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Abstract

The Kalman filter has been used successfully in different prediction
applications or state determination of a system. One important field in
computer vision is the object tracking. Different movement conditions
and occlusions can hinder the vision tracking of an object. In this report
we present the use of the Kalman filter in the vision tracking. We consider
the capacity of the Kalman filter to allow small occlusions and also the
use of the extended Kalman filter (EKF) to model complex movements of
objects.

1 Introduction

The celebrated Kalman filter, rooted in the state-space formulation or linear
dynamical systems, provides a recursive solution to the linear optimal filtering
problem. It applies to stationary as well as nonstationary environments. The
solution is recursive in that each updated estimate of the state is computed from
the previous estimate and the new input data, so only the previous estimate
requires storage. In addition to eliminating the need for storing the entire
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past observed data, the Kalman filter is computationally more efficient than
computing the estimate directly from the entire past observed data at each step
of the filtering process.

In this section, we present an introductory treatment of Kalman filters to pave
the way for their application in vision tracking.

Consider a linear, discrete-time dynamical system described by the block dia-
gram shown in Figure 1. The concept of state is fundamental to this description.
The state vector or simply state, denoted by xk, is defined as the minimal set
of data that is sufficient to uniquely describe the unforced dynamical behavior
of the system; the subscript k denotes discrete time. In other words, the state
is the least amount of data on the past behavior of the system that is needed
to predict its future behavior. Typically, the state xk is unknown. To estimate
it, we use a set of observed data, denoted by the vector yk.

In mathematical terms, the block diagram of Figure 1 embodies the following
pair of equations:

1. Process equation

xk+1 = Fk+1,kxk + wk (1)

where Fk+1,k is the transition matrix taking the state xk from time k to time
k + 1. The process noise wk is assumed to be additive, white, and Gaussian,
with zero mean and with covariance matrix defined by

E
[
wnwT

k

]
=

{
Qk for n=k
0 for n 6= k

(2)

where the superscript T denotes matrix transposition. The dimension of the
state space is denoted by M.

2. Measurement equation

yk = Hkxk + vk (3)

where yk is the observable at time k and Hk is the measurement matrix. The
measurement noise vk is assumed to be addilive, white, and Gaussian, with zero
mean and with covariance matrix defined by

E
[
vnvT

k

]
=

{
Rk for n=k
0 for n 6= k

(4)

Moreover, the measurement noise vkis uncorrelated with the process noise wk.
The dimension of the measurement space is denoted by N.
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Figure 1: Signal-flow graph representation of a linear, distrete-time dynamical
system.

The Kalman filtering problem, namely, the problem of jointly solving the process
and measurement equations for the unknown state in an optimum manner may
now be formally stated as follows:

Use the entire observed data, consisting of the vectors y1,y2, ....,yk, to find for
each k ≥ 1 the minimum mean-square error estimate of the state xk .

The problem is called filtering if i = k , prediction if i > k and smoothing if
1 ≤ i < k.

2 Optimum estimates

Before proceeding to derive the Kalman filter, we find it useful to review some
concepts basic to optimum estimation. To simplify matters, this review is pre-
sented in the context of scalar random variables; generalization of the theory to
vector random variables is a straightforward matter. Suppose we are given the
observable

yk = xk + vk (5)

where xk is an unknown signal and vk is an additive noise component. Let
xk denote the a posteriori estimate of the signal xk, given the observations
y1, y2, ...., yk. In general, the estimate x̂k is different from the unknown signal
xk. To derive this estimate in an optimum manner, we need a cost (loss) function
for incorrect estimates. The cost function should satisfy two requirements:

The cost function is nonnegative.

The cost function is a nondecreasing function of the estimation error xk defined
by
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x̃k = xk − x̂k (6)

These two requirements are satisfied by the mean-square error defined by

Jk = E[(xk − x̂k)2]

Jk = E[(x̃k)2] (7)

where E is the expectation operator. The dependence of the cost function Jk on
time k emphasizes the nonstationary nature of the recursive estimation process.

To derive an optimal value for the estimate x̂k we may invoke two theorems
taken from stochastic process theory [1, 2]:

Theorem 1. Conditional mean estimator If the stochastic processes {xk} and
{yk} are jointly Gaussian, then the optimum estimate x̂k that minimizes the
mean-square error Jkis the conditional mean estimator:

x̂k = E[xk |y1 , y2, ..., yk] (8)

Theorem 2. Principle of orthogonality Let the stochastic processes {xk} and
{yk} be of zero means; that is,

E[xk] = E[yk] = 0 for all k (9)

Then:

(i) the stochastic process {xk} and {yk} are jointly Gaussian; or

(ii) if the optimal estimate x̂k is restricted to be a linear function of the ob-
servables and the cost function is the mean-square error,

(iii) then the optimum estimate x̂k given the observables y1, y2, ...., yk is the
orthogonal projection of xk on the space spanned by these observables.

3 Kalman filter

Suppose that a measurement on a linear dynamical system, described by Eqs.
(1) and (3), has been made at time k. The requirement is to use the information
contained in the new measurement yk to update the estimate of the unknown
state xk. Let x̂−k denote a priori estimate of the state, which is already available
at time k. With a linear estimator as the objective, we may express the a
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posteriori estimate x̂k as a linear combination of the a priori estimate and the
new measurement, as shown by

x̂k = G(1)
k x̂−k + Gkyk (10)

where the multiplying matrix factors G(1)
k and Gk are to be determined. The

state-error vector is defined by

x̃k = xk − x̂k (11)

Applying the principle of orthogonality to the situation at hand, we may thus
write

E
[
x̃kyT

i

]
= 0 for i = 1, 2, ..., k − 1 (12)

Using Eqs. (3), (10), and (11) in (12), we get

E[(xk −G(1)
k x̂−k −GkHkxk −Gkvk)yT

i ] = 0 for i = 1, 2..., k. (13)

Since the process noise wk and measurement noise vk are uncorrelated, it follows
that

E[vkyT
i ] = 0 (14)

Using this relation and adding the element G(1)
k xk −G(1)

k xk , we may rewrite
Eq. (13) as

E[(I−GkHk −G(1)
k )xkyT

i + G(1)
k (xk − x̂−k )yT

i ] = 0 (15)

where I is the identity matrix. From the principle of orthogonality, we now note
that

E[(xk − x−k )yT
i ] = 0 (16)

Accordingly, Eq. (15) simplifies to

(I−GkHk −G(1)
k )E[xkyT

i ] = 0 for i = 1, 2, ..., k − 1 (17)

For arbitrary values of the state xk and observable yi, Eq. (1.17) can only be
satisfied if the scaling factors G(1)

k and Gk are related as follows:

I−GkHk −G(1)
k = 0 (18)
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or, equivalently, G(1)
k is defined in terms of Gk as

G(1)
k = I−GkHk (19)

Substituting Eq. (19) into (10), we may express the a posteriori estimate of the
state at time k as

xk = x̂−k + Gk(yk −Hkx̂−k ) (20)

in light of which, the matrix Gk is called the Kalman gain.

There now remains the problem of deriving an explicit formula for Gk. Since,
from the principle of orthogonality, we have

E[(xk − x̂k)yT
i ] = 0 (21)

it follows that

E[(xk − x̂k)ŷT
i ] = 0 (22)

where ŷT
k is an estimate of yk given the previous measurement y1,y2, ...,yk−1.

Define the innovations process

ỹk = yk − ŷk (23)

The innovation process represents a measure of the "new" information contained
in yk; it may also be expressed as

ỹk = yk −Hkx̂−k

= Hkxk + vk −Hkx̂−k

= vk + Hkx̃−k (24)

Hence, subtracting Eq. (22) from (21) and then using the definition of Eq. (23),
we may write

E[(xk − x̂k)ỹT
k ] = 0 (25)

Using Eqs. (3) and (20), we may express the state-error vector xk − x̂x as
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xk − x̂k = x̃−k −Gk(Hkx̃−k + vk)

= (I−GkHk)x̃−k −Gkvk (26)

Hence, substimting Eqs. (24) and (26) into (25), we get

E[{(I−GkHk)x̃−k −Gkvk}(Hkx̃−k + vk)] = 0 (27)

Since the measurement noise vk is independent of the state xk and therefore
the error x̃−k the expectation of Eq. (27) reduces to

(I−GkHk)E[x̃−k x̃−k
T ]HT

k −GkE[vkvT
k ] = 0 (28)

Define the a priori covariance matrix

P−k = E[(xk − x̂−k )(xk − x̂−k )T ]

= E[x̃−k x̃−k
T ] (29)

Then, invoking the covariance definitions of Eqs. (4) and (29), we may rewrite
Eq. (28) as

(I−GkHk)P−k HT
k −GkRk = 0 (30)

Solving this equation for Gk, we get the desired formula

Gk = P−k HT
k [HkP−k HT

k + Rk]−1 (31)

where the symbol [•]−1 denotes the inverse of the matrix inside the square brack-
ets. Equation (22) is the desired formula for computing the Kalman gain Gk,
which is defined in terms of the a priori covariance matrix P−k . To complete
the recursive estimation procedure, we consider the error covariance propaga-
tion, which describes the effects of time on the covariance matrices of estimation
errors. This propagation involves two stages of computation:

1. The a priori covariance matrix P−k at time k is defined by Eq.
(1.21). Given P−k , compute the a posteriori covariance matrix
Pk , which, at time k, is defined by
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Pk = E[x̃kx̃k
T ]

= E[(xk − x̂k)(xk − x̂k)T ] (32)

2. Given the "old" a posteriori covariance matrix, Pk−1 , compute
the "updated" a priori covariance matrix P−k .

To proceed with stage 1, we substitute Eq. (26) into (32) and note that the
noise process vk is independent of the a priori estimation error x̃−k . We thus
obtain

Pk = (I−GkHk)E[x̃−k x̃−k
T ](I−GkHk)T + GkE[vkvT

k ]GT
k

= (I−GkHk)P−k (I−GkHk)T + GkRkGT
k (33)

Expanding terms in Eq. (33) and then using Eq. (31), we may reformulate the
dependence of the a posteriori covariance matrix Pk on the a priori covariance
matrix P−k in the simplified form

Pk = (I−GkHk)P−k − (I−GkHk)P−k HT
k GT

k + GkRkGT
k

= (I−GkHk)P−k −GkRkGT
k + GkRkGT

k

= (I−GkHk)P−k (34)

For the second stage of error covariance propagation, we first recognize that
the a priori estimate of the state is defined in terms of the "old" a posteriori
estimate as follows:

x̃−k = Fk,k−1x̂k−1 (35)

We may therefore use Eqs. (1) and (35) to express the a priori estimation error
in yet another form:

x̃−k = xk − x̂−k
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= (Fk,k−1xk−1 + wk−1)− (Fk,k−1x̂k−1)

= Fk,k−1(xk−1 − x̂k−1) + wk−1

= Fk,k−1x̃k−1 + wk−1 (36)

Accordingly, using Eq. (36) in (29) and noting that the process noise wk is
independent of x̂k−1 we get

P−k = Fk,k−1E[x̃k−1x̃T
k−1]F

T
k,k−1 + E[wk−1wT

k−1]

= Fk,k−1Pk−1FT
k,k−1 + Qk−1 (37)

which defines the dependence of the a priori covariance matrix P−k on the "old"
a posteriori covariance matrix Pk−1.

With Eqs. (35), (37), (31), (20), and (34) at hand, we may now summarize the
recursive estimation of state as shown in figure 2. This figure also includes the
initialization. In the absence of any observed data at time k = 0, we may choose
the initial estimate of the state as

x0 = E[x0] (38)

and the initial value of the a posteriori covariance matrix as

P0 = E[(x0 − E[x0])((x0 − E[x0])T ] (39)

This choice for the initial conditions not only is intuitively satisfying but also
has the adventage of yielding an unbiased estimate of the state xk.

The Kalman filter uses Gaussian probability density in the propagation process,
the diffusion is purely linear and the density function evolves as a gaussian pulse
that translates, spreads and reinforced, remaining gaussian throughout.

The random component of the dynamical model wk leads to spreading (increas-
ing uncertainty) while the deterministic component Fk+1,kxk causes the density
function to drift bodily. The effect of an external observation y is to superim-
pose a reactive effect on the diffusion in which the density tends to peak in the
vicinity of observations. The figure 3 shows the propagation form of the density
function using the Kalman filter.
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Figure 2: Sumary of the Kalman filter
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4 Extended Kalman filter

The Kalman filtering problem considered up to this point in the discussion has
addressed the estimation of a state vector in a linear model of a dynamical
system. If, however, the model is nonlinear, we may extend the use of Kalman
filtering through a linearization procedure. The resulting filter is referred to as
the extended Kalman filter (EKF) [3-5]. Such an extension is feasible by virtue
of the fact that the Kalman filter is described in terms of difference equations
in the case of discrete-time systems.

To set the stage for a development of the extended Kalman filter, consider a
nonlinear dynamical system described by the state-space model

xk+1 = f(k,xk) + wk (40)

yk = h(k,xk) + vk (41)

where, as before, wk and vk are independent zero-mean white Gaussian noise
processes with covariance matrices Rk and Qk respectively. Here, however,
the functional f(k,xk) denotes a nonlinear transition matrix function that is
possibly time-variant. Likewise, the functional h(k,xk) denotes a nonlinear
measurement matrix that may be time-variant, too.

The basic idea of the extended Kalman filter is to linearize the state-space model
of Eqs. (52) and (53) at each time instant around the most recent state estimate,
which is taken to be either x̂k or x̂−k epending on which particular functional is
being considered. Once a linear model is obtained, the standard Kalman filter
equations are applied.

More explicitly, the approximation proceeds in two stages.

Stage 1. The following two matrices are constructed:

Fk+1,k =
∂f(k,xk)

∂x

∣∣∣∣
x=x̂k

(42)

Hk =
∂h(k,xk)

∂x

∣∣∣∣
x=x̂k

(43)

That is, the ij th entry of Fk+1,k is equal to the partial derivative of the ith
component of F(k,x) with respect to the yth component of x. Likewise, the
ij th entry of Hk is equal to the partial derivative of the ith component of H(k,x)
with respect to the j th component of x. In the former case, the derivatives are
evaluated at x̂k while in the latter case, the derivatives are evaluated at x̂−k .
The entries of the matrices Fk+1,k and Hk are all known (i.e., computable), by
having x̂k and x̂−k available at time k.
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Stage 2. Once the matrices Fk+1,k and Hk are evaluated, they are then em-
ployed in a first-order Taylor approximation of the nonlinear functions F(k,x)
and H(k,x) around x̂k and x̂−k , respectively. Specifically, F(k,x) and H(k,x)
are approximated as follows

F(k,xk) ≈ F(x, x̂k) + Fk+1,k(x, x̂k) (44)

H(k,xk) ≈ H(x, x̂−k ) + Hk+1,k(x, x̂−k ) (45)

With the above approximate expressions at hand, we may now proceed to ap-
proximate the nonlinear state equations (40) and (41) as shown by, respectively,

xk+1 ≈ Fk+1,kxk + wk + dk (46)

ȳk ≈ Hkxk + vk (47)

where we have introduced two new quantities:

ȳk = yk − {h(x, x̂−k )−Hkx̂−k } (48)

dk = f(x, x̂k)− Fk+1,kx̂k (49)

The entries in the term ȳk are all known at time k, and, therefore, ȳk can be
regarded as an observation vector at time n. Likewise, the entries in the term
dk are all known at time k.

Given the linearized slate-space model of Eqs. (48) and (49), we may then
proceed and apply the Kalman filler theory of section 3 to derive the extended
Kalman filter. Figure 4 summarizes the recursions involved in computing the
extended Kalman filter.

5 Vision Tracking with the Kalman filter

The main application of the Kalman filter in robot vision is the following object,
also called tracking. To carry out this, it is necessary to calculate the object
position and speed in each instant. As input is considered a sequence of images
captured by a camera containing the object. Then using a image processing
method the object is segmented and later calculated their position in the image.
Therefore we will take as system state xkthe position x and y of the object in
the instant k. Considering the above-mentioned we can use the Kalman filter to
make more efficient the localization method of the object, that is to say instead
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Figure 4: Summary of the Extended Kalman Filter
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of looking for to the object in the whole image plane we define a search window
centered in the predicted value x̂−k of the filter.

The steps to use the Kalman filter for vision tracking are:

1. Initialization (k=0). In this step it is looked for the object in the whole
image due we do not know previously the object position. We obtain this way
x0. Also we can considerer initially a big error tolerance ( P0 = 1).

2. Prediction (k>0). In this stage using the Kalman filter we predict the
relative position of the object, such position x̂−k is considered as search center
to find the object.

3. Correction (k>0). In this part we locate the object (which is in the
neighborhood point predicted in the previous stage x̂−k ) and we use its real
position (measurement) to carry out the state correction using the Kalman
filter finding this way x̂k.

The steps 2 and 3 are carried out while the object tracking runs. To exemplify
the results of the use of the Kalman filter in vision tracking, we choose the
tracking of a soccer ball and consider the following cases:

a) In this test we carry out the ball tracking considering a lineal uniform move-
ment, which could be described by the following system equations

xk+1 = Fk+1,kxk + wk




xk+1

yk+1

∆xk+1

∆yk+1


 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1







xk

yk

∆xk

∆yk


 + wk

yk = Hkxk + vk

[
xmk

ymk

]
=

[
1 0 0 0
0 1 0 0

]



xk

yk

∆xk

∆yk


 + vk

In the figure 5 the prediction of the object position is shown for each instant as
well as the real trajectory.

b) One advantage of the Kalman filter for the vision tracking is that can be used
to tolerate small occlusions. The form to carrying out it, is to consider the two
work phases of the filter, prediction and correction. That is to say, if the object
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Figure 5: Position prediction with the Kalman filter

localization is not in the neighborhood of the predicted state by the filter (in
the instant k), we can consider that the object is hidden by some other object,
consequently we will not use the measurement correction and will only take as
object position the filter prediction. The figure 6 shows the filter performance
during the object occlusion. The system was modeled with the same equations
used in the previous case.

c) Most of the complex dynamic trajectories (changes of acceleration) cannot
be modeled by lineal systems, which results in that we have to use for the
modeling nonlinear equations, therefore in these cases we will use the extended
Kalman filter. The figure 7 shows the acting of the extended Kalman filter for
the vision tracking of a complex trajectory versus the poor performance of the
normal Kalman filter. For the extended Kalman filter the dynamic system was
modeled using the unconstrained Brownian motion equations

xk+1 = f(k,xk) + wk




xk+1

yk+1

∆xk+1

∆yk+1


 =




exp
(− 1

4 (xk + 1.5∆xk)
)

exp
(− 1

4 (yk + 1.5∆yk)
)

exp
(− 1

4∆xk

)
exp

(− 1
4∆yk

)


 + wk
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Figure 6: Kalman filter during the occlusion

yk = h(k,xk) + vk

[
xmk

ymk

]
=

[
1 0 0 0
0 1 0 0

]



xk

yk

∆xk

∆yk


 + vk

while for the normal Kalman filter, the system was modeled using the equations
of the case a).
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