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Abstract

We present a global approach to solve the three-layer wirability problem for knock-
knee layouts. In general, the problem is NP-complete. Only for very special layouts
a polynomial three-layer wiring algorithm is known up to now. In this paper we
show that for a large class of layouts the problem can be formulated as a path
problem in a special class of graphs or as a two-satisfiability problem and thus may
be solved efficiently. Moreover, it is shown that a minimum stretching of the layout
into a layout belonging to this class can be found by solving a clique cover problem
in an interval graph. This problem is polynomially solvable as well. Altogether,
the method also yields a good heuristic to derive three-layer wirability for arbitrary
knock-knee layouts.
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1 Introduction

Routing is an important problem encountered in the design of integrated circuits. After placement
and global routing, in the detailed routing phase the course of the wires connecting the cells
is determined. Since layouts containing crossings or knock-knees (points where two wires bend)
cannot be realized in a single plane, normally the routing is carried out in two steps, the layout and
the layer assigment called wiring. In case of knock-knee layouts the wiring, i.e., the conversion of a
layout in the plane to an actual three dimensional configuration of wires to avoid contact between
different wires, is a non-trivial task.

There have been made several contributions to this problem [1], [2], [8], [9], [11], [16], in general
all based on a systematic approach developed by Lipski & Preparata in [15] and [12] for grid based
layouts. This combinatorial framework is derived from the observation, that any wiring induces a
partition of the layout into a two-colorable map containing diagonal partition lines induced by the
knock-knees and additional vertical and horizontal partition lines. For wirability in two, three, four
or more layers, equivalent conditions for the corresponding partitions are given. One consequence
of this approach is that it is A'P-complete to decide if a given layout is wirable in three layers [11].
But every layout is easily wirable in four layers [1], [16]. Only very restricted layouts are two-layer
wirable, hence in general wirability in three layers is the best one can expect for a given layout.

Essentially, there are two different approaches to attack this problem. One possibility is to
go one step back within the design process and consider the routing problem itself, i.e. to aim
for layouts that are provably three-layer wirable. For channel routing problems, algorithms that
guarantee three-layer wirable layouts are given in [7], [10], [14], [15] and [18]. The proof of three-
layer wirability strongly depends on the very special structure of these layouts; i.e. they contain at
most two knock-knees per vertical line, and in case of two knock-knees these even lie in opposite
directions.

The corresponding three-layer partitions contain only vertical partition edges in addition to the
diagonals induced by knock-knees.

Such special layouts cannot be expected for more general routing problems resp. in most cases
do not even exist.

The second approach is to transform a layout into a three-layer wirable layout by appropriate
stretchings [2], [8], [9]. Stretching a layout increases the area required for the layout. Obviously, the
problem to find a minimum stretching for three-layer wirability is A”"P-hard. It remains NP-hard
for minimum stretching within only one dimension.

In this paper we consider the problem if for a given layout there 1s a three-layer partition
containing only vertical or only horizontal partition edges (in addition to the diagonal edges induced
by the knock-knees). This problem can be formulated as a path problem in a special graph or
as a two-satisfiability problem, and may be decided in time at most linear in the layout area.
Local layout modifications, such as those applied in [15] and [10], and the local introduction of the
orthogonal dimension (e.g. local use of horizontal edges within the vertical approach) are contained
as well. Moreover, the method yields the minimum number of vertical lines (resp. tracks) to be
added to transform a layout into a stretched layout that admits a legal partition for three-layer
wirability with only vertical (resp. horizontal) additional partition edges. In the most general
case, this problem is equivalent to the minimum clique cover problem in interval graphs, which is
solvable in time linear in the size of the graph [6].

2 Preliminaries

In this section we review the basic definitions and results from [12] concerning the wiring of knock-
knee layouts.

Consider a layout in a rectilinear grid graph. A conducting layer, or simply layer is a graph
isomorphic to the layout grid. Conducting layers L, ..., Ly are assumed to be stacked on top of
each other, with L; on the bottom and Lj; on the top. A contact between two layers, called a viq,
can be placed only at a grid vertex.
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A correct layer assignment or wiring of a given layout is a mapping of each edge of a wire to a
layer, such that:

1. No two different wires share a vertex on the same layer.

2. If adjacent edges of a wire are assigned to different layers, a via is established between these
layers at their common vertex.

3. If a via connects L and L; (h < j), then layers L;, h < i < j, are not used at that vertex by
any other wire.

To determine a correct wiring of a knock-knee layout only those grid vertices where two different
wires share a vertex, i.e. cross or form a knock-knee, are of relevance. Denote the part of a layout
induced by these grid vertices as the core of the layout. Then the following lemma holds.

Lemma 1 [12] A layout is wirable in k layers iff ils core is.

The basic idea now is, that any correct wiring of a layout in a fixed number of layers induces
a partition of the layout area into the following two types of regions.

e V-region: The region where vertical wire edges lie above horizontal ones.

e H-region: The region where horizontal wire edges lie above vertical ones.

By this partition, the layout can be considered as a two-colorable map.

Obviously, the entire unit square around a crossing in the layout belongs to one color region.
Since two wires that form a knock-knee cannot change their relative position through their common
grid vertex in a correct wiring, the unit square around a knock-knee must belong to both regions,
say the “triangle” above the imaginary diagonal through the knock-knee to the V-region, and the
triangle below to the H-region or vice-versa. Consequently, the set of partition edges P contains
all diagonals through knock-knees and, in addition, “appropriate” vertical and horizontal edges of
the dual grid. The following properties of two-colorable maps state necessary conditions how a
partition inducing a correct wiring has to look like.

Lemma 2 [12] A sel P of diagonals and dual grid edges defines a two-colorable map iff

1. each interior vertex (of the dual of the routing graph) is incident with an even number of
edges of P,

2. each connected component of the boundary of the layout core is incident with an even number

of edges of P.
The main result concerning the three-layer wirability problem can then be stated as follows.

Theorem 3 [12] A layout is three-layer wirable iff there exisls a partition inlo a two-colorable
map containing none of the eight patterns shown in figure 1.

By a wertical elementary stretching along a column 7 (between vertical line ¢ and ¢ 4+ 1) we
denote the operation that modifies the layout by cutting it along 7, moving its pieces horizontally
one unit apart and inserting a new horizontal wire edge where a wire was crossing ¢ . This means

that all wires crossing ¢ are ”stretched” as well. A horizontal elementary stretching is defined
analogously. Any sequence of horizontal and vertical elementary stretching operations is simply
called a stretching.
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Figure 1: Forbidden patterns for a three-layer partition. Broken lines denote the absence of edges.

3 The New Wiring Approach

3.1 Constructing a legal partition

Consider the following problem.

e Given A layout.

e Problem Construct a legal three-layer partition containing only vertical (horizontal) par-
tition edges additional to the diagonals through knock-knees. We call such a partition a
V-partition (vesp. H-partition.)

As stated in the last section, a layout admits a legal three-layer partition iff its core does. But
we cannot conclude from this fact that a layout admits a V-partition (resp. H-partition) if its core
does. (In fact, this is not true). So, we must really distinguish between the layout and its core.

We call a connected core component V-convez if the set of vertical edges of each vertical grid
line covered by the core component forms one connected interval. (H-convex may be defined
analogously.) For simplicity, let us first consider only layouts whose core is of V-convex shape.

A canonical approach to construct a V-partition is to scan the layout from left to right and
add vertical partition edges in the dual grid depending on the knock-knees of the layout such that
a two-colorable map without forbidden patterns arises. (An analogous method can be applied
horizontally.)

The following lemma yields an efficient procedure to add vertical partition edges correctly.

Lemma 4 Let P be a partition of a layout into a two-colorable map containing only vertical
additional partition edges. Then for any vertical edge e of the grid dual to the layout grid, the state
of e, i.e. ¢ € P ore & P, uniquely determines the state of all vertical edges ¢’ lying on the same
vertical grid line as e.

Proof

Consider a vertical line L (as a set of vertical edges) in the grid dual to the layout, and the
diagonals induced by knock-knees that are incident to an edge of L. Call a vertex incident with
one or three diagonals odd, all other vertices even. Then the set of odd vertices belonging to an
edge of L partition L into intervals I,..., I say, of edges between two odd vertices resp. an
odd vertex and the upper or lower boundary. For a vertical edge e of L, e € P induces that the
interval, say I;, containing e is completely contained in P, as well as every second interval above
and below I;. Precisely, for a vertical edge ¢’ on L, ¢’ € P iff ¢/ belongs to an interval I;15.; with

|5 <i< |55

Thus, for any vertical line of the grid dual to the layout, there are only two possibilities which
vertical edges belong to a V-partition. The decision which possibilities can be chosen for one vertical
line only depends on the state of its two neighbouring lines. (Look at the forbidden patterns.)

The problem of constructing a V-partition can be formulated as a path problem in a directed
graph G, = (V, Ep) as follows. For each vertical line ¢ in the grid dual to the layout, we introduce
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Figure 2: A layout core and its path graph.

Y. v} corresponding to the two possible states (i.e. v} corresponding to “the upper-

most edge belongs to P”). There are edges only between vertices corresponding to neighbouring
vertical lines, where v?, vf_l_l € B, iff there is no forbidden pattern between line ¢ and line ¢ + 1 in
case 7 has state j and 7 4 1 has state k, for j, k € {0,1}. In addition, we introduce a source s and
a target ¢, and edges from s to the two vertices corresponding to the leftmost vertical line resp.
from the two vertices corresponding to the rightmost vertical line to ¢.

We call G, the path graph of the layout. Obviously, the time complexity for constructing the
path graph is linear in the number of knock-knees in case the position of the knock-knees 1s given.
See figure 2.

two vertices v

Corollary 5 The problem to find a V-partition for a V-convez layout core 1s equivalent to finding
an s-t-path in the corresponding path graph.

Obviously, the time complexity for solving this path problem is linear in the spread of the
layout. In case the knock-knee positions are given in order, the time complexity is even only linear
in the number of knock-knees.

Now, consider the general case that the layout core consists of more than one component of
arbitrary shape, possibly containing holes. First, we informally describe the situation. Observe
that the components of the layout core may be considered independently of each other. For a
vertical line covered by one component (', the edges contained in C' are partitioned into maximal
vertical intervals. In principle, there are two possible choices of vertical partition edges for each
of these maximal intervals. Moreover, forbidden patterns can only appear between neighbouring
intervals that overlap a common track. By that, the path graph for ' arises canonically as a
directed graph containing a set of pairs of vertices for each vertical line covered by C' and possible
edges between vertices corresponding to neighbouring intervals that overlap a common track. The
problem to find a V-partition for C' transforms to several path problems in the path graph that
have to be solved simultaneously.

We think that it is more convenient to formulate the simultaneous solvability of these path
problems as a satisfiability problem, where each clause consists of two literals (25AT).

Let us first formulate the 2SAT problem corresponding to the simple path problem induced
by a layout core of V-convex shape. We introduce a variable z; for each pair of vertices v?, v}

i Ui
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Figure 3: The clauses corresponding to state combinations.

(resp. vertical line ¢). For the set of possible edges from a v;-vertex to a v;qi-vertex (resp. state
combinations), we have a set of at most four V-clauses containing #; and x;41, negated or non-
negated. Actually, we get one clause for each missing edge (resp. forbidden state combination).
See figure 3. Then each s-{-path corresponds to a satisfying truth assignment for the set of all
corresponding clauses.

In the general case of a core component C' of non-convex shape, for example with holes, we have
one variable for each maximalinterval of a vertical line that belongs to C'. The clauses correspond to
all forbidden state combinations between neighbouring intervals overlapping a common track. Then
the existence of a V-partition of C'is equivalent to a truth assignment satisfying all corresponding
clauses.

2SAT can be solved in time linear in the number of clauses [3]. Since the number of clauses for
a layout is linear in the layout size, we obtain the following result.

Theorem 6 For a layout, the existance of a V-partition can be decided in time linear in the layout
size. If yes, a V-partition can be determined in linear time as well.

3.2 Layout Modifications

There are even layouts containing at most two knock-knees per column, where the knock-knees are
of opposite direction, as those guaranteed in [15] resp. [10], that do not admit a V-partition. !

In such a case however, in [15] resp. [10] V-partitions are constructed for slightly modified
layouts. Such layout modifications can also be included into our approach.

A local layout modification can be applied to a layout, whenever two nets touch twice in the same
column, or in two neighbouring columns. Then the layout can be transformed into an equivalent
layout by replacing knock-knees by crossings and crossings by knock-knees. See figure 4.

Such a layout modification in one resp. two neighbouring columns induces a new partition
of each of the related vertical lines into intervals between odd vertices. Thus, a possible layout
modification can be introduced in the path graph as follows. For vertical lines i, + 1 (resp.
i,i+ 1,7+ 2) involved in the modification join additional vertices uf, ui,uf 1, uiyy, (Ui, ufys)
and appropriate edges from v;_1-vertices to u;-vertices, from wu;-vertices to u;41-vertices and from
ujy1-vertices to v;po-vertices (resp. from w;yi-vertices to w;ya-vertices and from u;4o-vertices to
viyg-vertices). See figure 5.

In a similar way, the local use of horizontal partition edges may be involved.

3.3 Stretching for wirability

The problem of finding a minimum stretching of a layout such that the stretched layout is three-
layer wirable is N"P-hard, even stretching within only one dimension. In this section we give a
polynomial algorithm for the following problem.

e Given A layout.

1These examples have been found by applying the implemented method to layouts generated by the algorithms
from [15] resp. [10]. Indeed, these examples are fairly large (spread 200). Because of lack of space, they are omitted.
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Figure 4: A layout modification.

Figure 5: Part of the path graph corresponding to the layout modification in figure 4. The upper
part corresponds to layout a) and the lower part to the modified layout shown in b).

e Problem Find a minimum stretching such that the stretched layout admits a V-partition
(H-partition).

First, we restrict ourselves to the case that the core of the layout consists of only one component
of V-convex shape. Then the method given in section 3.1 can be applied to this problem too.
Consider the modification of the path graph G, = (V, E,) induced by an elementary vertical

stretching of the layout along column 3, i.e. by introducing a new vertical line, say r, between
i and ¢ + 1. Then for the modified path graph G, = (V', E}), two new vertices corresponding

to r are contained, i.e. V/ = V U {vl vl}. All possible edges from v;-vertices to v,-vertices and

roYr
from v,-vertices to v;y1-vertices are added, and all edges between v;-vertices and v;1-vertices are

deleted, i.e.

EZ/) = EP\{(Ugavzl'c+1) :jak € {Oa 1}}U {(Ugavf)a (Ufavzl'+1) : j,k‘,lE {Oa 1}}

Thus, any directed path in ¢ terminating with v or v} is in G/ connected to any directed path in

G leaving v?_l_l or Uz'1+1~ Generally, a stretching corresponds to transforming the path graph G to a
new graph G’, where directed paths in G are combined to an s-t-path in G’ containing at least one
vs-vertex for all vertical lines i of the layout. It follows that a minimum stretching to guarantee
a V-partition is equivalent to a minimum number of directed paths in G that can be combined to
an s-t-path containing v{ or v} for all vertical lines i of the original layout.

By scanning the path graph G from s to ¢, the minimum number of appropriate directed paths
as well as the paths themselves can be determined in time linear in the spread of the layout.

Remark The problem can also be formulated as a shortest path problem in the weighted path
graph Gwp = (V, Ewp;w), where again V corresponds to the possible states of the vertical lines,
but for all 7, (v? v?_l_l), (v?, vz'1+1)’ (v}, v?_l_l), (v}, Uz'1+1) € Ewp, as well as the edges from s and to

I



t. The weight w is defined as w(e) := 0 for all e € Ewp N Ep, and w(e) := 1 for e € Ewp\Ep.
Then any shortest s-t-path (with respect to w) in Gwp is equivalent to a minimum stretching to
guarantee a V-partition of the corresponding layout.

In case the core consists of different components or is not V-convex, the main problem is that
for a minimum stretching different components respectively two parts of the same component that
are horizontally separated by a hole must not be considered independently of each other. The
following lemma helps to overcome this problem.

Lemma 7 Consider m consecutive vertical grid lines in a V-conver layout core that do not admit
a V-partition. Ifthere are columns { 2 andj 1 <i<j<m, such that the layout part between 1 and
m stretched along ¢ or stretched along j admaits a V-partition, then for any column k 1<k <y,
the layout stretched along k admits a V-partition.

Proof
Look at the path graph of the layout There is a directed path from some vi-vertex to vo or
] , and a directed path from v? or v} to some v,,-vertex. These paths are possibly vertex- dlsJomt

but overlap in the interval [7, _]] in the sense that both of them contain a vk Vertex for any k € [1, J].

Now, a stretching of the layout along an arbitrary column k between ; and _] transforms the
path graph to a new path graph where these two paths are connected, and induce an s-t-path in
the new path graph.

In the path graph of a V-convex layout core of spread n, for any ¢,1 < ¢ < n, there exist at
most two disjoint paths overlapping at . We can easily determine all maximal intervals where two
disjoint paths overlap. These intervals are pairwise disjoint. Then, with lemma 3.4, any choice of
aset S C {l,...,n} containing exactly one element of each of these intervals induces a minimum
stretching to admit a V-partition. Using this fact, we can formulate the problem for a single layout
core consisting of V-convex components directly as a minimum clique cover problem in interval
graphs, which is solvable in time O(|V| + | E]) [6]. In case the interval representation is given, the
problem can be solved even in time O(|V]).

Consider a layout core that consists of V-convex core components C, ..., C,. For each of these
C; consider the path graph G,(C;). Then the maximal intervals of overlapping disjoint paths
for each of the G,(C;) canonically forms an interval graph. The intervals are the vertices of the
graph and two vertices are connected by an undirected edge iff the corresponding intervals are not
disjoint.

The algorithm solving the minimum clique cover problem for interval graphs, assumed the
interval representation i1s known, can be described as follows. Traverse the interval representation
from left to right. Whenever a left endpoint of an interval is arrived this interval is labeled. When
a right endpoint of an labeled interval is reached, the clique induced by this point is chosen as the
covering clique, and all labeled intervals are deleted. This proceeding may be viewed as always
taking the last chance, i.e. the rightmost covering clique.

For a layout containing core components of arbitrary shape the case may occur that the edges
of a vertical gridline that are covered by the same core component form several disjoint vertical

intervals. Then the problem is somewhat more complex at columns 7 for which a non-V-convex
core component induces a combination of vertical intervals on gridline ¢ and ¢+ 1 with the following
properties. The edges of i covered by the core component form disjoint vertical intervals Iy, ..., I,
and edges of ¢ + 1 covered by this core component form an interval J such that J shares some

track with at least two of the I;. We call such a column 7 a critical column. If we partition a
non-V-convex core component into maximal V-convex subcomponents, say of rectangle shape (as
shown in figure 6), a column is critical only if it is the boundary between two or more V-convex
subcomponents. For columns that are not critical, the problem is solved by applying the usual
minimum clique cover algorithm.
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Figure 6: A partition of a non-convex core component into rectangles. The columns marked with
* are critical.

So, consider a critical column 7 Let I,.,..., I; be those intervals of gridline ¢z which share some
track with the same interval J of i 4+ 1. For a V-partition, the choices of appropriate states (i.e.
of vertical partition edges) is for all I; indepent of each other, if we do not consider J. Indeed,
for the choice of the state combination of the I; and J, the existence of a legal combination for
each of those pairs does not suffice. But the existence of a one choice of state for J that admits a
legal combination for all these pairs simultaneously must be guaranteed. Obviously, at most one

—

additional stretching, namely along column ¢, is necessary. Since, in case none of the two possible

states of J admits a legal state combination for all the I; simultaneously, a stretching along T
induces that all the I; and J belong to two different core components.

The usual minimum clique cover algorithm for interval graphs may be applied in order to solve
this problem. During the proceeding of the algorithm, we only have to care of points corresponding

to critical columns. When the algorithm arrives at critical column 7, it has to check if the clique
cover determined for the intervals to the left of ¢ + 1 induce a correct state combination for all
pairs I; and J, using the same state of J. If this is not the case, the clique covering interval [i] has

to be added to the clique cover, which just induces a stretching along 7 Otherwise, the algorithm
may proceed in the usual way. This means, that the decision if an interval [i] corresponding to a

critical column 7 has to be considered for the minimum clique cover problem is made on-line.
Clearly, the interval graph corresponding to a general layout can be determined in advance as

well. Consider a core-component that is not V-convex, and a partition into V-convex subcompo-

nents. Additionally to the intervals induced by the path graphs of the V-convex subcomponents,

we have to determine appropriate intervals corresponding to the critical columns. So, let 7 be a
critical column and I.,...,I; resp. J the vertical intervals to be considered. Each I;, as well as
J, belongs to a different V-convex subcomponent. Consider the corresponding path graphs resp.
the vertices v?_l_l and Ui1+1 corresponding to J. For each I; we have to consider the maximal paths
terminating with v?_l_l resp. vZ»1+1 in the corresponding path graph. If for an I; there exists a path,
say from a vertex corresponding to gridline { terminating e.g. with v?_l_l, any stretching in the
interval [[ — 1, ] yields a path from the source of the path graph to v?_l_l, assumed there exists such
a path to Uz'1+1~ So, for all the I; we have to determine the intersection of all intervals induced by a
maximal path terminating with v?_l_l resp. Uz'1+1~ Obviously, in case for one [; there exists no path
terminating with v , resp. v} ;, the interval [¢] is chosen.

Then, the union of these two intervals is the additional interval to be considered for the minimum
clique cover problem. For assume we stretch along some column from the intersection of all intervals
corresponding to paths which terminate with v?_l_l resp. Uz'1+1~ Then a legal state combination where
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the state of J is the same for all pairs I; and J is guaranteed.

It suffices to take the union of the two intervals, because only for one state of J all those legal
state combinations must exist.

Observe that the union and intersection here corresponds to the V and A in the 25AT formu-
lation in section 3.1.

Altogether, we have the following result.

Theorem 8 A munimum stretching to admit a V-partition s equivalent to a minimum clique cover
of the corresponding interval graph.

Appendix

We have implemented the methods described in section 3. Applying this approach, examples of
layouts constructed by the algorithms from [15] and [10] have been found where layout modifications
are really necessary to obtain a legal three-layer partition by adding only vertical partition edges.
It is proved, that there exist layouts containing only two knock-knees per column, e.g. computed
by the algorithm from [17], that admit no such legal partition. But these examples are fairly large.

Experiments show that in most cases three-layer wirings exist for layouts containing only a
small number of knock-knees, as e.g. those guaranteed by the algorithms from [17] and [13]. Even
for layouts from [5], [4], where the number of knock-knees performed by a single net is more than
a constant, only a small number of stretchings is necessary to derive three-layer wirable stretched
layouts.
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Figure 7: The method applied to layouts computed by the rectangle routing algorithm of Mehlhorn
and Preparata
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Figure 8: The method applied to a layout computed by the algorithm of Frank.

Figure 9: The method applied to a layout computed by the wirelength optimal algorithm of
Formann, Wagner and Wagner.
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