
Neurofuzzy prediction for visual tracking

Technical Report B-03-16

Erik Cuevas1,2, Daniel Zaldivar1,2, and Raul Rojas1

1Freie Universität Berlin, Institut für Informatik

Takusstr. 9, D-14195 Berlin, Germany
2Universidad de Guadalajara, CUCEI

Av. Revolucion No. 1500, C.P 44430, Guadalajara, Jal, Mexico.
{cuevas, zaldivar, rojas}@inf.fu-berlin.de

November 12, 2003.

Abstract

Real time visual tracking is a complicated problem due the different dynamic of the objects involved in
the process. On one hand the algorithms for image processing usually consume a lot of time on the
other hand the motors and mechanisms used for the camera movements are significantly slow. This
work describes the use of ANFIS model to reduce the delay’s effects in the control for visual tracking
and also explains how we resolved this problem by predicting the target movement using a
neurofuzzy approach.

1. Introduction.

Real time visual tracking is a complicated problem due the different dynamic of the
objects involved in the process. On one hand the algorithms for image processing
usually consume a lot of time and on the other hand the motors and mechanisms
used for the camera movements are significantly slow. A tracking system is
composed of 3 connected systems, first it has an algorithm which receives as input
the captured image by a camera, the algorithm processes the image segmenting
and locating the object of interest, the localization of the object can be considered as
the output of this block. The following block is the controller which takes as input the
object localization. The controller tries to maintain the object into the visual frame,
therefore it sends the appropriate signals to the mechanisms which can manipulate
directly the position. The figure 1 shows a visual tracking system representation.
Therefore, the system can be considered as a feedback system control where the
elements which participate have different dynamic characteristics.

Fig. 1 Basic representation of visual tracking system.

The tracking systems developing supposes a challenge in the controller's design.
This, should possess the capacity to be robust and immune to noises due the object
movement and besides to be able to work with a inherent delay. The delay is in fact

 1

the delays sum produced in two system blocks. The image capture and the image
processing are responsible for a considerable delay, this is caused by the time-
expensive segmentation techniques. The mechanisms and motors that manipulate
the camera position are responsible for the other significant delay, the magnitudes of
it depends on the particular devices characteristics.

A common way to solving this problem is to restrict the use of segmentation
algorithms to relatively simple ones, use motors and expensive Hardware for image
capture that assure a better dynamic behaviour. However doing this, could limit the
applications possibilities of the tracking systems. In this work we propose a
neurofuzzy prediction algorithm to eliminate the delay problem. The neurofuzzy
algorithm is able to predict in 6 frames up the dynamics of the target object, this time
is enough for most of the applications, however this number could be improved
without a great additional effort.

This work is organized in the following way, in section 2 the neurofuzzy model is
described, in section 3 are analyzed the model's properties for function prediction
and an example is shown, section 4 explains the whole system implementation,
finally in section 5 the obtained results are shown.

 2. Adaptive Neuro-Fuzzy Inference system

In this section, we describe a class of adaptive network that are functionally
equivalent to fuzzy inference systems. The propose architecture is referred to as
ANFIS [1], which stands for adaptive network-based fuzzy inference system. We
describe how to decompose the parameter set to facilitate the hybrid learning rule for
ANFIS architecture representing both the Sugeno and Tsukamoto fuzzy models. The
effectiveness of ANFIS with the hybrid learning is tested through one simulation
example.

ANFIS architecture

For simplicity, we assume that the fuzzy inference system under consideration has
two input x and y and output z. For a first-order Sugeno fuzzy model, a common rule
set with two fuzzy if-then rules is the following:

Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1,
Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2.

Figure 2 illustrate the reasoning mechanism for this Sugeno model; the
corresponding equivalent ANFIS architecture is shown in figure 3, where nodes of the
same layer have similar functions, as described next.

 2

Fig. 2 A two-input first-order Sugeno fuzzy model whit two rules

Fig. 3 Equivalent ANFIS architecture.

 3

Layer 1. Every node I in this layer is an adaptive node with a node function

O1,I=µAi(x), for i=1,2, or
O1,i=µBi-2(y), for i=3,4,

where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such as “small”
or “large”) associated with this node. In other words, i is the membership grade of a
fuzzy set A (=A1,A2, B1 or B2) and it specifies the degree to which the given input x
(or y) satisfies the quantifier A. Here the membership function for A can be any
appropriate parameterized membership function, such as the generalized bell
function:

 b

i

i

A

a
cx

x 2

1

1)(
−

+

=µ

where {ai,bi,ci} is the parameter set. As the values of these parameters change, the
bell-shaped function varies accordingly, thus exhibiting various forms of membership
for fuzzy set A. Parameters in this layer are referred to as premise parameters.

Layer 2. Every node in this layer is a fixed node labelled Π, whose output is the
product of all the incoming signals:

 .2,1),()(,2 === iyxO

ii BAii µµω

Each node output represent the firing strength of a rule. In general, any other T-norm
operators that perform fuzzy AND can be used as the node function in this layer.

Layer 3. Every node in this layer is a fixed node labelled N. The i-th node calculates
the ratio of the i-th rule’s firing strength to the sum of all rule’s firing strengths.

.2,1,
21

,3 =
+

== iO i
ii ωω

ω
ϖ

For convenience, outputs of this layer are called normalized firing strengths.

Layer 4. Every node i in this layer is an adaptive node with a node function

),(,4 iiiiiii ryqxpfO ++== ϖϖ

where ϖ1 is a normalized firing strength from layer 3 and {pi,qi ri} is the parameter set
of this node. Parameters in this layer are referred to as consequent parameters.

Layer 5. The single node in this layer is a fixed node labelled Σ, which computes the

 4

overall output as the summation of all incoming signals.

∑
∑∑ ==

i i

i ii

i
iii

f
fO

ω
ω

ϖ,5

Hybrid Learning Algorithm

From ANFIS architecture shown in the figure 3, we observe that the values of the
premise parameters are fixed, the overall output can be expressed as a linear
combination of the consequent parameters. In symbols, the output f in the figure 3
can be rewritten as

 2
22

2
1

21

1 fff
ωω

ω
ωω

ω
+

+
+

=

)()(22221111 ryqxpryqxp +++++= ϖϖ
 ,)()()()()()(222222111111 rqypxrqypx ϖϖϖϖϖϖ +++++=

which is linear in the consequent parameters p1,q1,r1,p2,q2 and r2. From this
observation, we have
S=set of total parameters,
S1=set of premise (nonlinear) parameters,
S2=set of consequent (linear) parameters

The learning algorithm for ANFIS is a hybrid algorithm which is a combination
between gradient descent and least-squares method. More specifically, in the
forward pass of the hybrid learning algorithm, node outputs go forward until layer 4
and the consequent parameters are identified by the least-squares method. In the
backward pass, the error signals propagate backward and the premise parameters
are updated by gradient descendent . The next table summarizes the activities in
each pass.

 Forward pass Backward pass

Premise parameters Fixed Gradient descent
Consequent parameters Least-squares estimator Fixed

Signals Node outputs Error signals

The consequent parameters are identified optimal under the condition that the
premise parameters are fixed. Accordingly, the hybrid approach converges much
faster since it reduced the search space dimensions of the original pure
backpropagation method.

3. ANFIS prediction

In this section we demonstrate how ANFIS can be employed to predict future values.
We use as example a chaotic time series.

The time series used in our simulation is generated by the chaotic Mackey-Glass

 5

differential delay equation defined as

).(1.0
)(1

)(2.0)(10

.
tx

tx
txtx −
−+
−

=
τ
τ

The prediction of future values of this time series is a benchmark problem that has
been used and reported by a number of connectionist researches.

The goal of the task is to use past values of the time series up to time t to predict the
value at some point in the future t+P. The standard method for this type of prediction
is to create a mapping from D points of the time series spaced ∆ apart that is, [x(t-
(D-1)∆),…….,x(t-∆),x(t)], to a predicted future value x(t+P). To allow comparison with
earlier work, the values D=4 and ∆=P=6 were used.

To obtain the time series value at each integer time point, we applied the fourth-order
Runge-Kutta method to find the numerical solution. The time step used in the method
was 0.1, initial condition x(0)=1.2, and τ=17. In this way, x(t) was thus obtained via
numerical integration for 0<t<2000. From the Mackey-Glass time series x(t), we
extracted 1000 input-output data pairs of the following format:

)],6();(),6(),12(),18([+−−− txtxtxtxtx

where t=118 to 1117. The first 5000 pairs were used as training data set for ANFIS,
while the remaining 500 pairs were the checking data set for validating the identified
ANFIS. The number of MFs assigned to each input of the ANFIS was set to two, so
the number of rules is 16. Figure 4 depicts the finall membership functions for each
input variable. The ANFIS used here contains a total of 104 fitting parameters, of
which 24 are premise (nonlinear) parameters and 80 are consequent (linear)
parameters.

Fig. 4 Membership functions after of the training.

 6

The figure 5 shows the error curves, step sizes, desired and ANFIS Outputs and the
prediction errors.

Fig. 5 Graphics of the ANFIS system training.

4. Implementation

Description

For this work we solve the tracking problem of a soccer ball whose movements can
be strongly or violent, the objective therefore is to maintain the visual contact of the
object in the image frame. The mechanism which manipulates the camera position is
constituted of two independent Rc-servo motors. In this section we explain the
development and content of the blocks which integrate the tracking system (Figure
1).

Segmentation algorithm and localization

The object to be segmented is characterized to present a pattern color, for this
reason a segmentation algorithm with the capacity to segment color was chosen.
Thus a simple change of color model and thresholding of the image would be enough
for the ball segmentation. The figure 6 shows the object to be segmented.

 7

Fig. 6 Object to be segmented.

The image is transformed of the RGB model to the HSV model, which is more
appropriate for the color segmentation, later the image is divided in its characteristic
planes H,S and V. From those planes we take only the S plane and then we apply a
threshold value of 220. The figure 7 shows the result of this process.

Fig. 7 Segmented Ball.

Once the object is located, then we can use the moment method to identify the
centroid. The used equations are:

 ∑∑=

x y

yxIM),,(00

 ∑∑∑∑ ==
x yx y

yxyIMyxxIM),,(),,(0110

 ,,
00

01

00

10

M
M

y
M
M

x cc ==

where M00 represents the zero degree moment while M10 and M01 means the first
degree moments of x and y respectively, while xc and yc represents the center
coordinates.

 8

Controller

For this work we use a controller PID for each axis movement (It can also be used a
fuzzy controller as is described in [2]). The objective of the visual tracking is to
maintain the target object inside of the image frame, therefore the controller’s input
would be the existent differences between the object localization point and the
image central point. The figure 8 shows this process.

Fig. 8 Controller configuration.

The above configuration, due the existent delay works poorly. We propose in this
work to eliminate this problem incorporating a neurofuzzy predictor system of the
object dynamics. Thus the system is modified as is shown in the figure 9.

Fig. 9 Modified system.

Here the ANFIS system predicts the object dynamics in 6 times up, therefore the
inherent delays of the system are compensed.

 9

Predictor design.

The predictor ANFIS will be divided in two predictors which correspond to each axe
movement x and y. For the predictor design, the ball localization is saved in a file, this
is achieved moving the ball to the speeds and accelerations desired. Thus, we will
have the necessary information for the system training. The figure 10 shows the
saved movements.

Fig. 10 saved movements.

For the ANFIS training, we will use the tools implemented in matlab [3]. The data
stored in the file are assigned to a matlab vector, starting from here we can use the
commands of the fuzzy logic toolbox. In this part we present the training steps of a
movement axis being the training of the other one exactly identical .If the map of
movements generated by the ball corresponds to the figure 11a and b, then we can
separate the generated movements in the axis x, as shows figure 12.

Fig. 11a X and Y movements.

 10

Fig. 11b X and Y movements in the space.

The separation of the movements can be achieved in the following way; if we have
the data saved in the file " Values.txt " and they have been placed in the following
order

)],(),([tytxValues =

then it can be used

M=dlmread('Values.txt');
n=length(M);
mx=M(1:2:n-1);
my=M(2:2:n-1);
mx=mx';
my=my';
t=length(mx);
plot(mx,my);
plot3(t,mx,my);

where the vector “mx” and “my” store the movements, while “t” stores the frame
number. The lines 8 and 9 of the previous code, generate the figures 11b and 12.

 11

Fig. 12 Movements in x axe

The ANFIS training

The command anfis takes at least two and at most six input arguments. The general
format is:

[fismat1,trnError,ss,fismat2,chkError] = …
anfis(trnData,fismat,trnOpt,dispOpt,chkData,method);

where trnOpt (training options), dispOpt (display options), chkData (checking data),
and method (training method), are optional. All of the output arguments are also
optional. In this section we discuss the arguments and range components of the
command line function anfis.

Training Data
The training data, trnData, is a required argument to anfis. Each row of trnData is a
desired input/output pair of the target system to be modeled. Each row starts with an
input vector and is followed by an output value. Therefore, the number of rows of
trnData is equal to the number of training data pairs, and, since there is only one
output, the number of columns of trnData is equal to the number of inputs plus one.

Input FIS Structure
The input FIS structure, fismat, can be obtained either from any of the fuzzy editors:
the FIS Editor, the Membership Function Editor, and the Rule Editor from the ANFIS
Editor GUI, (which allows an FIS structure to be loaded from the disk or the
workspace), or from the command line function, genfis1 (for which you only need to
give numbers and types of membership functions). The FIS structure contains both
the model structure, (which specifies such items as the number of rules in the FIS,
the number of membership functions for each input, etc.), and the parameters, (which
specify the shapes of membership functions). There are two methods that anfis
learning employs for updating membership function parameters: backpropagation for
all parameters (a steepest descent method), and a hybrid method consisting of
backpropagation for the parameters associated with the input membership functions,
and least squares estimation for the parameters associated with the output

 12

membership functions. As a result, the training error decreases, at least locally,
throughout the learning process. Therefore, the more the initial membership
functions resemble the optimal ones, the easier it will be for the model parameter
training to converge. Human expertise about the target system to be modelled may
aid in setting up these initial membership function parameters in the FIS structure.

Note that genfis1 produces an FIS structure based on a fixed number of membership
functions. This invokes the so-called curse of dimensionality, and causes an
explosion of the number of rules when the number of inputs is moderately large, that
is, more than four or five. The Fuzzy Logic Toolbox offers a method that will provide
for some dimension reduction in the fuzzy inference system: you can generate an FIS
structure using genfis2.

ANFIS allows you to choose your desired error tolerance and number of training
epochs. Training option trnOpt for the command line anfis is a vector that specifies
the stopping criteria and the step size adaptation strategy:

•trnOpt(1): number of training epochs, default = 10.
•trnOpt(2): error tolerance, default = 0.
•trnOpt(3): initial step-size, default = 0.01.
•trnOpt(4): step-size decrease rate, default = 0.9.
•trnOpt(5): step-size increase rate, default = 1.1.

If any element of trnOpt is an NaN or missing, then the default value is taken. The
training process stops if the designated epoch number is reached or the error goal is
achieved, whichever comes first. Usually we want the step-size profile to be a curve
that increases initially, reaches some maximum, and then decreases for the
remainder of the training. This ideal step-size profile is achieved by adjusting the
initial step-size and the increase and decrease rates (trnOpt(3) - trnOpt(5)). The default
values are set up to cover a wide range of learning tasks. For any specific
application, you may want to modify these step-size options in order to optimize the
training.

 For the command line anfis, the display options argument, dispOpt, is a vector of either
ones or zeros that specifies what information to display, (print in the MATLAB
command line window), before, during, and after the training process. One is used to
denote print this option, whereas zero denotes don’t print this option.

•dispOpt(1): display ANFIS information, default = 1.
•dispOpt(2): display error (each epoch), default = 1.
•dispOpt(3): display step-size (each epoch), default = 1.
•dispOpt(4): display final results, default = 1.

The default mode displays all available information. If any element of dispOpt is NaN
or missing, the default value will be taken.

Method

Both the ANFIS Editor GUI and the command line anfis apply either a
backpropagation form of the steepest descent method for membership function
parameter estimation, or a combination of backpropagation and the least-squares

 13

method to estimate membership function parameters. The choices for this argument
are hybrid or backpropagation. These method choices are designated in the
command line function, anfis, by 1 and 0, respectively.

Output FIS Structure for Training Data

fismat1 is the output FIS structure corresponding to a minimal training error. This is
the FIS structure that you will use to represent the fuzzy system when there is no
checking data used for model crossvalidation. When the checking data option is
used, the output saved is that associated with the minimum checking error.

Training Error

The training error is the difference between the training data output value, and the
output of the fuzzy inference system corresponding to the same training data input
value, (the one associated with that training data output value). The training error
trnError records the root mean squared error (RMSE) of the training data set at each
epoch. fismat1 is the snapshot of the FIS structure when the training error measure is
at its minimum.

Step-Size

 Using the command line anfis, the stepize array ss records the step-size during the
training. Plotting ss gives the step-size profile, which serves as a reference for
adjusting the initial step-size and the corresponding decrease and increase rates.
The stepize (ss) for the command line function anfis is updated according to the
following guidelines:

•If the error undergoes four consecutive reductions, increase the step-size by
multiplying it by a constant (ssinc) greater than one.
 •If the error undergoes two consecutive combinations of one increase and one
reduction, decrease the step-size by multiplying it by a constant (ssdec) less than
one.

The default value for the initial step-size is 0.01; the default values for ssinc and
ssdec are 1.1 and 0.9, respectively. All the default values can be changed via the
training option for the command line anfis.

Checking Data

The checking data, chkData, is used for testing the generalization capability of the
fuzzy inference system at each epoch. The checking data has the same format as
that of the training data, and its elements are generally distinct from those of the
training data. The checking data is important for learning tasks for which the input
number is large, and/or the data itself is noisy. In general we want a fuzzy inference
system to track a given input/output data set well. Since the model structure used for
anfis is fixed, there is a tendency for the model to overfit the data on which is it
trained, especially for a large number of training epochs. If overfitting does occur, we
cannot expect the fuzzy inference system to respond well to other independent data
sets, especially if they are corrupted by noise. A validation or checking data set can
be useful for these situations. This data set is used to crossvalidate the fuzzy

 14

inference model. This crossvalidation is accomplished by applying the checking data
to the model, and seeing how well the model responds to this data. When the
checking data option is used with anfis, either via the command line, or using the
ANFIS Editor GUI, the checking data is applied to the model at each training epoch.
When the command line anfis is invoked, the model parameters that correspond to
the minimum checking error are returned via the output argument fismat2. The FIS
membership function parameters computed using the ANFIS Editor GUI when both
training and checking data are loaded are associated with the training epoch that has
a minimum checking error.

The use of the minimum checking data error epoch to set the membership function
parameters assumes:

•The checking data is similar enough to the training data that the checking data error
will decrease as the training begins.
•The checking data increases at some point in the training, after which data
overfitting has occurred.

Output FIS Structure for Checking Data

The output of the command line anfis, fismat2, is the output FIS structure with the
minimum checking error. This is the FIS structure that should be used for further
calculation if checking data is used for cross validation.

Checking Error
The checking error is the difference between the checking data output value, and the
output of the fuzzy inference system corresponding to the same checking data input
value, (the one associated with that checking data output value). The checking error
chkError records the RMSE for the checking data at each epoch. fismat2 is the
snapshot of the FIS structure when the checking error is at its minimum.

With the x movements and considering the explanation given in the section 3, we
form the training data with 800 points. For it we use the follow code:

trn_data = zeros(800, 5);
start=1;
trn_data(:, 1) = mx(start:start+800-1);
start = start + 6;
trn_data(:, 2) = mx(start:start+800-1);
start = start + 6;
trn_data(:, 3) = mx(start:start+800-1);
start = start + 6;
trn_data(:, 4) = mx(start:start+800-1);
start = start + 6;
trn_data(:, 5) = mx(start:start+800-1);

the above mentioned corresponds to a data array with the following format

 15

)],6();(),6(),12(),18([+−−− tmxtmxtmxtmxtmx

We use genfis1 to generate the initial fuzzy system with two membership functions
for the input and configuring the functions like triangular, the returned system is
tored in fismat1.

smat1=genfis1(trn_data,2,'trimf');

en we use anfis for training with their default options,

smat2=anfis(trn_data,fismat1);

 10 epochs, the message surrendered
t the end by matlab will be the following one

tart training ANFIS ...

s ses to 0.011000 after epoch 5.

s to 0.012100 after epoch 9.
10 0.769982

gnated epoch number reached --> ANFIS training completed at epoch
0.

s

fi

th

fi

Therefore the system began the training using
a

S

 1 0.791309
 2 0.790387
 3 0.787617
 4 0.784496
 5 0.781391
Step ize increa
 6 0.77856
 7 0.775859
 8 0.773622
 9 0.771685
Step size increase

Desi
1

 16

Fig. 13. Final membership function of the x(t-18).

The learning results can be summarized as the final membership functions and the

s the
ystem

ule1= -59.15mx(t-18) + 48.89mx(t-12) -77.06mx(t-6) -25.89mx(t) + 195.2;
ule2= 16.67 mx(t-18) -37.88 mx(t-12) -319.5 mx(t-6) -40 mx(t)+ 149.5

6 mx(t-18) 11.42 mx(t-12) -372.7 mx(t-6) -112.5 mx(t) -55.15
ule6= 47.36 mx(t-18) -45.53 mx(t-12)+ 137.1 mx(t-6) +126.6 mx(t) -42.69

.61 mx(t-18) -13.09 mx(t-12)+ 248.8 mx(t-6) + 330.1 mx(t) -55.57
ule10= -6.991 mx(t-18) -3.709 mx(t-12) -416.2 mx(t-6) -309.7 mx(t) -42.42
ule11= 87.22 mx(t-18) -303.9 mx(t-12)-468.6 mx(t-6) -464.5 mx(t) -68.24
ule12= 203.2 mx(t-18) -725.6 mx(t-12) -69.03 mx(t-6) 146.1 mx(t) -86.36

.23 mx(t-18) -14.89 mx(t-12) -38.78 mx(t-6) -11.96 mx(t) + 15.66

ted for the y axis
ovements.

The complete system was coded in C++ and tested on a PCx86 at 900MHz with
128Mbytes RAM, operating in real time on an image of 352x288 pixel using an USB-
Webcam.

rules equations of the Sugeno inference system. The figure 13 show
membership functions of the input x(t-18). The final equations of the predictor s
are:

R
R
Rule3= 123.2 mx(t-18) -103.3 mx(t-12) -22.73 mx(t-6) + 199.6 mx(t)+ 199.4
Rule4= 207.3 mx(t-18) -193.3 mx(t-12) -291.9 mx(t-6) + 168.3 mx(t)+ 196.2
Rule5= -14.1
R
Rule7= 294.5 mx(t-18) -86.37 mx(t-12) +226.8 mx(t-6) +51.56 mx(t) -57.25
Rule8= 751.4 mx(t-18) -195.6 mx(t-12) -400.5 mx(t-6) -163.8 mx(t) -56.98
Rule9= 20
R
R
R
Rule13= 14
Rule14= -34.74 mx(t-18) 41.14 mx(t-12)+ 162.6 mx(t-6) + 6.808 mx(t) +12.17
Rule15= 268.1 mx(t-18) -266.4 mx(t-12) +88.99 mx(t-6) -133 mx(t)+ 17.28
Rule16= 766.5 mx(t-18) -773.5 mx(t-12) -64.03 mx(t-6) +184.9 mx(t) +19.05

The fuzzy system able to perform the prediction will be then condensed in the fuzzy
system represented by fismat2. The previous procedure is repea
m

 17

5. Results

We have successfully developed, implemented and tested a neurofuzzy system for
predicting the motion of a target object. The prediction compensates the system
delay and thus allows precise and fast motion control. To demostrate the prediction
efect on the system behavior, we have tested the tracking object in high velocity. It
performs very well and we have nearly eliminated the influence of the delay on the
system. The figure 14 shows the predictor performance for x axis.

Fig. 14 The predictor performance for the x axis.

he system performance is very good, allowing to predict the movement of the target

eferences

[1] Jang S. R., Sun C. T. and Mitzutani E., Neurofuzzy and Soft Computing, Prentice
Hall, 1998. New York.

[2] Cuevas E., Zaldivar D. and Rojas R., Intelligent Tracking, Technical Report B-13-
03, Freie Universität Berlin, November, 2003.

[3] Fuzzy logic Toolbox, Mathworks, 1999, New York.

T
object with a minimum error.

R

 18

