Form Charts and Dialogue Constraints
Technical Report B-02-08

Dirk Draheim and Gerald Weber
Institute of Computer Science
Free University Berlin
email: {draheim,weber}@inf.fu-berlin.de

March 2002

Abstract

Form oriented analysis is an approach tailored to the modeling of systems with sub-
mit/response based interfaces. Form oriented analysis models the system interface as bipar-
tite state transition diagram and relates it to a semantic data model. We introduce dialogue
constraint writing based on an OCL extension. Model decomposition is explained and dif-
ferent degrees of completeness for form oriented analysis models are defined. We outline the
integration with form storyboarding, a compatible requirements engineering technique.

Contents

1

2

Introduction

Basic Form Oriented Analysis

2.1 Overview of the Analysis Model
2.2 States ..o
2.3 Client Pages and Client Output Constraints
2.4 Server Actions L
2.5 The "along” Property and Enabling Conditions
2.6 Discussion e e

Structuring the Form Chart
3.1 Tree-like Feature Decomposition 0L
3.2 Menu-like User Interface Parts o o

Refinement

4.1 Signature Model
4.2 Server Input Declared Model and Server Input Safe Model
4.3 Multi-User Declared Model and Multi-User Safe Model

Form Storyboarding

Advanced Topics

6.1 Multi-Window Analysis e
6.2 Accessing External Interfaces L.
6.3 Further Topics o e

Web Based System Architecture
Related work

Conclusion

~N O UL UL W W w

o 0o @

© 0o 0o Q@

©

10
10
10
10

10

11

11

1 Introduction

We introduce form oriented analysis, an approach to the modeling of certain ubiquitous systems
with a form based, submit/response interaction paradigm. Form based systems or system parts
are frequently found in e-commerce, enterprise applications and other transactional systems. Form
based user interfaces are not a legacy technology, but the adequate interface type for the named
application domains.

Form based interaction is submit/response type, two staged interaction. The interaction is
divided into page interaction, which is temporary and logically local to the client until a submit
is performed, and page change, i.e. a submit action. Forms and links can be conceptually unified.
Only page change can affect the system data state. Hence the model is two tiered already on
the analysis level. The system state in this view does not include the client state, which is
the browser’s state. The advantage of this software system paradigm is that the client is well
understood, independent from the application. Other types of software may also use form like
interfaces, but are not submit/response style, e.g. desktop databases and spreadsheet applications
found in office suites. They have a single staged interaction paradigm, in which each change is
directly a change of the system data state.

Submit/response style user interfaces date back to mainframe applications, but today classic
web technology with HTML forms is the most prominent example. Throughout the paper, the
approach is exemplified by web interfaces without compromising independence from technology.
An HTML form calls a server side script. The called script can be considered a remote method
with an input type signature. An HTML form is a user editable method call in general. CGI
and its several wrappers like e.g. Java Servlets support transmission of string tuple streams only,
hence ignoring the type of the data that is given by the business logic. Form oriented analysis
offers strong typing instead. The other submission capability is the HTML link, which can call
server side scripts with the same parameter marshalling mechanism as HTML Forms. An HTML
link is like a special non-editable HTML form with only hidden parameters.

Form oriented analysis abstracts from page interaction and views a page change always as a
method call. In form oriented analysis strong typing is maintained at the system interface.

2 Basic Form Oriented Analysis

In this chapter a succinct description of the main modeling elements of form oriented analysis
is given (Fig.1). The chapter presents the basics of form oriented analysis, issues of structuring
and refining models are addressed in later sections. In form oriented analysis the system interface
is modeled as a bipartite state transition diagram which is annotated with declarative dialogue
constraints. These dialogue constraints are written in terms of a data model and additional server
side functionality.

A formal semantics of the various form chart features is given in [8].

2.1 Overview of the Analysis Model

The user interaction with the system, called dialogue in the following, is a sequence of interchanging
client states and server states. A client state presents information to the user and offers several
capabilities of entering and submitting data. The client state is called client page in the following.
By submitting data the dialogue changes into a server state. In the server state submitted data
is processed and depending on the current system state the generation of a new client page is
triggered, i.e. the server state is left automatically. Submitting data is considered calling a
method, the data being an actual parameter. Therefore the server state is called server action in
the following. The transition to a client page is again considered a method call, this time executed
automatically from the server. Every state has a one-to-one correspondence to a method; in the
case of a client state this has to be understood as a purely declarative unit. The method calls are
non-returning.

" ne
~ server onditiot o client
input constraint m(\O‘N c input constraint
" o
enabling client @f\OW condition w server
condition i output constraint .
A transition name output constraint B

source name target name M
client page

server/page transition

. page/server transition
client page "
server action

Figure 1: Form chart notational elements

Client states, server states and transitions between them form a bipartite transition diagram.
This viewpoint leads to intuitive visual models and furthermore will foster future considerations
on advanced topics like transactionality and web based system architecture. The state transition
diagrams used in form oriented analysis are called form charts.

Transitions from client pages to server actions, page/server transitions for short, host con-
straints for expressing enabling conditions, client output constraints. An enabling condition spec-
ifies under which circumstances this transition is enabled, possibly depending on the current use
case, more precisely the current dialogue history. Data submitted from a client page is constrained
by a client output constraint. Server actions host server input constraints. They are server action
preconditions in an incompletely specified system. Transitions from server actions to client pages,
server/page transitions for short, host flow conditions and server output constraints. The flow
conditions specify which of several outgoing transitions is actually chosen. The output constraint
determines which information is presented on the client page that follows in the sequel.

The constraints that annotate the state diagram are written in OCL [22]. For this purpose
OCL is enriched by new contexts and key labels with appropriate semantics due to the needs of
dialogue constraint writing. OCL has been chosen as a basis for the resulting dialogue constraint
language despite of its lack of formal semantics [16]. Main arguments are the rich terminology
introduced with OCL, its clear informal semantics and most important its usability and expressibil-
ity concerning e.g. navigations compared to other alternatives for data type annotation languages
[9]. Consequently data modeling is done with the pure data reduct of UML, whereby persistent
data is distinguished from ephemeral session related data and web signature type specifications
through stereotyping. The system functionality may be defined in terms of additional server-side
functionality. In form orientation, this functionality is specified with structure charts with respect
to the emerging data model.

2.2 States

In the form chart, client pages are depicted by bubbles, server states are depicted by rectangles.
Every state, i.e. every client page and every server action must be given a name. Every state has
a signature, which is introduced as an OCL Type. It is defined by a UML class in the data model.
This defining class must have the name of the respective state and must be stereotyped as web
signature. The web signature is the signature of the state as a method. Every ingoing transition
of a state must be a method call with the same signature. Because the signature is combined
in one single parameter for every state the term superparameter is introduced. The notion of
superparameters eases constraint writing, for example every superparameter has the state name as
default name and additionally one or more context-dependent names that are explicitly introduced
by the modeler. In accordance with the objective of writing purely declarative dialogue constraints,
superparameters must be understood as deep unchangeable. The superparameter must not be in

any way mistaken as parameterized state in the sense of expressing an internal multiplicity of the
state.

2.3 Client Pages and Client Output Constraints

The signature of a client page serves as abstract description of the information presented to the
user. Form oriented analysis does not address layout specification. Beyond the provided informa-
tion a client page offers one or more data submission capabilities to the user. In HTML/HTTP a
group of links may be considered as a single data submission capability under the following con-
ditions: several links that conceptually belong together establish one data submission capability
provided that they target the same server side script and send actual parameters for the same set
of CGI parameters. Such a link group is like a form with a selection list. Following one of the
links is like choosing one list item and submitting the form. Link groups can be found in today’s
active web sites, for example if the choice between several articles is presented to a customer.

Every page/server transition specifies that the respective client page has a submission capability
that calls the respective server action and provides a superparameter. A client page can be read
as a collection of forms and links determined by all its targeted server actions. In a form chart
a page/server-transition may be context for OCL constraints. These constraints are either client
output constraints or enabling conditions, distinguished by an appropriate label. Note that a
transition may be labeled with a transition name, source name and target name by the modeler.
If not explicitly provided, these names are derived in the obvious way from the names of the
involved states.

A transition without client output constraint represents a data submission capability that is
completely editable by the user. A client output constraint is a constraint on the actual parameters
that must be ensured by the client page. Actual parameters that are constrained by a client output
constraint must either not be editable, but must be correctly provided as hidden parameters or a
client-side dynamic watchdog mechanism, be it hand coded or generated [2], must prevent data not
fulfilling the constraint from being submitted. An important usage of client output constraints
is relating object selection to an information bunch presented to the user, as demonstrated in
the following example (Fig.2). Consider a webshop page presenting the user a list of articles by
showing a list of links of article names. Article numbers are not shown to the user, but are used as
hidden parameters in the links. Clicking a link will trigger the generation of a page that presents
to the user detailed information about the selected article identified by the transmitted article
number and offers further dialogue options. This is a system that fulfills the specification given
by the analysis model comprising Fig.2 and the following constraint:

viewArticlesTOviewDetail
output: viewArticles.presented->exists(number = viewDetail.id)

In the above constraint the transition target name viewDetail refers to the actual parameter
that will be transmitted to the server action. The source name viewArticles refers to the actual
parameter of the client page. The explanation of enabling conditions are given after explaining
server actions.

2.4 Server Actions

A server action processes submitted data. Outgoing transitions lead to client pages. The transi-
tions are annotated with flow conditions which are logically mutually exclusive OCL-expressions.
For one of the transitions the flow condition may be omitted, having the semantics of an ”else”
clause. As an alternative to ensuring logical exclusiveness the modeler may number the outgoing
transitions to enforce an evaluation order. Based on the flow conditions exactly one of the outgo-
ing transitions is determined after server action processing. The client page which is targeted by
this transition is now generated. Thereby the server action provides an actual parameter which
adheres to the page’s signature and fulfills the output constraint that is annotated at the relevant

e ricaice Help
= s & BcckmaksJ Locator: /7 EF2itz7mdecht] €3 WhatsFeloted IS
ViewDetail < ¥ A B o» @ s @
Book o Aobad Home Seach Nesowe 1 Seomy
\ Login Please choose one
. userid: [of the articles 1o
VieW LOgIn passwd: [view details.
H Submt Mountain bike
Articles Carving Ski
a Carving Ski
SearchArticle "
Racing bycicle
Search: Inline skates
AdvancedSearch Sufboard
i d Search Tennis racket
Golf club
Parachute
D[[Decumenibre = 5 % 52 @ 2|)
<<web signature>> <<web signature>>
ViewArticles <<web signature>> SearchArticle
presented:Set(Article) Login searchltem:String <<persistent>> <<persistent>>
userid:String Article Customer
- passwd:String number:Integer userid:String
<<w\e/li)e3gDnei;l:\re» <<web signature>> name:String passwd:String
AdvancedSearch efc. efe.
id:Integer

Figure 2: Example analysis model

transition. In general there may be more than one transition between a server action and a client
page, used to model conditional computation of different client page parameters.

A server input constraint for a server action indicates that the system is not yet completely
modeled with respect to the system’s behavior upon violation of this constraint. Consider the
webshop example from the previous subsection once more. The client page offers the user the
possibility to login. The following server input constraint expresses that a username and password
submitted by the user must be valid.

Login
server input
Customer->allInstances()->exists(userid = login.userid
and passwd = login.passwd

)

In a later, more elaborated version of the analysis model it must be described how the dialogue is
continued on reception of an invalid username/password combination. The issue of server input
constraints is addressed again in section 4.

As described so far the recommended server action specification already provides a tight de-
scription covering all functional aspects of this kind of system component. Furthermore nothing
of the effort made in server action specification is overhead because all found constraints may be
reused in system implementation. Beyond this, for the time being, our approach does not pre-
scribe how to specify the data processing associated with a server action, i.e. the side effect on the
system data state. Every ad hoc pseudo code notation may serve for this purpose. We recommend
to refrain from describing this type of functionality by any kind of artificial pre/post-condition
specification that necessarily uses some modal operator.

2.5 The ”along” Property and Enabling Conditions

An enabling condition for a page/server transition specifies, whether a submission capability is
offered to the user depending on the current system state and the history of the dialogue which led
to the current client dialogue state. For this purpose the new OCL property ”along” is introduced
which can be applied to a path expression consisting of state names and describing a path in the
form chart. The resulting expression evaluates to true if the current transition’s source client page
has been entered through states as specified in the path. This notation element makes enabling

parameter free
server action call
from the outside,
e.g. bookmark

—[}

Figure 3: Modeling use cases

conditions a key concept for flexible and succinct modeling of even complex use cases. Though
the form oriented approach to software engineering is not use-case driven, but feature driven, the
use case still remains an important concept. In the form chart every path can be considered a use
case if appropriate.

In the following example (Fig.3) a system is described by two semantically equivalent form
charts. The system comprises to major use cases A and B. At a certain point in each of the use
cases a supporting use case S may be entered which is the same in both cases. After finishing the
supporting use case, the respective major use case is reentered. The first description does not use
enabling conditions. Instead it makes use of the possibility that a state may occur more than once
in a form chart. We don’t explain the semantics of multiple state occurrence in detail here. In the
alternative second description the following enabling conditions are used.

s5T0ab
enabled: s3.s2.sl.a4->along() or s4.s2.sl.ad4->along()

s5T0b3
enabled: s3.s2.s1.b2->along() or s4.s2.sl.b2->along()

Each of the description styles has its advantages because there are tradeoffs concerning global
and local complexity and understandability with respect to the whole diagram and a sole diagram
state. A simple instance of the above example is found in webshops. The customer can enter
the ordering use case in nearly every situation. After finishing the ordering the user wants to be
offered an explicit link to the dialogue state from which she has once entered the ordering, i.e. she
does not want to be forced to use the browser’s history mechanism for this purpose.

There may be more than one transition between the same client page and server action. These
transitions must carry explicit distinguishing labels. If all of the several transitions are completely
unconstraint this simply amounts to redundancy which may actually be found in today’s business
to customer systems. The need of several transitions is obvious with respect to enabling conditions
and client output constraint.

form chart
decomposition

[men. BT
O—=

Figure 4: Modeling menu-like user interface parts

3 Structuring the Form Chart

3.1 Tree-like Feature Decomposition

Every sub graph of the form chart is called a feature chart. Two feature charts are consistent if they
are equal in all overlapping parts. Two feature charts are combined by graph union. A form chart
decomposition is a collection of consistent feature charts, so that the combination of the feature
charts yields the complete form chart. A feature chart can be decomposed further the same way.
The result is a tree of chart decompositions. Decomposition makes the form chart manageable, it
is the result of organizing the form chart artifact during the analysis phase. Beyond this the tree
structure has no predefined semantics; every combination of feature charts, even from different
levels of the tree, yield a correct sub graph of the form chart. Beside this rather strict top-down
view of structuring the model, the notion of feature gains importance during form storyboarding,
a proposed so called feature-driven requirement eliciting approach outlined in section 5.

Appropriate balancing rules for this decomposition approach can be defined and supported by
tools.

3.2 Menu-like User Interface Parts

Another notation element is the client page set that is depicted by a double lined bubble. It is
annotated by a list of page names and serves as shorthand notation for these pages. A feature chart
may be annotated as menu. Then, if the feature chart contains a client page set all transitions
starting from there must be deleted from all charts in the current decomposition. Affected states
must reference the respective menu feature chart by an explicitly given name. Fig.4 shows how the
described mechanism fosters readability of system interfaces with menu-like user interface parts.

4 Refinement

Form oriented analysis allows for different grades of detail. It does not require complete specifica-
tion. We do not confine form oriented analysis to a single process model in this paper. Instead we
provide a set of well defined incomplete abstraction layers called refinement stages. Refinement

itself is defined by using the notion of feature: the model B is a refinement of model A iff A is a
feature of B. In an informal sense form charts can be seen as refinements of form storyboards. We
now explain the most important refinement stages:

4.1 Signature Model

This model contains the complete data model and the complete form chart, but no constraint
annotations in both diagrams. This model is valuable as the bare metal model giving the complete
structure of the user interface and the data.

4.2 Server Input Declared Model and Server Input Safe Model

Server input constraints have been explained as being related to user input that does not meet
the requirements, e.g. the user enters a sum above its limit. Server input constraints have to
be replaced in later stages by branches from the server page for these cases. These branches are
of minor interest, therefore it is helpful if their full specification can be deferred. A server input
declared model is the model that contains server input constraints. The server input safe model
is the model where all server input constraints are replaced by branches leaving the server state.

4.3 Multi-User Declared Model and Multi-User Safe Model

Several exceptional cases are caused by the submit/response based use of multi-user systems and
therefore called multi-user exceptions. These exceptions are due to the fact that submit/response
based systems are typically based on an optimistic business logic approach. An example are
systems with shopping carts. A typical strategy is that the items in the shopping cart are not
reserved for the customer. It is assumed a rare event that the item has been sold if the customer
buys the item. This is the optimistic assumption. The multi-user exception occurs whenever the
optimistic assumption fails. The multi-user declared model is the model in which all multi-user
exceptions are excluded by server input constraints. The multi-user safe model is the model in
which these constraints are replaced by branches leaving the server state.

5 Form Storyboarding

Form oriented analysis is supported by the requirements engineering technique of form story-
boarding [6]. Form storyboarding is a set of activities for requirements eliciting. The resulting
documents of the requirements engineering activities are form storyboards. Form storyboarding
is supposed to take place before analysis. Form storyboards are similar in structure to form
charts. They are bipartite state transition diagrams with client pages and server actions, but are
principally ambiguous and informal in well defined aspects. Hence they combine formality and
informality in such a way that the best possible support of discussions with domain experts is
enabled.

Form storyboards should contain only textual descriptions of constraints. The signature of
input forms is written directly into the server action.

Form storyboards are amenable for feature driven composition as well as for refinement. For
short we note that it is discouraged to use form storyboards for a transaction safe refinement if
the application has been agreed upon to be optimistic, which is the common case.

A special coarse grained version of form storyboards is the page diagram, in which no input
form signatures are written in the server states. The page diagram is commonly used as the
diagram in which the pictorial representation of the client page is included into the client page
symbols. Hence the page diagram corresponds to the concept of a nonexecutable GUI prototype
in other approaches, but it is still embedded into the refinement hierarchy of form storyboards.
A requirements gathering approach for use cases which yields diagrams similar to page diagrams,
but with different semantics, are User Interaction Diagrams [23].

6 Advanced Topics

In the following we give an outline of advanced concepts within the form oriented analysis method.

6.1 Multi-Window Analysis

The system interface can be used with several pages visible in different windows, as it is possible
with standard web browsers. The user can spawn new windows, but this should not be necessary
for meningful system usage. Multi window interaction is an additional option for the user for more
convenient system usage. Hence the challenge for the analysis process resulting from user caused
multi window interaction is only to make the system safe with respect to window spawning.

6.2 Accessing External Interfaces

In many projects a part of the task of the new system may be to access external services. Examples
are legacy systems and web services. External interfaces have turned out to fit well into the form
oriented analysis pattern. The modelling of external interfaces within form oriented analysis maps
with standard solutions for external interfaces [21] [14]. Form oriented analysis covers ingoing,
outgoing as well as bidirectional external interfaces.

6.3 Further Topics

User roles are handled in the same way as in form storyboarding. Session parts which must be
handled securely can be specified by a single feature which contains all secure dialogue parts and
is annotated as secure. A textual format for form charts comparable to the GENTLY language
[4] is currently under construction.

7 Web Based System Architecture

Form oriented analysis leads to a crucial mitigation of the impedance mismatch between analysis
and design. Consider the ”redirecting request application model” [15] proposal to web system
architecture, coined model 2 architecture, for example. Recall that many state-of-the-art archi-
tectural frameworks rely on the model 2 architecture [18] [20]. There is a canonical mapping of
a form chart to a model 2 architecture. Every server action is realized as front component that
is responsible to parse the transmitted parameter stream and to process the necessary business
logic according to the dialogue constraints of the form chart. Every client page is realized as
presentation component. Beans are used to transmit output generated by a server action to client
pages.

Form oriented analysis fits seamlessly to an own proposal for architecture of web based in-
formation systems [7] that improves current approaches because it is based on a new statically
strongly complex typed server pages technology [5].

8 Related work

Structured Analysis [13] is a very successful approach to both business modeling and system
modeling that is still used in practice. It combines hierarchical data flow diagrams, sum-of-product
data specification, local functionality specification and later [24] entity-relationship diagrams. The
method is deliberately ambiguous with respect to the semantics of the several notational elements
of the data flow diagrams and therefore heavily relies on the intuition of the modeler. Structured
Analysis does not at all take into account driving forces of the solution domain.

The use case driven approach to object oriented software engineering had deep impact. From
the beginning [11] to state-of-the-art versions [12] of this approach the recommended human com-
puter interface specification techniques exclusively target the modeling of GUIs.

10

State diagrams has been used for a long time in user interface specification [19], partly with the
objective of user interface generation [17]. All of these approaches target graphical user interface
specification only, at a fine grained level concerning user interaction within one page. Another
early approach [10] targeted modeling of push-based, form-based systems, i.e. single-user desktop
databases. All these approaches are far from being full fledged analysis approaches.

9 Conclusion

Form oriented analysis is a modeling technique that is designed from scratch to fit the special
needs of engineering a certain ubiquitous kind of scalable commercial systems that has been
characterized as form based, submit/response style systems. Form oriented analysis possesses the
following characteristics:

e Form oriented analysis is an elaborated approach that from the outset takes into consid-
eration advanced topics concerning both the modeling activities and artifacts like model
decomposition and refinement and the driving forces of the solution domain like e.g. trans-
actionality and scalability.

e Form oriented analysis gives precise semantics to OCL-annotated transition diagrams for
modeling the user interface while unifying forms and links as strongly typed method calls.
It defines decomposition and refinement concepts.

e Form oriented analysis comes along with form storyboarding, a requirement engineering
method for eliciting functional requirements and communicating them with domain experts.

e The relationship between form oriented analysis models and state-of-the-art proposals for
software architecture of web based information systems is well understood.

References

[1] C. Brabrand, A. Mgller, M. Ricky, M.I. Schwartzbach, ” Powerforms: Declarative client-
side form field validation”, World Wide Web Journal, 3(4), 2000.

[2] D. Draheim, G. Weber, ”Specification and Generation of JSP User interfaces with
Gently”, Proceedings of NetObjectDays 2001, tranSIT, Ilmenau, September 2001, pp.
3-13.

[3] D. Draheim, G. Weber, ”Strongly complex typed dialogue-oriented Server Pages”, Tech-
nical Report No B 02-05, Intitute of Computer Science, Free University Berlin, March
2002, http://www.inf.fu-berlin.de/inst/pubs/tr-b-02-05.ps.gz

[4] D. Draheim, G. Weber, ”An Introduction to Form Storyboarding”, Technical Re-
port No B 02-06, Intitute of Computer Science, Free University Berlin, March 2002,
http://www.inf.fu-berlin.de/inst /pubs/tr-b-02-06.ps.gz

[5] D. Draheim, G. Weber, ”An Overview of state-of-the-art Architectures for Active Web
Sites”, Technical Report No B 02-07, Intitute of Computer Science, Free University
Berlin, March 2002, http://www.inf.fu-berlin.de/inst/pubs/tr-b-02-07.ps.gz

[6] Dirk Draheim and Gerald Weber. An Introduction to State History Diagrams. Technical
Report B-02-09, Institute of Computer Science, Free University Berlin, March 2002,
http://www.inf.fu-berlin.de/inst /pubs/tr-b-02-09.ps.gz

[7] M. Gogolla, M. Richters, ”On Constraints and Queries in UML”, The Unified Modeling
Language - Technical Aspects and Applications, Physica-Verlag, Heidelberg, 1998, pages
109-121.

11

[8] P.J. Hayes, ”Executable Interface Definitions Using Form-Based Interface Abstractions”,
Advances in Human-Computer Interaction, vol. 1, Ablex Publishing Corporation, New
Jersey, 1985, pp.161-189.

[9] I. Jacobson, ”Object-Oriented Software Engineering: A Use Case Driven Approach”,
Addison-Wesley, 1992.

[10] I. Jacobson, G. Booch, J. Rumbaugh, ”The Unified Software Development Process”,
Addison-Wesley, 1999.

[11] T. DeMarco, ”Structured Analysis and System Specification”, Prentice-Hall, 1979

[12] OBJECT MANAGEMENT GROUP, ” The common object request broker: Architecture
and specification”, Tech. Rep. Version 2.0, Object Management Group, July 1995.

[13] E. Pelegri-Llopart, L. Cable, ” Java Server Pages Specification, v.1.1.” Sun Press, 1999.

[14] M.Richters, M.Gogolla, ”On Formalizing the UML Object Constraint Language OCL”,
Proc. 17th Conf. Conceptual Modeling (ER98), Springer LNCS, 1998

[15] P. Pinheiro da Silva, ” User Interface Declarative Models and Development Environments:
A Survey”, Proceedings of 7th International Workshop on Design, Specification and
Verification of Interactive Systems, LNCS Vol.1946, Springer-Verlag, Limerick, Ireland,
June 2000, pp. 207-226.

[16] Malcolm, D. Struts, an open-source MVC implementation. In: IBM developerWorks,
February 2001.

[17] A.I. Wasserman, ”A Specification Method for Interactive Information Systems”, Pro-
ceedings SRS - Specification of Reliable Software, IEEE Catalog No. 79 CHI1401-9C,
IEEE, 1979, pp. 68-79.

[18] Webmacro. http://www.webmacro.org/, 2002.

[19] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[20] J. Warmer, A. Kleppe, ”The Object Constraint Language”, Addison Wesley, 1999

[21] P. Vilain, D. Schwabe, C.S. de Souza, "Modeling Interactions and Navigation in Web
Applications”, Proceedings of 7th International Workshop on Design, Specification and

Verification of Interactive Systems, LNCS Vol.1921, Springer-Verlag, Salt Lake City,
Utah, October 2000, pp. 115-127.

[22] E.Yourdon, "Modern Structured Analysis”, Yourdon Press, Prentice-Hall, 1989

12

