to its computation. The next Section
4 restates briefly the notion of the pointed Tutte polynomial of Thomas Brylawki
( [Bry71]) and gives the splitting formulas for a parallel connection and for a 2-sum of
two matroids. The Section 5 introduces the bipointed Tutte polynomial of a matroid
M, culminating in a formula for calculating it from some minors of M. Finally, the
Section 6 uses all previous results in order to obtain the main splitting formulas. It
also exhibits analogous splitting formulas communicated by James Oxley ( [Ox195]).

2 Basic definitions

Our notation follows [Ox192]. We denote as E (M) the set of points of a matroid M
and as r(-) its rank operator, writing (M) for r(E(M)). We will denote a single-
point matroid whose only element is an isthmus or a loop as [ or L, respectively.
For the sake of brevity we call each point which is not an isthmus nor a loop a circuit
point. The status of a point is one of its three possible properties of being a loop,
an isthmus or a circuit point.
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We write C(M) to describe the family of circuits of a matroid M. For a given
matroid M and T C E(M) the set (' = {C C E(M) —T : C € C(M)} is the set
of circuits of a matroid M' on E(M) — T. We say that M’ has been obtained by
deletion of T from M and so we think of deletion as an operation characterized by
M and M’ (the standard definition says that the deletion is the matroid M’ itself).
M'" is denoted by M\T. For S C E(M), the matroid M\(E(M) — S) is called the
restriction of M to S and denoted as M|S.

Analogously we define the contraction of M to E(M) — T for a matroid M and
T C E(M) as an operation resulting in a matroid M’ whose circuits are exactly the

minimal nonempty elements of the set {C'—T7: C € C(M)}. M' is denoted by M/T.

Each sequence of contractions and deletions is called a reduction. We write e{ eéeé

to describe a reduction of length three, in which point e; is contracted in M, point
es is deleted in the matroid resulting from the first operation and ey is contracted
in the matroid obtained from the second operation. The case when the reduction
has length one is called a single reduction. A matroid resulting from a reduction R
of M is called a minor of M and denoted by M(R). The operations of deletion and
contraction commute both with each other and with themselves. ( [Ox192, Prop.
3.1.26, p. 109]). Thus, we may write each minor as M\T/S where S C E(M) —T
is the set of all points contracted by R and 7' C E(M) — S is the set of all points
deleted by R.

Let M;, M, be matroids with E (M,)NE (My) = {r} and |E (M,)|, |E (M2)| > 3.
If r is not a loop or an isthmus in M; or My, then the 2-sum M; ®5 M, of M; and
M, is the matroid on E (M;) U E (M) — {r} whose set of circuits is the union of
the families of circuits C (M;\r), C (Mz\r) and {C, UCy — {r} : C; is a circuit of M,
with r € C;, 1 = 1, 2}.

Following [Bry71], we define a pointed matroid (M,r) as a pair consisting of a
matroid M and a distinguished point r in E (M). If r = Ey(M;) N Ey(My) is neither
a loop nor an isthmus in M; or M,, then the parallel sum (M,r) of (M, r) and
(Ms,r) is a pointed matroid with the family of circuits

C(M) = {C,UCy—{r}: C;isa circuit of M; with r € C;, i = 1,2}
UC(M;) UC(My).

In [Ox192] Oxley denotes the underlying matroid M of (M,r) as P(M;, Ms) and
calls it the parallel connection of My and M.

The important link to the definition of a 2-sum is that if M; and M, create a
2-sum, then this 2-sum is exactly P (M, My)\r.

We use the following definition of a generalized parallel connection (GPC) taken
from [Ox192, p. 419]. Let M; and M, be two matroids and E; = E(M;), Ey =
E(M,). A GPC Py (M, My) of My and Ms is a matroid on E; U E5 whose flats are
those subsets on X C E; U E5 such that X N E} is a flat of M; and X U E5 is a flat
of My. We write T'= Fy N Ey and N = M;|T. We call N a connecting matroid. We
say that a GPC is across a 3-point line, if a connecting minor is a 3-circuit. From
this definition it follows that the simple matroid associated with M;|T must be a



modular flat of the simple matroid associated with M; for at least one i € {1,2}.
This condition is sufficient for the existence of a GPC of M; and M, (see [Ox192]
for more details).

Closely related to the GPC is the notion of the 3-sum of two matroids. The idea
of a 3-sum for binary matroids has been used by P.D. Seymour in his decomposition
theorem for regular matroids ( [Sey80]). We introduce here a generalization of his
definition which also apply to non-binary matroids.

Let Ml, M2 be Hl&tI'OidS, E1 == E(Ml), E2 == E(Mg), T = ElmEQ and N = M1|T
If Mi|T and Ms|T are 3-circuits and the GPC Py (M, M) exists, then the 3-sum
of My and M, equals to Py (M, My)\T. In other words, the sufficient conditions
for the existence of M; @3 My are that M;|T and M,|T are 3-circuits and that for
at least one i € {1,2} the simple matroid associated with M;|T is a modular flat of
the simple matroid associated with M.

(Seymour imposes additional conditions necessary in his applications: both M;
and M, must be binary; both E; and E5 should have more than six elements and
T must not contain a cocircuit of M; and My).

3 The Tutte Polynomial and its calculation
The Tutte polynomial t(M;z,y) of a matroid M is defined by

t(M2,9) = X (o = 17Oy - 1))
ACE

We will use throughout the variables x and y, writing ¢(M). The next proposition
gives us an alternative definition of the Tutte polynomial.

Proposition 1 ( /[BO91]) The Tutte polynomial of a matroid on the empty ground
set is 1. Otherwise, let M be a matroid on a non-empty ground set and e € E(M).
Then its Tutte polynomial t(M) is given by following recursive rules

(R1) t(M) =t(M\e) +t(M/e) if e is a circuit point,

(R2) t(M) =zt(M\e) if € is a an isthmus,

(R3) (M)

yt(M\e) if € is a loop.

We may apply the rules R1, R2, and R3 until we reach minors with an empty
ground set, or in the more general case we may only reduce points in a subset E; of
E (M), stopping when a given minor does not contain any point in Ej.

Obviously there is a tree 1" associated with the process of application of R1, R2,
and R3 to points in F;. The vertex set of 1" is a certain subset of all reductions of
points in Fy, i.e. reductions of the form e’ ...e;" with n = |Fy|, r; € {\,/} and
e;; € By for j =1,...,n. We create T" when applying R1, R2, R3 to points in E;
using the following algorithm, called the calculation algorithm:
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1. Let Ry be the set whose only element is the empty reduction. Let 7 := 0.

2. We construct R;;; as following: for each R € R;, consider a minor M(R).
We choose a point e € E(M(R)) N E; and apply the corresponding rule R1,
R2, or R3 to e. If R2 or R3 is applied, a minor M(R)\e is created and so
we put Re\ into R;i;. If R1 is applied, the minors M (R)\e and M (R)/e are
created and so we put Re' and Re/ into R;;;. We call Re\ (and possibly
Re!) a child of R, and R is the parent of Re\ (and possibly of Re/). Thus,
Riv1 = {child(R) : R € R;}.

3. Puti:=i+1;if i <|Ey|, go to 2.

Now the edges of T' link each parent with its one or two children. As R; =
{R : Re" € Ry for some e € Ey, r € {\,/}} = {parent(R) : R € R;;1}, we
can obtain all R;’s from R, for « = 1,... ,n — 1. Thus, the set R, completely
characterizes T. We call R(E,,T) = R,, the calculation of t(M) on E) and the tree
T the calculation tree. The only source of differences between two such trees is the
choice of point e for each minor M(R) in step 2. Furthermore, let R;(E},T) = R;
and M;(E,,T) ={M(R): Re€ R;(E\,T)} fori=1,... ,n. We see that M;(E,,T)
is the set of minors obtained in the ¢th application of step 2 of the above algorithm.

For R € R(E,,T), R = ¢;!...e;" with r; € {\,/} for j = 1,... ,n, we can
track which of the rules R1, R2, R3 was applied during the single reduction of each
e;;- If s is the number of applications of R2 and ¢ is the number of applications of
R3 during the execution of R, we call rc(R) = x%y' the reduction coefficient of the
reduction R. By the distributive law and induction we have:

tM)= > re(R){M(R)). (1)
RER(E1,T)
Now two different reductions R;, R; € R(E;,T) might produce identical minors,
ie. M(R;) = M(R,). Let M(Ej) be the set of all minors of M on the ground set
Ey, =FE (M) — FE; and N € M(E,). We define the minor coefficient mer(N) as the
sum of the reduction coefficients of all R € R(Ey,T) which produce N, i.e.:
> rc(R) if N e M, (E,,T)

RER(EL,T) : M(R)=N
mep(N) = ER(EL,T) : M(R)

0 otherwise.

Clearly
t(M)= > mer(N)HN) (2)

which is a version of (1) with all ¢(N) factored out for every N € M, (E;,T).

The proof that the minor coefficients do not depend on a particular calculation
tree T is very similar to the proof of Lemma 6.7 in [Bry71], (that the Tutte polyno-
mial does not depend on the order of applications of the rules R1, R2, R3) and is
left to the reader.



The idea of the splitting formula for a generalized parallel connection of two
matroids is to use (2) to calculate ¢ (M). We will show in section 6 that if M is
a generalized parallel connection of M, M, with ground sets E;, Es, respectively,
then the set of minors of M on E, has no more than five elements and these five
minors can be found easily. Moreover, there are formulas for computation of the
minor coefficients for each of these minors. The only input these formulas require
are the Tutte polynomials of five easily obtainable minors of M on the ground set
E, — E5. In other words, we can compute ¢ (M) only using the Tutte polynomials
of the minors of M on E; — E5 and of the minors of M on Es.

4 The pointed Tutte polynomial and simple split-
ting formulas

The goal of this section is to present a splitting formula for the Tutte polynomial
of a 2-sum of matroids M; and M,. Such splitting formula (also stated in [OW92])
can be immediately derived from the following propositions obtained by Thomas
Brylawski ( [Bry71]).

Let (M, r) be a pointed matroid, Fy = E (M)—{r} and let R(E}) be a calculation
on Ey. Let M = M({r}) be the set of all M-minors on {r}, then by (2) we have:

tM) = 3 me(N)H(N).

NeM

Clearly the only minors in M are N; and N, where r is an isthmus in /N; and r is
a loop in Ny. We write t,(M) = mc(Ny) and t,(M) = mc(N2). The pointed Tutte
polynomial t,(M) of a pointed matroid (A, r) is the polynomial Z ¢, (M) + gt,(M)
on four variables z, y, Z, § (where T and g have only the function of distinguishing
tz(M) and t,(M)).

The following remark illustrates the properties of the pointed Tutte polynomial.

Remark 2 Let (M,r) be any pointed matroid.

(a) We notice that by R1, R2, R3 and by the definition of mc() we have, for a
given (M,r) ande € E (M) — {r},

o t.(M)=1t.(M\e)+t.(M/e) ife is a circuit point in M,
o t,(M)=uat,(M\e) if € is an isthmus in M,
o t.(M)=yt,(M\e) if € is a loop in M.

(b) From (2) it follows immediately that for the Tutte polynomial t(M) of the un-
derlying matroid M we have

t(M) =axt,(M)+yt,(M).
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(c) A following formula holds for the pointed Tutte polynomial of (M,r): if M =
M, @ My and r € My, then t, (M) = t(My) t,(Ms).

Assume that we know t,(M) and t,(A) for a pointed matroid (M, r). Deleting
r, we obtain a (non-pointed) matroid M\r. Can we easily express ¢(M\r) in terms
of t,(M) and t,(M) ? The answer is yes; moreover, t(A/r) can also be calculated
in this way.

Lemma 3 ( [Bry71, Lemma 6.13, p. 15]). Let (M,r) be a pointed matroid with
pointed Tutte polynomial t,(M) = zt,(M) + yt,(M). If r is a circuit point in M,
then

t(M\r) = (z — 1) to(M) + t,(M) (3)
and
t(M/r) =t,(M) + (y — 1) t,(M). (4)

Proposition 4 ( [Bry71, Corollary 6.14, p. 16]) Let (M,r) be a pointed matroid.
If we know the Tutte polynomials t(M/r) and t(M\r), then we can compute the
pointed Tutte polynomial t,.(M):

te(M) = [t(M/r) = (y = 1) t(M\r)] [ (x +y -z y),
ty(M) = [t(M\r) = (z = D)t(M/r)] [ (x +y -z y).

Proof: We obtain t,(M) and t,(M) solving the equations t(M/r) = t,(M) +
(y—1)t, (M) and t(M\r) = (x — 1) t,(M) + t,(M) obtained in Lemma 3. O

We would like to sketch how the last proposition can be used to obtain a splitting
formula for the Tutte polynomial of a 2-sum of two matroids. In Theorem 6.15, p.17
of his paper Brylawski gives the following formula for the pointed Tutte polynomial
of (M, r) in terms of the pointed Tutte polynomials of M; and M, (for the case that
neither M nor My has {r} as a loop or an isthmus):

t(M) = T [to(My)t.(M2)] + 7 [(y — 1) t,(M1) t,(M2) (5)
to (M) ty(Ms) + t, (My) t,(M2)].

Now using Proposition 4 and the fact that for a pointed matroid (M,r) we
have t(M) = xt,(M) + yt,(M) we obtain the splitting formula for the Tutte
polynomial of a parallel connection M' = P(M;, M) of matroids M; and M,
(for the case that neither M; nor M, has r as a loop or an isthmus):

1) = e [1On/r) t(Mr) | B “%@]



where

y | ry—y—1 -1
B_[ = y_ll.

Applying the relations found in Proposition 4 and applying (3) to (5) we obtain
the splitting formula for the Tutte polynomial of a 2-sum M" = M; &, M,
of Ml and MQZ

) = =ty [ s |2 | HEEC |

where

n_|x—1 ~—1
B_[ . y_ll.

5 The bipointed Tutte polynomial

A bipointed matroid is an ordered triple (M, p, s) where M is a matroid and p, s are
two points in E (M).

Let Ey = E(M)\{p,s}. Let R(E}) be a calculation of ¢(M) on E; and M D
M, |(E) the set of all M-minors on {p, s}, then by (2) we have:

(M) = NE;A me(N) t(N).

Obviously there are at most the following five minors in M:
e Ny, in which both p and s are isthmi,

e Ny, where p is an isthmus and s is a loop;

N3, where p is a loop and s is an isthmus;

Ny, where p and s are both loops;

N5, where {p, s} is a circuit.

Our notation associates the symbols z, y, ¢ with an isthmus, a loop and a
circuit point respectively and so we write t,,(M) = mc(Ny), tyy(M) = mec(Ny),
tye (M) = mc(N3), ty, (M) = me(Ny) and (M) = mc(Ns).

In following the symbols zz, zy, yx, yy and ¢¢ denote single variables. For a
given bipointed matroid (M, p,s), we define the bipointed Tutte polynomial as the
polynomial

tps (M) =TT typu(M) + TG tyy(M) + §T tye(M) + gyt (M) + cCte(M)

on seven variables TZ, Ty, yZ, §y, ¢C, x, y over the integers. In a way analogous
to the case of a pointed Tutte polynomial, the first five variables are only used to
separate the terms t,, (M), ..., t..(M).
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The following remark will be used in the proofs later on. Simultaneously it
illustrates the relations between t,,(M) and both the pointed and non-pointed Tutte
polynomials.

Remark 5 (a) For anye € E(M)\ {p, s}, the following hold:

o t,(M) =ty (M\e)+t,s(M/e) ifeis a circuit point in M,
o t,(M)=uxt,(M\e) if e is an isthmus in M,
o (M) =yty,(M\e) if € is a loop in M.

(b) With t (N5) =t(Cy) = x +y and (2) we obtain:

t (M) = 2 tye(M) + 2y tey (M) + yx tye (M) + y° ty, (M) + (z + y) tee(M).

(c) Given any calculation of t(M) which yields t,s (M), we can continue it by reduc-
ing p in each minor Ny, ... , N5, obtaining the (single) pointed Tutte polynomial

ts(M) = T [wty(M)+ytye(M)+te(M)]
+y [T tey (M) +yty, (M) +t.(M)].

By symmetry we have

t,(M) = T [wtee(M)+yty(M)+t.(M)]
+y [Tty (M) + yty, (M) +t(M)].

(d) If M = M, @ M, and p,s € E(M,), then t,s (M) = t(My) tys (Ma).
It holds because each reduction of all E (My)-points yields Ms. Therefore for
each j =1,...,5 the set {R € R(E(M) — {p,s}) : M(R) = N,} of all reduc-
tions leading to one of the minors Ni,..., N5 is a Cartesian product of the
set of all M-reductions of E (M)-points and of the set of all My-reductions
of (E(Ms) — {p, s})-points yielding N;. By distributivity and the definition of
me( ) we have

tew(M) = me(My) tye(Ms), ... tee(M) = me(My) te.(My).
It is not hard to see that me(My) =t (M), so the statement holds.

(e) If M = My® M, withp € E (M) and s € E (M,), we may write M = (My,p)®
(My,s). We expand our notation and write t,(My) = T, t,(My) + gpt, (M)
and ts(My) = T4ty (Ms) + ys ty(Ms). We want to show (by similar arguments
as in the previous remark) that t,s (M) = t, (M) ts (M) where 2 = T, s,
TY = TpYs, YT = Yp Ts and yy = Yp Ys-

Let R(Ey,T) be a calculation such that in every reduction all points from
E (M) — {p} are reduced before any point from E (Ms) — {s}. Obviously
R(E}) can be written as Ry X Ry where Ry is a set of certain M-reductions
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of the points in E(M;) — {p} and Ry is a set of certain My-reductions of the
points in E (M) — {s}. If Rl C Ry is a set of all M,-reductions making p an
isthmus and R% C Ry is the set of all My-reductions making s a loop, then
RIx RY C R(Ey) is obviously the set of all M -reductions yielding minor No,
(in which p is an isthmus and s is a loop). Now

t:(M) = > re(R), t,(My)= > re(R), and
ReR] ReRY
toy(M) = > re(R)
ReERIXRE

s0 by definition of rc () we have t,(My) t,(My) = t,,,(M). The three other cases
follow analogously. As p,s cannot be in a circuit in M, we have t..(M) =0,
so the statement is proven.

Given a GPC M of matroids M; and M, across a 3-point line {p, s, q}, we
may delete ¢ in M, obtaining a bipointed matroid M. The following lemma gives
us an important link between the polynomials ¢,,(M),... ,t.(M) and the minor
coefficients of certain matroids obtained from the connecting minor N of M in the
process of a calculation of t(M™).

Lemma 6 Let (M,p,s) be a bipointed matroid and let M be a matroid on
E (M) U {q} such that M*\q = M and {p,q,s} is a circuit in M*. Let RT(E))
be a calculation of t(M*) on Ey = E(M") — {p,q,s}. We denote by M™ the
set of all M -minors on {p,q,s} and by M the set of all M-minors on {p,s}.
Then ¢ : M+ — M with ¢ (NT) = NT\q is a bijection and has the property that
mc(NT) =me(¢p(NT)). Note that me(¢(NT)) is one of the ty(M), ... tee(M).

Proof: The following table shows the bijection:

N e 6V = N
N : {p,q, s} is a circuit Ny : p, s are isthmi

Ny : sis aloop, {p,q} is a circuit | Ny : p is an isthmus, s is a loop
N3 : pisaloop, {s,q} is a circuit | N3 : p is a loop, s is an isthmus
N : p,q,s are loops Ny : p and s are loops

N5 : qis aloop, {p, s} is a circuit | N5 : {p, s} is a circuit

Table 1: The bijection ¢.

To obtain M™ we used the fact that the circuit {p, ¢, s} is only changed when
one of p, ¢, s is in the closure of an E;-point to be contracted. The table contains all
three cases when exactly one of p, ¢, s becomes a loop; furthermore, the cases when
none of p,q, s is loop and when all three of p,q, s are loops. Notice that if two of
the points become loops the remaining point must also become a loop as {p, ¢, s} is
a circuit, so each such matroid is N
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Now to show that me(NT) = me(¢(N1)) for any Nt € M™ we will prove first
that if M;" is a M*-minor which occurred during the calculation R™(E}), then for
each e € E (M) — {p,q, s} in the corresponding M-minor M; (obtained by same
reduction as M;") e has the same status. As the order of single reductions does not
affect the resulting matroid, we have M; = M;"\q. Now if e € E(M;) — {p, s} is a
loop or isthmus in M;", then it clearly has the same status in M;. If e is a circuit
point, the deletion of ¢ in M;" might only affect e if all circuits containing e would
also contain g. But this cannot be the case: if ¢ is a loop in M;", it is not contained
in any other circuit. If ¢ is not a loop, there must be a circuit {p, q, s} or {p, ¢} or
{q, s} in M;". Thus, the application of the strong circuit elimination axiom on any
circuit containing both e and ¢ and on one of the three listed circuits yields a circuit
with e but without q.

The last claim ensures that in each M;", M; we may apply the same rule R1, R2,
R3 to e, so RT(E)) is also a calculation for M. We see that mc(NT) = mc(¢(NT))
for each N* € M*. O

Lemma 7 Let (M,p,s) be a bipointed matroid and M™ a matroid on E(M) U {q}
such that M*t\q = M and {p,q, s} is a circuit. Denote by M the matroid M~ /q
and by M~ the single pointed matroid M\s. Then

tps (M) =gy t,(M™) +cct,(M™) (6)
and

tys (M) = gy [(y = D)ty (M) + tuy (M) + 0 (M)] (7)
+E [(y — 1) te( M)+t (M))].

Proof: We use the same notation as in the proof of Lemma 6. As {p,q, s} is a
circuit in M, {p, s} is a circuit in M¢. Thus, only minors Ny and N5 may occur
in M¢ and so only t,,(M°) and t.(M¢) might be nonzero. Given any M ‘-minor
M, and e € E(M°) — {p, s} we notice that status of e is the same in both M,
and M;j\s. This is due to the fact that for any circuit C; of M; with e,s € CY,
by the circuit elimination axiom (C; U {p}) — {s} is also a circuit containing e, i.e.
deletion of s doesn’t affect the status of any M;-circuit point. Clearly loops and
isthmi also retain their status, so any calculation R(E (M) — {p, s}) of M¢ is also a
M\ s = M~ -calculation. Thus, (with minor coefficients with respect to calculations
for M and M~) t,, (M) = mc(Ny) = me(Ny\s) = t,(M~), as p is a loop in the
M~-minor Ny\s, and t..(M¢) = mc(N5) = me(Ns\s) = t,(M~) as p is an isthmus
in the M~ -minor Ns\s.

Now for the proof of (7) recall that in the calculation R (E;) of Lemma 6 we
did not reduce the point ¢, i.e. the minors N;",... N5 have point set {p,q, s}.
Now we want to extend this calculation by reducing ¢ to obtain the bipointed
Tutte polynomial t,, (M™). Observe that by Lemma 6 the minor coefficients
mc(Ny), ... ,me(Ng) are respectively mc(Ny) = to(M),... ,mc(Ns) = te.(M),
and therefore we can express t,; (M ™) in terms of t,, (M), ..., t..(M). We have:
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Ni"\¢ = N, and N;"/q = N, so t(N}")

t(N1) + t(Ns),
NS\q = Ny and N5 /q = Ny, so t(N5)

t(Na) + t(Ny),
t(N3) + t(Ny),

Ni\qg = N3 and N5"/q = Ny, so t(N3")

N \¢ = Ny and ¢ is a loop in N, so t(N;) = yt(N,),

N;"\q = N5 and ¢ is a loop in N;", so t(N;") = y t(Ns).

Using (2) and, as mentioned, Lemma 6, we obtain

t (M+) = t(N7) me(Ny) + t(Ng) me(Ny) + t(N3) me(N3) +
t(Ny) [me(Ny) + me(N3) + yme(Ny)] + t(Ns) [me(Ny) + yt(Ns)]

i.e. by the definition of a bipointed Tutte polynomial,

tos (M) = ZZ L (M) + EGtuy (M) + G tye (M) +
Gy [toy(M) + tya(M) + y tyy (M)] + CC [toe(M) + y tee(M)].

By Remark 5(a), tps (M) = tps (MT\q) +tps (M™/q) = tps (M) +t(M€), and thus,
tps (M€) = t,s (M) — t,s (M), which yields (7). O

Lemma 8 (a) If (C™,p,s) is a circuit on n points (including p and s ), then
tys (C") =2 (a3 4+ ...+ 1)+ ¢cc (witha" > +...+1=0 forn < 3).

(b) If (C,,p,s) is a cocircuit on n points (including p and s), i.e. a matroid without
loops in which all other n — 1 points are in the closure of p (and so also of s),
then t,s (Cy) =9y (y" 3 +...4+ 1) +cc (withy"3+...+1=0 forn < 3).

Proof: By induction.

(a) For n =2 clearly t,, (C?) = cc. If n > 2, then for e € E (C™) — {p, s} we have,
by Remark 5(a), t,s (C™) = t,5 (C"\e) + tps (C"/€) = "3 Zx + t,s (C"1) =
" B3rr+ ("t 4.+ ) =3z (2" P+t 4.+ 1) + e

(b) Again in case n = 2 we obtain t,, (Cy) = ¢é¢. If n > 2, then fore € E(C,) —
{p, s} the application of Remark 5(a) gives t,s (Cy,) = tps (Cr\e) +1ps (Cr/e) =
tps (Coct)+y" P gy = gy(y™ *+.. A1) +cct+y" P yy =gy (y* > + ... + 1) +ce.

|
The formulas (3) and (4) express t(M\r) and t(M/r) in terms of ¢,(M) and

ty,(M). Now by deleting or contracting p from (M, p,s) we obtain (single) pointed
matroids (M\p,s) and (M/p,s) respectively. We will show below how to find
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tz(M\p) and t,(M\p), i.e the pointed Tutte polynomial of (M \p,s) from the bi-
pointed Tutte polynomial of (M,p,s). An analogous formula will be obtained for

(M/p,s). By symmetry the formulas for the (single) pointed Tutte polynomials of
(M\s,p) and (M/s,p) will also be deduced.

Lemma 9 Let (M,p,s) be a bipointed matroid with bipointed Tutte polynomial
tps (M). If p is a circuit point in M, then

ts (M\p) = T [(x — )tea(M) +ty, (M) + tee(M)] + (8)
J [(z = Dtay (M) + tyy (M)]
and
ts (M/p) = T [tex(M) + (y — Dtya(M)] + (9)

J [tay (M) + (y — 1)ty (M) + tee(M)] .
By symmetry, if s is a circuit point in M, then
tp (M\s) =7 [(x — Dtao(M) + tay(M) + tee(M)] + 7 [(x — )tya(M) + tyy (M)]
and
ty (M/s) =T [to(M) + (y — Dtay (M)] + 7 [ty (M) + (y — 1)ty (M) + tee(M)] .

Proof: We show (8) by induction on n = |E (M)|. Cases A, B and C handle
the basis and some special cases, while Case D handles the general induction step.

Case A. M = (My,p) ® (Ms, s).
We have by Remark 2 (c), ts (M\p) = t(M\p) ts (Mz) and by (3) t(M\p) =
(x —1)t,(M\p) + t,(M\p), and so, by the fact that .. (M) = 0 and using
Remark 5(e),

ts(M\p) = (z —1)t,(M) t;(My) + 1, (M) t,(My)

(z
T [(& = 1) tog(M) + by (M) + teo(M)] +
yl(z—1) ta:y(M) + tyy(M)] .

In all of the following cases p and s are in a common circuit.

Case B. M = (C",p,s) @ N.

By Lemma 6(a) t,s (C") = ZZ ("% + ... + 1) + &€ and, because t,(C™\p) =
72" 2, we have
ts(C"\p) = T [(x — D)tz(C") + te(C")]
= T [(x — 1)t (C™) + tyI(C”) + tee(C™)] +

7 (@ — 1) £y (C7) + 1y (C")

as ty, (C") = t3,,(C") = t,(C™) = 0. By Remark 2(c) we have t,(M\p) =
ts(C™\p) t(N) and by Remark 5 (d) t,, (M) = t,5 (C™) t(IN), and so the state-

ment is proven.
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Case C. M = (C,,p,s)® N.
By Lemma 6(b) t,, (C,) = 7§ (y” 34 ...+ 1)+ ¢ and, with t,(C,\p) =

ts(Co))=Z+y(1+y+...+y"?), we have

ts(Co\p) = Tte(C,) +yty,(Cy)
= [( 1) ez (C) 4 1y (Cy) + tee(Cy)] +
J [(x = 1)ty (C) + tee(Cy)] -

Again t,(M\p) = ts(C,\p) t(N) and t,s (M) = t,5 (C,) t(N) and so the state-

ment follows.

Case D. In all matroids M such that p and s are in a common circuit and which
are not of the types treated in cases B and C, p must be in two different
circuits such that at least one of them has more than two elements (otherwise
we would have case C). Thus, there is a circuit point e € E(M) — {p, s} such
that p is not in the closure of e and there is a circuit containing p but not e.
So p is a circuit point in both M\e and M/e and e is a circuit point in M \p.
With (M\p)\e = (M\e) \p, (M\p) /e = (M/e) \p and by Remark 5(a) and
the induction hypothesis,

ts(M\p) = t:;((M\e)\p)+1t,((M/e)\p)
= T [(z = 1) (taa(M\e) + tox(M/e)) + (tya(M\e)+
tya(M/€)) + (tec(M\e) + tec(M/e€))] +
x—1) (tay(M\e) + tzy(M/e)) +
tyy(M\e) +ty,(M/e))] .

By Remark 5(a), we have t,, (M) = t,,(M\e) 4+t (M/e) etc. so (8) is proven.

v l(
(

Finally, we show (9). By Remark 2(a), t;(M) = t,(M\p) + t;(M/p) and, by
Remark 5(c),

ts(M) =T [wtoe(M) + Yy tye(M) + tee(M)] + 7 [2 82y (M) + y ty, (M) + tee(M)]

SO

tS(M/p) = ts(M)_ts(M\p)
@ (@ 1)) (M) (5 — 1) by (M) + (1 — 1) e (M)] +
g (@ —(z = 1)) tey(M) + (y — 1) tyy (M) + tcc(M)]

and we are done. O

In a way analogous to Proposition 4, the following theorem shows how to cal-
culate the bipointed Tutte polynomial of a bipointed matroid M from the Tutte
polynomials of minors of a matroid M™* (which is the GPC of of M, and M,). It is
the main result of this section.
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Theorem 10 Let (M, p,s) be a bipointed matroid such that p and s are both circuit
points and furthermore s is a circuit point in both M\p and M/p. Let M* be a
matroid on E(M) U {q} such that M = M*\q and {p,q, s} is a circuit in M*. We

define five minors of M* : Q1 = M*\p\s\g, Qs = M"\p/s\q, Qs = M*/p\s\q,
Qi=M"/p/s/q, Qs = M \p\s/q. Let § be the vector

7= [(Q1), t(Q2), 1(Qs), 1(Q), 1(Q5)]"
and t the vector

t= [tm(M)a twy(M)7 tya (M)7 tyy(M)a tCC(M)]T .

Then t = C §, where C is a matriz:

(1-y)* 1y 1y 2 1oy ]
—T-y+ry —T—y+ry —T-y+ry —T-y+ry —T—y+Ty
1—y 1 1 11—z 1
1 —r—y+xy —r—ytry —r—ytzy 7:1:7{;+$y
1—y 1 1 -z
1 — 7 — —T—y+ry —T—y+ay —r—y+Ty —T—y+ry
l—z—y+azy 2 l-g -z (1-2)® -z
—r—y+xy 7$7jf/+a:y 7I7ij+$y —r—yt+ry —r—ytzy
1—y 1—x 1
L —z—y+zy —T—yt+try —T-y+ry —T—y+ay 4

Thus, we can compute the bipointed Tutte polynomial of M from the Tutte polyno-
mials of the minors Q... ,Qs of M.

Proof: Let (M, p) be a single pointed matroid with M~ = M™\s/q. First we
will prove that if m is the vector

i = [H(M\P\s), 1M \p/3), H(M/p\s), t(M [p/3), £, )]

and A the matrix:

(z—1) z—1 z—1 1 z—1

r—1 (z—-1)(y—1) 1 y—1 1

A=| z-1 1 (z—-1)(y—-1) y-1 1
1 y—1 y—1 (y—1)* y—1
1 0 0 0 y—1

then 7m = A £. By (8) we have

T [(x — 1) tye(M) + ty, (M) 4+t (M)] +
Y [(Ji - 1) txx(M) + tyy(M)] .

By assumption s is a circuit point in M\p, so we may apply ( 3), yielding

t(M\p\s) = (z — 1) [(x = 1) tyu(M) + tyo (M) + tee(M)] +
(x = 1) tuy (M) + t,, (M)
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which proves the first of the five equations of 77 = A . Equations two to four are
proved analogously and the last equation is obtained by comparing the coefficients
of ¢¢ in (6) and (7). (A comparison of the coefficients of gy yields the equation
ty (M) = (y— 1)ty (M) 4ty (M) + t,x(M), which might be interchanged with the
last equation of 1 = AZ. This new set of equations gives us an alternative way to
compute f)

Now M = M*\q,s0 Q1 = M\p\s, Q2 = M\p/sand Q3 = M/p\s. In M* /p/s q
must be a loop because {p, s, ¢} is a circuit of M, so the deletion of ¢ is the same
as its contraction and we see that Q4 = M/p/s. By same conclusion M~ /p =

M™*/¢\s/p = Q4, furthermore M~ \p = @5 and by Proposition 4

1

ty(M™) = ———
( ) T+y—zxYy

(t (M /p) = (y—1) t (M \p)).

Using all these identities we see that

T.
7= (1@, 1021, Q. Q0 - (@)~ (= 1) 1(@0)
Defining
100 0 0
010 0 0
B=|0 01 0 0
0 00 1 0
000 o

T+y—xy T+y—xry
we can write m = B ¢ and so we obtain

B{= Aft.

Furthermore, the inverse A~ of A exists and is the matrix

=) 1y 1-y 1 1 7
—r—yt+ry —r—ytzy 7I7%+$y 7I7%+$y
_ 1y 1 1 1
—T—y+ay —r—y+ay 1-y —14y
1=y 1 1 1 1
—T—y+x —T—y+x 1- —1+
g Y 1iym Y 11—z 17g 17$y
—s—-ytwy —z-ytry —z-y+zy 1-y —1+y
1—y 1 1 1 —r—y+xy
L —z—y+zy —a-ytoy —z—ytzy (—l4y)(z+y—azy) —l4+y

times (—1 —x —y +xy) ", so i = C7, where C = A 1B. O

6 Splitting formulas for a GPC and a 3-sum of
two matroids

Throught this section we use the following notations. Let M;, M, be matroids,
E, = E(M)), By = E(M,), T = E; N Ey. We assume that N = M;|T is a 3-circuit
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and the GPC M = Py(M;, M,) of M; and M, exists. The matroid previously
denoted as M™ is now written as M (and represents a GPC) due to the fact that
in this section the GPC is in the center of our interest. In general, we drop the
superscript “+” when describing matroids containing all three elements p,s,q € T.

A looping of a matroid M on e € E(M) is the following operation which yields
a looped matroid denoted as M|,e: if e is a loop, then M|,e = M. Otherwise we
adjoin to M an element e’ parallel to e and then contract e'.

For each connecting matroid there is a set N of matroids obtained from N by
loopings on zero or more elements of N. For example, using the definition from
Table 1, if N is a 3-circuit on {p, s, ¢} then N = {N;",... N5 }. To the end of this
section we will write V; € N for the matroid N;" given in Table 1 for i =1,... 5.
Obviously we can imitate the influence of a reduction R (of some elements of E; —T
of M; occurring during a calculation on M;) on N by applying zero or more loopings
to the connecting minor N.

Applying the same loopings to M, on elements in 7" as when obtaining a V; € N
we obtain a matroid M4 on E(M,). It is obvious that Mj is completely determined
by M, and by N; only. We will denote the set of such matroids by M, and order
them in such a way that M} corresponds to N; € N.

Let cl; be the closure operator of M;. The following lemma shows some basic
properties of the GPC.

Lemma 11 ( [Oxl92, p. 419]) The GPC has the following properties:
(a) Px(M,, My)|Ey = M, and Py (My, My)|Ey = My.

(b) Ife€ E, — T, then Py (M, My)\e = Py (M;\e, My).

(c) Ifee€ Ey, —cly(T), then Py(My, My)/e = Py(M;/e, My).

(d) Ifec T, then Py(My, My)/e = Pnje(Mi/e, My/e).

Lemma 12 Let R(E; —T) be a calculation on M, yielding the sum

V]

Then R(E, —T) is applicable to M = Py (M, Ms), and we have
mc(N;) = me(M2) fori=1...5,

what implies
V]

t(M) = ; me(N;) t(M3).
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Proof: Let R be a reduction occurring during the calculation R(E; — T') and
M'" = M(R) and M| = M,(R) the minors of M and of M, resp., obtained by R.
We have shown that R(E; — T') is applicable to both M and M, if we can show
that for any reduction R occurring during R(E; — T') we have M'|E; = M|. Also
from this it follows that if R has length |E; — T'| then M'|E; = M| € N and so
mc(N;) = me(M2) for t = 1,...,5 by definition of the minor coefficients.

We will show the statement M'|E; = M by induction on the length of R. The
base case holds as M|E; = M; by (a) of Lemma 11. For the induction step assume
that M'|Ey = M] holds for a reduction R. R might have changed N into a matroid
N' = M{|T. Obviously we can obtain N’ applying to N some loopings from a set
H, say. Let M} be a matroid obtained by applying all loopings in H to M, (thus,
M}|T = N' i.e. we imitate the influence of R onto M, considered as a part of M).

Now let e € E1—T be an element to be reduced in the next step of the calculation.
We want to show that

M’/e = PN’(M{/ev Mé)?
and
M'\e = Py:(Mj\e, My)

as then (M'/e)|Ey = M| /e and (M'\e)|E, = M]\e by (a) of Lemma 11, what would
complete the induction.
But, by (b), (c) and (d) of Lemma 11 we have

o if e € E(M]) —T, then M'\e = Py:/(Mj\e, M),
o if e € E(M]) —cly(T), then M'/e = Pn:(Mj/e, My),
e if e € cl(T) and e will be contracted, we have the following two cases

— if e is a loop then we can delete e and so again M'\e = Py:(M]\e, M),

— otherwise e is parallel to some element €' € T. We contract ¢’ and by (d)
of the mentioned lemma we have

PNI(M{, Mé)/e' = PNI/G(M{/e, Mé/e)

To suffice the condition that only elements in Ey — T are reduced, we
relabel e and ¢’. The effect of these operations equals a looping on ¢’ € T'.

O

Theorem 13 (Splitting formula for GPC with N being a 3-circuit) Let
M be a GPC Py(Mi, My) with N being a 3-circuit. We write By = E(M,), Ey =
E(M,), E(N) =T = {p,s,q} and require that in M, there is a circuit Uy U {s}
with Uy C Ey — T and a circuit Uy U {p} with Uy C E; — T (otherwise M can be
represented as a parallel connection or a direct sum of My and M, ).

Let

Q1= M \p\s\q, Q2 = Mi\p/s\q, Qs = My/p\s\q, Qs = My/p/s/q,
Qs = Mi\p\s/q
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be five minors of My on E1 — T and let
My = My, M3 = Myles, M3 = My|ep, My = Ms|eples, M3 = Ms|eq
be five looped matroids of My on Ey. Furthermore we define the vectors:

q=[t(Q1),t(Q2),t(Q3),t(Qu),t(Qs)]" and
F=[t (M), t(M3),t(M3), ¢ (Mg),t (M)]".

Then
t(M)=q"Cp

where C is the symmetric matriz given in Theorem 10, i.e.:

(1-y)* 1y 1y 2 1y
—r—yt+ry —r—ytzy 7$7jf/+a:y —r—y+xy 7:1:7%+$y
1=y 1 -z
1 —r—y+xy —r—y+txy —r—ytry —T—ytxy
1—y 1 1 1—x 1
1 - — —r—y+ry —T—y+ay —T—y+Ty —T—y+ry
l-—z—y+uzy 2 1-g 1-g (1-x)* l-g
—r-y+ry —T—ytry —r-y+ry —T-ytry  —r—y+tay
1—y 1 1 1—x 1
L —z—ytzy —z-ytzy —r-ytzy —r-ytay J

Proof: Put M, = M;\q. By assumption both p and s are circuit points in M
and s is a circuit point in both M, \p and M, /p. Thus, we may apply Theorem 10
to My, yielding:

¢'C = i = [tm(Mf)atwy(Mf)atyw(Mf)atyy(Mf)atCC(Mf)] :

It remains to show that the minor coefficients mc(M3), ..., me(MS3) are t.(M; ),
oy (M7 ), tys(M7), tyy (M7 ) and t..(M] ), respectively, as then

5
(M) = me(My) t(My) =17 p=q" Cp
i=1

by (2) and by the fact that |[N'| = 5 what can be seen from Table 1 (where M™ = N).
By Lemma 6 t,,(Mi), tuy(M7), tye(M), t, (M) and t. (M) are exactly

mc(Ny), ... ,me(Ns), respectively (the matroids Ny, ..., N5 are denoted in Lemma 6
as Ni", ..., N5, respectively). We apply Lemma 11 to see that the minor coefficients
mc(Ny), ..., me(Ns) are exactly me(M.)), ... ,me(M;), respectively. O

The following theorem gives a splitting formula for 3-sums of matroids.

Theorem 14 (Splitting formula for 3-sums of matroids) Let M’ = M; @3 M,
be a 3-sum of the matroids My and Ms. We write Ey = E(M;), Ey = E(M>),
E(N)=T ={p,s,q} and N = My|T = My|T. We also require that in M, there is
a circuit Uy U {s} with Uy C Ey — T and a circuit Uy U {p} with Uy C Ey — T and
that in My there is a circuit Vi U {s} with Vi C Ey — T and a circuit Vo U {p} with
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Vo € Ey — T i.e. we require that M' cannot be represented as a 2-sum or a direct
sum of My and M,. Then the following splitting formula holds.
Let

= Mi\p\s\q, Q2 = Mi\p/s\q, Qs = M1/p\s\q, Qs = My/p/s/q,
Qs = Mi\p\s/q

be five minors of My on Ey —T and let

Py = My\p\s\q, P> = My\p/s\q, Ps = My/p\s\q, P, = M,/p/s/q,
P = My\p\s/q

be five minors of My on Ey —T'. Furthermore we define the vectors:

7= [t(Q1),t(Q2),t(Qs),t(Qu),t(Qs)]"
P =[t(P),t(Py),t(P3),t(Py),t(Ps)]"

Then
t(M)=q"Cp"

where C 1s the symmetric matrix given in Theorem 10 and in Theorem 13.

Proof: We apply R1, R2, and R3 to the elements in T of M = Py(M;, M,),
yielding:

t(My @3 My) = t(Py(My, My)) — t(M/s\q\p) — t(M/p\q\s) — t(M/q\p\s)
—t(M/s/q\p) —t(M/p/q\s) — yt(M/p/s\q) (10)

(clearly M/s/q\p = M/p/q\s = M/p/s\q).

Except for M, @3 M-, each of the matroids occurring on the right-hand side of the
above equation is a direct sum or a 2-sum of two matroids on E; —T and on Ey — T,
respectively. Therefore t(M/s/q\p) = t(M/p/q\s) = t(M/p/s\q) = t(Q4) t(Py)
and, for example

HM/s\q\p) = v [ t(Q1) t(Q2) ] [ x__ll _ ] “E%; ]

TY—T—Y y—1
where we write

Py = M)\p\s\q, P> = M\p/s\q, Ps = M,/p\s\q, P, = M/p/s/q,
P = My\p\s/q.

Thus, we can represent each of the polynomials on the right-hand side of the equa-
tion (10) except for t(Py (M, Ms)) in terms of the Tutte polynomials of @Qy,... Q5
and Pl,..._Pg,.
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Also the splitting formula of the GPC for ¢(Py(M;, My)) can be given in terms
of the Tutte polynomials of Q)q,...Q5 and P,... Ps, as p' can be easily calculated
from the Tutte polynomials of Py, ... Ps applying the rules R1, R2, and R3:

t(P) +t(P) +t(Ps) + (2+y) t(Py) + t(Ps)
y(t(P) + (1+y)t(F))
y(t(P3) + (1+y)t(F))

y> t(Py)
y (t(Ps) + (1 +y)t(Ps))

Ty
I

In the final step we multiply out the right-hand side of the equation (10) and
recollect the coefficients of the products ¢(Q;) t(F;) for i,5 € {1,...,5}.

It turns out that the splitting formula for AM; &3 M, is identical to the one for
the GPC but p'is exchanged with

B =[Pt (Po) £ (Py) ,t (Py) ,t(B5)]
B t(My @3 My) =" Cp'.
|

Remark 15 James Ozley has obtained similar splitting formulas for a 3-sum and
for a GPC across a 3-point line. In place of matroids Q1, ... ,Qs Ozxley’s formulas
require the matroids My, My /s, My/p, M1/q and My /p/s/q and they require the ma-
troids My, My/s, My/p, My/q and My/p/s/q in place of My, ..., M2 (splitting for-
mula for 3-sums) or Py, ..., Ps (splitting formulas for a GPC). The author restates
two most important formulas as communicated ( [Oxl95]), but using the notations
from Theorem 1/ and putting

Ay = t(My/s) + t(M,/p) + t(M,/q)

and
Ay = t(My/s) + t(Ms/p) + t(Ms/q).

Splitting formula for a GPC of matroids M, and M, with the connect-
ing minor N being a 3-circuit:

HPy(My, My)) = (xy—2—y) " (wy—2—y—1)" (@y—2z—y—-1)y-
[t(My/s) t(Ma/s) + t(My/p) t(Mz/p) + t(M1/q) t(M2/q)] +
297 [t(My) t(Ma/s/p/q) + t(Ma) t(M:1/s/p/q)] + y* Ay Ay +
y(1—y) [t(My) Ay +t(My) A1) —
y’ (1+ ) [t(My/s/p/q) Ay +t(Ma/s/p/q) Ar] +
v} (@® + o +y+3xy) t(Mi/s/p/q) t(Ma/s/p/q) + (y — 1)* t(My) t(My)) .
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Splitting formula for the 3-sum of matroids M; and M;:
HMy @3 My) = (xy —x—y) "ey—a-—y—-1) " (ty—z—y—1)

[t(M1/s) t(Ma/s) + t(My/p) t(M2/p) + t(Mi/q) t(Ma/q)] +

2y° [t(My) t(My/s/p/q) + t(My) t(M:1/s/p/q)] + y* AL Ay +
y(1l—y) [t(My) Ay +t(My) Ay] —

v (L+a+2y) [H(Mi/s/p/q) Az +t(Mz/s/p/q) Ai] +
t(My/s/p/q)t(Ma/s/p/q) [4y* +5y° + 3y +y+x+a” +3wy+

3wy’ +3xy® |+ (y—1)2H(M) t(M))
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