Simple Reconstruction of Non-Simple Curves

Tobias Lenz
tlenz@mi.fu-berlin.de

Institut fur Informatik
Freie Universitat Berlin
Takustr. 9
14195 Berlin, Germany

Technical Report B 05-02

Abstract

The presented algorithm reconstructs collections of
arbitrary curves (open, closed, smooth, with cor-
ners, with or without intersections). The algo-
rithm is very simple and short and has a novel and
very simple sampling condition which guarantees
correct results and does not need special adaption
for regions close to corners, endpoints or intersec-
tions. The corner and intersection points are not
required to but allowed to be in the sample. The de-
scribed method works for curves in any dimension
d asymptotically in O(nQ*I/ d) time with involved
data structures. Experiments show already a good
performance with a very simple kd-tree structure.

1 Introduction

1.1 What is Curve Reconstruction

Answering the question up-front with the words
of Tamal Dey, Kurt Mehlhorn and Edgar Ramos:
Curve reconstruction is “connecting dots with good
reason” [6]. The “dots” are so called samples taken
from the curve—whatever that may be precisely—
one wants to reconstruct. The outcome should
also be a curve approximating the original curve
the samples were taken from. Typically one cre-
ates a piecewise linear approximation of the orig-
inal curve. So it is in fact “connecting the dots”
with the goal to find the order which satisfies ones
needs best.

Figure 1: How to connect these dots?

Regarding it in a more abstract fashion, in curve
reconstruction only a subset of the original informa-
tion is given and the task is to complete it in the
most likely way. This is something very natural,
e.g. the human visual system does it all the time.
Figure 1 shows only some dots but it should be no
problem to identify them as the number 489. Al-
though the dots are not connected, they somehow
indicate the shape of this number and the human
brain automatically reconstructs the missing infor-
mation.

This is exactly the task the computer should
solve for us. The results of course depend on the po-
sitions of the given points and the used algorithm to
connect them. This paper is mainly concerned with
algorithms providing provable results, such that for
an input satisfying a certain sampling condition,
the corresponding algorithm computes an output
with certain guarantees with respect to the origi-
nal curve.

Although the reconstruction of two-dimensional
objects (curves) has applications on its own, it
mainly provides foundations and new ideas for sur-
face reconstruction in three dimensions.

1.2 Sampling Conditions

The quality of the reconstructed curve depends
heavily on the quality and quantity of the input
points. The following sections bring up some ideas
of curve reconstruction algorithms. They guaran-
tee a “correct” reconstruction if the samples satisfy
certain conditions.

All of the discussed sampling conditions some-
how limit the allowed positioning of sample points
not only locally, regarding a single point and maybe
its neighbors, but globally, enforcing properties of
the set of points as a whole, e.g. utilizing the medial
axis. Most of them are also not easy to verify, but in
general—uniform sampling excluded—they all lead
to the following rule of thumb: parts of the curve
which are close to other parts or with high curva-
ture should be sampled more densely than straight
and distant parts. This sounds very natural and is
intuitively a good idea.

Many other sampling restrictions are imaginable,
like the one in this paper. In general a special sam-
pling condition suits best for a special algorithm,
providing a sufficient condition for a correct recon-
struction.

1.3 Filtering Delaunay Edges

Reconstructing a curve from n given sample points
means picking a subset of the edges of the embed-
ded complete graph with these n vertices. How-
ever this is done, there are ©(n?) edges possible to
choose. If an algorithm only handles simple curves
(without intersections) the reconstruction is a pla-
nar graph which has O(n) edges. This allows to
pre-select a linear number of edges from which the
edges for the final reconstruction are chosen. Due
to some for curve reconstruction extremely appro-
priate properties, the edges of the Delaunay tri-
angulation are often taken. They have a nice rel-
ative positioning, can be computed efficiently and
the concept naturally extends to higher dimensions,
reconstructing surfaces.

According to these advantages it seems obvious
that numerous algorithms use the Delaunay trian-
gulation as their edge basis and then throw out
edges step by step until the remaining edges form
the final reconstruction. Many of these algorithms
require the sample to be a so called e-sample fulfill-
ing the condition that for each point on the curve

the distance to the closest sample point is at most €
times the local feature size. The local feature size of
a point is the distance to its closest point on the me-
dial axis and was introduced by Amenta, Bern and
Eppstein [2] to distinguish between smaller features
needing a high sampling density and larger features
which only need a low sampling density to be cap-
tured well. This is explained more elaborately in
section 3.1.

One important idea for this work came from Dey
and Kumar and their Nearest Neighbor Crust al-
gorithm [5]. They connect each point p with its
nearest neighbor n and its nearest half-neighbor h
which is basically the nearest neighbor among the
points ¢; with Znp, pg; > 90°. Picking the nearest
neighbor essentially is like growing a circle around
a point until another point touches the boundary.
We do basically the same but instead of growing
circles we use other shapes which are introduced in
a later section.

1.4 Other Algorithms

The problem of reconstructing closed curves might
also be formulated as an instance of the well
known traveling salesperson problem as done by
Giesen [10, 11]. The sample points are the sites
which all must be visited on the shortest tour pos-
sible. The very basic idea is if the sample is dense
enough such that two points adjacent on the curve
are closer to each other than to any other point, the
TSP tour will be the correct reconstruction. Later
Althaus and Melhorn [1] showed that this tour can
be found in polynomial time.

Other approaches use additional information,
e.g. normals for the sample points like the so called
tensor voting.

The surface reconstruction by Cohen-Steiner and
Da [4] uses a greedy technique growing the recon-
struction adding the most fitting triangles one at a
time which is roughly similar to the method pro-
posed in this paper for curves.

1.5 Reconstructible Curves

All the numerated algorithms have one thing
in common. They cannot reconstruct arbitrary
curves, applying a very general definition of the
term curve. The very first algorithms worked for

simple, closed, smooth curves only [2]. Newer al-
gorithms work for open curves [6], curves with
corners [7] or collections of curves [9]. Some of
them are for 1-manifolds, some work well with
T-junctions but the big challenge of reconstruct-
ing self-intersecting curves or several overlapping
curves is still present. One reason for that is
the wide use of Delaunay triangulations which is
asymptotically fast but naturally excludes intersec-
tions if one is not willing to handle them with spe-
cial cases.

This problem is tried to tackle in this paper;
reconstructing a collection of very general curves,
each may be open or closed, with a finite number
of corners, intersections and self-intersections.

Section 2 provides the necessary definition of
curves and their properties. In section 3 the prob-
lems with certain features like intersections are ex-
plained and the main ideas to solve them are pre-
sented. The next two sections contain the algo-
rithm and the required sampling condition. The
correctness and the analysis of time and space con-
sumption is done in the sections 6-8. The paper
concludes with implementation details and a com-
parison to e-sampling based techniques.

2 Curves and Their Variants

2.1 Properties of Curves

Please note, that the following definitions are cho-
sen with respect to useful terminology within this
paper and may differ from definitions found else-
where.

Definition 2.1. Let o be a continuous and piece-
wise injective mapping o : [0;1] — R for a fixed d.

We call the image of o a (d-dimensional) curve?.

We will loosely speak of the curve o which always
refers to the image of o. In general we will denote
the curve generated by the mapping ¢ or ¢; by X
or Y; respectively.

Definition 2.2. A finite set of curves (or collection
of curves or just collection for short) generated by

11t is appropriate to treat closed curves as mappings from
S! to R to omit problems and special cases for the interval
boundaries.

m mappings o; for 1 < i < m is the union of the m
m
curves: ¥ = [J;, .

Since a single curve can also be regarded as a
collection generated by a single mapping, we will
only speak about reconstruction of collections from
now on, which completely includes reconstruction
of single curves.

Please note that the mapping generating a cer-
tain curve is not unique, neither is the set of map-
pings generating a collection. Different mappings
leading to the same collection are called reparame-
terization of each other.

Definition 2.3. A curve is called closed if o(0) =
o(1)!. Otherwise it is called open and ¢(0) and
o(1) are called endpoints.

Definition 2.4. A point p on a curve is called self-
intersection if and only if a, b € [0; 1] exist such that
a#band {a,b} # {0,1} and o(a) = o(b) = p.

Definition 2.5. A curve is called simple if and
only if it contains no self-intersections.

The simple curves are exactly the 1-manifolds.
Open simple curves correspond to 1-manifolds
with boundary (the endpoints) while closed simple
curves are 1-manifolds without boundary.

Definition 2.6. A point o(c),c € [0;1] on a curve
is called corner if and only if o(c) is not an endpoint
and there is no (unique) tangent in o(c).

Definition 2.7. A curve is called smooth if
and only if it contains no corners and no self-
intersections.

Definition 2.8. A point p in the collection of the
curves X1, ..., Y, is called intersection if and only
if either p is a self-intersection of any X; or there
exist 3; # ¥;,1 < 4,5 < m such that p € ¥; N %;.

Figure 2 gives an intuition of some of the defined
features i.e. smooth, open and closed parts, end-
points, corners and intersections.

The natural expectation of a curve seems to in-
clude certain nice properties like continuity and at
least piecewise differentiability. Some of these re-
strictions are in fact necessary to get a reasonable
reconstruction and thus are common among recon-
struction algorithms. For this paper the restric-
tions to reconstructible collections are stated as fol-
lows.

’ @
€1
i3
23 €3

Figure 2: Collection example with endpoints e;,
corners ¢; and intersections 7;

Figure 3: Two curves (solid and dotted) generat-
ing a junction in three different ways although the
collection always looks the same. Is it a normal in-
tersection (left) or two corners touching each other
(center and right)?

Definition 2.9. A collection of curves is said to
be reconstructible if and only if it has finitely many
corners and intersections.

No algorithm is known which handles at least
partly curves which are not reconstructible due to
this definition.

From now on speaking of collections we will al-
ways mean reconstructible collections if not explic-
itly stated differently.

2.2 Picking Samples from a Curve

In curve reconstruction the task is to find an ap-
proximation of the original curve based on a prefer-
ably small set of points on that curve. This set is
called sample and defined as follows.

Definition 2.10. A sample S is a finite subset of a
collection . The elements of the sample are points
in R? and are called sample points or samples for
short.

Intending to apply a special algorithm, the sam-
ple points should fulfill some conditions to guaran-
tee a reconstruction with a certain quality. This is
explained in detail in chapter 5.

2.3 Reconstructed Curves

Obviously it is impossible to reconstruct the orig-
inal mappings or the parameterizations although

some ambiguities are already excluded by the defi-
nition 2.9.

Basically the reconstructed “curve” is an embed-
ded graph which has the sample points as vertices
and the edges are computed by the used reconstruc-
tion algorithm. We will call this graph reconstruc-
tion and denote it by I'. If a piecewise linear ap-
proximation is not suitable for a specific applica-
tion, existing techniques to find a smooth approxi-
mation based on I' can be applied [6].

Definition 2.11. Consider a set of points A C
3. Two points p,q € A are called adjacent in X
restricted to A if and only if a continuous mapping
¢ : [0;1] — X exists such that there are a,b €
[0;1] : (a) = p,¢(b) = q (without loss of generality
a <b), and Ve € (a;b) : p(c) ¢ A.

In other words, two points p, ¢ are adjacent in A
if and only if a path from p to ¢ along the collection
exists which does not contain any points from A\

{p.q}.

Definition 2.12. Let S be a sample of the col-
lection ¥ = U:’;l Y.; generated by the m mappings
0i,1 < i < m. An edge between p,q € S in a re-
construction of ¥ is a correct edge if and only if
an index 1 < k < m exists such that p and ¢ are
adjacent in Xy restricted to S.

3 Non-smooth Features

3.1 The Intersection Challenge

The e-sampling is very well tailored for the use
of Delaunay triangulations and for smooth curves
the e-sampling together with the medial axis and
the local feature size [2] are very expressive objects
respectively quantities. Unfortunately some ma-
jor drawbacks emerge for reconstructing arbitrary
curves.

The e-sampling is an intuitive condition which
basically states that the sampling should be dense
if the curvature is high or several parts of the curve
are close together while it might be loose in straight
regions of the curve. Formally it is defined as fol-
lows.

Definition 3.1. The medial axis of a smooth curve
is the set of points M containing the center points
of all empty circles which touch the curve in more
than one point.

Figure 4: A non-smooth curve (black) with some
medial balls (dotted) and the medial axis (red) in-
tersecting the curve at the corner point c.

Definition 3.2. The local feature size of a point
p € ¥ is defined as lfs(p) = mi]r\14 llp — ml.
me

Definition 3.3. A sample S is an e-sample of the
smooth curve ¥ if and only if Vp € ¥ : Is € S :
Ip— s < e 165(p)

These definitions apply well to smooth curves
but an e-sample is plainly not possible for curves
with corners or intersections because the medial
axis goes through these points and hence the local
feature size becomes zero. Therefore the sampling
density should be infinite. See figure 4 for an illus-
tration. A possible solution is to exclude a small
neighborhood of these points from the e-sampling
condition and define a new one for these regions.
This is used for corners in [9]. An extension to
the Crust algorithm with a special condition for re-
gions around intersections was recently introduced
by Knobelsdorf [12].

Corners and endpoints can be handled by a
change in density. This is very natural and should
be clear from figure 5. Unfortunately such a trick
is not possible for intersections.

Comparing the Delaunay triangulation of a sam-
ple with the correct reconstruction one will find
some wrong edges in the vicinity of intersections.
They have interesting characteristics which are ex-
plained and exploited in the next section.

3.2 Key Idea: Inflating Probes

An observations for smooth curves or smooth parts
of curves near intersection points is that the angle
between segments of properly placed sample points

Figure 5: Higher density perceptually indicates dis-
connectedness. The samples on the left show nearly
equally distributed sample points while the samples
on the right use higher density close the endpoints
and corners to emphasize the upcoming gap.

Figure 6: Wrong connections usually create larger
angles

is small while mostly this angle abruptly increases
connecting to a wrong point, see figure 6. There-
fore a key idea is to favor small angles over small
distances.

Of course this must not be exaggerated. Only
considering the angle is prohibitive because the al-
gorithm would always connect groups of three co-
linear points disregarding their distance.

A nice middle course between angle and distance
is achieved by putting a specially shaped probe at
the end of a correct edge, aligned in the edge’s di-
rection and inflating this probe (increasing its size)
until it hits a point. By this technique it is possible
to “tunnel through” a narrow set of wrong points

Figure 7: A chain of three sample points and their
angle.

and reach the correct one.

To favor small angles over small distances one
might use a distance function F' which depends ex-
ponentially on the given angle parameter but only
linearly on the distance parameter. Consider

F(d, @) = d - Chase ™™™

where d > 0 is in distance units and « is an angle
from [—m;7]. We call F our distance function. For
ease of use a point parameter form is provided as

Fog(r) = 1 = 7] - Cnee P97

for three points p, q,r. The term distance function
is precisely defined in definition 3.7 in a later sec-
tion.

Please note that F,(r) is finite and strictly pos-
itive for every three points p,q,r with ¢ # p and
q # 7 but not necessarily p # r. See figure 7 for
an illustration of the angle o = Zpg,qr. Further
it is important that F},, is directed and in general
different from Fyy,.

The values for cpase and cexp have to be chosen
carefully. Figure 8 provides a graphic understand-
ing of these parameters by some examples.

The shapes drawn in figure 8 are probes. In gen-
eral such a probe at the origin in z-direction is rep-
resented at best by the following function depend-
ing on the angle

1

‘Oéluexf’ ?

O(a) =

Chase

—nrT<a<sTm

or in terms of the distance function F' by the im-

[)1 t f tio T < —
1C1 nctrion
C unc F()

For cpase = 1 the probe “degenerates” to a circle
which lets the selection criterion behave like a usual
euclidean nearest neighbor function.

v 02 04 056 08 1

0 \ 02 0.4 0.6 0.8 A
-0.1 -

0 02 0.4 06 08 {

(¢) cbase = 80, cexp = 3.0

Figure 8: Polar plots of % = 1 with different
parameters Chase and Cexp

3.3 Convex and Polygonal Probes

The probes described in the previous section have
several nice properties. The function F is easily
computable for three given points. Moreover the
function reflects the intuition to penalize large an-
gles and still favor smaller distances for similar an-
gles.

On the other hand there is one major drawback
for efficient implementation. The probe is neither
convex nor is it easy to compute derivatives or other
handy properties. This prohibits most known data
structures for efficient queries when it comes to
minimizing Fj,.

The selection of F' in the previous section is not
mandatory. Here is a more general definition for a
probe which maintains the main property but ad-
ditionally allows polygonal probes with finite com-
plexity and convex probes.

Definition 3.4. A continuous map 6 : [-m; 7] —
R(T is called probe if and only if « > 8 > 0 =
f(a) < 0(B) and o < f <0 = O(a) < 6(F) and

O(—m) = 6(m).

(a) convex, symmetric with (b) polygonal, convex, sym-
negative extend metric with negative extend

(c) convex, asymmetric (d) convex, symmetric and
with negative extend without negative extend

Figure 9: Four probes illustrating the variety of
possible shapes. All these probes are convex and
can be described with constant complexity. Probe
(a) is assembled out of three circular arcs, (b) is a
polygon with seven vertices, (¢) is a combination
of circular arcs and straight segments and (d) is a
spline.

The name “probe” refers to the shape one ob-
tains from drawing the function # in polar coordi-
nates for the full circle between —7 and 7 with
as distance from the origin. Some interesting prop-
erties of such a probe are the following.

Definition 3.5. A probe 6 is symmetric if and only
if Vao € (0;7] : O(x) = O(—q).

Definition 3.6. A probe 6 has negative extend if
and only if 3o : |laf| > 5 A 6(a) > 0.

Figure 9 shows shapes which are probes by defi-
nition 3.4.

Most useful for general curve reconstruction are
symmetric probes. If the curves are not closed and
smooth, the probe must have a negative extend to
detect endpoints and undersampled sharp bends or
corners. To further allow the usage of simple effi-
cient data structures, the probe should be convex
and for easy computations also polygonal.

Now it is time to define the distance function
depending on the probe.

Definition 3.7. Let 0 be a probe by definition 3.4.
The distance function for three points p, ¢, r is de-

fined as

Foq(r) = { quin

6(£pq,qr)

if () =0
if f(a) > 0.

This definition is valid for any dimension since
one considers only the plane spanned by p, ¢, and
computes Fpq(r) in that plane.

3.4 Curve Tracing

One arising problem of the probe concept is that a
probe needs an alignment and therefore needs an al-
ready reconstructed edge which provides the proper
alignment to find the next correct edge. This leads
intuitively to the inductive idea to “walk along the
reconstruction” or just tracing the curve starting
from a specific seed edge.

Compared to the global approach of triangulat-
ing a point set and then selecting a subset of the
triangulation edges, tracing is a more local con-
cept. Extending the reconstructed graph at its
“endpoints” with minimum weight components is
also a very natural procedure and intuitively clear.
This idea is in line with famous algorithms like
Dijkstra’s shortest path algorithm or Prim’s algo-
rithm to construct a minimum spanning tree.

Inflating probes together with tracing curves al-
ready provides a nice straightforward technique to
reconstruct non-overlapping collections of smooth
curves. Sharp corners might become reconstructed
by the same idea, first going straight into the cor-
ner and then backwards out to a close point (if the
apex of the corner is in the sample). Endpoints are
the extreme case of corners where the point one
came from is the point with minimum distance, i.e.
Fpq(p) is minimal.

For arbitrary collections including intersections,
additional problems may arise which are covered by
the sampling condition in section 5.2.

4 The Algorithm

4.1 A General Framework

In this section a general framework for algorithms
using tracing and inflation is presented. Finding
seed edges and finding consecutive edges might be

controlled by the user by selecting criteria appro-
priate for the current problem respectively chang-
ing line 3 to find seed edges and providing a proper
function F' like the ones discussed in the prior sec-
tions.

Algorithm 1: Framework for the reconstruc-
tion of collections of arbitrary curves using the
tracing technique.

Input: Sample S fulfilling the sampling
condition
Output: Polygonal reconstruction I' of the
curve %

begin
D20
while |S\T| > 2 do
find seed edge (p,q) with p,g € S\ T
L —=Tu{(p,q)}
processEdge (p, q)
processEdge (¢, p)

S ks W N -

end

Procedure processEdge(p,q)

begin
7 find r € S\ {¢} which minimizes F,(r)
8 if (q,r) ¢ T then
o T—TU{(gn)
10 processEdge (q,r)

end

The reconstruction algorithm plainly realizes the
idea of the inflating probe. Beginning with an seed
edge—e.g. the shortest edge available—the point
minimizing the distance function F as defined in 3.7
is computed and the corresponding edge created.
This is continued in both directions until an already
existing edge is detected and until all possible seed
edges are used up. The reconstructed edges are
treated as undirected edges.

No sophisticated structure is used to find the
points minimizing F' to keep the algorithm simple.
It should be blindingly easy to implement this ver-
sion without the need for any geometric library.

The while-loop reconstructs connected compo-
nents until less than two unused points are left and
thus no additional seed edge exists. In the loop, in
line 3, a new seed edge is selected as the closest pair
of unused points and added to the reconstruction.
The recursion is “seeded” from that edge with both
possible orientations.

In the recursive procedure the point 7 minimiz-
ing F' with respect to a given edge and orientation
(p, q) is found. Only if the edge from the endpoint
of the given edge to r is not already part of the re-
construction, it is added to the reconstruction and
the recursion continues.

4.2 Handling Corners and Intersec-
tions

Surprisingly—using the algorithm from the prior
section—the reconstruction task does not become
harder after introducing corners and intersections.
Exactly the same algorithm can also handle piece-
wise smooth curves with a finite number of corners
and intersections.

Starting at an edge (p, ¢), endpoints are detected
if p, g are so close to each other that Fj, is mini-
mized by p. This would create the edge (g, p) which
is the same as (p, ¢) and hence is omitted and this
branch of the tracing process stops.

5 Sampling Condition

5.1 Reconstruction Depends on
Sample, Not on Original Curve

After the definition of a sample in section 2.2
and the introduction of e-samples in section 3.1
one should discuss the true requirements for sam-
ples. In this discussion we agree with Funke and
Ramos [8, 9], and extend their point of view to col-
lections with intersections.

The task is to find a finite sample S C X such
that the given reconstruction algorithm can deduce
a piecewise linear approximation of ¥ from S. The
sample is not created with respect to good approx-
imation in terms of a certain minimized quadratic
error or a similar quality measure. It has to be
just dense enough to allow a correct reconstruction
by definition 2.12. Actually a sparse sample has
a big advantage due to shorter running time and
it sounds reasonable that reconstructing a sensible
curve from few points is a much bigger achievement
than doing it from a very detailed sample.

Figure 10 shows an example of an extremely
sparse sample which only contains four points. Ob-
viously the approximation error—measured e.g. as
symmetric Hausdorff distance—between I' and X

Figure 10: The reconstruction I' from a very sparse sample disregards many features from the original

curve X.

becomes arbitrarily large by enlarging d. Some thin
features are omitted and even the self-intersection,
which might be an interesting artifact, is not repre-
sented in the reconstruction. Nevertheless I' is the
best reconstruction one can obtain from the four
sample points and our opinion is that it is better
to have a reconstruction reflecting the quality of the
sample than to have no reconstruction at all. This
might also be used deliberately while sampling a
curve to focus some regions and neglect others re-
gardless of their real features.

The conclusion from this section is the fact that
our sampling condition—opposed to the e-sampling
condition—will not depend on direct geometric
properties of the original collection . like curvature
or local feature size but on correlations of points in
S only.

5.2 The Sampling Condition

The basic sampling condition is very simple and the
idea is comparable with the one given in [8]. How-
ever the condition stated here is inductive, having
a correct edge it defines another correct one. To
get an anchor for this induction another condition
is necessary and therefore the following formal de-
composition is introduced.

Definition 5.1. A point s € S which is an inter-
section in the collection ¥ by definition 2.8 (< s
has a degree larger than 2 in the reconstruction) is
called cut verter.

Definition 5.2. Removing the cut vertices from X
would decompose it into 1-manifolds with or with-
out boundary and “overlapping 1-manifolds” which
have common points in ¥ but not in S. The result-
ing set of points is called 1-manifold decomposition
of ¥ with respect to S. Formally the cut vertices
are not removed and still belong to all adjacent
components but the components are separated.

Figure 11: A collection, its sample (dots and
squares), cut vertices from the decomposition
(squares) and the enumerated components 1-7.

An illustration of this decomposition is given in
figure 11, where the dots and squares are the sample
points. The points marked by squares are removed
during the 1-manifold decomposition, so we end up
with seven components.

Utilizing the just defined formal decomposition
it is possible to define the sampling condition as
follows.

Definition 5.3. An edge (a,b) with a,b € S is
called seed edge if and only if the samples a,b
are adjacent in the same component C of the 1-
manifold decomposition of ¥ with respect to S and
they uniquely minimize the pairwise distances of
samples with at least one part in C, formally

lla —bll <min{[p—qll [p € CAgeS\{ab}}.

Definition 5.4. A sample S C X is called a valid
sample if and only if the following holds.

1. Every component in the 1-manifold decompo-
sition of ¥ with respect to S has at least one
seed edge.

2. For every directed pair of samples p,q € S
forming a correct edge must exist a point r €
S\ {q¢} which uniquely minimizes F,q and (g, r)
must be correct. Additionally r = p is only al-
lowed if ¢ is an endpoint itself or ¢ is a sample

Figure 12: The same sample can be valid for one
curve (left) while it is invalid for another curve
(right).

adjacent to an endpoint e ¢ S in ¥ restricted
to S.

5.3 Validity Not Verifiable

It would be a desirable function for a reconstruc-
tion algorithm to test the sample whether it is valid
or not and then tell the user that the results are
guaranteed or respectively only heuristics. Unfor-
tunately this is not possible because the definition
of a walid sample bases on the correct reconstruc-
tion and so the correct reconstruction has to be
known to check the validity of the sample but this
would contradict our task.

Validation of any sample without additional in-
formation about the target collection is not pos-
sible in general independent of the definition of a
valid sample. In the case of e-samples for example,
the sample has to fulfill certain distance conditions
based on the original curve and its medial axis. To
verify the validity, the original curve has to be given
which again renders the task to reconstruct it un-
necessary.

Figure 12 shows an example of a valid e-sample
with some fixed e for two parallel segments on the
left which is at the same time an invalid sample
of the open smooth curve on the right. If only
the sample points are given and we do not know
whether they form a valid sample or not, we can not
distinguish these cases—independent of the sam-
pling condition.

6 Correctness

6.1 Preparation

A reconstruction from a valid sample (see definition
5.4) with n samples can obviously contain at most

10

('2’) edges. Only a subset of these edges are correct
by definition 2.12.

A reconstruction algorithm is said to be correct,
if and only if the set of edges generated by the al-
gorithm is exactly the set of all correct edges out
of the (”) possible edges. This boils down to the

2
following two implications.

Definition 6.1. A reconstruction algorithm pro-
ducing a set of edges I' from a valid sample is cor-
rect if and only if

1. every edge in I' is correct by definition 2.12
and

2. every edge which is correct by definition 2.12
isin I'.

The upcoming two sections will show that the
algorithm presented in this paper is correct by the
definition given above. The proofs given there will
revert to the following short lemma.

Lemma 1. If the algorithm in section 4.1 processes
a correct edge on a component C in the 1-manifold
decomposition of %, the complete component C will
become reconstructed correctly, assuming a valid
sample.

Proof. Every component C in the 1-manifold de-
composition is by construction a 1-manifold. Con-
sider two adjacent points p,q € C. In a valid sam-
ple (definition 5.4) a correct edge implies correct
edges in both orientations.

In the algorithm’s calls to processEdge it is
taken care of that the edges (p,s) and (g,r) in-
cident to the correct edge (p,q) are added to T" if
r € S\ {¢} minimizes Fp; and s € S\ {p} min-
imizes Fy, respectively. For a valid sample these
edges are correct by part two of definition 5.4 since
7, minimize Fjq or Fy, respectively.

Since all this happens on a 1-manifold, there are
at most two directions available from the edge (p, q)
and one can apply the arguments above to the im-
plied edges (¢,r) and (p,s) in an inductive man-
ner. ([l

6.2 All Constructed Edges are Cor-
rect

Proof (part 1). We consider a collection ¥, a valid
sample S of ¥ and a reconstruction I' built from

the samples in S. Adjacency in the following para-
graphs is always considered with respect to X re-
stricted to S.

The algorithm given in section 4.1 obviously
starts with the shortest edge (p, ¢) on some compo-
nent C' of the 1-manifold decomposition. For valid
S this edge must be a seed edge and it must exist
by part one of definition 5.4. It is correct because
p and ¢ have to be adjacent to form a seed edge by
definition 5.3.

After line 4 is executed the first time the recon-
struction contains only (p,q). Lemma 1 assures
that the complete component C' including all ad-
jacent cut vertices is reconstructed in the following
steps.

It might happen that the algorithm does not stop
at a cut vertex and also generates edges on com-
ponents different from C. Since these edges are
implied by correct edges in C' they also must be
correct by definition 5.4 and again lemma 1 guar-
antees that these components are reconstructed as
a whole. When this process stops, I' contains at
least one component from the 1-manifold decom-
position and it only contains complete components
and only correct edges.

If no points remain, the algorithm will terminate.
Otherwise the shortest edge with endpoints not in
T' is chosen by the algorithm. This is a seed edge
and hence correct because no edge of the remaining
components from the 1-manifold decomposition is
already reconstructed and by part one of definition
5.4 every component has a seed edge and by defini-

tion 5.3 only other seed edges might be shorter. [
6.3 All Correct Edges are Con-
structed

Proof (part 2). Every correct edge appears either
inside a component of the 1-manifold decomposi-
tion or it connects a component with a cut vertex.
Since every component contains at least one seed
edge, the algorithm will reconstruct every compo-
nent either starting at its seed edge or coming from
a neighboring component over a cut vertex. The
components are reconstructed as a whole by lemma
1 including adjacent cut vertices so it is guaranteed
that no correct edge is left out. [l

11

6.4 Correctness Theorem

Theorem 1 (Correctness). Let S be a valid sample
of a reconstructible collection . The algorithm in
section 4.1 gemerates exactly all the correct edges
possible in S and hence it is a correct reconstruction
algorithm by definition 6.1.

Proof. See lemma 1 and section 6.2 and 6.3. O

7 Data Structures to Improve
Efficiency

7.1 Dynamic Closest Pair Mainte-
nance

Points in a fair-split tree are not separated by their
median like in a kd-tree for example but they are
divided fair such that a fixed proportion is in the
one subtree and the rest in the other one. Bespamy-
atnikh [3] uses this balanced tree to allow a certain
laziness performing updates and thereby achieves
a data structure which dynamically maintains the
closest pair of points. The initial tree of size O(n)
can be build in O(nlogn) time and each operation
(insert point, delete point, query closest pair) takes
only O(logn) time. This approach works for any
fixed dimension.

7.2 Probe Inflation with Partition
Trees

A partition tree is a data structure which parti-
tions a point set into a constant number r of dis-
joint subsets and does the same recursively with
the subsets. The big advantage of the structure is
that the subsets have nearly equal size and they
can be enclosed by triangles such that a query line
does not intersect more than O(rl’l/d) triangles.
Therefore a range query counting the number of
points inside a constant sized polygon can be exe-
cuted in (’)(nl_l/d) time by recursion over the in-
tersected triangles. A basic explanation of partition
trees and comparison with related data structures
is given in the survey by Matousek [14]. The same
author also provides a detailed analysis in [15].
Partition trees can be used for probe inflation
in the following way. For each of the r triangles
in a partition a single point (fixed or random) is
chosen and tested whether it lies inside the probe

or not. If it does, the probe will become shrunken
such that the point now lies on the boundary. This
guarantees that no triangle is completely inside the
probe, so every one must be completely outside or
it intersects the probe. Now the usual algorithm
continues.

Non-convex probes are triangulated in advance
and the triangles are used for the query.

7.3 Practical Efficiency with kd-
Trees

In practice both important queries, nearest un-
marked neighbor and point minimizing the distance
function, can be executed very fast using only a
single simple kd-tree implementation. At least for
k = 2 dimensions this performs very well for moder-
ate point sets due to very small runtime constants
compared to the other advanced data structures
proposed.

8 Analysis

8.1 Runtime of the Presented Algo-
rithm

Let n denote the size of the valid sample S. The al-
gorithm consists of the following two main routines
which are called very often: Find a seed edge and
find a proper consecutive edge for a given edge.

The runtime is composed of these two main steps
resulting in a total of O(T, +i-T; +e-T.) steps
for i seed edges and e edges in total with 7}, pre-
processing time and T3, T, denoting the time to find
a seed edge or looking for a consecutive edge respec-
tively. Note that for all edges, including seed edges,
a consecutive one is searched. Evaluating the func-
tion F', setting variables and adding edges to the
reconstruction are accounted as constant time op-
erations.

If the number of vertices in each component in
the 1-manifold decomposition is bounded by a con-
stant c, at least 2 components exist and therefore
i € ©(n) seed edges must be found in the worst
case as in figure 13. This already happens for a set
of disjoint triangles.

The algorithm reconstructs the collection
component-wise with respect to the 1-manifold
decomposition. Such a connected component is

12

Y

Figure 13: Worst case: Lots of curves with a limited
number of vertices

a manifold by definition 5.2 and therefore its
reconstruction is a line strip. A closed line strip
with n vertices has n edges, an open one has only
n — 1 edges. At most two additional edges connect
the component with cut vertices. Let s; denote
the number of vertices per connected component.
Since the components are disjoint, » isj<n holds
and one gets the following for the number of edges
e.

e§Z(sj+2)<2n+Zsj:3n
J J

Every reconstruction has at least L’QLJ edges.
This is obvious because the algorithm continues to
connect two unused points until there is at most
one point left. Hence the total number of generated
edges is O(n). This also remains true for higher di-
mensions.

If all is implemented in a brute-force manner then
T; € O(n?) and T. € O(n) and thus the total run-
time will become (’)(713) which can easily be re-
duced to (’)(712 log n) by intelligent handling of the
O(nQ) possible edges.

Using the data structures proposed in chapter 7
can dramatically improve the runtime noted above.
The efficient maintenance of the the closest pair re-
quires O(logn) time per operation. This makes
T; € O(logn),T. € O(n +logn) and reduces the
total runtime to O(n2). An even further reduc-
tion of the runtime is achieved by using parti-
tion trees for efficient probe inflation. It reduces
the query time for a consecutive edge from O(n)
to T, € O(nl_l/d), yielding the final runtime
of O(T, +iT; +eT.) = O(2nlogn+n*"1/4) =

0(n271/d) .

Theorem 2. The algorithm in section 4.1 pro-
vides a correct reconstruction by definition 6.1 in
O(nz’l/d) steps for a sample with n sample points
which is valid by definition 5.4.

8.2 Space Requirements

Using the described data structures one has to
maintain the partition tree and the fair-split tree
for the nearest neighbors. Both have linear size in
the number of points n. The recognition whether
an edge is already in I" or not can be done by storing
the edges in a balanced search tree. This provides a
query time of O(logn) per found consecutive edge
but searching this edge using the partition tree al-
ready takes O(nlfl/ d) which dominates.

This reduces the size of the used storage to ©(n+
IT'|) where n is the number of points and T" the size
of the output. Since I' has linear complexity in n
as explained in a prior section, the algorithm uses
linear space which is optimal.

Theorem 3. The algorithm in section 4.1 pro-
vides a correct reconstruction by definition 6.1 in
O(nz’l/d) steps using ©(n) space for a sample with
n sample points which is valid by definition 5.4.

9 Experimental Results

9.1 Implementations

The presented algorithm was implemented in sev-
eral ways to test its potential in practice. One im-
plementation was done in Java as a plug-in for the
interactive geometry software Cinderella [13] shown
in figure 14.

Some brute-force implementations were done us-
ing C++ but they gave the expected bad results
since the runtime is cubic in the number of points
in the worst case.

A very simple implementation using a single kd-
tree for the closest pair and the consecutive edge
searching was done. In tests with randomly sam-
pled and equally distributed sampled collections it
showed a good performance and for small points
sets of up to 10000 points the speed-up compared
to the brute-force implementation was already a
factor of about 100.

13

wevemmar s |1t | || 2) e |Gt [O
W o e o o) @)] O e A5 R o N K
S| A <) nc| G| OB 4 A 0

el 2 R O D e 0

Figure 14: Screenshot from Cinderella with the in-
teractive curve reconstruction plug-in.

The development of good heuristics which take
the typical special structure of a sample in the local
neighborhood of a point into account is a matter of
further research.

9.2 Heuristic Results

A second series of experiments were done to show
the practicability of the algorithm as a heuristic ap-
proach. It is not always possible to guarantee the
validity of a sample and it is impossible to check
without the original curve. In these cases the algo-
rithm should nevertheless give some sensible out-
put.

The Lissajou figure in figure 15(a), given by the
parametric form L(t) — (sin 4nt, cos 67¢), was sam-
pled such that n values were taken equally dis-
tributed from [0;1) and the corresponding points
were put into the sample. This was done for sev-
eral values of n.

The results depend of course on the random in-
put but they show a general behavior which can
be reproduced for other inputs of the same size.
One possible drawback of the algorithm is that a
single failure—a single wrong edge—can lead to a
chain reaction for the following edges because they
all base on a wrong edge. The experiments show
that this disastrous effect is not likely to occur if
the sample has at least a certain density.

Figure 15(b) shows the reconstruction for 50
points which is quite bad and definitively under-

VG

(a) This figure was sam- (b) n=50: The sample is
pled and reconstructed. overall too sparse.

UGG

(¢) n=100: Some wrong (d) n=200: Almost per-
edges appear resulting fect result except for mi-
from sharp bends. nor dents and one wrong

edge.

sampled. In figure 15(c) 100 points were taken.
Some bends are too sharp to be captured and
some problems occur caused by wrong connections
around intersections. The result for 200 points in
figure 15(d) is already very satisfying and one can
clearly see that although a wrong point was taken
near the intersection on the left side, the curve con-
tinues as expected and the topology is correct. In
the upper right corner a wrong edge was recon-
structed but only a single one which does not entail
other wrong edges. These small glitches might be
cleaned by some post-processing.

Obviously one can always create a point pattern
around an intersection which will result in a wrong
reconstruction independent of the density. Never-
theless there are no additional wrong edges besides
close to intersections and no gaps, so the recon-
structed topology will be correct if the sample is
dense enough. This suggests that the algorithm
might also be used successfully in a heuristic ap-
proach.

10 Discussion and Conclusion

The presented algorithm follows very simple ideas
which are developed and justified throughout the

14

paper. It reconstructs every “known” feature of
curves in any dimension without special handling
and with few sample points.

Similar to e-samples the idea of not crossing the
medial axis is contained in the placing restriction
of the points but it is handled more flexible because
in some places crossing the medial axis is explicitly
necessary, e.g. at corners without the corner point
in the sample. The sample is not limited by geo-
metric properties of the original curve which allows
to emphasize details in certain regions and neglect
others by adjusting the sampling density.

On the downside, the runtime is (’)(nl'5) in two
dimensions which is worse than the O(nlogn) of
many other algorithms but since the algorithm in-
troduced here relies on a different sampling con-
dition which also can reconstruct collections from
sparse samples it is like comparing apples and or-
anges.

References

[1] E. Althaus and K. Mehlhorn. Polynomial
time TSP-based curve reconstruction. In
Proc. 11th ACM-SIAM Sympos. Discrete Al-
gorithms, pages 686—695, Jan. 2000.

N. Amenta, M. Bern, and D. Eppstein. The
crust and the 3-skeleton: Combinatorial curve
reconstruction. Graphical Models and Image
Processing, 60:125-135, 1998.

S. N. Bespamyatnikh. An optimal algorithm
for closest pair maintenance. In Proc. 11th
Annu. ACM Sympos. Comput. Geom., pages
152-161, 1995.

D. Cohen-Steiner and F. Da. A greedy de-
launay based surface reconstruction algorithm.
Rapport de recherche 4564, INRIA, 2002.

T. K. Dey and P. Kumar. A simple prov-
able algorithm for curve reconstruction. In
Proc. 10th ACM-SIAM Sympos. Discrete Al-
gorithms, pages 893-894, Jan. 1999.

T. K. Dey, K. Mehlhorn, and E. A. Ramos.
Curve reconstruction: Connecting dots with
good reason. Comput. Geom. Theory Appl.,
15:229-244, 2000.

[7]

[10]

T. K. Dey and R. Wenger. Reconstructing
curves with sharp corners. Computational Ge-
ometry Theory Applications, 19:89-99, 2001.

S. Funke. Combinatorial Curve Reconstruc-
tion and the Efficient Exact Implementation
of Geometric Algorithms. PhD thesis, Univer-
sitat des Saarlandes, Postfach 151150, D-66041
Saarbriicken, Germany, 2001.

S. Funke and E. A. Ramos. Reconstruct-
ing a collection of curves with corners and
endpoints. In Proceedings of the twelfth an-
nual ACM-SIAM symposium on Discrete al-
gorithms, pages 344-353. Society for Industrial
and Applied Mathematics, 2001.

J. Giesen. Curve reconstruction in arbitrary
dimension and the traveling salesman prob-
lem. In Proc. 8th Int. Conf. Discrete Geometry
for Computer Imagery, pages 164-176, 1999.

J. Giesen. Curve reconstruction, the TSP, and
Menger’s theorem on length. In Proc. 15th
Annu. ACM Sympos. Comput. Geom., pages
207-216, 1999.

M. Knobelsdorf. Kurvenrekonstruktion mit
Schnittpunkten. Master’s thesis, Freie Univer-
sitat Berlin, Kaiserswerther Str. 16-18, 14195
Berlin, Germany, September 2004.

U. Kortenkamp and J. Richter-Gebert. Cin-
derella. http://www.cinderella.de.

J. Matousek. Geometric range searching. Tech.
Report B-93-09, Fachbereich Mathematik und
Informatik, Freie Universitdat Berlin, 1993.

J. Matousek. Range searching with efficient hi-
erarchical cuttings. Discrete Comput. Geom.,
10(2):157-182, 1993.

15

