
Actual Process: A Research Program
Lutz Prechelt1, Sebastian Jekutsch1, and Philip Johnson2

1 Freie Universität Berlin, Institut f. Informatik, Takustr. 9, 14195 Berlin, Germany
{prechelt,jekutsch}@inf.fu-berlin.de

2 University of Hawaii, Dept. of Information and Computer Sciences,
POST 307A, 1680 East-West Rd., Honolulu, HI 96822

johnson@hawaii.edu

March 2006

Technical report TR-B-06-02

Abstract. Most process research relies heavily on the use of terms and concepts
whose validity depends on a variety of assumptions to be met. As it is difficult
to guarantee that they are met, such work continually runs the risk of being
invalid. We propose a different and complementary approach to understanding
process: Perform all description bottom-up and based on hard data alone. We
call the approach actual process and the data actual events. Actual events can
be measured automatically. This paper describes what has been done in this
area already and what are the core problems to be solved in the future.

Contents

1 Introduction...2
2 Terminology..2
3 Related Work ..3
4 Research Program ...5
5 Contributions So Far and Current Work ...6

5.1 Event Collection Tools ...6
5.2 Software Project Telemetry ..7
5.3 Error Detection and Prevention ..7
5.4 Diagnosing Specific Expected Behaviors ...7

6 Conclusion ..8
References ...8

- 1 -

1 Introduction
Most process research1 is concerned with highly compound phenomena and hence
heavily relies on abstraction. This is unavoidable, as the level of detail in these
phenomena would be unmanageable without abstraction. However, abstraction
unavoidably implies making assumptions. And indeed one finds that current software
process research is full of assumptions. Let us illustrate this statement with a fictitious
example:

Assume we are investigating a proposal for processes in which time-to-market is
critical. The proposal recommends to release the software from testing as soon as
the number of new defects detected per day consistently drops below some
threshold. The explicit assumption underlying this proposal claims that dropping
below the threshold means that (a) most relevant defects have been found, and (b)
the remaining ones are sufficiently subtle (and failures sufficiently rare) that users
will not be bothered unacceptably. Proposition (b) can be validated empirically,
which is exactly what good process research would attempt to do.
However, there are many further implicit assumptions that underlie the proposal.
For instance: The testers' motivation is constant over time; test effort per day is
non-decreasing; defects found but not yet removed do not obstruct the detection of
further defects; the criteria for flagging some behavior as a failure are constant over
time; defects do not cluster. Any of these implicit assumptions may be wrong from
time to time, making it very difficult to validate the proposal, find an appropriate
threshold, or reproduce the findings in a different project.

We propose to complement this style of assumption-based process research by
another style of process research that attempts to be assumption-free as far as
possible. This style is completely bottom-up, data-driven, and thus initially very low-
level. It attempts to find and understand what we call actual process.

This paper will now first introduce precise terminology for talking about actual
process and for contrasting it to assumption-based process (Section 2), and will then
describe how this relates to various areas of existing process research (Section 3). The
heart of the paper then sketches what we believe should be the agenda for actual
process research (Section 4) and the contributions made so far (Section 5).

2 Terminology
A process model is a set of concepts that can be used for describing or prescribing
software development. Each concept is given by an intensional definition and
involves abstraction, i.e. leaves out detail. Since the real world, to which the
definition applies, is not constrained to the ideas mentioned in the intensional
definition, the extension of the concept is not known; there exists an infinite set of
instances with surprising features. Example: For the concept "devising a test case"
there may be instances in which a software engineer devotes a great deal of thought to
the structure and content of the test case, and other instances dominated by

1 By process we always mean software engineering process, but the ideas in this article can
readily be applied to systems engineering as well.

- 2 -

carelessness. The difference may be relevant for the process but is completely ignored
by the definition.

Most process research is concerned primarily with such intensional concepts (and
hence process models); it either talks about the concepts as such, or about instances of
these concepts. A concrete process execution described by instances of such concepts
we call a conceptual process.

In contrast, actual process is a description of a software development that uses
extensional concepts only, i.e. concepts are exclusively formed by grouping instances.
Such concepts are just designations and do not involve any abstraction whatsoever.

The basic notion of actual process is the actual event, an individual, objective,
directly detectable fact ("X happened at time Y") involving no or almost no
interpretation. Note that actual events are always instances, not concepts.

Arbitrary sequences (possibly of length 1) of actual events may be considered an
instance of some concept, for example an activity. In principle, forming this kind of
concept is a purely syntactical operation: assigning a name to a set of such actual
event sequences. In practice, however, this is obviously an interpretation step: We
assign such a name to such a set of sequences that the resulting concept resembles one
of the abstractions we might have in a process model. The difference is that the, say,
actual activity thus formed still carries all the detail with it that is contained in the
individual actual events and hence provides a much richer picture of reality.

Likewise, we mirror all common process terminology: Process models and
conceptual processes talk about conceptual events, conceptual actions, conceptual
activities, conceptual document structures, conceptual transition criteria etc., while
actual processes talk about actual events, actual actions, actual activities, actual
document structures, actual transition criteria etc.

Concepts in conceptual process often involve ideas such as intent or goal that
cannot be observed; they hence make assumptions. (They regularly also make
assumptions about things that can or could be observed.) In contrast, concepts in
actual process are based on actual events alone and are therefore assumption-free.
Note, however, that the use of actual process concepts does involve assumptions,
namely regarding usefulness, insights etc.

3 Related Work
The idea of bottom-up, data-driven process understanding is of course not at all new.
Several related strands of work exist and this section will explain their relationship to
actual process research.

Personal Software Process (PSP). The PSP [6] is a methodology that attempts to
transfer the process maturity ideas of the CMM-SW to the level of individual
engineers. It contains defined process (as in CMM level 3), process measurement
(level 4), and learning from experience for continuous process improvement (level 5).
For two of the authors, the PSP was the stimulus that led to actual process: They
initially considered the PSP a good idea (at least the measurement and improvement
part), but then their research found that the high levels of discipline and data
collection effort required to run PSP made its adoption unrealistic [8,15]. The ideas
and work around actual process have been based in part on these insights. For
example, rather than requiring software engineers to manually maintain logs of effort

- 3 -

as in the PSP, the actual process approach suggests that the software engineers use
“sensors” attached to development tools to automatically collect data on their
development activities.

Software archeology and mining software repositories. One source of actual event
data is repositories that are routinely formed during software development, most
importantly version management and defect tracking histories. Such data have been
used for process-related research many times (e.g. defect prediction [3] or identifying
suspect processes [4]), but are suitable only for certain narrow purposes; general
process analysis is usually not possible from merely this kind of information [19], as
it is too coarse-grained and one-dimensional. In actual process research, such data is
augmented with other, finer-grained events in order to produce a more multi-
dimensional representation of development.

Software metrics. Actual process and software process metrics share the approach of
reflecting the process in data taken directly from process reality. The difference is that
in comparison to most actual events, many (though not all) process metrics are
relatively high-level, and so tend to contain or reflect assumptions. The intended
interpretation of the measurement is valid only if the assumptions are met, but the
measurement does not provide sufficient information to check whether this is the
case. Therefore, such metrics are elements of assumption-based process models. A
typical example of a metrics assumption would be "the measurement comes from a
process that was performed as prescribed by the process definition" – which is the
reason why the CMM introduces metrics only on level 4, after defined processes have
been introduced on level 3.
Work studies of programmers. A number of in-vivo studies have been made on
how programmers spend their time during coding [14], what they actually do while
maintaining and comprehending code [12], or what impact interruptions [1] have on
working time and activities. These studies use live observation, so that the findings
are based on actual process. However, data collection is usually based on manual
recording and is therefore very expensive and possibly inflicted by selection bias (and
also self-perception bias due to the use of “loud thinking” [17]). Actual process
research promises to allow for performing similar studies on a massive scale. A
similar statement applies to the related laboratory research under the heading of
cognitive psychology, such as [2,5].

Usability research and assessment. When usability researchers or professionals
assess the usability of a software product, they use an approach fairly similar to actual
process research: observe fine-grained, low-level events and analyze the event
streams for recurring behavior patterns that indicate usability problems; use these
insights to suggest product improvements [13]. Two important differences to actual
process research exist. First, the target of the analysis is a software product (rather
than a process), whose characteristics are much more concrete and fixed, which
makes it an easier target for understanding. Second, the density of "interesting" events
in the observation is usually much higher so that manual analysis (and even "manual
observation") is a viable option and is in fact a common approach.

Microprocess and macroprocess research. In this line of research, macroprocess
refers to the gathering of externally observable outcomes of processes—time taken,

- 4 -

costs incurred, and so forth, with the goal of determining how changes in resources
might affect these outcomes. Microprocess research attempts to provide process
descriptions (written in suitable formal notations) that can be used to explain how and
why macroprocess interventions yield the results that they do. In other words,
microprocess descriptions provide causal theories for macroprocess behaviors. In due
time, research on actual process should become a primary source of input for
microprocess research.

4 Research Program
Actual process research will start by collecting actual event data (both manually and
automatically) and analyzing it manually in order to identify meaningful descriptive
low-level concepts. These concepts serve as the foundation for automating data
collection and automating inference of mid-level behavioral descriptions and patterns.
These descriptions serve as the foundation for then bridging from actual process
research to conceptual process research: validating assumption-based process models,
assessing process quality, and validating process improvements.

Here is our idea of the relevant research tasks and questions in a little more detail.
Their execution will be iterative in the form of a set of intertwined feedback loops.
1. Identify a basic vocabulary. We need a set of low-level, assumption-free

descriptive concepts that allow to bridge the gap between the basic, super fine-
grain (and hence almost meaningless) actual events and a level of low-level actual
process phenomena about which humans can think, formulate expectations and
assumptions, and check their validity. See Section 5.3 for some current work in
this area. Since some aspects of the development process are much more difficult
to observe than others, initial research will focus on concrete technical process
areas such as programming, testing, debugging, configuration management, and
the like, and will avoid fuzzier areas such as most requirements work, much
design work, all kinds of meetings, and others. Qualitative research methods will
have to be used when performing this step.

2. Automate data collection and management. Full-scale application of actual
process is impossible without automated data collection. Suitable tools need to be
developed. Their core concept is the sensor, a software or hardware/software
component for detecting one type of actual event. See Section 5.1 for current work
in this area.

3. Find relevant events. Many potential kinds of actual events will turn out to be
hardly helpful in understanding actual process. Furthermore, sensors for many
kinds of events will be very difficult to build. We need to find out which of these
are worth building and which of the simpler ones are the most useful. See Sections
5.1 to 5.4 for some current work in this area.

4. Learn how to cope with imperfect sensors. Actual events are objective facts.
However, a sensor for detecting such events may flag spurious ones, miss real
ones, or distort event parameters. What does this mean for further analysis in
practice? Can it still be called assumption-free? How do we cope?

5. Develop robust inference mechanisms. We need methods for efficient analysis of
actual process data in order to find instances of the low-level concepts, of known
mid-level event patterns (and thus behavior patterns), and of candidates for new
patterns – all this despite the presence of a very high fraction of irrelevant data.

- 5 -

Such methods may range from straightforward pattern matching based on regular
expressions to techniques based on reinforcement learning. See Section 5.4 for
some current work in this area.

6. Identify common behavioral patterns (1). Replace the current naïve textbook-style
descriptions of process activities by realistic, ecologically valid ones that reflect
the full complexity and variability of an actual development process.

7. Identify common behavioral patterns (2). Identify recurring behavior that does not
map to commonly used process abstractions and form new actual process concepts
for characterizing it.

8. Infer intent. When and how is it possible to reliably diagnose the goals and intent
of an actor given only a stream of actual events? Understanding intent is important
for mapping actual process descriptions onto process models and detecting
relevant gaps in the latter.

9. Validate process models. We need to develop methods to use actual process data
for assessing the accuracy of a given process model. How can we systematically
decide which deviations are important and which should be ignored?

10. Assess process quality. How can we use actual process data for inferring the
quality, productivity, and risk attributes of the overall process? See Section 5.2 for
some current work in this area.

11. Validate process improvements. How can we use actual process data for
quantifying the changes of quality, productivity, and risk attributes between the
current process and a previous version of it?

Besides the scientific and technical hurdles, there are also social ones. For instance,
actual event collection will often raise privacy concerns. Our current approach for
overcoming them is to provide each engineer with complete control over the data
relating to him or her, which restricts somewhat the kinds of data one may collect.

5 Contributions So Far and Current Work
This section summarizes the contributions already made to actual process research
and the work currently underway.

5.1 Event Collection Tools
The foundation of any practical actual process work is the collection of actual event
data. Several tools for automatically collecting data from a variety of sources have
already been built.

Hackystat [8] is a rather general framework for automated data collection. Sensor
components detect arbitrary events and transfer them to a server. There are many
different sensors. Current ones are embedded into tools, e.g. many sensors such as
"user is reading file X" and the like have been integrated into various IDEs, word
processors, and web browsers. Future sensors may also be stand-alone, e.g. a "user is
present/absent" sensor could be based on the image supplied by a webcam or on the
proximity detection of a Bluetooth mobile phone. The server collects data from many
sensors, stores it, and provides various kinds of queries, summaries, and displays for
analyzing the data. PROM [18] is somewhat similar to Hackystat.

- 6 -

ElectroCodeoGram [16] uses a similar approach (and in fact the very same
sensors), but with a different focus, namely the collection of still more fine-grained
data and real-time pattern detection in event streams.

5.2 Software Project Telemetry
The telemetry project [9] attempts to find out how to discriminate between the healthy
and crisis states of a development project based on actual process data (collected by
Hackystat) only. The goal is automatically detecting early hints when a healthy
project is about to go into crisis; the primary method is observing in-project trends. So
far, the analysis is not fully automated but rather presents a number of graphical
summaries to a human project manager.

Compared to seemingly similar "project dashboard" applications, the telemetry
approach builds on a much broader set of data with correspondingly greater potential
of uncovering relevant process phenomena at an early stage. Furthermore, the
automated collection of the data makes frequent modifications to the graphical
summaries viable and supports a learning-from-experience feedback cycle.

5.3 Error Detection and Prevention
The error prevention project [7] attempts to find ways of using actual process data to
automatically flag dubious areas in work products as "likely to be wrong". However,
in contrast to quality assurance approaches using some kind of automated static or
dynamic analysis we do not analyze the work product but rather its construction
process.

We are currently trying to operationalize behaviors that are known to be highly
error-prone. It is known that mental overload, vague knowledge, guessing, as well as
uncomfortable or disruptive working conditions are root causes for increased
probability of making errors and we conjecture that they can be diagnosed without
any semantic knowledge about what problem is currently being solved, because they
will be reflected in actual process patterns such as chaotic code construction,
interruptions, frequent redesigns, missing tests, trial-and-error episodes, etc. General
kinds of error-prone programming behavior, such as copy-paste episodes while
changing code [10], are also studied.

We expect to uncover actual process patterns that have high predictive power for
defects in code or other software development documents.

5.4 Diagnosing Specific Expected Behaviors
The Software Development Stream Analysis Project [11] explores the use of rule-
based approaches for inferring higher level developer behaviors from low-level actual
process event streams. Its initial application area is to capture sequences of developer
actions within the Eclipse IDE and infer from these sequences whether or not the
developer is using the Test-Driven Design (TDD) development method or not. We
will validate the inference process with orthogonal measurements such as video
capture. Once validated, such a mechanism can be used to both assess compliance
with a prescribed or expected process and provide insights into when and where that
process is helpful.

- 7 -

6 Conclusion
We believe that actual process research promises to narrow the gap between process
models and actual development behavior. It will initially support the thorough
investigation of certain important person-level aspects of software processes, such as
interruptions, errors, task costs, action frequencies, and detailed-process compliance.
In the longer run, it will provide a much sounder empirical basis for many aspects of
current process models by allowing to refine increasingly higher-level concepts and
making them more ecologically valid.

The foundations have been laid, both conceptual (as described in this article) and
technical (represented by process measurement tools). Now we need to build on them.

Acknowledgements
We are grateful to Lee Osterweil for helpful discussion about the term 'microprocess'.
Furthermore, we would like to thank all those involved in the various research
projects as programmers or users for their time and effort.

References
1. Burmistrov, I. and Leonova, A: Do interrupted users work faster or slower? The micro-

analysis of computerized text editing task. In: J. Jacko and C. Stephanidis (Eds.) Human-
Computer Interaction: Theory and Practice (Part I) – Proceedings of HCI International
(2003), Vol. 1. Mahwah: Lawrence Erlbaum Associates, 621-625

2. Davis, Simon P.: Models and theories of programming strategy. Int. Journal Man-Machine
Studies (1993) 39, 237-267

3. Graves, T. L., Karr, Alan F., Marron, J. S., Siy, H.: Predicting Fault Incidence Using
Software Change History, IEEE Transactions on Software Engineering, vol. 26, no. 7
(2000), 653-661

4. Hassan, A.E., Holt, R.C.: The Chaos of Software Development. Proc. International
Workshop on Principles of Software Evolution, Helsinki, Finland, (2003), p. 84

5. Hoc, J.-M., et.al (ed.): Psychology of programming. Academic Press 1990
6. Humphrey, Watts S.: Using A Defined and Measured Personal Software Process, IEEE

Software, vol. 13, no. 3 , (1996), 77-88
7. Jekutsch, Sebastian: Utilizing the Micro-processes of Software Development for Defect

Prevention, Technical Report B-04-15, Inst. f. Informatik, Freie Universität Berlin, 2004,
p.29-32 (http://projects.mi.fu-berlin.de/w/pub/Main/SebastianJekutsch/phdworkshop04.pdf)

8. Johnson, Philip M.: Project Hackystat: Accelerating adoption of empirically guided
software development through non-disruptive, developer-centric, in-process data collection
and analysis, Technical Report csdl2-01-13, Department of Information and Computer
Sciences, University of Hawaii, Honolulu, Hawaii 96822, November 2001

9. Johnson, Philip M., Kou, H., Paulding, M., Zhang, Q., Kagawa, A., Yamashita, T.:
Improving Software Development Management through Software Project Telemetry. IEEE
Software, vol. 22, no. 4 (2005), 76-85

10. Kim, M., Bergman, L., Lau, T., Notkin, D.: An Ethnographic Study of Copy and Paste
Programming Practices in OOPL, International Symposium on Empirical Software
Engineering, August 2004, pp. 83-92

11. Kou, Hongbing: Results of a Pilot Study to Validate the Zorro System for Test-Driven
Development Recognition using Software Development Stream Analysis, Submitted to the
2006 Software Process Workshop, Shanghai, China, May, 2006.

- 8 -

12. von Mayrhauser, A., Vans, A.M.: Identification of Dynamic Comprehension Processes
During Large Scale Maintenance. IEEE Transactions on Software Engineering, vol. 22, no.
6 (1996), 424 - 437

13. Nielsen, Jakob: Usability Engineering, Morgan Kaufmann, 1994.
14. Perry, D. E., Staudenmayer, N. A., Votta, L. G.: Understanding and Improving Time Usage

in Software Development. At&T BellLaboratories, USA, Massachusetts Institute of
Technology Sloan School of Management, USA, 1995.

15. Prechelt, L., Unger, B.: An Experiment Measuring the Effects of Personal Software Process
(PSP) Training. IEEE Transactions on Software Engineering 27(5):465-472, May 2001.

16. Schlesinger, Frank: Protokollierung von Programmiertätigkeiten in der Eclipse-Umgebung.
Diploma thesis, Inst. f. Informatik, Freie Universität Berlin, 2005

17. Seaman, Carolyn B.: Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering, vol.25, no.4 (1999), pp.557-572

18. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing
Software Metrics and Personal Software Process Data. Proceedings of the 29th
EUROMICRO Conference, Belek-Antalya, Turkey, September 01 - 06, 2003

19. Wolf, A. L., Rosenblum, D.S.: A study in software process data capture and analysis. Proc.
Second International Conference on the Software Process, IEEE Computer Society, Feb.
1993, pp. 115-124

- 9 -

	1 Introduction
	2 Terminology
	3 Related Work
	4 Research Program
	5 Contributions So Far and Current Work
	5.1 Event Collection Tools
	5.2 Software Project Telemetry
	5.3 Error Detection and Prevention
	5.4 Diagnosing Specific Expected Behaviors

	6 Conclusion
	References

