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Overview

Throughout the past decades �nancial markets witnessed prolonged periods of

increased volatility and the frequent formation and subsequent burst of bubbles.

The dot-com bubble in the beginning of the millennium, the US house pricing

bubble of 2006 that culminated in the recent global �nancial crisis and the 2015

stock market bubble in China are but few examples for apparent ine�ciencies if

not outright failures of �nancial markets to correctly re�ect asset prices.

Investors acting in sync have been suspected to cause such unwanted market

phenomena, compare e.g Wermers (1999). The destabilizing character of investor

coordination has been made explicit in the theoretical literature under �herding�.

The term refers to the behavior of individual investors following the decision of

the majority or crowd despite of being endowed with information that advises

them to take a di�erent action (see Brunnermeier (2001), p.148).

The claim that such behavior adversely a�ects �nancial markets is

intuitive. Investors face a decision whether or not to buy a �nancial asset. As

they observe other investors accumulating on one side of the market they loose

con�dence in their own information regarding the asset's true value and follow

the crowd instead. This already leads to ampli�ed stock price movements. If,

moreover, the crowd errs in buying or selling the asset, herding on the crowd's

action will drive prices away from the asset's true value, which in turn

contributes towards the formation of bubbles (or accelerated downturns) and

extreme subsequent price reversals.

It is, thus, not surprising that the theoretical herding literature has made great

e�orts to understand potential drivers of herd behavior. Lead by the seminal

XV
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work of Bikhchandani et al. (1992) herding theory has identi�ed reputational

concerns, momentum trading strategies as well as correlated gathering of

information as relevant drivers for investor herding.

At the same time, celebrated empirical studies such as Lakonishok et al.

(1992) and Sias (2004) have supplied measures to detect investor herding based

on transaction data and provided insights which investor groups and asset types

are particularly prone to herding.

It is, however, noted by e.g. Devenow and Welch (1996) and Cipriani and

Guarino (2014) that herding theory and the corresponding empirical literature

are disconnected. While herd models rarely provide empirically testable

hypotheses, empirical works do not rigorously tie their proposed measurement

approaches to the theoretical concept of herding.

This thesis contributes towards closing the gap between the theoretical and

empirical herding literature.

Papers 1 and 2 of this thesis derive testable hypotheses on two new drivers for

investor herding from the model of Park and Sabourian (2011). The hypotheses

are con�rmed by applying the standard herd measure of Sias (2004) (Sias) to

transaction data from the German stock market. Although the Sias measure is

the best possible choice for our application, it still does not fully re�ect the notion

of theoretical herding intensity as implied by the model.

To further bridge this gap, Papers 3 and 4 in this thesis design a new theory-

founded herd measure that can be applied to real-world transaction data. Using

the measure to analyze German stock market data from the recent �nancial crisis

shows that herding is a rare event but has the potential to destabilize markets.

Paper 5 serves an important integrating function in this thesis as it pro-

vides a strong theoretical link between investor herding and the destabilization of

�nancial markets - a fact rarely encountered in the existing �nancial market herd-

ing literature, compare Eyster and Rabin (2010). Paper 5 proposes a framework

to study the behavior of investors facing choices under ambiguity as opposed to

quanti�able risk. It derives precise conditions under which investor herding moves
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prices away from fundamentals contributing towards the formation and burst of

bubbles.

The results of Paper 5 validate the relevance to study investor herding and,

thus, the e�orts made in Papers 1 to 4.

A more detailed summary of the main contributions and results of each

individual paper of this thesis is provided in the following:

• Paper 1: The Impact of Information Risk and Market Stress on Herding

in Financial Markets1

This paper employs numerical simulations of the Park and Sabourian (2011)

herd model to derive new theory-based predictions for how information risk

and market stress in�uence aggregate herding intensity. We �nd that higher

information risk increases both buy and sell herding. The model also pre-

dicts that in crisis periods buy and not sell herding is more pronounced.

• Paper 2: Information Risk, Market Stress and Institutional Herding: Evi-

dence from the German Stock Market2

This paper empirically tests and con�rms the hypotheses regarding the im-

pact of information risk and market stress on herding intensity that are

derived in Paper 1. This is done by applying the measure of Sias (2004) to

high-frequency, investor-speci�c transaction data from the German DAX 30

index from to 2006 to 2009. The Sias measure is chosen because it is partic-

ularly suited to analyze high-frequency transaction data and because of all

prominent herd measures it best re�ects the concept of aggregate herding

intensity as introduced in Paper 1.

• Paper 3: How to Measure Herding in Financial Markets3

Combining the insights of market microstructure theory with the ideas of

Lakonishok et al. (1992) this paper develops a new measure for investor

herding. A theoretical analysis of our new measure and the LSV measure

1This paper was written in collaboration with my co-author Simon Jurkatis.
2This paper was written in collaboration with my co-authors Simon Jurkatis, Dieter Nautz

and Stephanie Kremer.
3This paper was written in collaboration with my co-author Simon Jurkatis.
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reveals testable distributional assumptions underlying both approaches and

shows that our measure generalizes the LSV measure. In a comprehensive

simulation study we �nd that our measure di�erentiates between herd and

contrarian behavior as well as independent trading. At the same time the

LSV measure fails to reliably detect investor herding.

• Paper 4: Herding and Contrarian Behavior on the German Stock Market

During the Recent Financial Crisis 4

Gauging transaction data from the German stock market in 2008 with the

herd measure developed in Paper 3, we �nd that investors predominantly

exhibit contrarian tendencies or trade independently. Only less pro�cient

traders occasionally engage in herd behavior. When they do, however, they

tend to destabilize the German stock market. The data support the assump-

tions associated with the measurement approach developed in Paper 3, while

at the same time strongly rejecting the distributional assumptions underly-

ing the celebrated herd measure of Lakonishok et al. (1992).

• Paper 5: Irrational Exuberance and Herding in Financial Markets - How

Investors Facing Ambiguity Drive Prices Away From Fundamentals

In the context of a two-state, two-trader �nancial market herd model in-

troduced by Avery and Zemsky (1998) we investigate how informational

ambiguity in conjunction with waves of optimism and pessimism a�ect in-

vestor behavior and social learning. Without ambiguity, neither herding

nor contrarianism is possible. If on the other hand ambiguity is high and

traders become overly exuberant (or desperate) as the asset price surges (or

plummets), we establish that investor herding may drive prices away from

fundamentals.

4This paper was written in collaboration with my co-authors Simon Jurkatis and Puriya
Abbassi.



Zusammenfassung

Phasen hoher Unsicherheit sowie das Entstehen und anschlieÿende Platzen von

Preisblasen kennzeichneten die Finanzmärkte der vergangenen Jahrzehnte.

Beispiele hierfür sind die Dot-com Blase während der Jahrtausendwende, die

Preisblase auf dem Wohnungsmarkt der USA von 2006, die in den Folgejahren

eine globale Finanzkrise auslöste sowie die 2015 geplatzte Blase auf dem

chinesischen Aktienmarkt. Diese Beipiele belegen, dass es auf Finanzmärkten

durchaus auch über längere Zeiträume zu Ine�zienzen und Fehlpreisbildungen

kommen kann.

Es wird vermutet, dass gleichgerichtetes Handeln von Investoren solches

Marktversagen bedingen kann, vergleiche Wermers (1999). Wenn ein solch

koordiniertes Investorenverhalten destabilisierend auf Märkte wirkt, spricht die

theoretische Literatur von �Herdenverhalten�. Der Begri� beschreibt ein

Verhaltensmuster, bei dem Investoren blind und wider besseren Wissens der

Entscheidung der Mehrheit oder der Masse folgen, z.B. eine Aktie zu kaufen

oder verkaufen (siehe Brunnermeier (2001), S. 148). Dass sich solches

Herdenverhalten tatsächlich negativ auf das Funktionieren von Finanzmärkten

auswirken kann, belegt folgende vereinfachte Argumentation: Investoren sehen

sich mit der Entscheidung konfrontiert, z.B. eine Aktie zu kaufen oder zu

verkaufen. Sie besitzen Informationen, dass der Kauf der Aktie nicht

gewinnversprechend ist. Sie beobachten jedoch, dass viele andere Investoren die

Aktie kaufen, was einen steigenden Aktienpreis bedingt. Die Investoren verlieren

Vertrauen in ihre eigene Information und folgen wider besseren Wissens und

trotz gestiegener Preise der Masse der Anleger und kaufen die Aktie. Dass ein

solches Verhalten an sich bereits Preistrends verstärkt und somit zu erhöhten

XIX
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Aktienkursschwankungen führt, liegt auf der Hand. Falls jedoch obendrein die

Masse der Anleger den Wert der Aktie überschätzt hat, trägt Herdenverhalten

zur Entstehung von Blasen bei, bei deren Platzen es in kürzester Zeit zu

extremen Kurskorrekturen kommt.

Es ist daher kaum verwunderlich, dass die theoretische Literatur viel über die

möglichen Treiber von Herdenverhalten diskutiert. Nach der wegweisenden

Studie von Bikhchandani et al. (1992) hat die theoretische Herdenliteratur

Sorgen um den eigenen Ruf, Momentum Handelsstrategien sowie Analyse

identischer Informationen als mögliche Ursachen für Herdenverhalten von

Investoren identi�ziert. Gleichzeitig entwickelten bekannte empirische Arbeiten

wie die von Lakonishok et al. (1992) und Sias (2004) häu�g wiederverwendete

Maÿe zur Quanti�zierung von Herdenverhalten und lieferten empirische

Evidenzen, welche Investorengruppen und welche Aktien besonders von

Herdenverhalten betro�en sind.

Devenow und Welch (1996) sowie Cipriani und Guarino (2014) stellen

jedoch fest, dass die theoretische und die empirische Forschung zum Thema

Herdenverhalten nur lose miteinander verknüpft sind. Die entwickelten

theoretischen Modelle liefern beispielsweise nur selten empirisch überprüfbare

Hypothesen. Demgegenüber stellen empirische Arbeiten keinen direkten

Zusammenhang zwischen den entwickelten Maÿen und den entsprechenden

theoretischen Konzepten des Herdverhaltens her.

Das Ziel dieser Disseration ist es daher, einen Beitrag zu leisten, die Lücke

zwischen theoretischer und empirischer Herdenliteratur zu schlieÿen.

Papiere 1 und 2 leiten Hypothesen hinsichtlich der Auswirkungen von In-

formationsrisiko und Marktunsicherheit auf Herdenverhalten ab und testen diese

empirisch. Zu diesem Zweck wird das Herdenmaÿ von Sias (2004) auf Transak-

tionsdaten vom deutschen Aktienmarkt angewendet. Obwohl das Sias Maÿ die

bestmögliche Wahl ist, stellen wir fest, dass es immer noch Diskrepanzen gibt

zwischen dem, was Sias misst und dem, was die Theorie als Herdenintensität

beschreibt.
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Um diese Lücke weiter zu schlieÿen, entwickeln Papiere 3 und 4 ein theo-

riebasiertes Maÿ, welches auf echte Transaktionsdaten anwendbar ist. Die Analyse

von entsprechenden Daten vom deutschen Aktienmarkt zeigt, dass Herdenverhal-

ten während der globalen Finanzkrise von 2008 ein seltenes Phänomen ist. Wenn

es jedoch auftritt, dann wird der Markt dadurch destabilisiert.

Papier 5 bildet einen wichtigen Rahmen für die gesamte Dissertation, da

es den Zusammenhang zwischen Herdenverhalten an Finanzmärkten und po-

tentiellem Marktversagen klarer theoretisch fundiert, als dies in der Literatur

bisher der Fall ist, vergleiche Eyster und Rabin (2010). Es entwickelt ein Modell,

welches die Untersuchung des Verhaltens von Investoren ermöglicht, die mit nicht

quanti�zierbaren Unsicherheiten (Ambiguität) konfrontiert sind. Es leitet Bedin-

gungen her, unter denen Herdenverhalten von Investoren die Preise tatsächlich

langfristig vom wahren Wert einer Anlage entkoppelt und so zu Blasenbildungen

führt.

Damit belegt das fünfte Papier die Relevanz des Studiums von

Herdenverhalten an Finanzmärkten und hebt damit noch einmal die Wichtigkeit

der Analysen der ersten vier Papiere hervor.

Eine detaillierte Aufstellung der Beiträge und Resultate jedes einzelnen Papiers

dieser Dissertation wird im Folgenden präsentiert:

• Papier 1: The Impact of Information Risk and Market Stress on Herding

in Financial Markets1

Basierend auf numerischen Simualtionen des Modells von Park und

Sabourian (2011), leitet dieses Papier Aussagen über die Auswirkungen

von Informationsrisko und Unsicherheit im Markt auf die Intensität des

Herdenverhaltens her. Höheres Informationsrisiko erhöht sowohl die

Intensität von Kauf-Herden als auch von Verkauf-Herden. In Krisenzeiten

sagt das Modell interessanterweise vorher, dass Kauf-Herden stärker

zunehmen als Verkaufsherden.

1Dieses Papier entstand in Zusammenarbeit mit meinem Ko-Autor Simon Jurkatis.
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• Papier 2: Information Risk, Market Stress and Institutional Herding: Ev-

idence from the German Stock Market2

Dieses Papier testet und bestätigt die Hypothesen hinsichtlich des Ein-

�usses von Informationsrisiko und Marktunsicherheit auf Herdenverhalten,

die im Papier 1 hergeleitet wurden. Zur Durchführung der Tests wird das

Herdenmaÿ von Sias (2004) auf einen hochfrequenten, investorspezi�schen

Transaktionsdatensatz vom deutschen DAX 30 Index zwischen 2006 und

2009 angewendet. Wir verwenden das Sias Maÿ, da es besonders geeignet

ist, hochfrequente Transaktionsdaten zu analysieren. Darüber hinaus ist

es unter denen in der Literatur etablierten Herdenmaÿen jenes, welches die

Idee der im Papier 1 eingeführten durchschnittlichen Herden-Intensität am

besten widergibt.

• Papier 3: How to Measure Herding in Financial Markets3

In diesem Papier werden Erkenntnisse der Markt Mikrostruktur Theorie

mit Ideen von Lakonishok et al. (1992) kombiniert, um ein neues Herden-

maÿ zu entwickeln. Die theoretische Analyse unseres Maÿes und des LSV

Maÿes liefert empirisch überprüfbare Verteilungsannahmen, die den jeweili-

gen Messansätzen zu Grunde liegen. Wir zeigen darüber hinaus, dass unser

Maÿ eine Verallgemeinerung des LSV Maÿes darstellt. Weiterhin belegt eine

umfassende Simulationsstudie, dass unser Maÿ verlässlich zwischen Herden-

verhalten, Kontrarianismus und unabhängigem Handeln der Investoren un-

terscheiden kann. Das LSV Maÿ hingegen nimmt immer positive Werte an

unabhängig vom tatsächlichen Verhalten der Investoren.

• Papier 4: Herding and Contrarian Behavior on the German Stock Market

During the Recent Financial Crisis4

Die Auswertung von Transaktionsdaten mit dem in Papier 3 entwickel-

ten Herdenmaÿ zeigt, dass Investoren am deutschen Aktienmarkt in 2008

vornehmlich kontrarianistisch agierten oder unabhängig von einander Han-

2Dieses Papier entstand in Zusammenarbeit mit meinen Ko-Autoren Simon Jurkatis, Dieter
Nautz und Stephanie Kremer.

3Dieses Papier entstand in Zusammenarbeit mit meinem Ko-Autor Simon Jurkatis.
4Dieses Papier entstand in Zusammenarbeit mit meinen Ko-Autoren Simon Jurkatis und

Puriya Abbassi.
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delsentscheidungen getro�en haben. Nicht-institutionelle Anleger jedoch

formierten sich zumindest an einigen Tagen in dem Jahr zu einer Herde. Dies

ging einher mit einer dramatischen Destabilisierung des deutschen Aktien-

marktes. Die Annahmen, die dem in Papier 3 entwickelten Maÿ zu Grunde

liegen, werden von den Daten bestätigt, während die mit dem bekannten

Maÿ von Lakonishok et al. (1992) assoziierten Verteilungsannehmen sig-

ni�kant abgelehnt werden.

• Papier 5: Irrational Exuberance and Herding in Financial Markets - How

Investors Facing Ambiguity Drive Prices Away From Fundamentals

Wir untersuchen, ob und in welcher Form Informationsambiguität in

Verbindung mit Wellen von marktweitem Optimismus und Pessimismus

Investorenverhalten beein�usst. Die Analyse wird im Rahmen eines

Zwei-Zustände und Zwei-Investoren Finanzmarktmodels basierend auf

Avery und Zemsky (1998) durchgeführt. Ohne Ambiguität ist weder

Herdenverhalten noch Kontrarianismus möglich. Wir stellen fest, dass

wenn die Informationsambiguität hoch ist und sich die Investoren durch

die allgemeine Stimmung am Markt beein�ussen lassen, Überschschwang

(Panik) bei steigenden (fallenden) Kursen Herdenverhalten auslösen kann,

welches die Preisbewegung langfristig von dem wahren Wert der Aktie

entkoppelt.





Paper 1

The Impact of Information Risk and Market

Stress on Herding in Financial Markets1

1.1 Introduction

Herd behavior by investors can be a signi�cant threat to the functioning of �-

nancial markets. The distorting e�ects of herding range from informational inef-

�ciency to increased stock price volatility, or even bubbles and crashes.

This paper derives two theory-based predictions on how information risk

and market stress in�uence herding intensity. The predictions are tested with

high-frequency and investor-speci�c trading data from the German stock market

in Paper 2.

We focus on information risk, de�ned as the probability of trading with a

counterparty who holds private information about an asset (Easley et al. (1996)),

since it is easier to assess empirically than true herding. A better understanding

of how information risk impacts herding intensity may provide �nancial regulators

with a suitable proxy to ascertain the risk of destabilizing herds.

In light of the recent �nancial crisis, our second focus is on how herd

behavior is a�ected by market stress, that is, situations in which investors are

both pessimistic and uncertain about the stock's value. While herding certainly

has the potential to create such market stress, it is not obvious whether the

reverse relationship holds. If it does, it's existence threatens to create vicious

cycles of economic downturns and high volatility regimes.

1This paper was written in collaboration with my co-author Simon Jurkatis.
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Building on Glosten and Milgrom (1985) and Easley and O'Hara (1987), the

literature on information risk deals with estimating the information content of

trades, see e.g. Hasbrouck (1991), Easley et al. (1996) and Easley et al. (1997).

The e�ects of information risk on herding intensity, however, are

underresearched.2 While the probability of informed trading is a key parameter

in �nancial market herd models, compare e.g. Avery and Zemsky (1998) and

Park and Sabourian (2011), to date these models have not been exploited to

discover the impact of information risk on herding intensity. This is surprising,

since the e�ects of information risk on herding intensity are far from obvious.

On the one hand, an increase in information risk increases the average

information content of an observed trade. As a consequence, traders update

their beliefs more quickly and those investors that are susceptible to herding are

more easily swayed to follow the crowd. On the other hand, increased

information risk ampli�es the market maker's adverse selection problem,

compare Easley et al. (2002). Given the higher probability of trading at an

informational disadvantage, the market maker quotes larger bid-ask spreads

which tends to prevent potential herders from trading. Understanding which of

these counteracting e�ects dominates could facilitate the detection of herds.

The impact of market stress on herd behavior has not been analyzed by the

theoretical herding literature, either. Typically, herd models focus on the reverse

relationship. For example, Park and Sabourian (2011) demonstrate that price

paths tend to be more volatile in the presence of herd behavior. Agent based

models proposed by, for example, Lee (1998) and Eguíluz and Zimmermann

(2000) show that herd behavior contributes to fat tails and excess volatility in

asset returns. A notable exception is Avery and Zemsky (1998), who show that

herding is possible provided that multiple sources of uncertainty exist. Their

model does not imply, however, that more uncertainty actually leads to more

herding.

2An exception is Zhou and Lai (2009) who provide evidence that herding is positively re-
lated to information risk measured by probability of informed trading (PIN), see e.g. Easley
et al. (1997). In our empirical application in Paper 2 of this thesis, we choose to approximate
information risk di�erently since PIN and the Sias herd measure are correlated by construction.
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The prevalent unidirectional focus of the theoretical literature is

particularly puzzling in light of the mixed evidence regarding the impact of

market stress on herding intensity. Chiang and Zheng (2010) and Christie and

Huang (1995) assume that herding increases during times of market stress,

whereas Kremer and Nautz (2013a;b) �nd that herding in the German stock

market slightly decreased during the recent �nancial crisis, which is similar to

the results of Hwang and Salmon (2004) for herding intensity during the Asian

and the Russian crisis in the 1990s.

We base our theoretical analysis on the �nancial market herd model of Park and

Sabourian (2011), which can be viewed as a generalization of the seminal work

of Avery and Zemsky (1998).3 One important extension is the broader set of

di�erent information structures that allows a di�erentiated discussion of how

information externalities may contribute to herd behavior under various market

conditions including scenarios of high and low market stress. Relating investor

herding to the shape of the information structure instead of to

multi-dimensional uncertainty, Park and Sabourian (2011) identify more

explicitly those situations in which the potential for herding is high.

Consequently, the Park and Sabourian (2011) framework is more appropriate for

�nding and explaining high degrees of herding. In fact, experimental evidence

suggests that the Avery and Zemsky (1998) framework discovers little or no herd

behavior, see Cipriani and Guarino (2009).4 In contrast, experiments based on

the Park and Sabourian (2011) model �nd that herding in �nancial markets can

be substantial, see Park and Sgroi (2012).

3Similar to the bulk of the theoretical literature, both models de�ne herd behavior as a switch
in an agent's opinion toward that of the crowd, see Brunnermeier (2001). As herders ignore their
private information, herd behavior is informationally ine�cient and thus has the potential to
distort prices and destabilize markets.

4Avery and Zemsky (1998) includes di�erent model setups. The most basic setup extends the
traditional herd model of Bikhchandani et al. (1992) by a price mechanism that prevents herd
behavior. Prominent experimental tests of the Avery and Zemsky (1998) framework, Drehmann
et al. (2005) and Cipriani and Guarino (2005), focus on this setup and con�rm the theoretical
prediction of no herding. Cipriani and Guarino (2009), on the other hand, focus on one of the
more complex setups in which herd behavior is predicted, but again �nd only little evidence of
it.
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In Park and Sabourian (2011), herding is triggered by information

externalities that an investment decision by one agent imposes on subsequent

agents' expectations about the asset value, see Bikhchandani et al. (1992) and

Banerjee (1992).5 Therefore, this model is a natural candidate for investigating

the impact of information risk on herding intensity.6

The history dependence of trading decisions in �nancial market herd models

drastically impedes the derivation of analytical results on herding intensity. This

may explain why these models have not yet been exploited to make empirically

testable predictions on the impact of information risk and market stress.

Moreover, standard empirical herding measures, including the ones proposed by

Lakonishok et al. (1992) and Sias (2004), examine herding intensity on an

aggregate level. Consequently, empirical testability of our theory-guided

hypotheses requires that we analyze herding intensity aggregated over investor

groups, time periods, and heterogeneous stocks, compare Paper 2 of this thesis.

This further complicates the derivation of analytical results.

We circumvent these problems by simulating the Park and Sabourian (2011)

model for more than 13,000 di�erent parameterizations that broadly cover the

theoretical parameter space, generating about 2.6 billion trades for analysis. We

obtain two testable hypotheses on the model-based measure of aggregate herding

intensity. First, an increase in information risk should result in a symmetric

increase of buy and sell herding intensity. Second, high market stress should be

found to have an asymmetric e�ect on herding intensity: while buy herding is

predicted to surge during crisis periods, the simulation results suggest that sell

herding intensity increases only moderately.

5Alternative drivers for herd behavior include reputational concerns as well as investigative
herding. Reputational herd models modify the agents' objective functions such that their de-
cisions are a�ected by positive externalities from a good reputation, see e.g. Scharfstein and
Stein (1990), Graham (1999) and Dasgupta et al. (2011). Investigative herd models examine
conditions under which investors may choose to base their decisions on the same information
resulting in correlated trading behavior, see e.g. Froot et al. (1992) and Hirshleifer et al. (1994).
For a survey of the early herding literature see Devenow and Welch (1996). For an in-depth
discussion of how the herding literature ties into the social learning literature see Vives (1996).

6Other �nancial market herd models such as Lee (1998), Chari and Kehoe (2004), and Cipri-
ani and Guarino (2008), investigate how investor herding is related to transaction costs, endoge-
nous timing of trading decisions, and informational spillovers between di�erent assets, respec-
tively.
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The remainder of this paper is structured as follows. In Section 1.2 we review the

model of Park and Sabourian (2011). In Section 1.3 we de�ne information risk as

well as market stress and provide an initial qualitative assessment of their e�ect

on herding intensity. Section 1.4 formalizes the concept of aggregate herding

intensity. It subsequently introduces the simulation setup and derives testable

hypotheses regarding the role of information risk and market stress for aggregate

herding intensity. Section 1.5 summarizes the results.

1.2 A Model of Investor Herding

This section reviews the herding model of Park and Sabourian (2011) and high-

lights conceptual additions and modi�cations that are relevant to our application.

Moreover, it formalizes the notion of herding intensity.

1.2.1 The Model Setup

Park and Sabourian (2011) consider a sequential trading model à la Glosten and

Milgrom (1985), consisting of a single asset, both informed and noise traders,

and a market maker. The model assumes rational expectations and common

knowledge of its structure.

The Asset: There is a single risky asset with unknown fundamental value V ∈
{V1, V2, V3}, where V1 < V2 < V3. Without loss of generality, let V1 = 0, V2 = 1

and V3 = 2. The prior distribution 0 < P (V = Vj) < 1 for j = 1, 2, 3 determines

the degree of public uncertainty Var(V ) about the asset's true value before trading

has started. The asset is traded over T consecutive points in time. In Section 1.4,

we choose T = 100 for the model simulation.

The Traders: Traders arrive in the market one at a time in a random exogenous

order and decide to buy, sell or not to trade one unit of the asset at the quoted bid

and ask prices. Traders are either informed traders or noise traders. The fraction

of informed traders is denoted by µ. Informed traders base their decision to buy,

sell or not to trade on their expectations regarding the asset's true value.
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Publicly available information consists of the history of trades

Ht := {(a1, p1), ..., (at−1, pt−1)}, where ai is the action of a trader in period i

and pi the price at which the trader's action is executed, and the risky asset's

prior distribution P (V ).

In addition to public information, informed traders base their asset valuation

on a private signal S ∈ {S1, S2, S3} regarding the true value of the asset. They

buy (sell) one unit of the asset if their expected value of the asset E[V | S,Ht]

is strictly greater (smaller) than the ask (bid) price quoted by the market maker.

Otherwise, informed traders choose not to trade. In the empirical herding litera-

ture, institutional investors are viewed as a typical example for informed traders.

In contrast to informed traders, noise traders trade randomly, that is, they decide

to buy, sell or not to trade with equal probability of 1/3. pt denotes the price at

which the asset is traded in period t.

The Private Signal: The distribution of the private signals S1, S2, S3 is con-

ditional on the true value of the asset. Denote the conditional signal matrix by

P (S = Si | V = Vj) = (pij)i,j=1,2,3. For each column j, the matrix is leftstochas-

tic, i.e.
∑3

i=1 p
ij = 1. For each row i,

∑3
j=1 p

ij is the likelihood that an informed

trader receives the signal Si. An informed trader's behavior is critically dependent

on the shape of her private signal. Speci�cally, Park and Sabourian (2011) de�ne

a signal Si to be

• monotonically decreasing i� pi1 > pi2 > pi3,

• monotonically increasing i� pi1 < pi2 < pi3,

• U-shaped i� pi1 > pi2 and pi2 < pi3.

Traders with monotone signals are con�dent about the asset's true value and

rarely change their trading decision. That is, an optimistic trader with an increas-

ing signal will only buy or hold, whereas a pessimistic trader with a decreasing

signal will only sell or hold.

In contrast, traders with U-shaped signals face a high degree of uncertainty

and may decide to buy, sell or hold. U-shaped traders are more easily swayed

to change their initial trading decision as they observe trade histories Ht with
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a strong accumulation of traders on one side of the market. In fact, Park and

Sabourian (2011) show that a U-shaped signal is a necessary condition for herding.

Park and Sabourian (2011) also introduce hill-shaped signals which are ne-

cessary for contrarian behavior. Since contrarian behavior is self-defeating, it's

destabilizing e�ects are limited and thus of only secondary importance for �nan-

cial markets. Consequently, we exclude hill-shaped signals from our analysis.

In the following, we assume that S1 is monotone decreasing, S2 is U-shaped

and S3 is monotone increasing. The conditional private signal distribution P (S |
V ) determines the degree of information asymmetry between market maker and

informed traders. The less noisy the signal, the higher the informational advantage

of the informed traders.

The Market Maker: Trading takes place in interaction with a market maker

who quotes a bid and an ask price. The market maker only has access to public in-

formation and is subject to perfect competition such that he makes zero-expected

pro�t. Accordingly, he sets the ask (bid) price equal to his expected value of

the asset given a buy (sell) order and the public information. Formally, he sets

askt = E[V |Ht ∪ {at = buy}] and bidt = E[V |Ht ∪ {at = sell}].

1.2.2 Herding Intensity

Park and Sabourian (2011) describe herding as a �history-induced switch of opin-

ion [of a certain informed trader] in the direction of the crowd.� Thus, only

informed traders can herd. More precisely, a herding trade is de�ned as follows:

De�nition 1.1. Herding

Let bt (st) be the number of buys (sells) observed until period t. An informed

trader with signal S buy herds in t at history Ht if the following three conditions

hold:

(BH1) E[V |S] < E[V ], i.e. an informed trader with signal S does not buy initially

and is more pessimistic regarding the asset's true value than is the market

maker.

(BH2) E[V |S,Ht] > askt, i.e. an informed trader with signal S buys in t.
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(BH3) bt > st, i.e. the history of trades contains more buys than sells: the crowd

buys.

Analogously, an informed trader with signal S sell herds in period t at history Ht

if and only if (SH1) E[V |S] > E[V ], (SH2) E[V |S,Ht] < bidt, and (SH3) bt < st

hold simultaneously.

Note that (BH1) and (SH1) imply that either buy or sell herding is possible for

a given model parameterization. Our de�nition of herding is less restrictive than

the one used in Park and Sabourian (2011), who, for example, de�ne buy herding

as an extreme switch from selling initially to buying. In our de�nition, buy

herding also includes switches from holding to buying, provided that the trader

leans toward selling initially (see (BH1) and (BH2) in De�nition 1.1).7 As a

consequence, herd traders always act informationally ine�ciently as their trading

decisions contradict their private information. From an empirical perspective,

including switches from holding to selling or buying is important as these actions

may drive ampli�ed stock price movements.

(BH3) and (SH3) also di�er slightly from Park and Sabourian (2011) in

which, for example, buy herding requires E[V |Ht] > E[V ]. This condition is

based on the idea that prices rise when there are more buys than sells. However,

this only holds if the prior distribution of the risky asset P (V ) is symmetric

around the middle state V2, i.e. P (V1) = P (V3).8 In fact, for asymmetric P (V ),

it is possible that even though a history Ht contains more buys than sells, the

price of the asset goes down (i.e., E[V |Ht] < E[V ]). From an empirical

perspective, asymmetric prior distributions P (V ) should not be ruled out.

Therefore, we modify the herding de�nition to ensure that a herder always

follows the crowd.

The above de�nition enables us to decide whether or not a particular trade by a

single investor at a speci�c point in time is a herd trade. In contrast, empirical

7According to Park and Sabourian (2011), such an extension of the herding de�nition is the-
oretically legitimate. They focus on the stricter version to be consistent with earlier theoretical
work on herding.

8Note that Park and Sabourian (2011) assume symmetry of the risky asset's prior distribution
throughout their paper (see Park and Sabourian (2011), p.980).
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herding measures are based on a number of trades by di�erent investors observed

over a certain time interval, see, e.g., Lakonishok et al. (1992) and Sias (2004).

Since we aim to derive theory-based predictions on herd behavior that can be

tested empirically, we need to aggregate herding in the model over time as well

as over investors. We aggregate over time by considering all relevant trades from

t = 1, . . . , T . We aggregate over investors by calculating herding intensity for

the whole group of informed traders. Therefore, we de�ne herding intensity (HI)

as the share of herding trades in the total number of informed trades.

De�nition 1.2. Herding Intensity

Let binT and sinT be the number of buys and sells of informed traders observed until

period T , i.e. during the entire time interval under consideration. Let bhT and shT

denote the corresponding number of buy and sell herding trades. Then,

Buy herding intensity (BHI) =:
bhT

binT + sinT

Sell herding intensity (SHI) =:
shT

binT + sinT

Standard empirical herding measures including those of Lakonishok et al. (1992)

and Sias (2004) are calculated using only buys and sells, see Section 2.2 in Paper 2

of this thesis. To be consistent with empirical herding measures, we exclude holds

when calculating the number of informed trades in the de�nition of theoretical

herding intensity.

1.3 Information Risk and Market Stress in the Herd

Model

This section shows how the concepts of information risk and market stress are

translated into the Park and Sabourian (2011) model. It also provides a qualita-

tive assessment how each concept impacts herding intensity.
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1.3.1 Information Risk

In Easley et al. (1996), information risk is the probability that a trade is executed

by an informed trader. Hence, information risk coincides with the parameter µ,

the fraction of informed traders, in the Park and Sabourian (2011) model.

From a theoretical perspective, the e�ect of changes in µ on herding intensity

is ambiguous. On the one hand, herding may increase with information risk be-

cause a higher µ implies that there are more potential herders (U-shaped traders)

in the market. Due to the self-enforcing nature of herd behavior a higher µ con-

tributes to longer-lasting herds and, hence, stronger herding intensity. Moreover,

a higher fraction of informed traders implies that the average information con-

tent of a single trade increases. As a consequence, informed traders update their

beliefs more quickly and those traders that are susceptible to herd behavior are

more easily swayed to change from buying to selling and vice versa.

On the other hand, a rise in µ may also reduce herding intensity. Since the

average information content per trade increases in µ, herds tend to break up more

quickly as traders stop herding after observing fewer trades on the opposite side of

the market. Higher information risk further ampli�es the market maker's adverse

selection problem, compare Easley et al. (2002). Given the higher probability of

trading at an informational disadvantage, the market maker quotes larger bid-ask

spreads in order to avoid losses. The larger spread, in turn, requires potential

herders to observe much stronger accumulation of traders on one side of the

market before they alter their trading decision.

1.3.2 Market Stress

Times of high market stress and crisis periods are typically understood as situa-

tions where investors are confronted with a deteriorating economic outlook and

increased uncertainty about stock values, compare e.g. Schwert (2011).

A negative economic outlook in the Park and Sabourian (2011) model is

captured by low expectations regarding the asset's true value E[V ]. A low E[V ]

not only describes a deteriorated outlook by the public but also a high degree of

pessimism among informed traders. First, lower public expectations E[V ] result

in lower private expectations E[V |S] for all informed traders. Second, there tend
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to be more decreasing signals (pessimists) among informed traders as well as fewer

increasing signals (optimists) for low E[V ] than for high E[V ].

Uncertainty in the Park and Sabourian (2011) can be sorted into two

types: public uncertainty and informed trader uncertainty. Public uncertainty is

given by the variance of the risky asset Var(V ). Informed trader uncertainty

(IU) is measured by the probabilities that informed traders receive a U-shaped

signal conditional on Vj , j = 1, 2, 3: IU :=
∑3

j=1 p
2j . The higher IU, the more

traders there are in the market with U-shaped signals and, hence, the higher the

uncertainty among informed traders.9 In light of the recent �nancial crisis, we

are particularly interested in comparing herding intensity in times of high

market stress with the herding intensity predicted for more optimistic periods.

The overall e�ect of market stress on herding intensity is not obvious and

crucially depends on model parameterization. Particularly, buy and sell herding

intensity may react di�erently to changes in market stress. Consider, for

example, an increase in market stress due to a decrease in E[V ]. More

speci�cally, assume a shift of probability mass from V3 to lower values.

First, if, for a given model parameterization, buy herding is possible (and

hence sell herding is impossible), a marginal reduction in P (V3) would result in

a decrease in buy herding intensity, whereas sell herding intensity would remain

constant at 0. Similarly, if sell herding is possible for a given model parameteri-

zation (and buy herding impossible), a marginal reduction in P (V3) would result

in an increase in sell herding intensity while buy herding intensity would remain

una�ected. This converse e�ect on buy and sell herding intensity is due to the

fact that a reduction in P (V3) diminishes the probability of buy-dominated trade

histories and increases the probability of sell-dominated histories. Hence, poten-

tial sell (buy) herders are more (less) likely to be confronted with a trade history

that sways them into herding.

9Note that an increase in Var(V ) may reduce the number of U-shaped traders in the market.
This e�ect is not necessarily o�set by an increase in IU. One could circumvent this issue by
additionally imposing that the total probability that an informed trader receives a U-shaped
signal P (S2) =

∑3
j=1 p

2jP (V = Vj) must also be high in times of market stress. Since this does
not a�ect the results of our simulation, we choose not to complicate the model by adding this
characteristic to the uncertainty de�nition.
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Second, if the U-shaped signal is positively biased, i.e., P (S2 | V1) < P (S2 |
V3), a reduction of P (V3) diminishes the number of U-shaped traders in the market

and, hence, tends to decrease buy as well as sell herding intensity. Finally, for a

whole range of model parameterizations, a lower E[V ] may even contribute to an

increase in buy herding intensity and a decrease in sell herding intensity. Since

a lower E[V ] implies that more informed traders are initially inclined to sell, the

number of potential sell herders declines. Correspondingly, buy herding becomes

more likely.

These complex and partly counteracting e�ects, in conjunction with the

history-dependent updating of beliefs, lead to a low analytical tractability of

herding intensity in the Park and Sabourian (2011) model, see the Appendix of

this paper. This particularly applies to the empirically relevant case where

herding intensity is considered as an average over a set of stocks with

heterogeneous characteristics.

In the following, therefore, empirically testable predictions about the e�ects of

information risk and market stress on average herding intensity are derived by

numerically simulating the model over a broad set of model parameterizations.

1.4 Simulation of the Herd Model for a Heterogeneous

Stock Index

1.4.1 Average Herding Intensity

Empirical studies on herd behavior typically derive results for herding intensity

as an average for a large set of stocks and over certain time intervals. The stocks

under consideration are likely to di�er in their characteristics implying that each

stock is described by a distinct parameterization for the fraction of informed

traders, the prior distribution of the asset, and the distribution of the private sig-

nals. In accordance with the empirical literature, we are particularly interested

in herding intensity de�ned as an average over a broad range of model parame-

terizations that re�ects the heterogeneity in stock market indices. Speci�cally, we

de�ne average herding intensity as follows:
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De�nition 1.3. Average Herding Intensity

For a given set of model parameterizations I and length T of the trading period,

average buy herding intensity is de�ned as

BHI =

∑
i∈I wiBHIi∑

i∈I wi
,

where BHIi stands for the buy herding intensity obtained for model parameter-

ization i and the weights wi = binT,i + sinT,i correspond to the number of informed

trades observed for that parameterization.

The de�nition for average sell herding intensity SHI follows analogously.

Weights wi ensure that average herding intensity is not biased upward by simu-

lation outcomes with a low number of informed trades.10

1.4.2 The Simulation Setup

We choose µ, the fraction of informed traders, from

M = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Accordingly, we simulate the model for |M| = 9 di�erent levels of information

risk. In the German stock market, the share of institutional (i.e. informed)

trading for the sample period ranges from 0.2 to 0.7, compare Kremer and

Nautz (2013a).

The prior distribution of the risky asset P (V ) is chosen from

P = {P (V ) ∈ {0.1, 0.2, . . . , 0.9}3 :

3∑
i=1

P (Vi) = 1}.

Since we impose that V takes each value V1 = 0, V2 = 1, V3 = 2 with positive

probability, P (Vi) cannot be 0.9, which gives us |P| = 36 di�erent prior

10Consider, for example, a situation where we observe a herding intensity of 0.5 as 2 out of 4
informed trades are herd trades. Now assume that for another simulation the herding intensity
is 0, as 0 out of 16 informed trades are herd trades. In this case, the unweighted average of
simulated herding intensities would be 0.25, which overestimates herding intensity as only 2 out
of 20 trades were herd trades across the whole sample.
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distributions.

The conditional signal distribution P (S|V ) = (pij)i,j=1,2,3 has to be chosen from

the space of leftstochastic 3-by-3 matrices. As before, we discretize this space by

imposing a grid ranging from 0.1 to 0.9. All elements of P (S|V ) are positive,

that is, all signals are noisy in the sense that an informed trader cannot with

certainty rule out any of the three possible states for V . Following Park and

Sabourian (2011), there are always optimists (p31 < p32 < p33), pessimists

(p11 > p12 > p13), and U-shaped traders (p21 > p22, p22 < p23) in the market, see

Section 1.2. Finally, informed traders tend to be well-informed, that is, if the

bad state V = V1 comes true, most of the informed traders are pessimistic and

only few are optimistic (p11 > p21 > p31) and vice versa for V = V3

(p13 < p23 < p33). This implies that the set of simulated signal structures (C)
can be summarized as follows:

C = {P (S|V ) = (pij)i,j=1,2,3 leftstochastic : pij ∈ {0.1, 0.2, . . . , 0.9},

p11 > p21 > p31, p13 < p23 < p33,

p11 > p12 > p13, p31 < p32 < p33, p21 > p22, p22 < p23},

which leads to |C| = 41 di�erent signal structures used in the simulation.

Considering all combinations, one obtains the simulation set Ω := M× P × C,
where |Ω| = 9 · 36 · 41 = 13, 284. Each element ω = (µ, P (V ), P (S|V )) ∈ Ω

describes the characteristics of a speci�c stock.11 Park and Sabourian (2011)

derive upper bounds for µ that have to hold in order for herding to be possible.

One can check that these upper bounds are never binding for ω ∈ Ω, i.e. in each

of the following simulations, either sell or buy herding is possible (see Park and

Sabourian (2011), pp. 991-992, 1011-1012). Each stock is traded over T = 100

points of time. For each stock, the simulation is repeated 2, 000 times, which

produces more than 2.6 billion simulated trades for analysis.

11In practice, stock characteristics ω may not be constant over time. For example, the
Deutsche Bank share before the �nancial crisis is likely to have di�erent characteristics than
the Deutsche Bank share during the crisis.
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(a) Sell Herding (b) Buy Herding

Figure 1.1: Information risk and herding intensity

Notes: SHI and BHI are plotted against information risk. On the ordinate we plot average
herding intensity. Information risk µ is plotted along the horizontal. Average herding intensity
is calculated as the weighted cross-sectional average for the simulated SHI and BHI of stocks
contained in {µ} × P × C. The weights correspond to the observed number of informed trades.
The boxplots show the variation across 2,000 simulations of average herding intensity for a �xed
level of information risk µ.

1.4.3 Simulation Results: Information Risk and Average Herding

Intensity

To discover the impact of information risk on average herding intensity, we �x

µ ∈ M and calculate average herding intensity as the cross-sectional

average over all parameterizations in {µ} × P × C, where

|{µ} × P × C| = 1 · 36 · 41 = 1, 476.

Figure 1.1 shows the comparative statics for average sell and buy herding

intensity with respect to changes in information risk µ. The simulation results

clearly indicate that SHI and BHI symmetrically increase with information

risk. The boxplots demonstrate that the simulation results are very stable.

Indeed, the variation of average herding intensity for a given level of information

risk is relatively low, whereas its increase is rather steep as µ goes up. This

particularly applies to the empirically relevant range of µ ∈ [0.2, 0.7], compare

Kremer and Nautz (2013a) and Paper 2 of this thesis. Only as µ approaches 1,

do SHI and BHI level out and exhibit higher variations.

The model simulation shows that the increasing e�ects of a rise in information
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SHI BHI

Low market stress 0.0351
(0.0029)

0.0306
(0.0020)

High market stress 0.0382
(0.0023)

0.0635
(0.0038)

Table 1.1: The e�ects of market stress on average herding intensity

Notes: This table reports the simulated average sell (SHI) and buy herding intensity (BHI) for
stocks under high market stress and stocks under low market stress. Standard deviations are in
parentheses. Welch's t-test reveals that SHI as well as BHI increase signi�cantly during times
of high market stress for usual signi�cance levels. Out of the 13,284 simulated stocks, 1,368
classify as high market stress and 1,008 as low market stress. Average herding intensities are
calculated as the weighted cross-sectional averages of the simulated SHI and BHI for stocks in
each respective class. The �gures in the table are the weighted average and the weighted standard
deviation of 2,000 iid simulated outcomes of SHI and BHI under high and low market stress,
respectively. For all calculations, the weights correspond to the observed number of informed
trades.

risk on herding intensity dominate the decreasing e�ects. Only as the share of

informed traders surpasses 80%, does the adverse selection problem of the

market maker begin to impair market liquidity severely enough that trading

among the potential herders breaks down. The ambiguity of their signal

prevents them from paying the high premiums now demanded by the market

maker via large bid-ask spreads. We summarize the simulation-based insight

from Figure 1.1 as follows:

Hypothesis 1.1. Information Risk and Herding Intensity

Average sell and buy herding intensity increase in information risk.

1.4.4 Simulation Results: Market Stress and Average Herding

Intensity

For the analysis of the e�ects of market stress we de�ne two distinct classes of

stocks and compare the average herding intensity of each. The �rst class

comprises of all stocks that have high market stress characteristics; the second

class includes all stocks that show low market stress characteristics. In line with

the de�nition of market stress developed in Section 1.3.2, a simulated stock

ω ∈ Ω is subject to high market stress if it exhibits both, above-average

uncertainty and below average E[V ]. Correspondingly, low market stress stocks
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SHI BHI

Low uncertainty 0.0373
(0.0018)

0.0340
(0.0016)

High uncertainty 0.0557
(0.0022)

0.0555
(0.0022)

Table 1.2: The e�ects of uncertainty on average herding intensity

Notes: This table reports the simulated SHI and BHI for stocks with high and low uncertainty
respectively. Standard deviations are in parentheses. Welch's t-test reveals that SHI as well
as BHI increase signi�cantly during times of high uncertainty for usual signi�cance levels. Out
of the 13,284 simulated stocks, 3,078 exhibit high and, 2,268 low, uncertainty. Average herding
intensities are calculated as the weighted cross-sectional averages of the simulated SHI and
BHI for stocks in each respective class. The �gures in the table are the weighted average and
the weighted standard deviation of 2,000 iid simulated outcomes of SHI and BHI under high
and low uncertainty, respectively. For all calculations, the weights correspond to the observed
number of informed trades.

are de�ned by below-average uncertainty and above-average E[V ]. The averages

are the respective medians of the simulated model parameterizations.12 We

compare the cross-sectional average SHI and BHI over all high market stress

stocks with the SHI and BHI obtained for all low market stress stocks.

The simulation results for the impact of market stress on average sell and buy

herding intensity are shown in Table 1.1. As expected, both sell and buy

herding are more pronounced during times of high market stress. Interestingly,

however, the rise in buy herding intensity is greater than that of sell herding

intensity. This puzzling asymmetry can be explained by disentangling the e�ects

of an increase in uncertainty and pessimism.

Table 1.2 shows that SHI and BHI symmetrically increase with uncertainty.

High public uncertainty is associated with lower prior probabilities for the

middle state of the risky asset. Since informed traders receiving U-shaped

signals discount the probability for the middle state anyway, high public

uncertainty ampli�es their tendency to form strong beliefs that only the extreme

states of the risky asset can be true. As they rule out one of the extreme states

12Speci�cally, we obtain the median degree of pessimism (public uncertainty) by calculating
E[V ] (Var(V )) for each of the 36 simulated prior distributions P (V ) ∈ P and then determine
their median. Correspondingly, we calculate the median informed uncertainty over the set of
simulated signal structures C.
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SHI BHI

High E[V ] 0.0502
(0.0010)

0.0357
(0.0010)

Low E[V ] 0.0370
(0.0016)

0.0504
(0.0016)

Table 1.3: The e�ects of economic outlook on average herding intensity

Notes: This table reports the simulated SHI and BHI for stocks where traders show high and
low degrees of pessimism respectively. Standard deviations are in parentheses. Welch's t-test
reveals a highly asymmetric e�ect for sell and buy herding. Indeed, SHI decreases as pessimism
increases while BHI increases with the degree of pessimism. The results are signi�cant at all
usual signi�cance levels. Out of the 13,284 simulated stocks, 5,904 stocks exhibit high and low
degrees of pessimism. Average herding intensities are calculated as the weighted cross-sectional
averages of the simulated SHI and BHI for stocks in each respective class. The �gures in
the table are the weighted average and the weighted standard deviation of 2,000 iid simulated
outcomes of SHI and BHI under high and low uncertainty, respectively. For all calculations,
the weights correspond to the observed number of informed trades.

based on the observed trading history, they quickly alter their trading decisions

toward that of the crowd. This e�ect is intensi�ed if private uncertainty is also

high since such leads to a larger share of U-shaped traders. Since this argument

applies equally to sell and buy herding, the increasing e�ect of uncertainty on

herding intensity is symmetric.

In contrast, Table 1.3 reveals that a reduction in E[V ] a�ects SHI and BHI in

opposite ways. While increased pessimism contributes to buy herding, it

signi�cantly reduces sell herding. This result is driven by the fact that during

times of grim economic outlook, most informed traders sell anyway. Herd

behavior, however, requires a trader to alter her initial trading decision. For sell

herding to be possible, for instance, the trader has to be initially inclined to buy

the asset. Only informed traders receiving U-shaped signals with strong biases

toward the high state of the risky asset (i.e., p21 << p23) may still be inclined to

buy initially for low E[V ]. As E[V ] drops, so does the number of simulated

signal structures in C that exhibit a su�ciently strong positive bias of the

U-shaped trader for sell herding to be possible. By the same line of reasoning,

BHI increases with low E[V ].

We emphasize that the results in Table 1.3 do not contradict strong

accumulations of traders on the sell side during times of deteriorated economic
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outlook. The Park and Sabourian (2011) model predicts that such a consensus

in trade behavior is not driven by a switch in traders' opinion toward that of the

crowd but results from a high share of equally pessimistic traders all acting on

similar information. Such correlation of trade behavior is called spurious or

unintentional herding in the literature, compare e.g. Kremer and Nautz (2013a)

and Hirshleifer and Hong Teoh (2003).

The simulation shows that the positive e�ect of increased uncertainty on sell

herding dominates the negative e�ect of increased pessimism. This leads to an

overall slight increase in SHI during times of high market stress. In contrast,

the complementary e�ect of uncertainty and pessimism on buy herding results

in a surge of BHI during times of high market stress. We consolidate these

simulation results in the following

Hypothesis 1.2. Market Stress and Herding Intensity

In times of high market stress, the increase in buy herding is more pronounced

than that of sell herding.

1.5 Conclusion

Due to data limitations and a lack of testable, model-based predictions on herding-

intensity, the theoretical and the empirical herding literature are only loosely

connected. This paper takes a �rst stab at tightening this connection by deriving

theory-based predictions regarding the impact of information risk and market

stress on aggregate herding intensity. This is done by numerically simulating the

�nancial market herd model of Park and Sabourian (2011).

The model predicts that both buy and sell herding increase symmetrically

with information risk. The e�ects of market stress on herding intensity are more

complicated. We show that buy and sell herding � while both increasing with

market stress � they do so in an asymmetric fashion. Interestingly, the

model-implied hypothesis is that the increase of buy herding is more pronounced

in times of high market stress than the one of sell herding. This is because the

model-based measure of aggregate herding intensity only detects intentional
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herding as opposed to unintentional one. Traders may very well accumulate on

the sell side of a market during downturns. Such coordination of traders,

however, tends to be unintentional since they all follow their own private

information that advises them to sell and, hence, is not re�ected in the

aggregate herding intensity. Conversely, the shortage of good news during crisis

periods causes investors to be particularly susceptible to signals that the market

rebounds. A temporary increase in stock prices due to trader accumulation on

the buy-side of the market is such a signal. Consequently, investors are prone to

intentionally follow others into buying stocks.

The next step in further tightening the connection between the theoretical and

empirical herding literature is to test our model-implied predictions empirically.

This is done in Paper 2 of this thesis by employing the empirical herd measure

of Sias (2004), which is related in spirit to our notion of aggregate herding

intensity. We test the hypotheses from this paper by applying the Sias measure

to transaction data from the German stock market.
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1.6 Appendix

Financial market herd models including the model of Park and Sabourian (2011)

are not designed to provide closed-form solutions for expected herding intensity.

In this Appendix, we use two examples to demonstrate why numerical simulations

are required for obtaining model-based results regarding the impact of information

risk and market stress on herding intensity.

1.6.A The History Dependence of Herding Intensity

Even for a given parameterization model complexity prevents deriving a closed-

form analytical formula for herding intensity. The herding de�nition depends

on the market maker's quotes, askt and bidt, as well as the informed traders'

expectations regarding the asset's true value E[V | S,Ht]. These quantities, in

turn, depend on the whole history of trades until t. In fact, not only the number

of observed buys, sells and holds but also their order a�ects expectations and

quotes at time t.

As a consequence, even for a given model parameterization, each history

path would need to be analyzed separately to derive results on expected herding

intensity.13

Let us illustrate this issue with a concrete numerical example. Assume the

conditional signal matrix P (S | V ) to be

P (S | V ) V1 = 0 V2 = 1 V3 = 2

S1 0.6 0.5 0.1

S2 0.3 0.1 0.4

S3 0.1 0.4 0.5

The distribution of the risky asset is P (V ) = [0.3 0.4 0.3]. Multiplying

13Given the sheer number of possible trading histories alone, an analytical derivation of SHI
and BHI is not feasible even for relatively small T . For any length T of the history HT , there
are 3T di�erent history paths.
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(a) H100
1 = {25 buys, 50 sells, 25 buys}

(b) H100
2 = {25 sells, 50 buys, 25 sells}

Figure 1.2: Trading decisions of U-shaped trader for µ = 0.5

P (S | V ) · P (V ) yields the unconditional probabilities P (S) = [0.41 0.25 0.34]

that a trader receives a signal S given that she is informed. Finally, the share of

informed traders is set to be µ = 0.5. Only informed traders receiving the

U-shaped signal S2 can herd. Given that E[V ] = 1 < 1.12 = E[V | S2], the

U-shaped trader can engage in sell herding only if she is inclined to buy initially.

We discuss two distinct trading histories consisting of 100 trades and the

exact same number of buys and sells. The only di�erence is the order in which

the trades are observed. Let H100
1 = {25 buys, 50 sells, 25 buys} and H100

2 =

{25 sells, 50 buys, 25 sells}. Figure 1.2 shows how a U-shaped trader would

decide to trade at every time t = 1, ..., 100 for the respective trading histories.

Note that the number of trades for which S2 sell herds di�ers for the two

histories. Under H100
1 , S2 potentially sell herds between periods 51 and 85, i.e.
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35 times.14 Under H100
2 , S2 potentially sell herds only 30 times. The share of U-

shaped traders among the population of all traders is µP (S2) = 0.5 ·0.25 = 0.125.

Consequently, we expect to observe a total number of shT,1 = 0.125 · 35 = 4.375

herding sells under H100
1 . Correspondingly, under H100

2 , we only have shT,2 =

0.125 · 30 = 3.75 expected herd sells.

Moreover, since µ = 0.5 and T = 100, we expect that both histories contain

50 informed trades. For an arbitrary history, calculation of the expected number

of informed trades is much less straight forward since there is the possibility that

informed traders hold and we hence have fewer informed trades than 50. Since

H100
1 and H100

2 do not contain any holds, however, this is not an issue here.

According to De�nition 1.2, the sell herding intensity is SHI = shT /(b
in
T +

sinT ). Plugging in the expected values for numerator and denominator that we

just calculated, we obtain an expected sell herding intensity SHI1 = 4.375/50 =

0.0875 under H100
1 and SHI2 = 3.75/50 = 0.075 under H100

2 .15

Finally note that the probability of observing these histories P (H100
i ) is also

di�erent for i = 1, 2, since the probability of observing a certain trade (i.e., buy or

sell) in t depends on the trading decisions of the informed traders at t. This means

that in order to calculate an overall expected herding intensity for the model

parameterization above, we would need to analyze SHI and P (H100) for all 3100

possible history paths separately, a task well beyond our current computational

capacity. Even if we were able to calculate that number, we still would not have a

formula that tells us how SHI would react to changes in certain model parameters

such as µ. Indeed, one can illustrate the many counteracting e�ects of a change

in µ that result in quite di�erent outcomes for speci�c trading histories and thus

also prevent the derivation of analytical comparative static results.

14Note that S2 does in fact start herding only in period 51, although she would already have
decided to sell in period 44. This is because the complete history does not contain more sells
than buys until period 51, which we demand in order to ensure that S2 actually follows the
majority in the market.

15Note that since numerator and denominator are clearly correlated, we have that E[X
Y

] 6=
E[X]
E[Y ]

. A Taylor approximation of order 1, however, yields that the expectation of a ratio can be
consistently estimated by the ratio of the expectations. As a consequence, all equations should
be understood as approximations. An exact calculation of expected herding intensity would be
even more complicated.
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(a) H100
1 = {25 buys, 50 sells, 25 buys}

(b) H100
2 = {25 sells, 50 buys, 25 sells}

Figure 1.3: Trading decisions of U-shaped trader for µ = 0.6

1.6.B The Impact of a Change in µ on Herding Intensity: An

Analytical Approach

Let us now assume that µ = 0.6 and see how SHI changes for H100
i , for i = 1, 2.

Figure (1.3) shows that the increase in µ causes the number of potential sell herd

trades to drop from 35 to 28 and from 30 to 27 for H100
1 and H100

2 respectively.

Given that now µP (S2) = 0.15, we expect SHI1 = 0.07 and SHI2 = 0.0675 for

the respective histories. In other words, an increase in µ causes a drop in SHI for

the above two trading histories.

The e�ects that drive this result are higher bid-ask-spreads quoted by the

market maker in conjunction with a higher average information content of each

single trade. Both e�ects contribute towards a stronger preference of S2 of holding

the asset. In particular, the sell herds are broken much faster than before: While

for µ = 0.5, the sell herding U-shaped traders had to observe 9-10 consecutive
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µ = 0.5 Number of herd trades P (H·) (P (H1) + P (H2))/P (H3)

H100
1 35 7.62 · 10−38

H100
2 30 3.75 · 10−38 6.72 · 10−7

H100
3 97 1.69 · 10−31

µ = 0.6

H100
1 28 4.15 · 10−36

H100
2 27 1.95 · 10−36 7.02 · 10−8

H100
3 97 8.69 · 10−29

Table 1.4: Probabilities of selected histories

Notes: This table reports the probabilities of three di�erent histories for the previously speci�ed
model parameterizations with µ = 0.5 and µ = 0.6 respectively. It also compares the probability
ratio of observing histories H1 or H2 with observing history H3 for each scenario. H1 and H2

are as before, H3 is a history consisting of 100 sells.

buys before switching back into holding the asset, the observation of merely 5

consecutive buys already triggers this switch in trading behavior of S2 when µ =

0.6.

The results in Section 1.4, however, suggest that SHI increases with µ. The

reason for this is yet another e�ect of a change in µ. An increase in µ alters the

probability with which a certain history is observed. Indeed, an increase in µ

shifts probability mass from histories with low or decreasing herding intensity to

histories with persistently high herding.

This e�ect is documented in Table 1.4. Consider the previously introduced

histories H100
1 and H100

2 . Also consider history H100
3 consisting of 100 sells. Under

H3, S2 sell herds from t = 4 until t = 100 resulting in 97 potential herd sells

regardless of µ. Yet, the probabilities for each of the histories changes as µ

changes. More speci�cally, the probability to observe H1 or H2 relative to the

probability to observe H3 decreases.

This can be attributed to the self-enforcing nature of herd behavior. Once

investors start herding, it is on average more likely that they keep herding than

that their herd is broken.

We emphasize that this is not a complete comparative static analysis. For that
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we would have to consider all 3100 di�erent histories. As outlined before, this is

beyond current computational capabilities. Also note that the discussed

examples are only for a single stock. The calculations further complicate if one

aims at calculating average herding intensities for a heterogeneous stock market

as we do in Section 1.4.



Paper 2

Information Risk, Market Stress and

Institutional Herding: Evidence from the

German Stock Market1

2.1 Introduction

Paper 1 of this thesis derives two theory-guided predictions on the impact of

information risk and market stress on herding intensity by simulating the herd

model of Park and Sabourian (2011).2

It is the present paper's objective to empirically test the validity of these

predictions. This is done by applying the herd measure of Sias (2004) to a set of

high-frequency, investor-speci�c transaction data from the German stock market.

Simulating a herd model allows us to determine for each trade whether herding

actually occurred. As a result, the exact intensity of intentional herding in the

sense of Hirshleifer and Hong Teoh (2003) can be calculated. In an empirical

application, it is much more di�cult to decide whether or not a trader herds

since researchers have no access to the �nancial decision makers' private

information and preferences. Nevertheless, a rich empirical literature has

evolved that has contributed greatly towards overcoming this obstacle.

1This paper was written in collaboration with my co-authors Simon Jurkatis, Dieter Nautz
and Stephanie Kremer.

2For de�nitions of information risk, market stress and herding intensity and a more detailed
discussion of the related theoretical literature, please refer to Paper 1.

27
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In the seminal work of Lakonishok et al. (1992), herding of a group of in-

vestors is measured as the tendency to accumulate on one side of the market.

Speci�cally, the authors test whether the share of net buyers in individual stocks

signi�cantly deviates from the average share of net buyers across all stocks of the

considered stock index. In a more recent study, Sias (2004) investigates whether

the accumulation of investors on one side of the market persists over time by

measuring the cross-sectional correlation of the share of net buyers over adjacent

time periods.

The dynamic nature of the Sias measure does not only make it particularly

appropriate for the analysis of high-frequency data but also lends it a conceptual

proximity to herding as de�ned by the theory. Thanks to it's dynamic approach,

the Sias measure re�ects the theoretical notion of herders' switching behavior

more accurately than the static measure of Lakonishok et al. (1992). Moreover,

the Sias measure incorporates the intuition of the Park and Sabourian (2011)

model that during periods of e.g. buy herding, high shares of net buyers persist

over time.

Using intra-day, investor-speci�c transaction data provided by the German

Federal Financial Supervisory Authority (BaFin) further enhances the

comparability of our empirical results based on Sias and our theoretical

predictions regarding aggregate herding intensity.

In line with herding theory, the use of intra-day data is particularly appropri-

ate for measuring herd behavior induced by information externalities. Measuring

herding at lower frequencies may bias the results because new information might

have reached the market in the meantime, creating a new environment for investor

behavior. The use of investor-speci�c data is particularly important as we need

to directly identify transactions by each trader in order to determine whether an

investor follows the observed actions of other traders.

Empirical studies using transaction data typically have to rely on either

investor-speci�c but low-frequency data (e.g. Lakonishok et al. (1992), Sias (2004),

Wermers (1999)), or on high-frequency but anonymous transaction data (com-

pare, e.g., Barber et al. (2009b)). Kremer and Nautz (2013a) regress daily herding



Second Paper 29

measures on size, volatility, and other stock characteristics to analyze the causes

of herding.

To the best of our knowledge, this paper is the �rst to analyze intra-day

herding intensity using investor-speci�c data. It con�rms both theoretical

predictions on herding intensity derived in Paper 1 of this thesis.

The remainder of this paper proceeds as follows. Section 2.2 presents the herd

measure proposed by Sias (2004). Section 2.3 discusses the employed data in

further detail. The empirical results on the impact of information risk on

herding intensity are provided in Section 2.4, while Section 2.5 con�rms the

impact of Market Stress on investor herding. Finally, Section 2.6 contains

concluding remarks.

2.2 Empirical Herding Measure

The dynamic herding measure proposed by Sias (2004) is designed to explore

whether (institutional) investors follow each others' trades by examining the cor-

relation between the traders' buying tendency over time. The Sias herding mea-

sure, therefore, is particularly appropriate for high-frequency data. Similar to the

static herding measure proposed by Lakonishok et al. (1992), the starting point of

the Sias measure is the number of buyers as a fraction of all traders. Speci�cally,

consider a number of Nit institutions trading in stock i at time t. Out of these

Nit institutions, a number of bit institutions are net buyers of stock i at time t.

The buyer ratio brit is then de�ned as brit = bit
Nit

. According to Sias (2004), the

ratio is standardized to have zero mean and unit variance:

∆it =
brit − b̄rt
σ(brit)

, (2.1)

where b̄rt :=
∑I

i=1 with I denoting the number of stocks in the cross-section and

σ(brit) is the cross-sectional standard deviation of buyer ratios across I stocks
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at time t. The Sias herding measure is based on the correlation between the

standardized buyer ratios in consecutive periods:

∆it = βt∆i,t−1 + εit. (2.2)

The cross-sectional regression is estimated for each time t. In the second step,

the Sias measure for herding intensity is calculated as the time-series average of

the estimated coe�cients: Sias =
∑T
t=2 βt
T−1 .

The Sias methodology further di�erentiates between investors who follow
the trades of others (i.e., true herding according to Sias (2004)) and those who
follow their own trades. For this purpose, the correlation is decomposed into two
components:

βt = ρ(∆it,∆i,t−1)

=

[
1

(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

[
Nit∑
n=1

(Dnit − b̄rt)(Dni,t−1 − b̄rt−1)

NitNi,t−1

]

+

[
1

(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

Nit∑
n=1

Ni,t−1∑
m=1,
m6=n

(Dnit − b̄rt)(Dmi,t−1 − b̄rt−1)

NitNi,t−1

 , (2.3)

where I is the number of stocks traded. Dnit is a dummy variable equal to 1 if

institution n is a buyer in i at time t and 0 otherwise. Dmi,t−1 is a dummy variable

equal to 1 if trader m (who is di�erent from trader n) is a buyer at time t − 1.

Therefore, the �rst part of the measure represents the component of the cross-

sectional inter-temporal correlation that results from institutions following their

own strategies when buying or selling the same stocks over adjacent time intervals.

The second part indicates the portion of correlation resulting from institutions

following the trades of others over adjacent time intervals. A positive correlation

that results from institutions following other institutions, that is, the latter part

of the decomposed correlation, can be regarded as evidence of herd behavior.

In the subsequent empirical analysis, we therefore focus on the latter term of

Equation (2.3), which we denote by Sias. According to Choi and Sias (2009),

Equation (2.3) can be further decomposed to distinguish between the correlations

associated with �buy herding� (bri,t−1 > 0.5) and �sell herding� (bri,t−1 < 0.5).
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2.3 Data

The data are from the German Federal Financial Supervisory Authority (BaFin).3

Under Section 9 of the German Securities Trading Act, all credit institutions and

�nancial services institutions are required to report to BaFin any transaction in

securities or derivatives that trade on an organized market. These records make

it possible to identify all relevant trade characteristics, including the trader (the

institution), the particular stock, time, number of traded shares, price, and the

volume of the transaction. Moreover, the records specify on whose behalf the

trade was executed, that is, whether the institution traded on it's own account or

on behalf of a client that is not a �nancial institution.

Only institutions that fall under Section 9 of the German Securities Trading

Act are allowed to submit trade orders to German trading platforms. Therefore,

the data are a comprehensive repository of all trades executed on German stock

exchanges during the sample period. Since this study is concerned with institu-

tional trades, particularly those of �nancial institutions, we restrict our attention

to the trading of own accounts, that is, those cases where a bank or �nancial

services institution is clearly the originator of the trade. We exclude institutions

trading exclusively for the purpose of market making. We also exclude institutions

that are formally mandated as designated sponsors, i.e., liquidity providers, for a

speci�c stock. For each stock, there are usually about two institutions formally

mandated as market maker. The institutions are not completely dropped from the

sample (unless they have already been excluded due to engaging in purely mar-

ket maker business), but only for those stocks for which they act as designated

sponsors.4 We are particularly interested in the herding behavior of institutional

investors because they are more likely to be informed compared to, for example,

retail investors. Moreover, institutional investors are the predominant class in the

stock market, with the power to move the market and impact prices, particularly

if they herd.

3Due to the sensitivity of the data, BaFin does not allow to share the data with third
parties. To access the data for replication purposes, please contact Stephanie Kremer
(stephanie.kremer@fu-berlin.de).

4The designated sponsors for each stock are published at http://www.deutsche-boerse.com.
For more information about the data, see Kremer and Nautz (2013a;b).
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The analysis focuses on shares listed on the DAX 30 (the index of the 30

largest and most liquid stocks), where stocks are selected according to the index

compositions at the end of the observation period on March 31, 2009. Following

the empirical literature, we require that at least �ve institutions were active in the

market at each trading interval. Using data from July 2006 to March 2009 (698

trading days), we are able to investigate whether trading behavior has changed

during the �nancial crisis. Over the sample period, there are 1,120 institutions

engaging in proprietary transactions. Among those 1,120 traders, 1,044 trade the

DAX 30 stocks.

2.4 Information Risk and Herding Intensity in the Ger-

man Stock Market

According to Hypothesis 1.1 from Paper 1, average herding intensity increases

with information risk. Information risk, i.e. the probability of informed trading

increases with the number of informed traders active in a market and their share

of the trading volume. Based on this intuition, we use two empirical proxies for

the level of information risk: (i) the number of active institutional traders and

(ii) the share of the institutional trading volume.

We deliberately do not follow Zhou and Lai (2009) in using Easley et al.

(1997)'s PIN measure to proxy information risk as the PIN is positively related

to the Sias herd measure by construction.5

According to Foster and Viswanathan (1993) and Tannous et al. (2013), the

fraction of informed traders and, thus, information risk cannot be expected to

be constant over a trading day. To account for intra-day trading patterns in the

German stock market, we divide each trading day into 17 half-hour intervals. A

trading day is de�ned as the opening hours of the trading platform XETRA (9

a.m. to 5:30 p.m.), on which the bulk of trades occur. The use of half-hour

intervals ensures that the number of active institutions is su�ciently high for

5The idea underlying the PIN is that there are distinct trading patterns on days when infor-
mation events occur. Days with information events (i.e. high information risk) are characterized
by a strong accumulation of (informed) traders on one side of the market. The Sias measure
also identi�es herding as a (persistent) accumulation of traders on one side of the market.
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Information risk Herding intensity

Time Traders Trading V olume Sias Sias

09 : 00− 09 : 30 25.33 6.73 − −

09 : 30− 10 : 00 21.05 5.34 25.92
(0.23)

9.92
(0.26)

10 : 00− 10 : 30 15.75 2.57 28.59
(0.22)

7.54
(0.24)

10 : 30− 11 : 00 22.88 6.73 30.43
(0.29)

7.85
(0.23)

11 : 00− 11 : 30 19.58 4.51 34.30
(0.31)

9.98
(0.22)

11 : 30− 12 : 00 18.72 4.15 33.98
(0.29)

8.24
(0.23)

12 : 00− 12 : 30 17.96 3.77 33.91
(0.30)

7.83
(0.24)

12 : 30− 01 : 00 17.08 3.39 33.81
(0.25)

6.96
(0.21)

01 : 00− 01 : 30 17.36 4.31 33.28
(0.24)

7.84
(0.21)

01 : 30− 02 : 00 16.57 3.28 34.00
(0.28)

8.56
(0.21)

02 : 00− 02 : 30 17.85 3.96 34.74
(0.25)

8.60
(0.26)

02 : 30− 03 : 00 18.90 4.63 33.38
(0.24)

8.29
(0.26)

03 : 00− 03 : 30 18.32 4.42 34.21
(0.26)

9.31
(0.26)

03 : 30− 04 : 00 20.42 6.43 34.19
(0.28)

10.60
(0.26)

04 : 00− 04 : 30 20.70 6.98 35.65
(0.28)

12.86
(0.26)

04 : 30− 05 : 00 20.74 7.64 34.62
(0.27)

11.90
(0.26)

05 : 00− 05 : 30 22.50 10.13 32.94
(0.28)

12.53
(0.26)

Table 2.1: Information risk and herding intensity within a trading day

Notes: The table shows how information risk and herding intensity evolves over the trading day.
Traders denotes the average number of active institutional traders; Trading V olume refers to
the average percentage share of the daily trading volume of institutional investors. For instance,
on average, 6.73% of the daily institutional trading volume occured between 9 a.m. and 9:30
a.m. The columns do not add to 1 because we focus on the predominant German platform
XETRA R©, where trading takes place from 9 a.m. till 5.30 p.m. CET, while the opening period
for the German stock exchange at the �oor ends at 8 p.m. Sias and Sias represent the overall
and the adjusted Sias herding measure (in percent), where the latter only considers institutions
that follow the trades of others, see Equation (2.3). Standard errors are in parentheses.
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calculating intra-day herding measures.6 The �rst two columns of Table 2.1

show how both empirical proxies for information risk are distributed within a

day. For both measures of trading activity, institutional traders are more active

during the opening and closing intervals.

To investigate the intra-day pattern of herding intensity, we calculate the

Sias herding measure for each half-hour interval separately. The results of this

exercise are also shown in Table 2.1. The third column shows for each interval

the overall Sias measure (Sias), which is based on the average correlation of buy

ratios between two intervals (see Equation (2.2)). Following Sias (2004), this

correlation may overstate the true herding intensity because it does not account

for correlation resulting from traders who follow themselves. It is a distinguishing

feature of our investor-speci�c data that they allow addressing that problem even

on an intra-day basis. In particular, Column 4 reports the correlation due to

investors following the trades of others (Sias) (see Equation (2.3)).

Table 2.1 o�ers several insights into the intra-day pattern of institutional

herding. First, both Sias measures provide strong evidence for the presence of

herding for each half-hour interval of the trading day. Second, intra-day herding

measures are signi�cantly larger than those obtained with low-frequency data,

compare Kremer and Nautz (2013a;b). Third, the sizable di�erences between

Sias and Sias highlight the importance of using investor-speci�c data.

How is the observed intra-day variation of information risk related to the

intra-day herding intensity of institutional investors? In line with the intuition

of Park and Sabourian (2011), the Sias herding measure depends on the trading

behavior in two subsequent time periods. On the one hand, high information

risk in t− 1 leads institutional investors to believe that there is a high degree of

information contained in previously observed trades. On the other hand, high in-

formation risk in t ensures that there is a high number of potential herders active

in the market. Both e�ects contribute positively to herding intensity in period t.

Therefore, for each time interval herding intensity is compared with the average

information risk of the corresponding time intervals. Figure 2.1 reveals a strong

intra-day co-movement between both proxies of information risk and Sias. In fact,

6For the sake of robustness, we also divide the trading day into nine one-hour intervals, but
our main results do not depend on this choice.
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Figure 2.1: Information risk and average herding intensity within a trading day

we �nd overwhelming evidence in favor of Hypothesis 1.1: the rank-correlation

coe�cient between the average trading volume and the corresponding Sias mea-

sure is 0.80, which is both economically and statistically highly signi�cant. Very

similar results are obtained for the number of active institutional traders, where

the correlation coe�cient equals 0.67.7

Note that the peaks in Sias at market opening and following the opening of

the U.S. market at 3:30 p.m. � 4 p.m. correspond with high activity by informed

traders, suggesting that at market openings there is a lot of information contained

in observed trades on which subsequent traders herd. This con�rms the experi-

7These results can be con�rmed using standard correlation coe�cients, which are also large
and signi�cant at all conventional levels for both empirical proxies of information risk. Note
that a rank-correlation coe�cient might be more appropriate than the standard correlation
coe�cient, since it accounts for the potentially non-linear relation between information risk and
herding intensity suggested by the numerical simulation of the herd model (see Figure 1.1 in
Paper 1 of this thesis).
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Buy Herding Sias Sias

Pre-crisis period 14.37
(0.37)

4.10
(0.10)

Crisis period 13.87
(0.35)

5.09
(0.11)

Sell Herding

Pre-crisis period 18.87
(0.23)

5.41
(0.09)

Crisis period 15.65
(0.25)

5.74
(0.08)

Table 2.2: Herding intensity - before and during the �nancial crisis

Notes: This table reports adjusted (Sias) and unadjusted (Sias) herding measures based on
half-hour intervals estimated separately for the pre-crisis and the crisis period. The Sias measures
are further decomposed into buy and sell herding components (see Section 2.2). Standard errors
are in parentheses.

mental �ndings of Park and Sgroi (2012), who observe that traders with relatively

strong signals trade �rst, while potential herders delay.

2.5 Herding Intensity in the German Stock Market Be-

fore and During the Financial Crisis

Hypothesis 1.2 of Paper 1 tells us that both sell and buy herding should increase in

times of high market stress when uncertainty increases and markets become more

pessimistic about the value of the asset. However, the increase in sell herding

is predicted to be smaller than the one in buy herding. In our application, a

natural candidate to test this hypothesis is the outbreak of the �nancial crisis. To

investigate the e�ect of the crisis on herding intensity, we calculate sell and buy

herding measures for the crisis and the pre-crisis period separately. The pre-crisis

period ends on August 9, 2007 as this is widely considered to be the starting date

of the �nancial crisis in Europe, see, e.g., European Central Bank (2007) and

Abbassi and Linzert (2012).

Herding measures obtained before and during the crisis are displayed in

Table 2.2. The results con�rm the predictions of the simulated model of Paper

1. The statistically signi�cant yet small increase in sell herding (5.74 > 5.41) is
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well in line with Hypothesis 1.2 as is the more pronounced surge in buy herding

(5.09 > 4.10).

Apparently, in times of deteriorated economic outlook when traders are ex-

posed to recurring bad news, a small but unexpected accumulation on the buy side

is quickly interpreted as good news about an asset's value and induces investors

to follow the crowd (as small as it may be) into the alleged investment opportu-

nity. Such behavior in light of Hypothesis 1.2 is by no means purely based on

investor sentiment or irrationality, but may be perfectly rational. In line with our

theoretical results, the increase in sell herding during the crisis period indicates

that the high uncertainty e�ect dominates the low expectation e�ect discussed

in Section 1.4 of Paper 1. The increase, however, may also be explained by rea-

sons outside the model. If asset prices start to fall, selling may become necessary

in order for institutional traders to meet regulatory requirements. The resulting

accumulation of institutional traders on the sell side of the market may upward

bias the sell herding intensity detected by the empirical herding measure. Yet,

the small increase in sell herding intensity in the German stock market during the

crisis period indicates that these diluting e�ects of unintentional herding are not

of particular relevance for our sample.

2.6 Concluding Remarks

This paper further strengthens the link between the theoretical and the empirical

herding literature.

Having derived two theory-based predictions regarding the impact of

information risk and market stress on herding intensity in Paper 1, this paper

focuses on testing these predictions empirically using a comprehensive data set

from the German stock market. As predicted, we �nd that both buy and sell

herding increase symmetrically with information risk. Our empirical results

further show that the herd model can explain why buy and sell herding in the

German stock market evolve asymmetrically in response to increased market

stress induced by the �nancial crisis.

We should stress, however, that despite our careful choice of the empirical herd
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measure and it's application to a microstructure theory compatible data set, the

fact remains that the measure proposed by Sias (2004) and the theoretical

concept of herding of e.g. Park and Sabourian (2011) remain only loosely

connected. Indeed, the general consensus that measures such as the ones

proposed by Lakonishok et al. (1992) and Sias (2004) are valid tests for

(persistent) investor coordination in general and herding in particular, compare

Bikhchandani and Sharma (2001), has not yet been proven rigorously.

This poses the question whether we can use herding and market microstruc-

ture theory to qualify potential weaknesses of established herd measures if there

are any. This could be done by applying empirical herd measures to simulated

trade data from a herd model. Insights generated from such an analysis could be

used to modify the existing measures to obtain a new theory-founded measure-

ment approach that accurately tests for the presence of informationally ine�cient

and, thus, also potentially price-distorting herd behavior. Papers 3 and 4 of this

thesis address these tasks in great detail.



Paper 3

How to Measure Herding in Financial

Markets1

3.1 Introduction

Investor herding describes the behavior of individual investors that follow the de-

cision of the majority although they hold private information that advises them

to act di�erently, compare Brunnermeier (2001). There is strong consensus in

the literature that herding has the potential to cause informational ine�cien-

cies, distort prices and ultimately destabilize �nancial markets altogether, see e.g.

Bikhchandani and Sharma (2001).

Consequently, empirical studies have been putting great e�orts into

detecting destabilizing herd behavior by assessing whether groups of investors

coordinate and by gauging the e�ect of their coordination on asset prices, see

e.g. Brown et al. (2014), Dorn et al. (2008), Wermers (1999) or Grinblatt et al.

(1995). This literature strand is strongly in�uenced by the seminal work of

Lakonishok et al. (1992). Their well-known LSV measure has long become a

benchmark to test for the presence of investor coordination, see e.g. Kremer and

Nautz (2013b) and Barber et al. (2009b) in addition to the already mentioned

studies.

This paper shows, however, that the LSV measure generally does not provide

the right means test for investor coordination and, consequently, provides a

measure that does.

1This paper was written in collaboration with my co-author Simon Jurkatis.

39



40 Third Paper

To that end we adjust the LSV measure in accord with implications from a

market microstructure framework. We thereby obtain a new measure for

investor coordination and show it to be a generalization of the LSV measure.

We use our model framework to simulate trade data that allows us to further

quantify the di�erences between the two approaches. In particular, we show that

our measure accurately distinguishes between di�erent types of investor

coordination, i.e. herding and contrarianism, as well as independent trading.2

The simulation also reveals that the LSV measure generally fails to correctly

test for investor coordination if the trade data does not ful�ll the rather

restrictive assumptions associated with the LSV approach.

The LSV measure uses transaction data for a speci�c group of investors. It

assesses the deviation of the investors' observed buy propensity in each stock

from their average buy propensity across all stocks to determine if and to what

extent investors coordinate.

In line with our model framework, such a comparison of buy propensities

under actual and independent trading is a reasonable approach to detect investor

coordination. Yet, we also discover that the LSV approach has two crucial weak-

nesses that can be remedied with proper adjustments.

First, the LSV approach assumes that under the null hypothesis of indepen-

dent trading the chance to observe a buy is equal to the average buy propensity

for all stocks, compare Wermers (1999). The assumption that investors exhibit

exactly the same proclivity to buy each stock of a potentially large cross-section

is likely to be too rigid to ever hold for actual trade data. We, therefore, pro-

pose to take into account that buy propensities under independent trading are

stock-speci�c.

Second, Lakonishok et al. (1992) estimate the unique average buy propensity

under independent trading using all trades, that is, trades that may have been

carried out in a dependent fashion. This almost inevitably results in a bias of

the LSV if the null of independent trading is rejected. To avoid such a bias, the

2Contrarianism can be seen as the counter-part of herding. Instead of following the crowd,
contrarians act against it although they have information that tells them to trade in the same
direction as the majority of the traders, compare e.g. Park and Sabourian (2011).
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estimation of the buy ratios under independent trading should focus on those

trades that are in fact carried out independently. We argue that these trades

can be identi�ed among the early trades after the start of trading, see Avery and

Zemsky (1998).

We show that with the proposed modi�cations of the LSV approach, the

distribution of the buy ratios under independent trading can still be estimated

accurately even in small cross-sections if the independent buy ratios are iid

distributed.3

We, thus, obtain a new operational measure for investor coordination. Similar to

the LSV measure, it compares the observed buy ratios with the estimated

independent benchmark to detect investor coordination. The estimation of the

independent benchmark, however, is quite di�erent for our approach and more

in line with herding theory than the LSV approach. For instance, as we obtain

buy ratios under independent trading from the early trades and compare it to

the subsequent trading behavior we capture the notion of switching behavior

that underlies herding and contrarianism, compare Park and Sabourian (2011)

and Avery and Zemsky (1998).

Other modi�cations of the LSV measure have been proposed in the literature to

boost its performance. Frey et al. (2014) modify the LSV measure by taking the

squared instead of the absolute di�erence between the observed buy propensities

and the the average one. Wylie (2005) corrects the LSV measure to account for

possible biases that can arise from short-selling constraints and varying liquidity

requirements. Yet, since both maintain the assumption of a constant buy

propensity under the null and estimate it based on all trades our arguments

apply to their approaches as well.4

3In Paper 4 of this thesis, we uncover strong evidence in favor of this assumption.
4Statistically put, the assumption of equal buy propensities under independent trading stems

from the fact that the LSV measure tests whether the observed number of buys are more
dispersed than suggested by a Binomial distribution. Consequently, our arguments generally
apply to any test of Binomial dispersion (e.g. Cochran (1954), Tarone (1979)) that is applied
for the purpose of �nding deviations from independent trading.
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Another measure related to the LSV measure is the one proposed by Sias

(2004). Like Lakonishok et al. (1992), Sias (2004) uses the buy propensity of

investors as the underlying statistic. Yet, the Sias measure assesses whether buy

propensities are persistently high or low over time by measuring the correlation

of buy propensities between adjacent time periods. Though we will not compare

our approach to the one of Sias (2004) directly, our arguments are valid for his

measure as well. By assessing the serial correlation of buy propensities, the

cross-sectional averages of the buy propensities constitute a part of the Sias

measure and, therefore, our arguments in favor of an approach that accounts for

the idiosyncrasy of these propensities apply here as well.

The disconnect of empirical measures on coordinated trading with the

theoretical literature has also been noted by Devenow and Welch (1996) and

Cipriani and Guarino (2014). To provide a rigorous test of a theoretical herding

model, the latter conduct a structural model estimation. Though we attempt to

bring the empirical literature closer to the theoretical idea of herding and

contrariansm, we do not go as far as estimating a speci�c model of herding.

Our microstructure framework is statistical in nature. Instead of explicitly

modeling drivers for investor behavior, we treat herding, contrarianism and

independent trading as well as single trade decisions as probabilistic events.5

Our model is not designed to explain why investors coordinate but to produce

simulated trade data that allows us to understand whether di�erent measures of

coordinated trading can accurately detect investor coordination if it is present.

This paper is structured as follows. In Section 3.2 we introduce a model of

investor coordination. Section 3.3 provides a detailed discussion of the

assumptions associated with the LSV approach and how we aim to modify them

5For a better understanding of potential drivers for investor coordination, we refer the reader
to the rich theoretical herding literature. The seminal works of Bikhchandani et al. (1992)
and Banerjee (1992) demonstrate that herding is triggered by information externalities that a
decision by one agent imposes on the decisions of the subsequent agents. Reputational concerns
of �nancial decision makers are identi�ed as another important driver for herd behavior, see
Scharfstein and Stein (1990), Graham (1999) and Dasgupta et al. (2011). So-called investigative
herding, that is, agents basing their decision on the same information, has been discussed by
Froot et al. (1992), Hirshleifer et al. (1994). Paper 1 shows that information risk and market
stress are also relevant drivers.
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to derive our new measure for herding. It also contains theoretical results that

our measure is accurately estimable. In section 3.4 a comparative analysis of the

LSV and our measure including a comprehensive simulation study is provided.

Finally, Section 3.5 summarizes the results.

3.2 A Model of Coordinated Investor Behavior

In this section, we revisit a sequential trading framework in the spirit of Glosten

and Milgrom (1985). We use this model to illustrate that potentially price-

distorting investor coordination such as herding requires �nancial decision makers

to deviate from independent trading. In line with the seminal work of Lakonishok

et al. (1992), we propose to use investor buy ratios under actual and independent

trading to detect such deviations. We show that the corresponding statistic ac-

curately re�ects investor coordination in our model. We conclude this section by

discussing how buy ratios can be related to herding and contrarianism, respec-

tively.

3.2.1 Dependent and Independent Trading

Figure 3.1 illustrates the principal setup of Glosten and Milgrom (1985)'s sequen-

tial trading model. Consider some stock i ∈ I ⊂ N+ that is traded for a day.6

During the course of the day we sequentially observe transactions at at price pt

for t = 1, 2, . . . , T .

Each transaction is in�uenced by two, possibly competing, types of informa-

tion. First, traders gather information about the stock's value and form a private

opinion on how much the asset is worth. Comparing their assessment with the

price, they decide what their action should be. Second, as the trading process

evolves, investors observe the transactions of others and the corresponding price

movements. They include the information contained in these observations into

their decision rule. In line with the literature we refer to the �rst information

6In Paper 4 we apply our method at the frequency of days. The method, however, is not
restricted to that frequency and the word �day� may be replaced with any other frequency in
mind, e.g. half-hour interval, week, month, etc., in what follows.
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(a) Actual trading (b) Independent trading

Figure 3.1: Microstructure trading model

Notes: This �gure depicts a sequential trading process as a directed graphical model under
actual and independent trading. Nodes represent random variables. Links between the nodes
represent probabilistic relationships between those variables. The direction of a link indicated
by an arrow points from the parent node to the child node. The distribution of the variable
from a child node is conditioned on the parent variable. White nodes represent latent variables,
while grey shaded nodes represent observable variables. The square indicates that there are I
trading processes.

type as private information and to the second one as public information, compare

Park and Sabourian (2011).

Private information is depicted in Figure 3.1 by the latent random

variables S1 to ST , whose distribution is conditioned on the latent, random

variable Vi. In accordance with market microstructure theory, we assume that Vi

corresponds to the unknown, fundamental value of the stock and St to the

fundamentally linked private signal of trader t. Public information is depicted

by the directed links from any shaded node (at−j , pt−j) to the node (at, pt) with

t = 1, . . . , T and j = 1, . . . , t − 1, see Figure 3.1 (a). Public information also

includes the opening price p0, which can be seen as a consolidated measure of

the market's prior belief regarding the stock's value.

If traders are not in�uenced by the actions of others and base their trade

decision solely on their private information and p0, we say they trade

independently, compare Figure 3.1 (b). In that case the links between the
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(at, pt) are switched o�. Under independent trading the stock price moves

towards the asset's fundamental. The view that independent trading should

have this desirable e�ect is based on the assumption that private information is

linked to the asset's fundamental value, compare e.g. Avery and Zemsky (1998)

and Park and Sabourian (2011). If investors in these models follow their private

information signals, the market learns fairly quickly about the asset's true value.

This results in prices that accurately re�ect the asset's fundamental and that

exhibit low degrees of volatility.

Figure 3.1 (a) illustrates the case of actual trading, i.e. when investor t's

trade decision is in�uenced by the actions of her predecessors. In this case trader

t may decide to act against her private information signal St. She may decide

to sell the stock although her private information advises her to buy it and vice

versa. We refer to this as dependent trading. Dependent trade behavior bears

the potential of informational ine�ciencies, as the fundamentally linked private

information does not reach the market any more. If many investors act against

their privately held information prices may move away from fundamentals.

As a consequence, we want to provide a statistic that allows us to test

whether actual trading depicted in Figure 3.1 (a) deviates from the unobserved

independent trading in Figure 3.1 (b). If there is dependent trading, the

statistic should measure the extent to which traders coordinate.7

We combine the concepts of dependent and independent trading with the ideas

of the literature on coordinated trading based on transaction data. This strand

of the literature was shaped by the seminal work of Lakonishok et al. (1992).

Building on their ideas, we de�ne h := |br − b̃r| as a measure for deviation from

independent trading. br and b̃r are the number of buys over the number of

trades (buy ratios) under observed and the hypothesized independent trading,

respectively. The measure h captures, to what degree observed trading decisions

deviate from what they should have been under independent trading.

7Note that models such as Avery and Zemsky (1998) and Park and Sabourian (2011) by
no means imply that herding or contrarianism always lead to price distortions. In that sense
testing for deviations from independent trading can only be a test on a necessary condition for
price-distorting investor behavior.
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As we make explicit how we model independent and dependent trade data as

well as buy ratios in the next subsections, we shall highlight the intuitive appeal

of h in our model context.

3.2.2 Modeling Dependent and Independent Trade Data

In line with market microstructure theory we focus on the initiator of a trade

when modeling trade data. Normally a trade is executed by at least two

counterparties: the bespoken initiator or active trader and one or more passive

traders. As long as there is enough liquidity in the market, however, passive

trades are not likely to cause systematic price distortions. In the works of e.g.

Park and Sabourian (2011) or Avery and Zemsky (1998), the passive trade side

is represented by a market maker who guarantees liquidity as long as there is

noise trading. Yet, this market maker does not actively in�uence stock prices or

trading outcomes. The mechanism is similar in order driven markets, where the

passive side of a trade typically consists of limit orders in an order book. As

long as the order book is deep enough, i.e. the stock is traded liquidly, there is

no reason to assume that limit orders have systematic price e�ects. Dorn et al.

(2008) and Barber et al. (2009b) even argue that considering limit orders tends

to bias the assessment of investor coordination. Hence, we exclude the passive

trade side from our model.

We assume that each stock i ∈ I is traded actively Ti times during the course of

a day. Each active trade can either be a buy or a sell. Hence, we think of a

trade as a bernoulli distributed random variable Xi. We can view it's success

probability πi as the traders' propensity to buy that particular stock.

Theory implies that πi is related to the asset's fundamental Vi and the corre-

sponding distribution of private information S as well as many other parameters

depending on the investor's objective function, compare e.g. Froot et al. (1992),

Graham (1999) and Dasgupta et al. (2011). In this paper, however, we do not

model this relationship explicitly, since our focus is to detect investor coordination

rather than to explain where it stems from.
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If a trade is carried out independently, we have πi = b̃ri. Now assume that we

have τ trades executed under independent trading. The number of buys among

those τ trades, Bτ
i :=

∑τ
t=1 1{Xi

t=buy}, then follows a Binomial distribution of

length τ with success probability b̃ri.

During actual trading the investors' buy propensity may deviate from the

one under independent trading. Hence, under actual trading, we set

πi = b̃ri + εi, where εi ∈ [−b̃ri; 1 − b̃ri]. If trades are executed in a dependent

fashion, then εi 6= 0. If trades are carried out independently, then εi = 0. We

assume that given there are Ti − τ potentially dependent trades, then the

number of buys under dependent trading BTi−τ
i ∼ Bino(T − τi, b̃ri + εi).8

We now turn to the question whether the measure h from the previous section

accurately re�ects investor coordination in this model context. If Ti − τ is

su�ciently large, then the observed buy ratio is

bri =
BTi−τ
i

Ti − τ
≈ πi

by the law of large numbers. Thus, for our previously de�ned measure of investor

coordination, we have

h = |bri − b̃ri| ≈ |πi − b̃ri| = |εi|.

Hence, h is a reasonable approximation of the extent to which investors system-

atically deviate from independent trading in our model.9

8This is a simplifying assumption since the buy probability of a particular trade can change
multiple times during a trading day. Incorporating this feature into the model, however, com-
plicates it without providing additional insights.

9Since bri may be di�erent from b̃ri due to random �uctuations, h will generally be positive,
even if εi = 0. We need to account for this fact as we operationalize h in Section 3.3.
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3.2.3 Using Investor Buy Ratios to Distinguish Between Herding

and Contrarianism

The question remains whether the observed buy ratio bri and the buy ratio under

independent trading b̃ri tell us something more about the nature of the investor

coordination.

The theoretical herding literature classi�es two forms of dependent investor

behavior. First, herding is de�ned as a trader's decision to act against her private

information and to follow the crowd instead. Second, if a trader decides to ignore

her private information and acts against the crowd, this is called contrarianism.10

How does such behavior a�ect bri relative to b̃ri? Since herders are crowd-

followers, we expect the observed buy ratio to be more extreme than the buy ratio

under independent trading, i.e. |bri − 0.5| > |b̃ri − 0.5|. As a numerical example,

consider b̃ri = 0.6. That is, under independent trading 40 out of 100 traders sell

the stock and 60 out of 100 traders buy the stock. If on average 5 out of 40 sellers

decide to follow the majority of the traders into buying the stock, then bri ≈ 0.65

and hence |bri − 0.5| = 0.15 > 0.1 = |b̃ri − 0.5|.
Conversely, as contrarians are leaning against the crowd, we expect the

observed buy ratio to be less extreme than the one under independent trading,

i.e. |bri − 0.5| < |b̃ri − 0.5|. Consider, for instance, traders who - based on their

private information S - value the asset at some �xed price p∗ throughout the

whole trading day. That is, these traders completely discount the possibility

that recent price movements or trade decisions of other investors have

informational value. Assume that the opening price p0 < p∗. Hence, under

independent trading these traders buy the asset. Yet, as soon as a buy side

majority of traders drives the price above p∗, contrarians divest the asset,

deviating from their independent trading decision and drawing bri towards 0.5.

Now that we have developed an understanding of independent and dependent

trading and how the buy ratio statistic is related to herding and contrarianism,

i.e. di�erent forms of dependent trading, we address the question of how to

operationalize our measure for coordinated trading h := |br − b̃r|. Key challenge

10Compare e.g. Park and Sabourian (2011) for formal de�nitions.
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of this endeavor is the retrieval of the independent buy-ratio, b̃r, as private

opinions are not observable.

3.3 When Investors Coordinate - Detecting Deviations

From Independent Trading

A natural �rst step is to consider the prominent LSV measure for coordinated

trading introduced by Lakonishok et al. (1992) as a candidate for h.

3.3.1 The LSV Measure

The LSV measure has already been widely used as a statistic for coordinated

trading and herding among investors, compare e.g. Wermers (1999), Dorn et al.

(2008) and Kremer and Nautz (2013a) to name but a few. The LSV measure can

be calculated for any desired time horizon � in our case a day. For each stock

i in the considered cross-section I, the daily stock-speci�c LSV measure is given

by

LSVi = |bri − p| −AFLSVi , (3.1)

where bri = # buysi/# tradesi = Bi/Ti is the observed buy ratio in stock i and

p is the expected proportion of traders buying, where p is estimated by p̂ =∑
iBi/

∑
i Ti. AF

LSV
i is an adjustment factor to account for random deviations

of bri from p and is given by

AFLSVi := Eζk |
k

Ti
− p|

=

Ti∑
k=0

ζ(k|Ti, p)|
k

Ti
− p|,

(3.2)

where ζ(k|·) is the Binomial distribution.11 The design of AFi essentially entails

the view that the number of buys under independent trading, Bτ , is binomially

distributed with success probability (buy propensity) p, compare Wermers (1999).

11A closed form solution for the expectation is given by 1
Ti
Eζk |k − p Ti| = 1

Ti
2(1 −

p)Ti−bTipcpbTipc+1(bTipc+ 1)
(

Ti
bTipc+1

)
(see Diaconis and Zabell 1991).
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At �rst glance, this seems to be very much line with the distribution of the

buys under independent trading in our model, see Section 3.2.2. A closer look,

however, reveals that the LSV implied distributional assumption under indepen-

dent trading is far more restrictive than in our model framework. While our

model allows for stock speci�c buy-ratios under independent trading b̃ri, the LSV

approach implicitly assumes that p is the same across stocks.

This appears to be somewhat rigid to be applicable to real-world trading

contexts. Our model as well as practical intuition stipulate that information

signals St and, thus, trade decisions under independent trading are subject to

stock-speci�c variables Vi. Idiosyncratic determinants of say, an automotive

stock and the stock of a �nancial institution may be very di�erent on any given

trading day.12 This implies, that we should expect idiosyncratic buy ratios under

independent trading b̃ri for di�erent stocks. Approximating the b̃ri through a

single p will, hence, prove inaccurate. More precisely, the LSV measure will tend

to overestimate investor coordination as it registers excess dispersion of observed

buy ratios due to stock idiosyncrasies as deviations from independent trading.

A second issue associated with the LSV approach is that p̂ is based on all trades

of the respective time interval of interest. The estimation, therefore, includes

trades that may have deviated from the independent trading decision. In order

for p̂ not to be biased into the direction of the non-independent trades, those

trades need to cancel each other out across the cross-section, i.e.
∑

i εi = 0. Yet,

investor coordination may be aligned across stocks. Consider our model for two

stocks and assume that b̃r1 = b̃r2 = 0.5 and br1 = br2 = 0.7, then there is a

strong deviation from independent trading. Yet, calculating the respective LSV

measures yields LSVi = −AFi < 0.13 We cannot assume in general that the

stock-speci�c deviations εi cancel each other out in the cross-section. As the

example illustrates, the LSV measure tends to underestimate investor

coordination if
∑

i εi 6= 0.

12Even more so during the recent �nancial crisis which is investigated in Paper 4.
13Lakonishok et al. (1992) themselves state that their measure does not capture the case when

investors enter or leave the market as a whole.
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This casts considerable doubt on whether the LSV measure reliably detects

investor coordination or herding.

3.3.2 A New Measure for Investor Coordination

Based on the previous discussion, we propose to modify the LSV approach in

the following two ways. (1) In line with our model, stock-speci�c buy ratios

under independent trading should be taken into account. (2) The estimation of

the independent buy-ratios should be based only on those trades which are

indeed likely to be independent.

Modi�cation (1) leads us to the following measure

L̃SV i = |bri − b̃ri| −AF L̃SVi , (3.3)

where bri is the observed buy ratio in stock i as before and b̃ri is the stock-speci�c

true unknown buy ratio under independent trading. AF L̃SVi is the corresponding

adjustment factor and is given by

AF L̃SVi := Eζk |
k

Ti
− b̃ri| =

Ti∑
k=0

ζ(k|Ti, b̃ri)|
k

Ti
− b̃ri|. (3.4)

ζ(k|·) again stands for the Binomial distribution. Since we do not observe b̃ri,

it remains to be shown how we can estimate the b̃ri subject to modi�cation (2).

That is, we need to develop a view on which trades are likely to be independent.

Market microstructure theory tells us that at the outset of the trading pro-

cess, deviations from independent trading are less likely to occur (see Proposition 7

in Avery and Zemsky (1998)). For a trader to change her opinion, there has to be

a su�cient amount of information that she can infer from the preceding trades.

This is unlikely to be the case if only a few trades have been executed. In the

extreme, starting with the �rst trade, no other trade could have been observed

that could have in�uenced the decision of the �rst trader.14

14The �rst trade is always the one that the researcher de�nes to be the �rst trade. Anything
that happened before that trade will enter either St or p0 in Figure 3.1 and, thus, is part of the
traders' prior, compare again Park and Sabourian (2011).
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Based on these insights we formulate the following

Assumption 3.1. The �rst few τi trades in any stock i on a particular day, are

carried out independently.

In our model context, this means that given the number of trades in stock i, Ti,

on a particular day, there exists a τi, 1 ≤ τi ≤ Ti, such that the number of buys

in stock i until τi, B
τi
i |b̃ri ∼ Bino(τi, b̃ri).

A naive estimator for b̃ri is e.g. Bτi
i /τi. According to Assumption 3.1,

however, τi should be chosen as low as possible. Moreover, we cannot utilize the

cross-section to increase the number of observations to estimate b̃ri as the

independent buy-ratios are generally di�erent across stocks. Yet, if based on

small τi, estimators such as Bτi
i /τi are too noisy to conduct meaningful inference

on them. Consequently, L̃SV i from Equation (3.3) cannot be estimated directly.

We will show, however, that the distribution of b̃ri can be estimated reliably

under the following

Assumption 3.2. On each day, the buy ratios under independent trading b̃ri are

iid beta distributed, i.e. b̃ri
iid∼ Beta(α, β) ∀i ∈ I.15

This assumption is equivalent to the number of buys under independent trading

being iid Beta-Binomially distributed, i.e. Bτi
i

iid∼ BetaBino(τi, α, β) ∀i ∈ I. We

test whether the distributional assumption of Bτi
i implied by Assumption 3.2

holds for real-world trade data in Paper 4. The test results provide strong

evidence that Assumption 3.2 is reasonable. Correspondingly, the test rejects

the LSV implied assumption that b̃ri ≡ p.16

Assumptions 3.1 and 3.2 together prompt us to modify L̃SV i further to obtain

15Details on the Beta distribution are provided in the Appendix.
16We would like to stress that our method does not depend on any speci�c distributional

assumption for the b̃ri. If the data reject parametric models, one can describe the distribution
of b̃ri by a non-parametric density estimator.
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our new measure for investor coordination � the expected deviation from

independent trading. It is de�ned by

Hi = Efp |bri − p| − ÃF i

=

∫ 1

0
f(p|α, β)|bri − p|dp− ÃF i,

(3.5)

where bri = Bi/Ti is the observed buy ratio as above and f(·|α, β) is the Beta

density.17 ÃF i is an adjustment factor to center the expectation of Hi over zero

if in fact all trades were carried out as under independent trading in line with

Assumption 3.2. It is given by

ÃF i = EfpEgk |
k

Ti
− p|

=

∫ 1

0
f(p|α, β)

Ti∑
k

g(k|Ti, α, β)| k
Ti
− p|dp (3.6)

=

∫ 1

0
f(p|α, β)

∫ 1

0
f(p̃|α, β)

Ti∑
k=0

(
Ti
k

)
p̃k(1− p̃)Ti−k| k

Ti
− p|dp̃ dp,

where g(k|·) is the Beta-Binomial distribution. Note that ÃF i corrects for two

sources of randomness. First, as for the LSV measure, we observe only a �nite

number of trades. That is, even if each single trade has been drawn from a

Bernoulli distribution with the success probability of a buy equal to the

independent buy-ratio, there is a positive chance that the observed Bi/Ti is not

equal to the independent buy-ratio. In addition, the true independent buy-ratio

b̃ri may deviate signi�cantly from any p ∈ [0; 1], because according to

Assumption 3.2, it's value is itself a random variable drawn from the Beta

distribution.

Since we do not know the parameters of the independent buy ratio distribution,

we need to estimate them. This leads to the question whether we can estimate

our new measure Hi consistently and without bias even for �nite cross-section

sizes I.

17The Beta density is given by pα−1(1− p)β−1/
∫ 1

0
uα−1(1− u)β−1du with α, β > 0.
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3.3.3 Estimating Hi

To estimate Hi, we have to estimate the distribution of the independent buy-

ratios, that is, α and β. Since according to Assumption 3.1 and 3.2, Bτi
i ∼

Beta-Bino(τi, α, β), we can obtain estimators for α and β via maximum likeli-

hood (ML). More precisely, we get α̂, β̂ = arg max
α,β

L (Bτi
i |τi, α, β), where L (·)

is the log-likelihood function on data {(Bτi
i , τi)}. A closed-form solution to the

maximization problem does not exists, but one can use numerical methods such

as Newton-Raphson.18 Replacing α and β in equations (3.5) and (3.6) by their

ML estimates yields ĤI
i , which has the following properties:

Proposition 3.1. Let I be the number of stocks in the considered cross-section,

then ĤI
i consistently estimates Hi, i.e. plim

I→∞
ĤI
i = Hi.

Proof: The maximum likelihood estimators, α̂, β̂, of the Beta-Binomial

distribution are consistent estimators (Garren 2004, p. 240). Since moreover,

Ef̂p |bri − p| and ˆ̃AFi = Ef̂pEĝk |
k
Ti
− p| are both compositions of continuous

functions in (α̂, β̂), the continuous mapping theorem implies, that both

quantities converge in probability to Efp |bri − p| and ÃF i respectively as

I →∞. Hence, we have consistency of ĤI
i .

A similar consistency result can be derived if one does not want to restrict

oneself to a particular family of distributions and uses kernel density estimation

instead. A multitude of consistency results is available for kernel density

estimators, see e.g. Parzen (1958), Silverman (1978) and Epanechnikov (2006).

With such results at our disposal, Proposition 3.1 can be restated if the

respective kernel density estimators are employed.

Also note that Proposition 3.1 also holds for the cross-sectional average of

the ĤI
i , i.e.

ˆ̄H =
∑I

i=1 Ĥ
I
i .

19

18We use the �xed-point iteration algorithm of Minka (2012) with a maximal number of
iterations equal to 3000.

19For the remainder of this paper we drop the index I for any estimator for notational conve-
nience.
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Putting our method into action requires a choice of τi. Pointing to the precise

moment when traders start to go against their private information amounts to

uncover the latent private information itself. In line with Assumption 3.1,

however, a conservatively small choice of τi, but large enough for the

Beta-Binomial estimation to make any sense should su�ce.20 By means of

simulation, we �nd that τi = 10 is already large enough to provide good

estimates.

For τi = 10, we �nd that Ĥi is unbiased even for �nite I, i.e.

(
∑I

i=1 Ĥ
I
i − Hi) ≈ 0 for I < ∞. This property has been shown by means of

numerical simulations for I ≥ 75. The simulation results are provided in the

Appendix of this paper.

Now that we have an operational alternative to the LSV approach to measure

deviations from independent trading, we want to provide a more detailed

comparison of the two approaches.

3.4 LSV Versus H � a Comparison

The literature using the LSV measure typically interprets their �ndings based

on the cross-sectional mean LSV =
∑

i LSVi/I rather than the stock speci�c

measures discussed in the previous section, compare e.g. Wermers (1999) or Dorn

et al. (2008).21 The reason for this is that the stock-speci�c measures LSVi

may become high (or low) due to randomness only. The same is true for our

measure.22 This section, thus, focuses on the comparison of the cross-sectional

average measures, i.e. H̄ =
∑

iHi/I and LSV .

20The precise meaning of �small�, hereby, depends on the empirical context regarding, e.g.
sampling frequency and the de�nition of a trade. One may be interested in counting each
transaction as a single trade, others may be interested in aggregating single transactions into
the orders that induced them, or even aggregating transactions of single traders into their net-
positions over a certain time interval. Those choices a�ect the amount of data available at any
point after the start of trading and, thus, after information starts to accumulate in the market.

21In fact, the corresponding works often not only average over the cross-section of stocks but
also over time.

22See Section 3.6.B in the Appendix for a detailed discussion of this matter.
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Our analysis is conducted in two steps. First, we show that our approach is a

generalization of the LSV approach. Second, we quantify the di�erences between

the two measurement approaches through a simulation study.

3.4.1 Our Approach is a Generalization of the LSV Approach

This result is formalized in the following

Proposition 3.2. If the buy ratios under independent trading are the same for all

stocks and deviations under dependent trading cancel each other out over the con-

sidered cross-section of stocks, then our approach and the LSV approach asymp-

totically render the same degree of dependent trading, i.e.:

If b̃ri ≡ p∗ ∀i ∈ I and
∑I

i=1 εi = 0, then plim
I→∞

Ĥi = plim
I→∞

L̂SV i, where L̂SV i is

the estimated LSV measure.

Proof: If b̃ri ≡ p∗ ∀i ∈ I, then in distributional terms, we have b̃ri ∼ δp∗ iid,

where δ· is the dirac-measure. Noting that lim
α,β→∞

Beta(α, β) = δ· and re-invoking

the consistency of the maximum-likelihood estimator arg max
α,β

L (Bτi
i |τi, α, β) =

(α̂, β̂), we infer that α̂, β̂ →
I→∞

∞, and

lim
I→∞

α̂

α̂+ β̂
= lim

I→∞

∑I
i=1B

τi
i∑I

i=1 τi
= p∗.

As a consequence, we have that fp(α̂, β̂) →
I→∞

δp∗ and, hence,

plim
I→∞

Ĥi = Ef̂p |bri − p| −
ˆ̃AFi

= |bri − p∗| −
Ti∑
k=0

(
Ti
k

)
(p∗)k(1− p∗)Ti−k| k

Ti
− p∗|. (3.7)

Noting, that
∑I

i=1 εi = 0 implies, that p∗ = plim
I→∞

∑
iBi∑
i Ti

, we conclude that the

last line of Equation (3.7) equals plim
I→∞

L̂SV i, which is the desired result.
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Proposition 3.2 states that our measure is equal to the LSV measure if the LSV

assumptions hold. The reverse of the statement is also true for most of the cases.23

If the LSV assumptions do not hold, our measure H is generally very di�erent

from the LSV measure.

Before we quantify these di�erences in a simulation study, however, two ad-

ditional remarks are in order. First, the result of Proposition 3.2 generalizes to

any distributional assumption for the b̃ri, as long as we can estimate the dis-

tribution consistently. Second, Proposition 3.2 also holds for the cross-sectional

averages of Ĥi and L̂SV i.24

3.4.2 Quantifying the Di�erences Between our Measure H and

the LSV Approach - A Simulation Study

3.4.2.1 Simulation Setup

We simulate trade data based on our trading model from Section 3.2. The sim-

ulation is designed to resemble the real-world conditions we face in Paper 4. We

simulate a basket of 75 stocks over D = 250 trading days (=1 year). In line with

Assumption 3.1, we assume that the �rst τ = 10 trades are always conducted

independently.

The stock-speci�c buy ratios under independent trading are b̃ri
iid∼

Beta(α, β) with mean equal to 0.5, i.e. α = β. For each trading day α and β are

drawn from the uniform distribution U [2; 10].25 The number of observed trades

Ti is randomly drawn from {50; 51; . . . ; 500} for each stock and day re�ecting

that stocks are traded with (very) di�erent intensity.

23One could, however, construct unlikely scenarios, where the reverse is not true. To see this,
consider some Ti and α, β <∞. Hi attains it's minimum if bri = Median(b̃ri). This minimum
is less than minus the adjustment factor of the LSV measure, i.e. < −AFi. Now note that
LSVi = −AFi if for any c ∈ (0; 1), the observed buy ratios are bri ≡ c for all i ∈ I. Moreover,
∃bri ∈ (0; 1) such that Hi > 0. Since Hi is also continuous in bri, the intermediate value theorem
implies that ∃c∗ ∈ (0; 1) such that Hi = −AFi if bri = c∗ and, thus, Hi = LSVi even though
the conditions of Proposition 3.2 are not met.

24A version of Proposition 3.2 can be formulated for the theoretical measures Hi and LSVi
and the respective cross-sectional averages as well.

25These parameterizations are in line with the empirical �ndings in Paper 4. We emphasize
that the Beta distribution is supported by the real-world data. Moreover, this distribution is only
moderately skewed (α ≈ β), yet highly disperse (α, β small) on most of the days. Independent
trade behavior varies between di�erent days for each stock.



58 Third Paper

For each day, actual trading after trade number 10 is either dependent for

all stocks with 0.5 probability or independent for all stocks with 0.5 probability.

This is done for illustrative purposes to avoid less interesting scenarios of low

average deviations from independent trading. Those scenarios are considered in

separate simulation setups, see below.

We conduct the described simulation for three stylized panels of dependent

investor behavior - (A) herding, (B) shift in mean and (C) contrarianism.26

Panel (A), herding, is simulated by choosing the deviation from independent

trading εi from min{1− b̃ri;U [0.2; 0.5)} and max{−b̃ri;U (−0.5;−0.2]} with 0.5

probability respectively given that there are deviations from independent trad-

ing.27 Since bri ∼ b̃ri + εi, this implies that the distribution of the bri is more

disperse than the distribution of the b̃ri. In other words, we observe on average

more extreme buy ratios than we would expect under independent trading. As

outlined in the modeling section this is consistent with crowd-following behavior

and, thus, herding.

We simulate Panel (B), shift in mean, in the same way with the only dif-

ference that εi > 0, i.e. εi = min{1 − b̃ri;U [0.2; 0.5)}, now occurs with 0.8

probability given that there is a deviation from independent trading. Conse-

quently, 0 > εi = max{−b̃ri;U (−0.5;−0.2]} only happens with 0.2 probability.

Since bri ∼ b̃ri + εi, the observed buy ratios are on average higher than the buy

ratios under independent trading, i.e. E[bri] > E[b̃ri].28 By the same line of rea-

soning as before one could argue that such a deviation from independent trading

is again due to investor herding. A broadly, cross-sectionally aligned change in

trade behavior is, however, also an aspect in favor of market-wide e�ects that

have changed the trading environment altogether. For instance, an unexpected

decrease of interest rates or a terror attack may dramatically alter the traders'

information structure S or even shift the stock's fundamental value V , which

will lead to di�erent trade behavior even if traders are not in�uenced by the ac-

26The di�erent setups are also illustrated and discussed in further detail in Figure 3.5 in the
Appendix.

27U again denotes the uniform distribution.
28Note that the dispersion of the bri is also di�erent from what is expected under independent

trading. The dominating e�ect, however, is the shift in mean.
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tions of others or recent stock price movements. Whether a shift in mean in fact

constitutes dependent trading can only be revealed through additional analyses.

Finally, Panel (C), contrarianism, is simulated by setting

εi = (0.5 − b̃ri) × U [0.2; 0.5). This ensures that the distribution of the b̃ri

constitutes a mean-preserving spread of the distribution of the bri. More

precisely, the observed buy ratios cluster much closer around 0.5 than the buy

ratios under independent trading. In the model section, we have argued that

this is consistent with some of the traders acting against the crowd and, hence,

contrarianism.

In line with the literature, we evaluate the performance of the cross-sectional

mean measures L̂SV =
∑

i L̂SV i/I and ˆ̄H =
∑

i Ĥi/I. They are calculated for

each trading day in each panel based on the simulated trade data. For each

panel, we analyze whether the measures separate the particular form of

dependent trading from the null of independent trading. To gauge whether the

measures pick up the extent of dependent trading, we analyze the correlation

between the respective measure and the true deviation from independent

trading, given there is dependent trading. Since we know the true b̃ri in our

simualtion, we can use L̃SV =
∑I

i=1 L̃SV i/I, where L̃SV i is from Equation

(3.3), to proxy true deviation from independent trading.29

Further simulation setups include

• low deviations from independent trading, i.e.
∑I

i=1 |εi| small,

• larger cross-sections, i.e. I ∈ {250, 500, 1000, 2000, 4000, 8000, 16000},

• di�erent distributional assumptions for b̃ri, i.e.

� skewed distributions, that is, α 6= β,

� less disperse distributions, that is, α, β > 20,

29Note that as a proxy for true deviations from independent trading, L̃SV is slightly downward
biased due its adjustment factor. At the given degrees of ε and the number of observed trades
per stock and day, however, this downward bias is vanishingly small. Indeed, we �nd correlations

of > 0.99 between L̃SV and the share of dependent trades.
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• stronger shift in mean, that is, the probability that the observed buy ratio

increases is chosen > 0.8.

They render qualitative results that are similar to the main study. A brief dis-

cussion of the most important particularities of the respective setups is provided

in Section 3.4.2.3 after the main study the following section.

3.4.2.2 Simulation Results - Main Study

Table 3.1 reports the results of our simulation. Key insights regarding the LSV

measure can be derived from columns 1 and 7. Column 1 shows, that the estimated

cross-sectional mean LSV measure, L̂SV , is not centered over 0 under the null of

independent trading. Column 7 shows, that the L̂SV is not correlated with the

degree of true deviation from independent trading. Both insights hold for all forms

of dependent trading (i.e. Panels A-C). Hence, under the given assumptions the

LSV measure does not reliably detect the days, where deviations from independent

trading occur.30

The fact, thatL̂SV is always positive casts serious doubts on the validity of

the �ndings published in the literature that uses the LSV measure. Our simulation

study shows that a persistently positive L̂SV is likely to be a statistical artifact

of the violation of the LSV assumptions.

At face value the LSV measure compares the observed deviation from

independent trading |bri − p| to the to be expected one due to random variations

governed by a Binomial distribution, see Equation (3.2). Any excess dispersion

of the observed buy ratios bri that cannot be explained by the Binomial

distribution is registered as investor coordination via positive L̂SV . In the

present simulation study, however, we know by design that this excess dispersion

is to a strong degree due to the idiosyncratic b̃ri (solely due to the idiosyncratic

b̃ri under independent trading).

The performance of our measure is considerably better. A �rst striking �nding

30Despite the fact that the LSV measure is signi�cantly larger under dependent trading than
under independent trading in Panels A and B we cannot derive reliable cut-o� points to dis-
tinguish dependent from independent trading. This is because the realizations of the LSV vary
under dependent as well as independent trading for di�erent simulation setups.
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Panel A - Indep. Trading Dep. Trading Corr with

Herding Mean Std 95% Mean Std 5% True Dev. (L̃SV )

L̂SV 0.097 0.028 0.148 0.194 0.018 0.168 −0.058
(0.497)

ˆ̄H 0.003 0.014 0.028 0.085 0.030 0.035 0.276
(0.000)

# Observations 109 141 141

Panel B - Indep. Trading Dep. Trading Corr with

Shift in mean Mean Std 95% Mean Std 5% True Dev. (L̃SV )

L̂SV 0.092 0.026 0.145 0.180 0.019 0.153 0.123
(0.169)

ˆ̄H 0.005 0.015 0.028 0.082 0.025 0.038 0.421
(0.000)

# Observations 124 126 126

Panel C - Indep. Trading Dep. Trading Corr with

Contrarianism Mean Std 5% Mean Std 95% True Dev. (L̃SV )

L̂SV 0.083 0.028 0.051 0.085 0.029 0.136 −0.054
(0.556)

ˆ̄H -0.003 0.013 -0.021 -0.003 0.015 0.023 −0.472
(0.000)

# Observations 121 129 129

Table 3.1: Realizations of ˆ̄H and L̂SV for simulated trade data

Notes: This table reports summary statistics for our measures for coordinated trading ˆ̄H and

L̂SV . We simulate three stylized forms of dependent investor behavior and report the results
in three separate panels - (A) herding, (B) shift in mean and (C) contrarianism. For each
panel, columns 1 to 3 report mean, standard deviation and relevant cut-o�s of the empirical
distributions of the measures under independent trading. Columns 4 to 6 do so under the
panel-speci�c type of dependent trading. Finally, column 7 reports the correlation between
the measure and true deviation from independent trading, given that trading is dependent. P-
values for signi�cance of the correlation are reported in parentheses. Deviation from independent

trading is approximated by L̃SV =
∑I
i=1 L̃SV i/I, where L̃SV i is from Equation (3.3).
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is that the cross-sectional mean estimate of our measure, ˆ̄H, is positive under

herding and shifts in mean (Panels A and B). It tends to become negative under

contrarianism (Panel C).31

Columns 1 and 7 of Table 3.1 show that ˆ̄H is centered at 0 under the null

and is signi�cantly related to true deviations from independent trading. We note

that in Panel C (contrarianism), the correlation with true deviation is negative.

This is intuitive, since the (absolute) deviation from independent trading is non-

negative by de�nition. Since contrarianism becomes manifest in values of ˆ̄H < 0,

we expect ˆ̄H to become more negative, the more pronounced the contrarianism,

i.e. the higher the (absolute) deviation from independent trading.

We also observe that the correlation between ˆ̄H and true deviation from

independent trading is only half as strong in the Herding Panel as in Panels B

and C. This is due to the fact that some stock-speci�c deviations from independent

trading are more consistent with contrarian tendencies. This dilutes the measured

cross-sectional average deviation to some extend and makes it prone to noise-

induced distortions (if I is small). If we had ensured stock-wise herding, that is

if we had imposed buy (sell) deviations if and only if b̃ri > 0.5 (b̃ri < 0.5) for all

i, then the correlation in Panel A would be signi�cantly higher.

Comparing columns 1-3 with 4-6 in Panels A and B, we see that ˆ̄H does

well in separating days with independent trading from those with dependent

trading. In Panel C, however, this is not the case. This is due to the fact, that

our simulation design implies much smaller deviations from independent trading

in Panel C (0.005 on average) than in Panels A and B (0.147 on average). If low

numbers of stocks in the cross-section (e.g. I = 75 as in Table 3.1) meet low

degrees of deviation from independent trading, then ˆ̄H has di�culties to

distinguish between systematic deviation from independent trading and noise.

This is not of great concern, however, since minor deviations from independent

trading should bear little potential of distorting prices. Moreover, if the

cross-section of stocks is increased to ≥ 500, ˆ̄H separates dependent and

independent trading days much better even if the true deviation from

31See Section 3.6.B in the Appendix of this paper for a more detailed explanation of this
�nding.
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independent trading is as low as in Panel C.32

We conclude that under the speci�ed assumptions of our simulation study our

approach is much better suited to identify deviations from independent trading

than the LSV approach. We stress that we obtain such favorable results using ˆ̄H

despite the fact that the distribution under independent trading is estimated

from only 10 trades.

3.4.2.3 Qualitative Di�erences for Other Simulation Setups

Lower Average Deviation from Independent Trading: In line with the

results of Panel C in the previous section, lower average deviation from indepen-

dent trading impedes our measureH from separating dependent from independent

trading, if I is also low. The correlation between ˆ̄H and true deviation from inde-

pendent trading is also lower or even insigni�cant, if the average deviation from

independent trading is very low. The LSV measure performs comparable to Panel

C from the previous section.

Di�erent Cross-Section Sizes I: Both measures' capability to separate de-

pendent from independent trading increases, as the cross-section I increases. If

I ≥ 500, even small deviations from independent trading are detected and both

measures are signi�cantly correlated with the true deviation of independent trad-

ing, given that there is dependent trading. Yet, regardless of I, the LSV measure

remains centered over values c > 0 under independent trading.

Di�erent Distributional Assumptions: The center of L̂SV under indepen-

dent trading shifts closer to 0 as α and β are chosen larger, i.e. if the dispersion

of the buy ratios under independent trading becomes smaller. In line with our

theoretical discussion, the LSV measure will only center over 0 under independent

trading as α and β go to ∞.

If the distribution of the b̃ri is skewed, i.e. if α 6= β, then the performance

of our measure is slightly impaired while the correlation between L̂SV and true

32Note that the cross-sections of stocks considered in the literature frequently exceed 1000
stocks, see for instance Wermers (1999) and Dorn et al. (2008).
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deviation from independent trading improves slightly. This is because the opposite

e�ects of the biases of the LSV measure work in it's favor. For skewed distributions

under independent trading the likelihood of |
∑

i εi| >> 0 increases and so does

the associated downward bias of the LSV measure. This partially compensates

for the upward bias due to the wrong distributional assumption, compare Section

3.3.1.

Stronger Shift in Mean: The LSV measure has particular di�culties for the

shift in mean case. If we assume an even stronger market wide shift, i.e. choose

the probability of a buy side deviation > 0.9 instead of 0.8, L̂SV attains the

same range of values regardless of whether |ε| = 0 or |ε| > 0. In extreme cases,

L̂SV may even become smaller under dependent trading than under independent

trading. This is because the downward bias due to
∑I

i=1 εi 6= 0 becomes stronger

as the shift in mean is more pronounced negating or even over-compensating

possible increases in the measure due to excess dispersion of the observed buy

ratios.

The performance of our measure H is not a�ected by changes of this

parameter.

We stress that the most important insights from the main study remain intact.

That is, our measure is centered over zero under the null and separates well

between dependent and independent trading. It is signi�cantly correlated to the

true deviation from independent trading. The LSV does not center over zero

under the null and does not generally separate between dependent and

independent trading. The LSV's relation to true deviation from independent

trading depends on the particular setup.

3.4.2.4 Does H̄ Indicate Market Ine�ciencies?

Before we conclude, we want to brie�y discuss whether H̄ indicates potential

price distortions or unstable markets. Park and Sabourian (2011) emphasize that

contrarianism and herding alike may impair the e�cient functioning of �nancial

markets. We have argued, however, that contrarianism coincides with moderate
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trader accumulation on either side of the market. It would follow that stock price

movements are also bounded in markets prone to contrarianism, compare Paper

5 of this thesis. We, thus, conjecture that H̄ < 0 hardly indicates economically

relevant intra-day price-distorting investor behavior. If the considered time period

is longer - for instance, quarters or even years - this assessment might have to be

revised, as persistent contrarianism might prevent asset prices from adjusting

su�ciently to correctly re�ect the stock's fundamentals.

If H̄ = 0, this indicates that there is no deviation from independent trading,

which we have argued to be informationally e�cient in Section 3.2. Consequently,

we do not expect adverse e�ects of investor behavior on market e�ciency in this

case.

This is di�erent for the case of herding. Extreme buy ratios indicating strong

trader accumulations on either side of the market have the potential to amplify

stock price movements and, if decoupled from the assets' fundamentals, may lead

to signi�cant price distortions, again compare5 of this thesis. If H̄ is positive due

to a shift in mean, this suggests investor coordination across assets. Such a broad

correlation of trade behavior bears particular potential for market destabilization.

As a consequence, we operate under the hypothesis that only a H̄ > 0 warrants

a more detailed look at what has been going on during a particular trading day.

3.5 Conclusion

This paper contributes to the literature on herding in �nancial markets by provid-

ing an improved measure to assess coordinated investor behavior. As a starting

point we consider the highly celebrated measure for correlated trading of Lakoni-

shok et al. (1992). We argue, however, that the assumptions implied by the LSV

approach are too restrictive to hold in real-world trading settings. Based on a

modi�cation of the LSV assumptions, we design a new measure for investor coor-

dination. Our theoretical analysis and a simulation study reveal that our measure

can distinguish between herding (signi�cantly positive sign), contrarianism (sig-

ni�cantly negative sign) and independent trading (no signi�cant deviation from

0), even when the considered cross-section of stocks is small.
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We emphasize, however, that signi�cant deviations of our measure from zero

are only necessary for coordinated investor behavior but not su�cient. In other

words, a realization of H of greater than 0 merely indicates correlated trading

and, hence, potentially price destabilizing investor behavior. While such evidence

warrants a closer look at the market, it is by no means su�cient proof that

market e�ciency or stability is threatened. In the case of H ≤ 0, on the other

hand, we can con�dently claim that there is no conspicuous or dangerous investor

coordination. H = 0 constitutes strong evidence for independent trading, while

contrarianism � as indicated by a negative H � has a moderating e�ect on stock

price movements and is unlikely to cause distortions in an intra-day context.

The view that independent trading is a desirable outcome is based on the

assumption that the information used to make trade decisions is related to the

asset's fundamental value. This is not to say, however, that one should generally

rule out the possibility that information acquisition is ine�cient (Froot et al.

(1992)) or that the available information itself is �awed. These considerations,

however, constitute a di�erent question namely on the e�ciency of investors'

information management prior to trading, but not on the e�ciency of the trading

behavior. Developing statistical methods to answer this question could be an

interesting avenue for future research.

When applying the LSV measure to the same simulated data as our

measure, we �nd it to be signi�cantly positive even if trades are carried out

independently. This is due to the violation of the LSV implied assumption that

under independent trading the investors' buy propensities are the same across

all stocks in the considered cross-section. We show that the positivity of the

LSV is solely due to stock idiosyncrasies but not due to investor coordination.

This casts serious doubt on the validity of the results presented by the literature

employing the LSV measure.

The natural next step is to apply our measure to real world transaction data.

This is done in Paper 4. The key objective is to con�rm the validity of the

assumptions of our measurement approach and at the same time to check

whether the Lakonishok et al. (1992) implied assumptions are violated. This can
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be used to solidify our doubts regarding the applicability of the LSV as a

measure for coordinated trading. In addition, we analyze whether the

theoretical intuition of an association of our measure with contrarianism and

herding, respectively, translate to an actual trading environment.
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3.6 Appendix

The Appendix is structured as follows. First, we provide numerical evidence that

the estimators of our new measure H are unbiased even for small cross-sections,

given that Assumption 3.1 and 3.2 hold.

Second, we provide a detailed discussion, why a positive H can be associated

with herding while a negative one relates to contrarianism. We also highlight

under which conditions establishing such a link is not feasible.

The Appendix concludes with a small fact pact regarding the Beta distribu-

tion summarizing it's most important properties for our application.

3.6.A Unbiasedness of Ĥ

This section shows the unbiasedness of the estimators Ĥi and ˆ̄Hi for the respective

theoretical measures even for �nite cross-sections I. The results are obtained by

means of numerical simulation and summarized in Figure 3.2.

Figure 3.2 (a) shows the bias, Hi − Ĥi, as a histogram for D = 250 times I

observations. The upper panels do so for independent trading, the lower panels

for dependent. The simulation setup is as in Section 3.4.2.1 for Panel A. The

cross-section increases from the left to the right from I = 75, over I = 250 to

I = 16000. As stated in Section 3.3.3, we see that the estimation is unbiased

even in small samples and for both cases of zero and under dependent trading.

Moreover, the variance in the estimator almost vanishes for I = 16000. The same

observation applies to Figure 3.2 (b), which plots histograms of the bias H̄ − ˆ̄H

for those cross-sections where traders act independently in the upper panels and

they trade dependently in the lower panels.33

We conclude that the �nite sample unbiasedness of estimator ˆ̄H holds numer-

ically. We would like to emphasize that we obtain these results despite estimating

α and β from only 10 trades.

33The results are the same for all other simulation setups described in Section 3.4.
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(a) Bias of single stock estimators H̄i

(b) Bias of cross-sectional mean estimators ˆ̄H

Figure 3.2: Estimation bias for estimators of H

Notes: This �gure shows histograms of the biases Hi−Ĥi in (a) and H̄− ˆ̄H in (b). The abscissas
show the bins for the realizations of the mentioned di�erences. The number of bins is always
10, the bin size is determined by the most extreme realizations of the respective biases.
The upper panels (rows one and three) show the results under independent trading, the lower
panels (rows two and four ) the results under dependent trading. Hi and Ĥi are obtained from
simulating 250 × I observations where I ∈ {75, 250, 16000} (left,middle,right). The simulation
setup is as for Panel A of Table 3.1, see Section 3.4.2.1 for details.
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Figure 3.3: Distribution of b̃ri for α = 3 and β = 4 and corresponding Hi

Notes: The �gure shows a Beta distribution with α = 3 and β = 4 and the resulting Hi, as
well as Hi + ÃF i for Ti = 150 as function of bri. At bri = 0.13, indicated by the red line, Hi is
approx. 0.1.

3.6.B Distinguishing Between Herding and Contrarianism - In-

terpreting our Measure H

This section discusses in further detail why positive realizations of the cross-

sectional mean measure H̄ can be associated with herding and shift in means while

negative realizations should be associated with contrarianism. We highlight that

these mappings only work if the distribution of the buy ratios under independent

trading is not too extremely skewed. We �rst discuss the stock-speci�c measure

Hi before focusing on the cross-sectional average measure H̄ =
∑

iHi/I.

3.6.B.1 Associating Stock-Speci�c Hi with Herding and

Contrarianism

By considering the stock-speci�c measure we want to illustrate two things.

First, we want to highlight for which realizations of bri, Hi takes positive and

negative values respectively. Second, we want to show under which conditions

the di�erent signs of Hi can be associated with herding and contrarianism.
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In line with Asummption 3.2, Hi depends on four parameters � the

distributional parameters of the buy ratios under independent trading, α and β,

the number of trades Ti and the observed buy ratio bri. We take α, β and Ti as

given because we want to understand how Hi depends on bri and, thus, how it

can be linked to herding and contrarianism.

Let us assume that the buy ratios under independent trading b̃ri are iid

Beta(3, 4) distributed and that Ti = 150. The upper graph of Figure 3.3 shows

the corresponding distribution of the b̃ri. The lower graph depictsHi as a function

of the observed buy ratio bri. Hi is negative for moderate bri, i.e. bri that are

relatively close to 0.5. Hi is positive for extreme bri, that is, observed buy ratios

close to 0 or 1.

During our model discussion in Section 3.2 we argued that we expect ex-

treme buy ratios under herding and moderate ones under contrarianism. This

implies that a positive Hi indicates herding, while a negative Hi suggests that

contrarianism is more likely given that there is deviation from independent trad-

ing.

While such an interpretation of Hi is appealing, we must stress that based

on a single Hi we cannot infer that there is deviation from independent trading

in that particular stock, let alone herding or contrarianism. Say, we observe a

buy ratio of 0.13 in the case of Figure 3.3. Then Hi = 0.1 is positive. We also

see from the Beta density in the upper graph that even under independent

trading a bri = 0.13 is not unlikely to occur. If the cross-section of stocks I is

large, we would expect to see some extreme buy ratios even under independent

trading. From a single stock perspective it is, thus, impossible to tell whether

Hi = 0.1 due to systematic deviations from independent trading or because of to

be expected random �uctuations. Only if the cross-sectional average measure H̄

signi�cantly di�ers from zero, we can infer that traders systematically deviate

from independent trading, see the subsequent section. The same argument

applies to the determination whether investors herd or act as contrarians.

Before we discuss the cross-sectional mean measure H̄, however, we must point

out that we need to be particularly careful with the interpretation of our
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Figure 3.4: Distribution of b̃ri for α = 0.7 and β = 3.7 and corresponding Hi

Notes: The �gure shows a Beta distribution with α = 0.7 and β = 3.7 and the resulting Hi, as
well as Hi + ÃF i for Ti = 150 as function of bri.

measure H if the distribution of the buy ratios under independent trading is

very skewed.34

Such a case is depicted in Figure 3.4. Here we have b̃ri ∼ Beta(0.7, 3.7). If

we observe bri = 0.4, our model intuition implies that this indicates contrarian

behavior since under independent trading we would expect to observe on average

buy ratios of 0.16, which are much more extreme than the observed buy ratio bri.

Due to the strong skew of the Beta distribution, however, Hi is now positive for

bri = 0.4. By our previous line of reasoning, this would indicate herding.

Consequently, Hi cannot be related to herding or contrarianism if the skew

in the distribution of the b̃ri is too strong. As a rule of thumb we suggest to

consider the skew to be too strong if Hi > 0 for bri = 0.5. In this case additional

analyses have to be conducted to ascertain the particular type of investor

behavior.35

34The skew of a beta distribution is given by
2(β−α)

√
α+β+1

(α+β+2)
√
αβ

.

35In Paper 4 we �nd that the skewness of the estimated distributions under independent
trading in the German stock market of 2008 are typically moderate. That is, in most of the
cases of our application, a positive H can indeed be associated with herding while a negative H
points at contrarianism. In the few cases where this is not possible a more detailed analysis of
the events of that day is conducted.
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Figure 3.5: H̄ under independent and dependent trading

Notes: The �gure shows Hi as a function of bri = Bi/T for a Beta distribution with α = 3,
β = 4 and T = 150 for all stocks together with di�erent realizations of bri. That is, the abscissas
show di�erent realizations of bri, while the y-axis shows the corresponding Hi(bri).
In the upper-left Panel each bri, i = 1, . . . , 100 is drawn from Beta(3, 4) (independent trading).
In the upper-right Panel each bri is drawn from Beta(18, 24) (contrarianism). In the lower-left
Panel each bri is drawn from Bino(1, 4/3) (herding). In the lower-right Panel each bri is drawn
from Bino(8, 4) (shift in mean).

We continue by discussing the interpretation of H̄ under the assumption that

the distribution of the b̃ri has a su�ciently low skew.

3.6.B.2 Translating the Stock-Speci�c Insights to H̄

We conduct the discussion of H̄ under the assumption that b̃ri are again iid

Beta(3, 4), i.e. the skew of the distribution is su�ciently low to associate positive

Hi with herding and negative ones with contrarianism. We assume that the

considered stock basket consists of I = 100 assets and that T = 150 for all stocks

in the cross-section. In line with our previous discussion, we illustrate three

stylized cases of investor behavior - (a) independent trading, (b) contrarianism

and (c) herding. For independent trading we draw the observed buy ratios bri from

the same distribution as b̃ri. For contrarianism we draw the bri from Beta(18, 24).

Thus, the distribution of the b̃ri constitutes a mean-preserving spread of the
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distribution of the observed buy ratios.36 This, in turn implies that the bri are

less extreme (closer to 0.5) on average than the buy ratios under independent

trading. For herding, we draw bri from Beta(1, 4/3). Hence, the distribution of

the bri now constitutes a mean-preserving spread of the distribution of the b̃ri,

which means the bri are more extreme (farther away from 0.5) on average than

the buy ratios under independent trading.

In addition we consider the special case (d) shift-in-mean, where the

observed buy ratios bri di�er on average from the buy ratios under independent

trading. This case is modeled by drawing bri from Beta(8, 4).

Figure 3.5 illustrates the four stylized cases of investor behavior and the

associated realizations of the Hi. Each Panel plots Hi as a function of bri given

the distribution of b̃ri and T . Note that since α, β and T are the same for all

100 stocks in the cross-section, so is Hi(bri). The Hi(bri) function here

corresponds to the one depicted in Figure 3.3. It is the same in all four panels

since α and β are the same across panels. The observed buy ratios bri,

i = 1, ..., 100 are depicted by the red dots and are drawn according to the

previously described distributions.

(a) Under independent trading we have H̄ = 0: The upper-left Panel of

Figure 3.5 depicts the case of independent trading, i.e. bri ∼ Beta(3, 4). The

adjustment factor ÃF i from Equation (3.6) is designed to center Hi over 0 on

average if trades are actually carried out as if under independent trading. Devi-

ations indicated by the stock-speci�c Hi are merely due to random �uctuations

which cancel each other out in the cross-section. Hence, it is not surprising, that

the resulting H̄ is close to zero in this case.37

(b) Under contrarianism we have H̄ < 0: The upper-right Panel shows the

case of contrarianism. The observed buy ratios bri are less disperse than we would

have expected under independent trading. The concentration of the bri around

E[b̃ri] = 0.43 causes Hi to be negative for almost all stocks in the cross-section.

36The variance of a beta distribution is given by αβ
(α+β)2(α+β+1)

.

37As long as bri ∼ b̃ri holds, H̄
H0−−→ 0 almost surely for I →∞ by the law of large numbers.
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Consequently, H̄ < 0 as well. Since, moreover, Hi(0.5) < 0, the concentration of

bri around E[b̃ri] = 0.43 is in line with the intuition of contrarianism.

(c) Under herding we have H̄ > 0: The lower left Panel shows the case

of herding. The observed buy ratios bri are more disperse than we would have

expected under independent trading. An unusually high number of bri realizes

close to 1 and 0 respectively and we observe only relatively few moderate bri in

the neighborhood of 0.5. Hence, only few Hi are negative and many Hi are much

greater than 0. Consequently, H̄ > 0.

(d) A shift in mean leads to H̄ > 0: In the lower right Panel we have

illustrated the case where the buy ratios under independent trading are lower

on average than the observed buy ratios. This shift in mean causes many of

the stock-speci�c Hi to be positive, which in turn yields a H̄ > 0.38 By the

same line of reasoning as before, one could argue that this apparent deviation

from independent trading is due to investor herding. As already discussed in the

main part, such a broadly aligned change in trade behavior may also indicate

some market-wide e�ect that has changed the trading environment altogether. A

characterization of the investors' trading behavior is only possible if one takes a

closer look on the events of that particular day.

3.6.C Beta Distribution Fact Pack

The Beta distribution is a continuous distribution with support [0; 1]. It is, thus,

well-suited to model the realization of buy ratios. The Beta distribution has two

parameters α > 0 and β > 0 that determine the shape of it's density. The Beta

density is given by pα−1(1− p)β−1/
∫ 1

0 u
α−1(1− u)β−1du.

The expected value of the Beta distribution is given by α/(α + β). It's

variance equals to (αβ)/[(α + β)2(α + β + 1)]. Finally, it's skew is given by

2(β − α)
√
α+ β + 1/[(α+ β + 2)

√
αβ].

Figure 3.6 illustrates how di�erent parameters α, β a�ect the distributional

shape. The larger α, β, the less disperse the distribution and vice versa. As long

38Note that the dispersion of the bri is also di�erent from what we would have expected under
independent trading. The dominating e�ect, however, is the shift in mean.
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Figure 3.6: Di�erent beta densities

Notes: The �gure shows Beta densities for di�erent parameter α and β.

as α = β, the distribution is symmetric around it's mean 0.5. For α = β = 1, the

Beta distribution is identical with the Uniform distribution on [0; 1].

The red dashed graph (α = 3, β = 5) shows a right skewed distribution, while

the brown dotted-dashed line (α = 3, β = 0.5) shows a strongly left skewed beta

distribution. If both parameters are less than 1, the density becomes u-shaped.

Finally note, that if the success probability of a binomially distributed ran-

dom variable X is beta distributed, then X is in fact beta-binomially distributed.



Paper 4

Herding and Contrarianism in the German

Stock Market During the Recent Financial

Crisis1

4.1 Introduction

Our analyses in Paper 3 of this thesis cast serious doubts on the consensus that

the highly celebrated LSV measure for investor coordination of Lakonishok et al.

(1992) is a reliable test whether the necessary condition for herding is ful�lled.

Based on theory-guided arguments and simulated trade data we show that if the

rather restrictive assumptions of the LSV measure are violated, it will generally

be positive due to statistical artifacts and will be unrelated to actual investor

coordination.

Paper 3 proposes a new measure H to overcome the shortcomings of the

LSV. It demonstrates that our measure H correctly distinguishes between

independent trading and di�erent forms of investor coordination in much more

general settings than the LSV measure. The evidence in Paper 3, however,

remains theory-based.

It is, therefore, the goal of this paper to investigate whether the insights

developed in Paper 3 carry over to real world trading data from the German

stock market in 2008.

1This paper was written in collaboration with my co-authors Simon Jurkatis and Pruiya
Abbassi.
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To that end, we calculate the LSV and H measures on a daily basis. For

each day, we test the validity of the distributional assumptions underlying the

respective measurement approaches by using Pearson's Goodness of Fit test.

We �nd strong evidence that supports the distributional assumption asso-

ciated with our measure H. That is, the data suggest that the buy ratios under

independent trading are iid beta distributed across stocks for the �rst 10 trades

of a trading day. In contrast, the data reject in almost all cases the LSV implied

assumption that a Binomial distribution accurately describes the independent

trades.

As we use H to gauge investor behavior in the German stock market, we

�nd that investors predominantly exhibit contrarian tendencies or trade inde-

pendently.2 Herd behavior, on the other hand, is a rare event. If investors do

coordinate in such a fashion, however, they tend to destabilize the market.

In line with the simulation study of Paper 3, the LSV measure always

becomes signi�cantly positive suggesting there is a more or less constant degree

of investor coordination. The overall means ranging from 4.8% to 6.5% are in

line with previous results.3 Given that the distributional assumptions of the

LSV measure are violated, however, we consider these results to be a re�ection

of persistent stock idiosyncrasies rather than investor coordination, compare

Paper 3.

Similar to Paper 2 of this thesis, we use high-frequency, investor-speci�c

transaction data. We focus on data from the electronic limit order book

XETRA, which is the largest trading platform for equity in Germany.

The reason, why such data are particularly suited to analyze investor coor-

dination has been discussed at length in Paper 2. In the present paper, we re�ne

2Note that this is in line with the experimental literature which �nds that traders have
a natural tendency to act as contrarians above what could rationally be explained, compare
Cipriani and Guarino (2005), Drehmann et al. (2005) and Park and Sgroi (2012).

3Dorn et al. (2008) who also calculate the LSV measure on a daily basis, �nd an average value
of 4.4%. Studies of coordinated trading of mutual and pension funds trading on the American
stock markets based on quarterly portfolio changes typically �nd LSV measures of 2.5% to
3.4%, see Lakonishok et al. (1992), Grinblatt et al. (1995),Wermers (1999) and Brown et al.
(2014). Measures based on monthly data for individual investors on American stock exchanges
are typically somewhat larger with 6.81% to 12.79%, see Barber et al. (2009a), Barber et al.
(2009b).
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the transaction data by matching it with XETRA quote data. The combination

of the two data sets allows us to determine the initiator of a trade which greatly

increases the informational value of our measure H, compare Section 3.2.2 of

Paper 3.

Moreover, the data allow us to di�erentiate between proprietary trades of

all securities services institutions which are permitted to trade on German

exchanges and their customers' trades. A separate analysis of the trade behavior

of these trader subgroups is conducted. Indeed, destabilizing investor

coordination is only exhibited by the group of customer traders while �nancial

institutions appear to act as moderators and display the tendency to stabilize

markets through their trade behavior.

The remainder of this paper is structured as follows. Section 4.2 presents the

employed data and methodology. Section 4.3 contains the results on

independent trading behavior that strongly favor the assumptions associated

with our measure H. Based on our measure H, Section 4.4 shows to what

extent and in which manner investors coordinated in the German Stock market

in 2008 and con�rms that the LSV measure is inapt to assess investor

coordination. Finally, Section 4.5 concludes.

4.2 Data and Methodology

We employ high-frequency and investor-speci�c transaction data from the German

stock market in 2008. We combine them with corresponding quote data from the

electronic trading platform XETRA to separate market from limit orders, i.e. to

decide which side initiated the trade.

We obtained the transaction data from the Deutsche Bundesbank. Any

�nancial service institution trading securities on a German stock exchange is re-

quired to report its transactions to the German Federal Financial Supervisory

Authority (BaFin) under article 9 of the Securities Trading Act (WpHG).4 The

4There are few exceptions to the reporting requirement such as home loan banks, and private
as well as public insurance companies, as long as they are not themselves permitted to trade on
a domestic exchange.
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transaction data is available to the Deutsche Bundesbank under article 5 of the

Financial Stability Act (FinStabG). The XETRA quote data was provided by the

Collaborative Research Center (CRC) 649 and was purchased from the Deutsche

Börse AG, which operates the XETRA platform.

4.2.1 The Transaction Data

The transaction data contain all trades of all stocks executed on German stock

exchanges. For reasons of compatibility with the quote data, we focus on the

trades executed on the electronic trading platform XETRA. Those trades repre-

sent a market share of ∼ 90% of the total trading volume during continuous time

trading, i.e. during 9h and 17.30h CET.

Moreover, we restrict our attention on the 233 stocks from today's German

Prime Standard that were also Prime Standard in 2008.5 The Prime Standard

is a prerequisite for a stock to be listed in the most prominent German indices

such as DAX, MDAX or TecDAX and, thus, comprises the most liquidly traded

stocks of the German stock market. A total of 260 �nancial institutions subject

to report to BaFin actively traded Prime Standard stocks in 2008.

For each trade, the transaction data specify the time of the transaction

precise to a second, the type of the transaction (buy or sale), the number of

shares traded, and the transaction price. Moreover, the data uniquely identify the

trading institutions, and indicate whether the transaction was conducted on behalf

of a customer of the institution (e.g. retail banks, other �nancial intermediaries,

retail traders) or on the institution's own account.

Given the possibly di�erent degree of trading sophistication and �nancial

literacy of these groups we may expect di�erent trading behavior. Hence, we

analyze the trading patterns of customer traders and proprietary trading desks of

�nancial institutions separately.

5Prime Standard companies adhere to stricter transparency standards than General Standard
stocks. These standards are de�ned by the Deutsche Börse AG. To be listed in the Prime
Standard, companies have to e.g. submit quarterly reports in addition to half-year and year-end
reports and they have to adhere to tighter deadlines for doing so.
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4.2.2 Combining the Transaction Data with the Quote Data

For each executed trade the transaction data show both counterparties, that is,

the buyer as well as the seller. The data do not indicate, however, which of the

counterparties initiated the trade.

A di�erentiation of the active trade side, i.e. Market Orders (MO), from

the passive trade side, i.e. Limit Orders (LO), is, however, crucial for our

analysis. Dorn et al. (2008) and Barber et al. (2009b) note that considering LO

tends to bias the assessment of investor coordination. From a theoretic point of

view, we are interested in the in�uence of the recent trade and price history on

current trading decisions. Non-marketable LO, however, enter the order book

before they are executed. LO may even be carried over from one trading day to

the next. Thus, decisions behind these orders cannot have been in�uenced by

any trade that has taken place in the meantime. Since the time-of-entry of LO

cannot be inferred from the data, we cannot decide whether a passive transaction

is conducted independently or in a dependent manner in the sense of Section 3.2

in Paper 3, and, hence, whether it contributes to investor coordination.

As a consequence, we match the transaction data set with the XETRA quote

data to determine which trades are MO. The quote data contain the best bid-

and ask-price, the number of shares that can be traded at the best quotes and

the time of quote changes (including changes in the volume at the quotes) precise

to one-hundredth of a second. It also �ags quotes from call auction periods.

The lower record frequency of the transaction data set poses a problem. It

prevents us from applying standard classi�cation algorithms like the one of Lee

and Ready (1991) to �lter out the MO. We propose a new algorithm that deals

with this issue. As it is not the focus of this study, we provide details in Section

4.6.A in the Appendix of this paper. All trades that are not classi�ed as MO are

excluded from consideration.

We apply two additional guidelines to exclude trades that might bias our results.

First, transactions from call auctions are excluded. These include the open-

ing, mid-day and closing auction, as well as unscheduled call-auctions induced
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by e.g. volatility breaks.6 The reason for this is that we cannot decide whether

auction trades are carried out in a dependent or independent fashion since the

data does not reveal in which order auction trades are submitted.

Second, we only consider Prime Standard stocks that each subgroup trades

liquidly enough for our application on any given trading day. If less than 10

trades are initiated by traders of either subgroup within the �rst trading hour,

we drop the respective stock from consideration on that particular day.7 The

average number of stocks that are considered each day, thus, amounts to 82 and

80 for �nancial institutions and their customers, respectively. That is, roughly

35% of the 233 Prime Standard Stocks are, in fact, analyzed each day.

Consequently, the e�ective cross-section mainly consists of DAX30 stocks plus a

combination of MDAX and TecDAX stocks and some foreign titles.

Overall, this leaves us about 34 million active trades to analyze, which amounts

to roughly 55% of the single-counted equity trades executed on XETRA during

2008.8

4.2.3 Measuring Coordinated Trading

We assess coordinated trading with the LSV and H measures. The respective

stock speci�c measures are de�ned in Equations (3.1) and (3.5) of Paper 3. In

line with the literature on coordinated trading, we calculate the cross-sectional

average measures, that is, LSV =
∑I

i=1 LSVi/I and H̄ =
∑I

i=1Hi/I, where I is

the number of stocks in the considered cross-section.9 This is done separately

6We use the XETRA quote data to identify auction periods. Transactions that are conducted
at the end of these periods are excluded because they are part of the resolution of the auction.

7We require at least 10 trades to reliably estimate the distribution of the buy ratios under
independent trading in accordance with our measure H. For the estimation, we also require that
those trades are in fact carried out independently. If too much time passes, this casts doubt
on the independence assumption as investors of a particular subgroup may be in�uenced by
investors from other subgroups in their trading decision or spillovers from other stocks, compare
discussion of Assumption 3.1 in Paper 3.

8More detailed trade statistics are provided in Section 4.6.B in the Appendix of this paper.
Those statistics also reveal considerable similarities between the real world trade data and the
simulated trade data from Paper 3, which supports the validity of our theoretical insights for
our empirical application in the present paper.

9By an abuse of notation, we refer to the estimators of the theoretical measures even if we
omit the �hat� throughout this paper.
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for each of the 252 trading days of 2008 and the respective subgroups of

customer traders and proprietary traders.

Now that we have a better understanding of the data, let us address the �rst key

question of this paper: Are the distributional assumptions implied by either

measurement approach for investor coordination supported by the data?

4.3 Analyzing Independent Trade Behavior

This section analyzes whether the distributional assumptions of the LSV and our

approach are favored by the data. We �nd that the LSV implied assumption is

rejected, while the distributional assumption associated with our measure H is

found to be reasonable.

4.3.1 Testing the Distributional Assumptions of H and LSV

Before providing the test results, we brie�y revisit the distributional assumptions

associated with each measurement approach.

The LSV approach implicitly assumes that the number of buys under

independent trading is binomially distributed with some �xed investor buy

propensity for all stocks in the cross-section. Our approach, on the other hand,

assumes that the number of buys under independent trading is beta-binomially

distributed with idiosyncratic buy propensities b̃ri for the di�erent stocks. In

addition, our approach requires a convention which trades in the sample are

carried out independently. In line with Paper 3 of this thesis, we assume that

the �rst ten continuous trades are conducted independently for every stock on

every day (τi = 10 for all stocks i).10

We begin by testing the distributional assumption of H. That is, we check

whether the number of buys from the �rst 10 trades can be described by the

Beta-Binomial distribution. To do so, we estimate the Beta-Binomial

distribution by maximum likelihood for all 252 days in both our samples,

10The �rst trade is the �rst MO of the respective subgroup from the continuous trading phase
of the day.
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(a) Customer Traders (b) Proprietary Traders

Figure 4.1: P-values from Pearson's Goodness of Fit test

Notes: This �gure shows histograms of the p-values from Pearson's GoF tests. The test is
applied to 252 estimated Beta-Binomial distributions. Each GoF test decides whether the
observed distribution of the number of buys from the �rst 10 trades �ts to what we should
expect under the estimated distribution. The tests are applied to the subgroup of customer
traders (a) and the subgroup of the proprietary trading desks of �nancial institutions subject
to report to BaFin (b).
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customers and proprietary trading desks, and apply to each Pearson's

Goodness-of-Fit (GoF) test with 10 being the required minimum number of

observations in each bin. In total, we conduct 504 GoF tests.

To get an overall impression whether the Beta-Binomial distribution is an

appropriate description of the empirical distribution of the buys under

independent trading, we can look at the distribution of the p-values from the

252 GoF tests for the respective subgroup.

The results are depicted in Figure 4.1. If all 252 test-statistics were drawn from

the null hypothesis of beta-binomially distributed buys, the p-values would be

uniformly distributed. That is, 5% of the 252 tests should have p-values of

smaller or equal to 0.05, 10% should have p-values smaller or equal to 0.1, and

so on. For instance, Figure 4.1 (a) shows that on 26 out of the 252 trading days,

the p-value of the GoF test is ≤ 0.1. Put di�erently, the test rejects our null of

beta-binomially distributed buys in 10.3% of the days at a 10% signi�cance level.

This is precisely what we expect the test to do if the null hypothesis is true.

To con�rm that the the p-vales are uniformly distributed, we use a

Kolmogorov-Smirnov test. The test does not reject the null that the 252

p-values of each investor group are uniformly distributed.11 This provides strong

support for our assumption that the independent buys follow a Beta-Binomial

distribution.

We stress that this evidence in favor of our distributional assumption also

supports the premise that the �rst 10 trades on each stock-day of the respective

subgroup are carried out independently. If they had not been, it is unlikely that

a standard distribution could have described the data so well.

Testing the �t of the binomial distribution via GoF, on the other hand,

generally rejects it as an appropriate description of the data. More than 95% of

the 252 of the GoF tests from each group reject the LSV-implied null at a

signi�cance level of 0.05.

11The p-values from the Kolmogorov-Smirnov tests are 0.28 for the group of customer trades
and 0.31 for the group of proprietary trades.
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We continue by providing detailed statistics for independent trade behavior of

both considered trader subgroups. In line with the results of this section, we

assume that the number of independent buys is beta-binomially distributed,

which is equivalent to the fact that the buy ratios under independent trading are

beta-distributed.12

4.3.2 Independent Trading Versus Actual Trading

Table 4.1 reports the statistics on independent trading allowing for the

derivation of three key insights. First, the buy ratios under independent trading

are much more disperse than the observed buy ratios. Second, the average of the

buy ratios under independent trading as well as the observed buy ratios is close

to 0.5. Third, as indicated by a minimal αd of 0.64, there are days when

customer traders strongly accumulate on the sell side of the market.

From rows one, two and four of each Panel, we can see that the buy ratios under

independent trading are fairly dispersed. This is indicated by the fact that on

more than 75% of the days α and β are less than 4.5 for both trader groups,

compare column 4 (Q75). The corresponding variance of the buy ratios under

independent trading is re�ected by the respective beta moment V ard. It ranges

from 0.26 (Q25) to 0.66 (Max) for both trader groups with a slightly higher

mean variance for customer traders of 0.038 than for proprietary traders 0.033

(column 6).13 The observed buy ratios under actual trading bri,d are much less

disperse. Column 7, which reports the standard deviation implies that the

variance of the bri,d amounts to only 0.014 and 0.01, respectively.

The buy ratios under independent as well as actual trading are close to 0.5

on average. For independent trading, this is indicated by theMeand beta moment

(row 3 in each Panel). Column 6 shows that the mean expected buy ratio under

independent trading over all 252 days is 0.48 for customer traders and 0.5 for

proprietary traders, respectively. Moreover, the Q25 and Q75 values show that

12For details on the beta distribution, please refer to the Appendix of Paper 3 of this thesis.
13As a comparison note that for α = β = 1 the Beta distribution equals the inherently disperse

uniform distribution on [0; 1] with variance 0.083. For α = β = 4.5 the variance is still fairly
high at 0.025.
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Panel A Customer Traders

Min Q25 Median Q75 Max Mean Std

αd 0.64 2.03 2.68 3.40 9.32 2.87 1.19

βd 1.51 2.39 2.84 3.47 8.58 3.03 0.98

Beta

Moments

Meand 0.18 0.43 0.49 0.54 0.67 0.48 0.08

Vard 0.013 0.032 0.037 0.043 0.066 0.038 0.009

Skewnessd -0.40 -0.10 0.02 0.19 1.27 0.07 0.24

bri,d 0.02 0.43 0.50 0.57 1.0000 0.50 0.12

Panel B Proprietary Traders

Min Q25 Median Q75 Max Mean Std

αd 1.30 2.64 3.30 4.15 14.65 3.53 1.45

βd 1.42 2.56 3.32 4.34 15.05 3.56 1.49

Beta

Moments

Meand 0.36 0.45 0.50 0.55 0.66 0.50 0.07

Vard 0.008 0.026 0.032 0.040 0.065 0.033 0.010

Skewnessd -0.39 -0.13 0.01 0.13 0.42 0.00 0.17

bri,d 0.03 0.44 0.50 0.56 1.0000 0.50 0.10

Table 4.1: Independent and actual trading statistics of proprietary trading desks of

�nancial service institutions and their customers on XETRA in 2008

Notes: This table shows summary statistics on the estimated distributional parameters of the
buy ratios under independent trading. We us ML estimators in line with Paper 3. Panel A
shows the results for customer trades, Panel B for traders from proprietary trading desks of
the �nancial institutions. α and β refer to the parameters of the Beta distribution of the buy
ratios under independent trading estimated over the cross-section of stocks for each day in our
sample. That is, we have 252 observations for α and β in each Panel. Mean, Var, i.e. Variance,
and Skewness refer to the moments of the Beta distribution over the independent buy-ratios
implied by the estimated α and β. br is the buy-ratio computed as the number of buys over the
number of trades calculated for each stock on every day. For customer trades we, thus, have
20218 observations, for proprietary trades 20589.
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on 50% of the trading days the expected buy ratio under independent trading is

contained on [0.43; 0.55] for both trader groups. Similar values are found for the

bri,d.14 This implies that on average, traders of neither subgroup moved in or out

of Prime Standard stocks as a whole.

In conjunction with the variance statistics, these numbers suggest a very

particular trading pattern. The high dispersion of the independent buy ratios

indicates that well-informed traders incorporate new stock-speci�c information

into the respective stocks early in the trading day by accumulating on either the

buy or the sell side, compare e.g. Park and Sgroi (2012). Once the price accurately

re�ects this information, traders become aware of this and stop trading the asset

for informational reasons. In terms of e.g. Park and Sabourian (2011), this means

they essentially revert to noise trading, i.e. buy and sell with equal probability.15

Consequently, the observed (rest-of-day) buy ratios bri,d cluster much stronger

around 0.5 than the independent buy ratios.

The fact that distributions of the independent buy ratios have largely low

skews and are centered around 0.5 also implies that the interpretation of H

suggested in Paper 3 of this thesis is applicable to the real-world data in most

cases. That is, H̄ > 0 suggests herding and H̄ < 0 suggests contrarianism,

compare Section 4.6.C in the Appendix of Paper 3 for details.

Finally, we point out that for customer traders we observe very skewed

distributions under independent trading at least occasionally. The maximal

skewness value of 1.27 and the minimal α of 0.64 both suggest that sometimes

customer traders accumulate on the sell side of most if not all stocks in the

considered cross-section. That is, they collectively move out of the market under

independent trading. Such extreme concentration on the buy side is not

observed. This should not come as a surprise, however, since we are anaylzing

investor behavior during 2008 when the recent �ancial crisis took hold globally.

Interestingly, proprietary traders never coordinate across stocks in such an

extreme fashion.

14Since the bri,d are stock speci�c, we observe buy ratios close to 0 and 1 in the extreme. This
is partially driven by a very low number of trades executed in the respective stock on that day.

15This also in line with �ndings of Paper 2 of this thesis that document that information risk,
i.e. informed trading is most pronounced in the morning.
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LSV H

Median Mean Median Mean

Customer Traders 0.047 0.065 -0.045 -0.026

Observations 20218

Proprietary Traders 0.033 0.048 -0.045 -0.033

Observations 20589

Table 4.2: Coordinated trading statistics of proprietary trading desks of �nancial ser-

vice institutions and their customers on XETRA in 2008

Notes: The mean and median statistics for investor coordination of the year 2008 are presented in
accordance with the LSV measure and our new measure H for both, proprietary and customer
traders. The mean is calculated as the weighted average of the daily cross-sectional mean
mesures, i.e. LSV =

∑252
d=1(IdLSV d)/

∑252
d=1 Id and H =

∑252
d=1(IdH̄d)/

∑252
d=1 Id, where Id is the

number of su�ciently liquidly traded stocks for the respective investor subgroup on day d. The
Median is calculated over all stock-day observations.

4.4 Investor Coordination in the German Stock Mar-

ket in 2008

This section provides the results on coordinated investor behavior in accordance

with the LSV and H measures respectively. In line with the literature, we �rst

discuss the mean measures that are aggregated over the whole year of 2008, com-

pare Lakonishok et al. (1992). We continue by looking at the day-to-day dynamics

of both herd measures. The section concludes with an event study of two trading

days when investor coordination among customer traders was particularly high,

highlighting when our measure indicates price distortions.

4.4.1 Aggregate Results

Table 4.2 presents the aggregated results for investor coordination across German

Prime Standard stocks in 2008 according to both, LSV and H. Because the

samples of the respective trader subgroups are large, the results are statistically

signi�cant. The mean LSV is 0.065 for customer traders and 0.048 for �nancial

institutions. The median LSV measures are somewhat smaller but still clearly
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positive. The typical interpretation of the mean LSV measure is that, for the

average stock 6.5% of the trades initiated by customers (5% of the trades initiated

by �nancial institutions) are more buys or sales than what we had expected under

independent trading. That is, both subgroups herd in and out of the same stocks

respectively.

The result for LSV compares to the one of Dorn et al. (2008) (0.044 for

market orders of retail traders on a daily basis). Barber et al. (2009b) �nd slightly

higher LSV ranging from 0.068 to 0.128 when assessing market orders of retail

traders with monthly frequency.16

Given, however, that the LSV implied assumption of binomially distributed

buys under independent trading is violated and that we �nd evidence in support

of the more disperse beta-binomial distribution we know that there are

stock-idiosyncratic buy propensities under independent trading for both

subgroups. We would, thus, argue that the positive LSV does not indicate

coordinated trading or herding but rather is a re�ection of the bespoken

idiosyncratic buy propensities.

While our measure also �nds signi�cant deviations from independent trading,

the negative sign is more consistent with contrarianism than herding. With

−0.045 the median deviations are the same for both subgroups of traders. With

−0.026 the mean H of the customer traders is larger than for the proprietary

trading desks, indicating that �nancial services institutions exhibit stronger

contrarian tendencies than their customers on average. When compared to the

median values, the larger mean of the customer traders suggests that there

might be more positive outliers than for the �nancial institutions subject to

report to BaFin.17 Whether these positive outliers cluster in an interesting

16Di�erences may stem from the fact that we consider the rather special time period of the
recent �nancial crisis and that our group of customer traders might be more heterogeneous
than in the mentioned papers since it is likely to comprise actual households as well as fund
managers and other banking institutions trading through intermediaries. In the case of Barber
et al. (2009b), the lower record frequency may also contribute to higher realization of the LSV
measure.

17Indeed, we �nd that for about 20% of the stock-days, Hi is positive with a maximum of
0.48.
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fashion pointing towards herding at least on some days is revealed by the

analysis of the day-to-day dynamics of LSV and H̄ in the next section.

4.4.2 Dynamics of Daily Investor Coordination

This section shows that for the subgroup of customer traders, H̄ becomes

positive occasionally when considering the daily measures. The indication from

Table 4.2 in the previous section that proprietary traders tend to act as

contrarians essentially carries over one-to-one to the daily horizon.

Figure 4.2 plots the time series of H̄d and LSV d, for all 252 trading days in 2008

for both subgroups of investors. For our measure H̄ we �nd that among the 252

averages for the group of �nancial institutions subject to report to BaFin only 2

are signi�cantly positive, while 229 are signi�cantly negative. On the remaining

21 days H does not di�er signi�cantly from 0 indicating independent trading.

For customer traders we �nd that H̄ is signi�cantly positive on 11 days,

while it tests signi�cantly negative on 215 days. The null of independent trading

is not rejected on the remaining 26 days.18

For the means of the LSV measure, on the other hand, all estimates are

signi�cantly positive for both groups. Signi�cant estimates are indicated by red

and blue dots for H and LSV respectively.

The day-to-day dynamics largely con�rm the insights from Table 4.2.

Apparently, there are su�cient idiosyncrasies across stocks to cause the LSV

measure to become positive on every given day. Hence, the fact that the LSV

measures are larger for customers rather than �nancial institutions is by no

means an indication that coordination is stronger among the �rst group. The

simulation study in Paper 3 of this thesis shows that under dependent trading

the LSV measure is not correlated with true investor coordination if it's
18Our simulation results from Paper 3 of this thesis indicate that the estimator of our measure

might be slightly skewed if the number of considered stocks Id is small. To be on the safe side,
we correct the t-values from our tests for skewness and kurtosis as suggested by Yanagihara and
Yuan (2005). Moreover, as for each group we conduct 252 hypotheses tests on zero means we
control the False Discovery Rate at 0.05 by the procedure of Benjamini and Hochberg (1995) to
account for the multiple hypotheses testing problem. We applied the procedure to the one-sided

alternatives ( ˆ̄H > 0 and ˆ̄H < 0) separately.
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(a) Customer Trades

(b) Proprietary Trades

Figure 4.2: Time series for daily LSV and H measures for coordinated trading of pro-

prietary and customer traders on XETRA, 2008

Notes: This �gure shows the time series of H̄d and LSV d for the group of customer trades
in (a) and the group of proprietary trades in (b). The red and blue dots indicate signi�cant
estimates by the adjusted t-test of Yanagihara and Yuan (2005) for the one-sided alternatives
and accounted for the multiple hypotheses testing problem by the procedure of Benjamini and
Hochberg (1995).
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distributional assumption is violated. Hence, a relative assessment of degrees of

investor coordination via the LSV measure is very likely to be misleading.

The predominantly negative signs of H̄ indicate contrarian tendencies for both

trader subgroups on most days. We would argue, however, that this

contrarianism is not likely to be price distorting as it coincides with a pattern of

very pronounced stock-speci�c trade behavior in the morning and more or less

noise trading for the remainder of the day. We have argued in Section 4.3.2 that

such a pattern � while a deviation from independent trading � is likely to be

price and informationally e�cient.

For customer traders there are, however, some days when H̄ is not only

positive but also abnormally large. This may be an indication for investor herding.

Yet, we �nd that these positive H̄ are generally triggered by a shift in mean of

the buy ratios under independent trading. In addition, the distributions of the

buy ratios under independent trading are strongly right-skewed on these days. As

a consequence, a more detailed analysis of the events of those days is required to

determine the type of investor coordination.

As a representative example, we conduct an event study for the days of

January 21 and 22 in the subsequent section.

4.4.3 Event Study for January 21 and 22 - When Investor Herd-

ing Destabilized the German Stock Market

This section sheds some light on the events of January 21 and 22, 2008. On these

days H̄ > 0 is abnormally large compared to the rest of the sample. Taking a

closer look at the trading pattern, we �nd that the distribution of the buy ratios

under independent trading is strongly right-skewed. Indeed, Table 4.3 shows that

α << β on both days for customer traders coinciding with a skew of 0.88 and

1.27 on January 21 and 22, respectively.19 This implies strong accumulation of

customer traders on the sell side for all stocks at the beginning of the trading

day, i.e. customer traders collectively move out of Prime Standard Stocks under

19Compare Table 4.1 for skews on other days
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January 21 January 22

Customers Proprietary Customers Proprietary

α 1.04 3.14 0.64 4.06

β 3.23 5.02 2.90 4.14

br 0.44 0.46 0.50 0.53

H̄ 0.05 -0.03 0.15 -0.04

LSV 0.06 0.02 0.04 0.03

DAX Return -6.9% 2.7%

NIKKEI Return -2.7% -4.2%

Table 4.3: Coordinated trading statistics for proprietary and customer traders as well

as stock index returns on January 21 and 22, 2008

Notes: α and β refer to the parameters of the Beta distribution of the buy ratios under in-
dependent trading estimated over the cross-section of stocks for each day in our sample. br is
the cross-sectional mean of the observed buy ratios. H̄ and LSV report the respective statis-
tics for investor coordination. The returns are calculated open-to-close and are taken from
www.�nanzen.net.

independent trading. The expected buy ratio under independent trading is 0.24

on January 21 and 0.18 on January 22.

The average observed buy ratio br of 0.44 on January 21 and 0.5 on

January 22, however, suggests that through the course of the day the outright

panic of the customer traders in the morning is extenuated. Hence, we observe

an upward shift in mean, which causes H̄ to be positive.20 Interestingly, the

trade behavior of the �nancial service institutions is much less extreme. On

January 21, there is a slight sell side accumulation in the morning. The

corresponding α of 3.14 and β of 5.02 imply an expected independent buy ratio

of 0.38 with a moderate skew of 0.28. On January 22, α ≈ β for proprietary

traders, indicating that they neither move in nor out of the market as a whole.

On both days, proprietary traders at least partially lean against the panic sales

of their customers.

20Details on the distributions of the buy ratios under independent trading and the observed
buy ratios are found in Section 4.6.C in the Appendix of this paper.
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The return �gures reported in Table 4.3 show that the German Stock Index of

the 30 largest companies DAX plummeted on Monday, January 21. That date is

known as a Black Monday for the German stock market. One week earlier,

Citigroup - the largest bank in the US - had announced a loss of 9.8 billion USD

for the last quarter of 2007 mainly due to defaults of sub-prime mortgages. The

resulting uncertainty culminated in a drop of more than 3 % of US stock

exchanges on Friday, January 18. Yet, this happened only after German stock

exchanges had already closed. Over the weekend the fear of long term recessions

and bankruptcies particularly in the German �nancial sector grew. Many

German banks like the HSH Nordbank and the Hypo Real Estate were largely

invested in CDOs backed by US sub-prime mortgages. The sharp drop of the

Japanese NIKKEI Index of 2.7% on January 21 was an additional catalyst for

these fears.21 An outright panic among customer traders on the German stock

market was subsequently observed. As investors withdrew their money from the

German stock market the DAX crashed more than 6.9 % � the sharpest drop

since September 11, 2001, the date of the terror attack on the World Trade

Center in New York. The panic carried over to the next day when the Nikkei

dropped by another 4.2%. The DAX, however, rebounded on January 22. It

went back up by 2.7%. What happened?

In the morning the panic among customer traders was even stronger. This

is indicated by both the strong right-skew of the distribution of the buy ratios

under independent trading as well as the highly positive H̄ = 0.15. Indeed, the

unreported low of the DAX on January 22 was 2.6% below the opening price.

Interestingly, the traders of the �nancial institutions appear to have kept their

calm even in the morning. This might have been caused by rumors regarding a

drastic cut in US interest rates by the FED. Indeed, the FED announced a cut

of 75 basis points to 3.5 % later that day. This had a globally stabilizing e�ect.

Customer traders in the German stock market returned to a more balanced trade

behavior (br = 0.5) and the DAX recovered.

A look at Figure 4.2 reveals that H̄ for customer traders drops below 0 again

during the subsequent days. On the one hand this indicates that the intervention

21Note that the Japanese stock exchanges close right before XETRA opens.
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of the US Fed had a longer lasting calming e�ect causing investors to trade in-

dependently or engage in benign contrarianism. The negative H̄ might, however,

also be driven by the fact that many investors belonging to the customer trader

subgroup had already dissolved their stock portfolios on January 21 and 22.

For the sake of completeness, let us note that the LSV measure did not

pick up on any of these dynamics. If anything, the daily LSV measure became

smaller on days with particular strong investor coordination and herding.

Based on these insights, we conjecture that on January 21, customer traders,

indeed, herded on the depreciation of Asian and US stock markets. On the

following day their herding tendencies increased even further due the historical

plummet of the German and international stock markets on January 21.22 What

is more, the market wide herding of customer traders while rare, apparently has

the potential to destabilize markets.

4.5 Conclusion

This paper con�rms our doubts regarding the validity of the LSV implied assump-

tions in favor of the assumptions associated with our new measure for coordinated

trading H. In line with the simulation study in Paper 3 of this thesis we �nd that

the LSV measure is always signi�cantly positive. We conclude that this is solely

due the fact that the LSV measure picks up idiosyncrasies of trade behavior across

stocks and falsely registers them as investor coordination.

When applying our measure H to actual transaction data from the German

stock market, we �nd that traders predominantly act as contrarians or trade inde-

pendently. This might appear somewhat surprising, given that the year 2008 was

rife with uncertainty due to the evolving �nancial crisis. Only the less pro�cient

customer traders herd occasionally according to our measure. When they do,

however, they tend to destabilize the German stock market. Interestingly even on

those days, �nancial institutions with presumably higher trading expertise acted

22In the second week of October, the positive values of H̄ are again driven by a shift in mean of
the buy ratios. Again news reports indicate, that this particular type of customer trade behavior
was mainly driven by record losses at other exchanges, particularly by the Nikkei index.
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far less extreme. Indeed, as our event study for January 22, 2008, indicates traders

from �nancial institutions seem to correctly anticipate when the German stock

market rebounds.

Interesting avenues for future research include an application of H̄ to an

extended version of the data set introduced in this paper. We could, thus, verify

whether our approach to detect deviations from independent trading and it's

associated assumptions are valid under di�erent economic environments. It would

be particularly intriguing to investigate, whether H̄ has predictive power regarding

future price reversals or regimes of increased volatility. For this, it might be

interesting to consider di�erent time horizons such as weeks, months or quarters.

Conversely, a stronger focus on intra-day patterns might prove illuminating as to

when information reaches the market, how long it takes the market to incorporate

it into the price and whether there exist mini-herds that cause intra-day prices to

overshoot and reverse. A stronger exploitation of the investor speci�city of the

transaction data should bene�t the analysis.

Given the apparent spill-over e�ects from other markets a corresponding

analysis might also be quite intriguing.

Papers 3 and 4 are motivated by the assumption that investor herding has

adverse e�ects on the functioning of �nancial markets. Models such as the ones

of Park and Sabourian (2011) and Avery and Zemsky (1998) that are part of the

rational herding literature, however, rarely produce outcomes where herds cause

price distortions or destabilize markets, compare Eyster and Rabin (2010). On

the contrary, Eyster and Rabin (2010) show that rational herds on average

contribute towards price e�ciency. Corresponding discussions in Park and

Sabourian (2011) and Avery and Zemsky (1998) are in line with their

assessment. If herd behavior is generally benign, however, then why should we

put e�orts into assessing it empirically at all? One answer to this question is

provided in Paper 5 of this thesis, where we derive conditions under which

investor coordination in general and herd behavior in particular may move

prices away from fundamentals.
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4.6 Appendix

This Appendix consists of three sections.

Section 4.6.A details the classi�cation algorithm used to �lter out MO by

matching the transaction data set with the quote data set. Section 4.6.B provides

detailed trade statistics that supplement Section 4.2 of the main part and highlight

similarities between the data investigated in this paper and the simulated trade

data of Paper 3. Finally, Section 4.6.C details the distributional �ndings discussed

in the event study for January 21 and 22, 2008.

4.6.A Classi�cation of Trades as Market Orders (MO)

As outlined in the main text, we classify trades as MO and LO by matching the

transaction data with the quote data. Yet, the di�erent record frequencies of the

two data sets (second for transaction data, one hundredths of a second for quote

data) prevents us from using standard classi�cation algorithms. In the following,

we provide details of our newly developed classi�cation algorithm.

To classify a transaction as buyer- or seller-initiated we need to compare the

transaction price to all quotes within the second of the transaction. We classify

a trade as buyer initiated, i.e. as a Market Buy Order if one of the following

criteria is met:

1. The transaction price hits any ask quote, but none of the bid quotes within

the second of the transaction.

2. The transaction price is strictly larger than every mid-quote, i.e. (bid +

ask)/2, within the second of the transaction.

3. The transaction price hits both ask and bid quotes within the second of the

transaction, but only the ask side changes as though it was hit. That is, for

instance, an increase in the best ask quote or a decrease in the number of

shares o�ered at the best ask quote.

4. The transaction price di�ers from all ask and bid quotes during the re-

spective second. Yet, it lies between two tic-by-tic best ask quotes askt <
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askt+1, while it does not lie between between two tic-by-tic best bid quotes

bidt > bidt+1.23

The criteria are tested in the given order. Once one of the criteria is met the

classi�cation algorithm breaks and continues with the next trade. We classify a

trade Sell Market Order analogously. If none of the MO criteria is met, then the

trade remains unclassi�ed and is removed from consideration. This happened in

less than 20 % of the cases.

23The last criterion was necessary, because the quote data did not record when a large market
order ate through the order book matching with several quotes from the transition of the best
quote to the last one until the order size was �lled.
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Customer Traders Proprietary Traders

Number of trading days 252 252

Number of stock-days 20218 20589

Number of MO Trades (in million) 13.6 20.6

Table 4.4: Trade statistics of proprietary trading desks of �nancial service institutions

and their customers on XETRA, 2008

4.6.B Trade Statistics of Financial Institutions and their Cus-

tomers on XETRA, 2008

This section presents detailed trade statistics highlighting similarities of the em-

ployed real-world data and our simulated data from Paper 3.

We start by discussing summary trade statistics to highlight what share of

MO trades on XETRA is investigated. In a second step, trading intensity of the

respective trader subgroups is analyzed.

4.6.B.1 Summary Trade Statistics

Table 4.4 shows trade statistics for Prime Standard Stocks traded on XETRA in

2008 for customer and proprietary traders, respectively. In total, we count more

than 34 million active trades, 60% of which stem from proprietary traders and

40% from their customers. The number of single-counted equity trades executed

on XETRA during 2008 is 62.2 million.24 That is, in our analysis we consider

roughly 55% of all active trades on XETRA in 2008.

There are three reasons why not all active trades enter our analysis. First, we

cannot unequivocally classify all trades as MO or LO. Second, we exclude auction

trades from consideration. Finally, we only consider a sub-sample of the equity

stocks traded on XETRA, compare the main part of this paper. The number of

stock-days corresponds to the number of stocks that are traded liquidly enough

on each trading day.

24Source: Cash Market: Monthly Statistics, Deutsche Börse AG, January 5, 2016; Product-ID:
STX-0024-1 1.1.
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Customer Traders Proprietary Traders

Median Mean Std Median Mean Std

Id 79 80 12 81 82 8

Observations 252 252

(Time at τ)d,i 800 1129 n/a 743 1041 n/a

Observations 20218 20589

Td,i 347 673 960 441 1002 1390

Observations 20218 20589

Table 4.5: Trading intensity of proprietary trading desks of �nancial service institutions

and their customers on XETRA, 2008

Notes: Id refers to the number of Prime Standard stocks that are traded su�ciently liquidly
by the respective trader subgroup on any given day. Time at τ refers to the number of seconds
that pass before 10 trades are initiated by the respective subgroup per stock and day. Ti,d refers
to the total number of MO trades carried by the respective subgroup in any given stock on any
given day.

The number of trading days corresponds to the number of days XETRA was

open for trading in 2008. Similar to physical stock exchanges, XETRA is closed

on weekends and on legal holidays.

4.6.B.2 Trading Intensity and the Number of Liquidly Traded Stocks

Table 4.5 reports statistics on trading intensity. Row one shows the number of

su�ciently liquidly traded stocks per day, Id. Since Id is calculated on a daily

basis, the number of observations corresponds to the number of trading days in

Table 4.4. The average Id amounts to 80 and 82 for the respective trader sub-

groups, that is, less than 35% of the 233 Prime Standard Stocks. The e�ectively

considered cross-section mainly consists of DAX30 stocks plus a combination of

MDAX and TecDAX stocks and some foreign titles (e.g. Airbus Group (NL),

Ro�n-Sinar Technologies (US)).25

25On each day, the foreign stocks constitute less than 10% of the considered cross-section Id.
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Id corresponds the number of stocks that are used to estimate the distribu-

tion of the buy ratios under independent trading as well as to calculate H̄ and

LSV and, thus, is of crucial importance. We have shown in Paper 3 that H̄ can

be estimated without bias for Id > 75. The simulation study also employs only

75 stocks which supports the validity of it's �ndings for our application.

Row three of Table 4.5 shows the time in seconds that passes before the

respective trader subgroup initiates 10 trades in each stock and on each day.26

Traders from both subgroups execute their �rst 10 trades in less than 20 minutes

on average. Indeed, for more than half of the stocks, this happens in less than 15

minutes. Since market micro-structure theory proclaims that trades at the outset

of the trading process are likely to be independent, the fact that they are carried

out fairly quickly provides support for the assumption that the �rst 10 trades are

carried out independently, compare Assumption 3.1 from Paper 3.

Finally, Td,i reports the number of active trades we observe for each stock-

day. The Td,i con�rm the notion that �nancial institutions are more active in

the stock market than their customers. The Td,i also indicate that the number of

trades per stock-day in the simulation study of Paper 3 is su�ciently conservative

to make it's �ndings valid for our empirical application.

Since (Time at τ)d,i as well as Td,i are calculated on a stock-day basis, their

number of observations coincides with the corresponding numbers of row two in

Table 4.4.

4.6.C Details on the Distribution of Buy Ratios on January 21

and 22, 2008

Figure 4.3 depicts the estimated distribution of the buy ratios under independent

trading as a blue line. The estimation is conducted in line with our con�rmed

distributional assumption that the number of buys under independent trading is

beta-binomially distributed. The empirical distribution of the observed buy ratios

is represented by the red dots. Figure 4.3, thus, serves as a detailing of Table 4.3.

26Since we exclude stock-days for which the respective subgroups trades less than 10 times
during the �rst trading hour, the theoretical maximum of (Time at τ)d,i is 3599. Due to this
upper boundary, we have excluded the standard deviation statistic of (Time at τ)d,i.
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Figure 4.3: Distributions of the buy ratios under independent and actual trading on

January 21 and 22, 2008

Notes: The blue line in each �gure depicts the beta density associated with the distribution of
the buy ratios under independent trading. The red dots show the observed buy ratios for all
stocks on that particular day.

Figures 4.3 (a) and (b) illustrate the shift in mean of the highly right-skewed

buy ratios under independent trading toward the middle for the customer traders.

Figures 4.3 (c) and (d) show that there is no such shift for proprietary traders.

For them, the observed buy ratios cluster closely to the expected buy ratio under

independent trading, yet with a much smaller dispersion. This results in a H̄ < 0

which in turn indicates contrarian tendencies.





Paper 5

Irrational Exuberance and Herding in

Financial Markets - How Investors Facing

Ambiguity Drive Prices away from

Fundamentals

5.1 Introduction

Throughout the past decade �nancial markets exhibited strong degrees of volatil-

ity and were characterized by the formation and subsequent burst of bubbles. The

prevalent view in the economic literature is that herding among investors is an

important driver for such undesirable market phenomena.

The intuition behind this claim is appealing: Investors face a decision

whether or not to buy (or sell) a risky asset. As they observe other investors

accumulating on one side of the market, they choose to ignore their own noisy

information regarding the asset's true value and follow the crowd instead. If the

crowd is wrong, such herding on the crowd's action drives prices away from

fundamentals contributing towards the formation of bubbles (or excessive

downturns). This argument, however, breaks down for most of the existing

�nancial market herd models, see e.g. the seminal works of Avery and Zemsky

(1998) and Park and Sabourian (2011). Their models assume that upon the

arrival of new information, investors update their beliefs according to Bayes'

Rule and that investor choices are based on subjective expected utility theory,

i.e. that ambiguity over probabilities does not matter for �nancial decision

makers. Together, these assumptions essentially prevent the existence of wrong

105



106 Fifth Paper

crowds and, thus, wrong herds, compare Eyster and Rabin (2010) and

Brunnermeier (2001).1

In this paper, we want to study how individual investment decisions and

the resulting crowd behavior are a�ected if �nancial choices are made under

ambiguity (Knightian uncertainty). We are particularly interested if ambiguity

contributes towards potentially price-distorting herding (contrarianism) and

may, thus, support the intuition that investor coordination and bubbles are

linked.2

We apply the concept of ambiguity to the two-state, two-trader version of the

rational market microstructure herd model of Avery and Zemsky (1998). We

assume that investors facing ambiguity make decisions in line with

non-extreme-outcome-additive (neo-additive) Choquet preferences which were

�rst introduced by Chateauneuf et al. (2007).

The principal model in this paper is related to the one proposed by Ford

et al. (2013).3 Yet, we modify and extend their framework in many important

ways. First and most importantly, in our framework investor preferences are

part of the common knowledge structure of the model. Second, in line with

Brunnermeier (2001) and the bulk of the theoretical herding literature, we de�ne

herding (contrarianism) as a switch in an agent's opinion toward (against) that

1Bayesian updating and preferences in accord with subjective expected utility theory are
in line with Barberis and Thaler (2003)'s notion of investor rationality. They argue that the
assumption of rationality precludes �nancial market models from explaining �basic facts about
the aggregate stock market, the cross-section of average returns and individual trading behavior�
(Barberis and Thaler (2003), p.3).

2A departure from belief updating according to Bayes' Rule as proposed by e.g. Eyster and
Rabin (2010) would also explain the existence of wrong herds. Yet, as Daniel et al. (1998)
explicate, any such behavioral bias of investor behavior requires an in-depth experimental and
empirical foundation, lest it will be subject to criticism that it is arbitrary. Evidence supports
biases such as overcon�dence, see Weizsäcker (2010) and Daniel et al. (1998), or probability
weightings and loss aversion in line with prospect theory, see Tversky and Kahneman (1992).
Applied to herd models these biases cast additional doubt on the rationale that herding may be
the cause for market ine�ciencies, compare Huber et al. (2015).

3Another paper that modi�es the model of Avery and Zemsky (1998) to re�ect investment
choices under ambiguity is the one of Dong et al. (2010). They use smooth ambiguity functions
as introduced by Klibano� et al. (2005) to model ambiguity stemming from multiple priors
regarding the distribution of the risky asset. They �nd that herding is possible if the degree
of ambiguity aversion di�ers between market maker and informed traders. This is in line with
Décamps and Lovo (2006), who obtain a similar result for di�erent risk preferences among
traders and market maker.



Fifth Paper 107

of the crowd that has to be induced by the crowd.4 Third, we consider a more

general setup as we depart from the General Bayesian Updating (GBU) rule for

Choquet preferences proposed by Eichberger et al. (2010). More precisely, we

assume that the individual degree of optimism, i.e. investor's ambiguity

preference, may vary with the asset price.5 Finally, we study a whole class of

perturbed versions of our model where the market exhibits marginal uncertainty

regarding the true investor preferences. Indeed, Ford et al. (2013)'s assumption

that the market is fully ignorant of the true investor preferences can be seen as

an extreme special case of the perturbed model setup.

The key insights developed in this paper can be grouped in two categories. First,

we characterize conditions under which herding and contrarianism are possible.

Second, we discuss how such investor behavior a�ects market outcomes.

With respect to the �rst category, we �nd that informed traders with neo-

additive Choquet preferences never herd but show strong contrarianistic tenden-

cies, when beliefs are updated according to the GBU rule.6 As we depart from

GBU, we specify necessary and su�cient conditions for investor herding. We �nd

that herding becomes possible if high degrees of perceived ambiguity coincide with

(potentially irrational) exuberance and despair among informed traders.

Second, in terms of market outcomes, we �nd that in our two-state, two-

trader setup informational cascades occur as soon as investors herd or act as

contrarians. Since prices stop moving during an informational cascade we �nd

that both, herding and contrarianism prevent the market from learning the asset's

true value. In addition, they have an equal potential to drive prices away from

fundamentals. A comprehensive comparative static analysis of the probability of

such price distortions is provided.

4Indeed, Ford et al. (2013) do not require that herding and contrarian behavior are crowd-
induced.

5To motivate this assumption, we appeal to a growing �nance literature that assumes that risk
aversion is subject to change, see for instance Campbell and Cochrane (1999) or Bekaert et al.
(2009). Indeed, standard approaches to measure risk aversion via volatility premia, abundantly
show that risk aversion depends on market sentiment and recent price trajectories, see e.g.
Jurado et al. (2015), Bekaert et al. (2013) and Bollerslev et al. (2011). We posit that if risk
aversion is assumed to move with prices, so should ambiguity aversion.

6The impossibility of herding derived here contradicts the �ndings of Ford et al. (2013). This
is due to their di�erent de�nition of herd behavior.
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Informational cascades due to herding and contrarianism, however, exhibit

an important qualitative di�erence, which is revealed by the analysis of the per-

tubed version of our model. In the perturbed model we still assume that all in-

formed traders have neo-additive Choquet preferences. Yet, market participants

think that informed traders have Choquet preferences only with probability 1− ε
and that they are expected utility maximizers with probability ε. In this case,

social learning continues even as investors engage in herd or contrarian behavior.

We �nd that ambiguity in conjunction with strong exuberance or

desperation may cause investors to con�dently herd on the wrong state of the

world with economically relevant probability in the perturbed model. Markets

prone to contrarianism show similar outcomes as in the non-perturbed model,

i.e. no learning about the asset's true value and limited long-term price

distortions.

The literature of decision making under ambiguity can be grouped in two main

approaches that are closely related. First, the multiple prior approach explicitly

models a range of probability distributions of the states of the world an

individual considers possible (her set of priors) and from which she chooses

according to some speci�ed decision rule such as maxmin, compare Gilboa and

Schmeidler (1989). Second, the Choquet Expected Utiliy (CEU) approach

models decision making under ambiguity through non-additive probability

measures or so-called capacities, compare Schmeidler (1989). If no objective

probabilities are available as e.g. in Ellsberg (1961)'s famous mind experiment,

CEU agents assign individual likelihoods to di�erent outcomes.

For our application, we choose neo-additive capacities over multiple prior

setups as well as general Choquet preferences for three reasons. First, our

analysis requires a parametric separation of the degree of perceived ambiguity

and the individual attitude towards ambiguity. This makes neo-additive

capacities the superior choice when compared to general capacities, compare

Eichberger et al. (2005), Eichberger et al. (2007) and Chateauneuf et al. (2007).

Second, focusing on neo-additive capacities is particularly appealing in the

Avery and Zemsky (1998) framework, since it rids us of investor beliefs that are
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unintuitive. For instance, neo-additive beliefs prevent investors from assigning

higher likelihoods to the state that is objectively less likely. Finally, in line with

Chateauneuf et al. (2007), neo-additive capacities allow us to relate individual

degrees of optimism and pessimism to other components of the Avery and

Zemsky (1998) model such as the bid and ask price. We can, thus, intuitively

describe if and when irrational exuberance (despair) may lead to herding that

moves prices away from fundamentals.7

We should mention, however, that the theoretical �nance literature investigating

investor behavior under ambiguity outside social learning settings gravitates

towards the multiple prior framework.

Examples of static investment and portfolio choices include the works of

Bossaerts et al. (2010), Gollier (2011) and Schröder (2011). They use multiple

prior setups such as smooth ambiguity functions as introduced by Klibano� et al.

(2005) (KMM approach) or α-maxmin decision rules to model ambiguity and

ambiguity preference.8 Intertemporal �nancial choices under ambiguity are dis-

cussed in e.g. Klibano� et al. (2009). They generalize the KMM framework to

an intertemporal setting, deriving a recursive representation for ambiguity pref-

erences. Ju and Miao (2012) employ the generalized KKM framework to model

intertemporal asset pricing and investment choices under ambiguity.

There is, however a very strong unifying assumption underlying the KMM,

α-maxmin and neo-additive Choquet frameworks. That is, the decision makers'

ambiguity attitude is not necessarily limited to aversion but may also re�ect

lovingness for ambiguous gambles.9 Indeed, robustness checks reveal that the

results in this paper can be replicated when employing a multiple prior setup

with smooth ambiguity preferences or α-maxmin decision rules.

7To the best of our knowledge, the concepts of optimism and pessimism have not yet been
associated with the mentioned multiple prior frameworks.

8The α-maxmin framework is introduced by Ghirardato et al. (2004) and can be seen as the
multiple prior counterpart of neo-additive Choquet preferences.

9Recent applications of the multiple prior framework include variational and multiplier pref-
erences and are particularly designed to apply ambiguity aversion to intertemporal optimization
problems, compare Ghirardato et al. (2004) and Hansen and Sargent (2001) respectively. Since
they exclude ambiguity lovingness by de�nition, they are not suited for our application.
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Ambiguity in our framework can be seen as an agent's lack of con�dence in the

validity of her information (informational ambiguity). Hence, it is natural to

choose a market model, where herding (and contrarianism) is triggered by

information externalities that an investment decision by one agent imposes on

subsequent agents' expectations about the asset value, compare the seminal

work of Bikhchandani et al. (1992).10

We choose the two-state, two-trader version of Avery and Zemsky (1998) as

the baseline model over more recent and complex market microstructure herd

models such as Park and Sabourian (2011) or Cipriani and Guarino (2014) since

we want to avoid unnecessary distractions due to complex model features.11

Indeed, in the baseline model without ambiguity neither herding nor

contrarianism are possible, compare Avery and Zemsky (1998). This constitutes

a sharp and, hence, illustrative contrast to investor behavior under ambiguity.

Having said that, we will also argue that the insights from this paper are

conveniently transferred to more complex setups.

The remainder of this paper is organized as follows: In Section 5.2, we revisit

the model of Avery and Zemsky (1998) and discuss investor behavior if there is

no ambiguity. In Section 5.3, we apply ambiguity to the model of Avery and

Zemsky. We derive the necessary and su�cient conditions for herding and

contrarianism under ambiguity and discuss corresponding market outcomes in

Section 5.4. In Section 5.5, we introduce the perturbed model and highlight

di�erences of price-dynamics under herding and contrarianism. Section 5.6 is

devoted to the discussion of the robustness of our �ndings, while Section 5.7

concludes. Technical proofs as well as additional material and deep dive

analyses are found in the Appendix.

10Alternative drivers for herd behavior include reputational concerns as well as investigative
herding. Reputational herd models modify the agents' objective functions such that their de-
cisions are a�ected by positive externalities from a good reputation, see e.g. Scharfstein and
Stein (1990), Graham (1999) and Dasgupta et al. (2011). Investigative herd models examine
conditions under which investors may choose to base their decisions on the same information
resulting in correlated trading behavior, see e.g. Froot et al. (1992) and Hirshleifer et al. (1994).

11Other �nancial market herd models such as Lee (1998), Chari and Kehoe (2004), and Cipri-
ani and Guarino (2008), investigate how investor herding is related to transaction costs, endoge-
nous timing of trading decisions, and informational spillovers between di�erent assets, respec-
tively.
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5.2 The Baseline Herd Model Without Ambiguity

This section reviews the two-state, two-trader version of the model of Avery and

Zemsky (1998) and presents it's key property: Without ambiguity no herding and

no contrarianism are possible.

5.2.1 The model setup

Avery and Zemsky (1998) consider a sequential trading model in the spirit of

Glosten and Milgrom (1985), consisting of a single asset, informed as well as

noise traders and a market maker. The model assumes rational expectations and

common knowledge of it's structure. Moreover, all decisions in the model are

decisions under risk, i.e. there is no ambiguity. We refer to the model speci�ed in

this section as the baseline model.

The Asset: There is a single risky asset with unknown fundamental value V ∈
{V0, V1}, where V0 < V1. We refer to V1 as the high state and V0 as the low state.

Without loss of generality, let V0 = 0 and V1 = 1. The prior is fully characterized

by the prior probability for the high state π0 := P (V = V1) and assumed to be

non-degenerate, i.e. 0 < π0 < 1. The asset is traded over T consecutive points

in time. After T , the true state of the world is revealed and traders receive their

payment accordingly.

The Market Maker: Trading takes place in interaction with a market maker

who quotes a bid and an ask price at every time t = 1, ..., T . The market maker

only has access to public information, consisting of the history of trades Ht and

the risky asset's prior distribution π0. The trade history is de�ned as Ht :=

{(a1, p1), ..., (at−1, pt−1)}, where ai ∈ {buy, sell, hold} is the action of a trader in

period i ≥ 1 and pi is the price at which that action is executed.

The relevant public information is fully re�ected by the public belief regard-

ing the asset's true value, which is given by E[V | Ht] = P (V = 1|Ht) =: πt.12

12πt uniquely identi�es the history of trades up to the number of holds. In particular, it can
be bijectively mapped to any order imbalance in the trade history. We will, hence, also refer
to πt as the market's sentiment or degree of optimism. This argument is discussed formally in
Section 5.8.E the Appendix of this paper, see Proposition 5.8.
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In line with Avery and Zemsky (1998), we also refer to πt as the asset's price

in period t. The market maker is subject to Bertrand competition and, thus,

quotes bid and ask prices according to a zero-pro�t condition. Formally, we have

askt = E[V |Ht ∪ {at = buy}] and bidt = E[V |Ht ∪ {at = sell}].

The Traders: Traders arrive at the market one at a time in a random exogenous

order and decide to buy, sell, or not to trade one unit of the asset at the quoted

bid and ask prices. Traders are either risk neutral informed traders or noise

traders. The fraction of informed traders is denoted by µ. Informed traders base

their decision to buy, sell, or not to trade on their expectations regarding the

asset's true value. In addition to publicly available information, informed traders

form their beliefs based on a private signal S ∈ {S0, S1}. We refer to S0 as the

low signal and S1 as the high signal.13 Informed traders buy (sell) one unit of

the asset if their expected value of the asset E[V | S,Ht] = P (V = 1|S,Ht) is

strictly greater (smaller) than the ask (bid) price quoted by the market maker.14

Otherwise, they choose not to trade. In contrast to informed traders, noise traders

choose their action randomly, that is, they decide to buy, sell, or not to trade with

equal probability of 1/3. Consequently, the probability that a noise trader arrives

at the market and either buys, sells or holds the asset is equal to (1− µ)/3. For

notational convenience, we de�ne (1− µ)/3 =: θ.

The Private Signal: The distribution of the private signals S0, S1 is condi-

tional only on the true state of the world and is denoted by P (S|V ). In particular,

it does not depend on the trading history Ht. Without loss of generality, we as-

sume symmetric binary signals (SBS) with precision 1 > q > 0.5, i.e. P (Si|Vi) = q

for i = 1, 2. Assuming q > 0.5 ensures, that signals are informative in the sense,

that they point an informed trader towards the true state of the world. If the low

state realizes, then it is more likely to receive a low signal than receiving a high

signal (and vice versa if the high state realizes). The larger q, the less noisy and

more informative the signal gets.

13Throughout this paper, by an abuse of notation, we also label the informed trader who
receives signal S, by S.

14We can think of traders being endowed with one unit of money. In that sense, selling the
asset really means to short-sell it. The investors' endowment is risk and ambiguity free.
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Updating: Belief updating follows Bayes' rule. Public beliefs are updated from

πt to πt+1 when a trading decision at is observed in t + 1. Similarly, the public

belief πt is updated to a private belief E[V |S,Ht] if a trader arriving at the market

at time t has received a private information signal S.15

The updating rules imply that for any �xed model parameterization the

market maker's bid and ask quotes as well as the informed traders' asset valuations

in t only depend on the price πt. We can, thus, view askt and bidt as well as

E[V |S,Ht] as functions of πt. As a notational convention we write E[V |·, Ht] =

E[V | ·, πt] = Eπt [V | ·] and askt = ask(πt) and bidt = bid(πt). We will sometimes

omit the time index for convenience.

Herding and Contrarianism: In line with Avery and Zemsky (1998), we de-

�ne herding (contrarianism) as a �history-induced switch of opinion of a certain

informed trader in (against) the direction of the crowd�, compare Brunnermeier

(2001). For instance, if an informed trader S sells the asset initially based on

her asset valuation E[V | S] but decides to buy the asset at t ≥ 1 after she

has observed a price increase (decrease), she is said to engage in buy herding

(contrarianism).16

Informational Cascade: Following Avery and Zemsky (1998) we say that an

informational cascade occurs at time t if and only if P (at|V,Ht) = P (at|Ht), ∀at.
This characterizes a situation where the public cannot or does not infer any in-

formation from the observation of a trade, i.e. if P (V |Ht+1) = P (V |Ht). To see

this, note that during an informational cascade Bayes' Rule implies

P (V |Ht+1) = P (V |Ht, at) =
P (at|V,Ht)P (V |Ht)

P (at|Ht)
= P (V |Ht),

where the last equality holds due to the informational cascade de�nition.

Sometimes an informational cascade is also de�ned as a situation when all

informed traders take the same action irrespective of their information signal,

15For the readers convenience, we have stated the formulas for the informed traders' and the
market's beliefs as well as bid and ask prices with respect to model parameters in Lemma 5.10
in Section 5.8.E in the Appendix of this paper.

16The de�nition for sell herding and contrarianism is symmetric if S buys initially. For formal
de�nitions, see Avery and Zemsky (1998) or Park and Sabourian (2011).
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compare e.g. Cipriani and Guarino (2008).17 We note, that as long as the whole

model structure is common knowledge, this alternative de�nition is equivalent to

the one we use here. We will, however, also consider a perturbed version of our

model, where the market is uncertain regarding the true investor preferences. In

this case it is conceivable that all traders take the same action, yet, the market

still infers information from observed trades. Hence, the more general de�nition

of Avery and Zemsky (1998) prevents us from wrongly identifying a situation as

an informational cascade, while social learning still continues.18

Having revisited the two-state, two-trader version of the Avery and Zemsky

(1998) model, we now state the key result regarding investor behavior.

5.2.2 Investor Behavior in the Baseline Model

Informed traders in the Avery and Zemsky (1998) model never change their initial

trade decision. Low signals always sell the asset while high signals always buy the

asset. This fact is summarized in the following

Proposition 5.1. Avery And Zemsky

Informed traders in the two-state, two-trader model of Avery and Zemsky always

follow their private signals, i.e. ∀t and histories Ht:

0 < E[V | S0, Ht] < bidt < πt < askt < E[V | S1, Ht] < 1.

Proof: Avery and Zemsky (1998).

An immediate consequence is that neither herding nor contrarianism is possible.

Both types of investor behavior require that traders change their initial trade

decision, which never happens due to Proposition 5.1. This is illustrated in

Figure 5.1. For any price πt ∈ (0; 1) (and thus any conceivable history Ht) the

expectation of the high signal remains above the ask price while the expectation

17The intuition behind this is appealing. If all informed traders take the same action inde-
pendent of their signal, the market cannot infer any information from their actions any more.
Consequently, social learning and price updating stop.

18A formal discussion of the di�erent de�nitions of informational cascades is provided in
Proposition 5.9 in the Appendix.
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Figure 5.1: Trading decisions of informed traders in Avery and Zemsky (1998).

Notes: Informed trader expectations E[V | S, πt], bid price bidt and ask price askt are depicted

with respect to the public prior belief at time t, πt. The informed trader share µ = 0.3 and the

signal precision q = 0.6.

of the low signal remains below the bid price. Analyses in Avery and Zemsky

(1998) and Chamley (2004) show that the market con�dently learns about the

true value of V in this case. The higher the signal precision q and the informed

trader share µ, the faster the market learns.

These clearcut results are an important reason for choosing the two-state,

two-trader version of Avery and Zemsky (1998) as our baseline model. It allows

us to highlight that introducing informational ambiguity to the model in the

next section, indeed, has game changing e�ects on investor behavior and social

learning.

5.3 Introducing Ambiguity to the Baseline Herd Model

In this section we apply the concept of ambiguity to the model framework of Avery

and Zemsky (1998). We show how the assumption that informed traders have non-

extreme-outcome-additive (neo-additive) Choquet Preferences a�ects their asset
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valuation based on the insights provided by Chateauneuf et al. (2007).19 We

particularly focus our discussion on the role of the perceived ambiguity δ as well

as the informed traders' attitude towards ambiguity α. In line with Eichberger

et al. (2010), we provide updating rules for the neo-additive Choquet Expected

Utility (CEU) beliefs. Finally, formal de�nitions for herding and contrarianism

for investors with CEU preferences are provided. For the remainder of this paper,

we refer to this model as the CEU model.

5.3.1 Investors with NEO-Additive Preferences

As we introduce ambiguity to the model of Avery and Zemsky, we make three

general assumptions. First, in order to isolate the e�ects of ambiguity on

investor decisions and social learning, we assume that informed traders as well

as the market maker remain risk neutral. Second, the market maker does not

perceive ambiguity. We may think of the market maker as an invisible hand that

enforces a normatively acceptable price mechanism. Bid and ask prices as well

as the public belief πt should, therefore, be inherently unambiguous. Third, we

consider investor preferences to be part of the common knowledge structure of

the model.20

To incorporate ambiguity, we assume that informed traders have neo-additive

CEU preferences. An individual with this type of preference assigns additive

probabilities to every event that does not include the best and the worst

outcome. For extreme outcomes neo-additive agents assign a weighted average

of additive probabilities and non-additive likelihoods. Since in the two-state

world of Avery and Zemsky every outcome is extreme, the resulting neo-additive

CEU valuation is particularly simple to derive. In line with Chateauneuf et al.

19A similar exercise has been conducted by Ford et al. (2013). A toolbox of the mathematical
objects and results related to the neo-additive ambiguity concept is provided Section 5.8.G in
the Appendix.

20This is a key distinguishing feature from the model of Ford et al. (2013). In Section 5.5
we relax the common knowledge assumption to study di�erences of stylized price dynamics in
markets prone to herding and markets prone to contrarianism.
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(2007), we infer that an informed trader with neo-additive CEU preferences and

signal S values the asset at

CEU [V | S,Ht] = (1− δS)E[V | S,Ht] + δSα, (5.1)

where α, δS ∈ [0; 1].21

CEU [V | S,Ht] is essentially a weighted average of the subjective expected

utility (SEU) valuation E[V | S,Ht] and a subjectively assigned likelihood α that

V = 1 is the true state of nature. In line with Chateauneuf et al. (2007), we

regard α as the individual degree of optimism. Indeed, the higher α, the more

likely the investor considers the high state to be true, the more optimistic, excited

or exuberant she gets regarding the investment prospect and it's pay-o� (and vice

versa).22 The weighting parameter δS is the degree of perceived ambiguity and

can be viewed as the investor's lack of con�dence in her ability to form a SEU

belief.The higher δS the more the investor relies on her gut feeling α as to whether

the low or the high state is true.23

Throughout this paper we assume that the asset valuations of the di�erent in-

formed trader types are monotone in the sense that CEU [V | S0, Ht] ≤ CEU [V |
S1, Ht]. From an economical perspective this can be seen as the ambiguity version

of a weak form of the Monotone Likelihood Ratio Property (MLRP) of private

signals. Indeed, Park and Sabourian (2011) show that MLRP signal structures

imply that the order of the informed traders' asset valuations is the same for all

histories Ht. Our monotonicity assumption constitutes a corresponding property

under ambiguity. Park and Sabourian (2011) label MLRP and associated trade

behavior as �well-behaved�. We presume that this �well-behavedness� is preserved

under ambiguity.24

21The same result has been obtained by Ford et al. (2013). In Section 5.8.G in the Appendix
we provide a more detailed and formal derivation of Equation (5.1).

22From a decision theoretic perspective, α is primarily a preference parameter describing
the investor's attitude towards ambiguity. In line with Ghirardato and Marinacci (2002), the
investor is absolutely ambiguity loving (averse) if and only if α > E[V | S,Ht] (α < E[V | S,Ht].
She is absolutely ambiguity neutral if and only if α = E[V | S,Ht]. Technical details on this are
provided in Proposition 5.10 in Section 5.8.G of the Appendix of this paper.

23For an intuitive example of an investor facing ambiguity, see Section 5.8.A in the Appendix.
24We stress that the results of this paper do not hinge on this assumption. Yet, stating the

results and discussing them is facilitated.
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For the remainder of this paper, whenever we speak of CEU , we actually

mean CEU with respect to neo-additive capacities unless explicitly stated other-

wise.

5.3.2 Updating CEU Beliefs

5.3.2.1 General Bayesian Updating (GBU)

The GBU rule of Eichberger et al. (2010) implies that upon the arrival of new

information, i.e. the observation of a trade, the additive part of neo-additive

beliefs in Equation (5.1), E[V | S,Ht], is updated according to Bayes' rule as

usual. In addition, the degree of ambiguity δS is also updated, while the degree

of individual optimism α remains �xed.

The updating rule for δS is given by

δS =
δ0

(1− δ0)P (S|Ht) + δ0
. (5.2)

We note again that the dynamics of δS solely depend on πt and that we can,

hence, view δS as function of πt.25

The parameter δ0 can be interpreted as a degree of primary ambiguity that

investors perceive when deciding to trade the risky asset. It may stem from the

complexity of the asset or from the fact that erratic asset price movements elude

established forecasting methods. For instance, derivatives like options, swaps or

Collateralized Debt Obligations (CDOs) might trigger a higher primary

ambiguity than actual stocks, because they are more di�cult to understand and

their future values are more di�cult to predict accurately. By the same line of

reasoning the degree of primary ambiguity should depend on the expertise of the

investor. A retail trader perceives much higher degrees of primary ambiguity

than a professional investment banker. We assume that δ0 > 0 is constant across

informed traders and during the trading period under consideration [0;T ].

Figure 5.2 illustrates that there are two additional sources of ambiguity that

25To see this, note that P (S|Ht) = πtP (S|V1)+(1−πt)P (S|V0) by the law of total probability
and that P (S|Vi) are time-invariant parameters.
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Figure 5.2: Sources of ambiguity for a low signal

Notes: The graph shows the degree of ambiguity δS0 with respect to prior πt for S0. The

primary ambiguity level is δ0 = 0.4, the informed trader share is µ = 0.3, the signal precision is

q = 0.7. δS0 is computed according to Equation (5.2).

contribute towards the degree of total perceived ambiguity δS . It depicts δS

with respect to the price πt for informed traders receiving a low signal S0 as

induced by GBU.

In addition to the �xed level of δ0, total perceived ambiguity also includes

ambiguity stemming from the fact that the private information signal S0 may

contradict the public information re�ected in the price πt and the noisiness of the

private signal. For instance, a high price πt indicates strong market con�dence

that the high state is the true state. The low signal S0, however, suggests that

the low state is more likely to be true than the high state, thus contradicting the

public information re�ected in πt. Indeed, the greater πt the more the low signal

contradicts the public information and the higher the low signal's total degree of

perceived ambiguity δS0 . Yet, even if public and private information are aligned,

i.e. if πt → 0, the noise in S0 prevents the informed trader from fully discounting

the possibility that the high state is true. As a consequence, the δS0 remains

strictly above the degree of primary ambiguity δ0 for all prices πt.26

26If a trader receives a perfect signal (no noise) there is no informational ambiguity on top of
primary ambiguity. In that case, we have P (S|Ht) ≡ 1 which implies that δS ≡ δ0 for all πt.
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Eichberger et al. (2010) argue that α is an individual ambiguity preference

parameter which should not be a�ected by the arrival of new information. Yet,

since we want to study whether potentially irrational exuberance and outright

panics drive investor herding, allowing α to vary might prove insightful.

Moreover, the following section shows that the economic literature has readily

documented that the conceptually related risk preference in fact is subject to

change.

5.3.2.2 Departing from GBU - Varying Degrees of Optimism

It is fairly common in the �nance literature to assume that the degree of risk aver-

sion depends on the market sentiment, see e.g. Campbell and Cochrane (1999).

This is supported by a large body of empirical evidence showing that during cri-

sis periods risk aversion increases, while it tends to vanish during boom phases,

see e.g. Jurado et al. (2015), Bekaert et al. (2013) and Bollerslev et al. (2011).

Given the conceptual similarities of risk and ambiguity aversion, we argue that

the individual degree of optimism α (ambiguity aversion) should also depend on

the general market sentiment.

In our model framework market sentiment is best captured by the price πt.

The higher πt the stronger the degree of optimism exhibited by the market as

a whole that V is a lucrative investment opportunity. Since it is reasonable to

assume that market-wide optimism a�ects individual optimism, allowing α to

vary with πt is a feasible generalization of GBU.

Formally, we set α = αS(πt | q, π0, ·), i.e. it varies with the price but may

also depend on the signal precision, the information signal S or exogenous

events. A low signal S0, for example, may dampen optimism or boost panic.

Likewise, strong and accurate information signals, i.e. a high q, might prevent

investors from overreacting to changes in market sentiment, while low q could

make the CEU trader particularly susceptible for such mood swings. Finally, we

observe that the informed trader share µ plays no explicit role when informed

traders form additive beliefs in the baseline model without ambiguity.27

Consequently, we would argue that µ should not directly a�ect CEU beliefs

27For example, note that E[V | S0, Ht] = (1−q)πt

(1−q)πt+q(1−πt)
.
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neither. To ensure this, α must be independent of µ.

We make three additional assumptions regarding α(πt | ·) for convenience.

These assumptions are not crucial for the results derived in this paper, yet, they

allow us to state them in a lean and intuitive way.28

(A1) For π0 both informed trader types act as if they were ambiguity neutral,

i.e. αS(π0) = E[V | S].

(A1) implies that S0 and S1 type informed traders have di�erent ambiguity

functions. While such an assumption may seem ad hoc, we stress that it is made

without loss of generality and only to focus our discussion on the case where the

low (high) signal sells (buys) initially. (A1) prevents us from being distracted

from less interesting scenarios. For example, it precludes the possibility that the

two informed trader types take the same action in t = 0, which would cause an

informational cascade right at the beginning of trading. Moreover, conditions for

herding and contrarianism derived under (A1), i.e. conditions under which

traders switch their initial trade decision from selling to buying and vice versa,

also hold for weaker forms of switching behavior, i.e. from holding into buying

and selling.

(A2) α(·) is su�ciently regular in πt and the change in α is marginal as the

market becomes con�dent about either state, i.e. ∂α∂π (1) = ∂α
∂π (0) = 0.

(A3) The individual degree of optimism is identical for all low signal traders and

all high signal traders respectively.

The updating of δS as well as the additive belief component of CEU remains as

under GBU. Since δS and αS as well as the additive component E[V | S,Ht] can

be viewed as functions of πt, we may also consider CEU as a function of the

28Section 5.6 highlights the e�ects of generalizing (A3) to obtain a framework where investor
preferences follow a random distribution. Section 5.8.B in the Appendix discusses technical
e�ects of dropping (A1) to (A3) on the stated Lemmas and Theorems.
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price. In line with Section 5.2, we write CEU [V | S,Ht] = CEUS(π) for

notational convenience.

Now that we have formalized how traders with neo-additive preferences fa-

cing ambiguity value the risky asset, we can provide appropriately adjusted de�-

nitions for herd and contrarian behavior.

5.3.3 Herding and Contrarianism in the CEU Model

We modify Avery and Zemsky (1998)'s de�nition of herding and contrarianism

to account for the fact that investor perceive ambiguity and have neo-additive

preferences.

De�nition 5.1. Herding With NEO-Additive preferences

An informed trader with neo-additive CEU preferences and signal S buy herds

in t̂ at history Ht̂ if the following three conditions hold:

(*BH1) CEU [V | S] < bid0, i.e. an informed trader with signal S and neo-

additive CEU preferences sells at t = 0,

(*BH2) CEU [V | S,Ht̂] > askt̂, i.e. an informed trader with signal S and neo-

additive CEU preferences buys in t = t̂.

(*BH3) πt̂ > π0, i.e. the asset price has increased during [0; t̂].

Analogously, an informed trader sell herds in period t̂ at history Ht̂ if and only if

(*SH1) CEU [V | S] ≥ bid0, (*SH2) CEU [V | S,Ht̂] < bidt̂, and (*SH3) πt̂ < π0

hold simultaneously.

These modi�cations ensure that in line with Brunnermeier (2001) and the

bulk of the theoretical herding literature, an informed trader's switch in opinion

is still induced by the observed trade history. More precisely, herding would by

de�nition be impossible if the trade decisions of other investors were not

observable, compare opaque market in Park and Sabourian (2011).29

The corresponding de�nition for contrarian behavior is

29This is not the case in Ford et al. (2013). They consider any buy (sell) decision of a low (high)
CEU signal to be a corresponding herding trade as long as the price has increased (decreased).
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De�nition 5.2. Contrarianism With NEO-Additive preferences

An informed trader with with neo-additive preferences and signal S acts as a buy

contrarian in t̂ at history Ht̂ if the following three conditions hold:

(*BC1) CEU [V | S] < bid0, i.e. an informed trader with signal S and neo-

additive CEU preferences sells in t = 0.

(*BC2) CEU [V | S,Ht̂] > askt̂, i.e. an informed trader with signal S and neo-

additive CEU preferences buys in t = t̂.

(*BC3) πt̂ < π0, i.e. the asset price has decreased during [0; t̂].

Analogously, an informed trader acts as a sell contrarian in period t̂ at history

Ht̂ if and only if (*SC1) CEUSδ0,α[V ] > ask0, (*SC2) CEU
S
δ0,α

[V |Ht̂] < bidt̂, and

(*SC3) πt̂ > π0 hold simultaneously.

With these de�nitions at hand, we are now prepared to investigate investor

behavior in the model of Avery and Zemsky under ambiguity.

5.4 Investor Behavior and Social Learning under Am-

biguity

In this section we present the main results. We will �rst solve the CEU model

by providing equilibrium prices and updating rules. We then investigate investor

behavior in the CEU model under GBU and varying α, respectively. As we derive

necessary and su�cient conditions for herding and contrarianism, we note that

both types of investor behavior will inevitably lead to informational cascades.

As we study the characteristics of the corresponding market outcomes, we �nd

that herders and contrarians are equally likely to cause prices to move away from

fundamentals. This probability is derived analytically and comparative statics

are conducted.

5.4.1 Solving the CEU Model

We conjecture that unlike in the baseline model without ambiguity in Section

5.2, informed traders with neo-additive CEU preferences may change their initial
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trade decision after having observed certain histories of trades. If S0 and S1 take

the same action at any time t, an informational cascade occurs. Social learning

stops and the market maker quotes ask and bid prices equal to πt.30 Even if there

is no informational cascade, any decision change of an informed trader a�ects the

market maker's price setting as well as the public belief updating. We shall begin

by formalizing the market maker's price setting.

Lemma 5.1. Equilibrium Prices in the CEU Model

Under the assumptions of the CEU model, let bidt and askt be the bid and ask

prices that are quoted in the Avery and Zemsky model at any time t. If there is

no informational cascade in t, then the market maker quotes

bidCEUt = min{max{bidt;CEU [V | S0, Ht]};πt}

and

askCEUt = max{min{askt;CEU [V | S1, Ht]};πt}.

If there is an informational cascade in t, then the market maker quotes bidCKt =

askCKt = πt

Proof: We have already established pricing given that S0 and S1 take the same

action at t, i.e. if there is an informational cascade. As long as S0 sells and

S1 buys, prices are as in the Avery and Zemsky model. Indeed, since CEU [V |
S0, Ht] < bidt < πt in this case, we have that bidCEUt = bidt. The same argument

applies for askCEUt = askt.

Moreover, monotonicity of the CEU-beliefs implies, that S1 never sells if S0 does

not sell, and that S0 never buys if S1 does not buy. This leaves only two additional

cases to consider. First, the case where S0 holds and S1 buys and second, the

case where S1 holds and S0 sells. For symmetry reasons, we will only prove the

�rst case.

Let askt and bidt denote the ask and bid prices the market maker quotes in the

Avery and Zemsky model. Assume that at some time t, the high signal still buys

30Compare Avery and Zemsky (1998) and Cipriani and Guarino (2008) for detailed discussions
of informational cascades as well as Proposition 5.9 in Section 5.8.F in the Appendix of this
paper.
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and we have bidt ≤ CEU [V | S0, Ht] ≤ πt < askt. This implies that the low

signal with CEU preferences holds in t.

Since the market maker (and his �ctive Bertrand competition) are aware of this,

the zero-pro�t condition implies an increase of the quoted bid price to bidCEUt =

CEU [V | S0, Ht]. If the market maker set bidCEUt < CEU [V | S0, Ht], then he

would make an average gain on every sell of πt − bidCEUt . The market maker's

competition's best response is to quote a bid price b̃id
CEU

t > bidCEUt such that

b̃id
CEU

t < CEU [V | S0, Ht] and πt− b̃id
CEU

t > 0. In other words, the competition

can quote a better bid price, thereby drawing away all noise traders that sell the

asset, while still making pro�ts. In turn, the optimal response of the market

maker then is to increase bidCEUt correspondingly. This price war continues until

bidCEUt = b̃id
CEU

t = CEU [V | S0, Ht]. If the market maker quoted bidCEUt >

CEU [V | S0, Ht], then the low signal would sell at t. Consequently, the market

maker would make an average loss of bidt − bidCEUt for each sell he �lls and

would, therefore, eventually go out of business. Since the competition is in the

same situation, no market maker has an incentive to deviate from the equilibrium

bid price of CEU [V | S0, Ht].

If πt < CEU [V | S0, Ht]t ≤ askt, then the market maker quotes an equilibrium

bid price of bidCEUt = πt. A downward deviation is not possible due to Bertrand

competition by the same reasoning as above. An upward deviation would cause

the market maker to make average losses of at least πt − bidCEUt for each sell he

�lls and, therefore, would again lead to bankruptcy.

There are two important implications of Lemma 5.1.

First, as soon as an informed trader switches into holding, the market maker

can make pro�ts. As long S1 holds and CEUS1(π) remains above the market price

π (S0 holds and CEUS0(π) remains below π), the market maker on average pro�ts

from every buy (sell) he �lls. This is in line with the intuition that if traders

depart from rationality in the sense of Barberis and Thaler (2003), there will be

opportunities for other market participants to make money additional money. In

all other cases the zero-pro�t condition holds.
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Second, note that the quoted ask (bid) price in the CEU model remains

the same as in the Avery and Zemsky model as long as the high signal S1 buys

and the low signal S0 does not buy (the low signal S0 sells and the high signal

S1 does not sell). This is crucial for the derivation of the result on the

possibility of herding and contrarianism and it ensures that the corresponding

results transfer to the perturbed model setup of Section 5.5.

Next, we derive the updating rules for the public belief πt in the CEU model.

Lemma 5.2. Public Belief Updating in the CEU Model

Under the assumptions of the CEU model, let bidt and askt be the bid and ask

prices that are quoted in the Avery and Zemsky model at any time t.

(1) If the high signal buys and the low signal sells at time t, then πt+1 is as in

the Avery and Zemsky model.

(2) If both signals take the same action in t, then there is an informational cascade

and πt+1 = πt.

(3) If the high signal buys and the low signal holds at time t, then

πt+1 =


askt, if at = {buy}

πt, if at = {sell}

bidt, if at = {hold}.

(5.3)

(4) If the high signal holds and the low signal sells at time t, then

πt+1 =


πt, if at = {buy}

bidt, if at = {sell}

askt, if at = {hold}.

(5.4)

Proof: Case (2) is directly implied by the de�nition of an informational

cascade. To see, that cases (1), (3) and (4) hold, note, that informed traders still

reveal their fundamentally driven signal through their action. Since in case (1),

informed traders decide as in the Avery and Zemsky model price updating also
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coincides. In case (3) - where S1 buys and S0 holds - a sell would contain no

informational value, because it is a noise trade for sure. Consequently, the price

remains constant. If a buy is observed, the market maker knows, that it is

conducted by either the high signal or a noise trader. Consequently, updating

after a buy is exactly the same as in the Avery and Zemsky model. Finally, if a

hold is observed, the market maker knows, that it is due to the low signal or a

noise trader. This is equivalent to the situation of an observed sell in the Avery

and Zemsky model. Consequently, the market maker sets πt+1 = bidt, when

observing a hold. The argument is symmetric for case (4), i.e. if S1 holds and S0

sells.

Lemma 5.2 implies that the probability to observe a price increase (decrease),

i.e. πt+1 > πt (πt+1 < πt) remains constant as long as there is no informational

cascade.31 This is crucial for deriving a closed formula for the probability of

price-distorting market outcomes below.

Having solved the model dynamics, we turn to the analysis of investor behavior

in the CEU model. We will �rst focus on the case where informed traders

update their CEU belief in accordance with the GBU rule. We will then

consider the general case, where α may vary with the price πt.

5.4.2 Investor Behavior in the CEU Model under GBU

This section shows that if informed traders perceive ambiguity and update their

neo-additive CEU preferences according to the GBU rule, i.e. they exhibit invari-

ant ambiguity preference α, then there is no herding in the CEU model. At the

same time, informed traders show strong contrarian tendencies that prevent the

market from becoming con�dent about either state.

Theorem 5.1.

In the CEU with α ∈ [0; 1] �xed, no herding can occur. If, in addition, S0

sells initially and S1 buys initially, then contrarianism occurs with positive

probability.

31In particular, note that the probability of a price increase (decrease) is the same as in the
baseline model, where it coincides with the probability of buy (sell), see Lemma 5.10 in Section
5.8.E in the Appendix of this paper for the respective formulas.
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Proof: Since this proof is fairly technical, it is left to the Appendix.

We require, that S0 (S1) sells (buys) initially to avoid situations in which both

informed trader types take the same action initially, thereby causing an infor-

mational cascade right at the beginning of trading.32 Note, that Theorem 5.1

contradicts some of the key results in Ford et al. (2013). This is because we apply

di�erent de�nitions for herding and contrarianism. Although the mathematical

proof is left to the Appendix, we would like to provide some intuition for our

result.

The impossibility of herd behavior stems from the fact that neo-additive

CEU traders' beliefs are anchored around α. As a result, their belief updating

process exhibits a strong degree of sluggishness. CEU traders show particular

reluctance in following the crowd. Consider for instance a low signal type trader.

Since she sells initially by assumption, she can only engage in buy herding. When

she observes a price increase, the additive part of the CEU belief, Eπt [V |S0],

increases in line with Bayes' rule as in Avery and Zemsky (1998). Since, however,

she perceives ambiguity regarding the validity of her Bayesian asset valuation

she tends to rely on her gut feeling to some extent, i.e. her individual degree of

optimism. Under GBU, α is, however, una�ected by the price increase. As a

consequence, the upward revision of CEU [V | S0, H] turns out be smaller than

the corresponding belief revision of her SEU counterpart from the model of Avery

and Zemsky. Consequently, since Eπ[V |S0] < bid(π) ≤ bidCEU (π) for all π, S0

keeps selling a fortiori after having observed a price increase given that she sells

to begin with.33 This precludes her from ever engaging in buy herding behavior.

The argument is symmetric for the high signal.

The mechanism preventing herding is, at the same time, the key driver for

contrarianism. The sluggish belief updating makes neo-additive CEU traders

prone to act against the crowd. As the asset price approaches one of the possible

true states, i.e. if πt → 1 (or πt → 0), both informed trader types will eventually

32We can enforce this condition by setting αS = E[V | S]. The e�ects of dropping this
assumption are discussed as we prove Theorem 5.1 in the Appendix.

33To see that Eπ[V |S0] < bid(π) ≤ bidCEU (π) holds, review Proposition 5.1 and Lemma 5.1.
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start selling (or buying) the asset, regardless of their initial trading decision.

This is due to the fact, that their non-additive belief component bounds away

their asset valuation from 1 and 0, as the public becomes increasingly con�dent

about either state. Assume for instance a price decrease. As πt → 0, the quoted

bid and ask prices also approach zero. At the same time, the non-additive part

of the informed traders CEU beliefs δSαS is bounded away from 0.34 Given their

initial trading decisions the low signal can only engage in buy contrarianism

while the high signal can only engage in sell contrarianism.

5.4.3 Investor Behavior in the CEU Model with Varying α

We now investigate investor behavior under the assumption that the individual

degree of optimism α varies with the price πt.

5.4.3.1 Irrational Exuberance and Herd Behavior

In this section we derive necessary and su�cient conditions for herd behavior in

the CEU model with varying α. We begin our analysis by deriving a necessary

condition.

Neccessary Condition: The essential �nding is that the degree of optimism

α has to move pro-cyclically, i.e. increase with the market price. In addition,

the individual reaction to market-wide optimism (pessimism) needs to be strong

enough, i.e. informed CEU traders need to become particularly exuberant (des-

perate).

Theorem 5.2. Necessary Condition for Herding

Consider the CEU model with varying α.

If buy herding occurs with positive probability, then ∃π ∈ (π0; 1) : αS0(π) >

ask(π).

If sell herding occurs with positive probability, then ∃π ∈ (0;π0) : αS1(π) <

bid(π).

34There are some peculiarities if α = 1 or α = 0. These cases of pure optimism and pessism
are discussed in the Appendix.
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Proof: Due to symmetry reasons, we show only the buy herding statement. (A1)

implies that S0 sells initially while S1 buys initially. Hence, only S0 can buy herd

(*BH1). If S0 buy herds at some price π > π0 (*BH3), then CEUS0(π) > ask(π)

(*BH2). Consequently,

(1− δS0)Eπ[V | S0] + δS0αS0(π) > ask(π).

Solving this inequality for αS0(π) after having added and subtracted δS0ask(π)

on the r.h.s. of the inequality, yields

αS0(π) >
δS0 ask(π) + (1− δS0) ask(π)− (1− δS0)Eπ[V | S0]

δS0

.

Now noting that ask(π) > Eπ[V | S0], we infer, that the r.h.s. of the inequality

is greater than ask(π), which proves the statement.

In line with the market maker's price setting derived in Lemma 5.1, bid and ask

in Theorem 5.2 refer to the bid and ask prices that are quoted in the similarly

parameterized baseline herd model without ambiguity.

Let us provide some additional intuition regarding the buy herding condition.

(A1) implies that only S0 sells initially. In particular, the low signal initially

values the asset at Eπ0 [V | S0], i.e. she is neither particularly optimistic nor

pessimistic. Even as the asset price π appreciates, the additive part of the low

signal's asset valuation Eπ[V | S0] remains well below the ask price, compare

Section 5.2. Hence, S0 will only decide to buy at some price πt > π if her degree

of optimism αS0(π) is large enough to compensate for this fact. Since

αS0(π0) = E[V | S0] < Eπ[V | S0], this means that it is necessary for buy

herding, that αS0(π) >> αS0(π0), i.e. S0's degree of optimism has to increase

with the asset price. An incremental rise of αS0 would, however, be insu�cient.

The minimum requirement for S0 to value the asset above the ask price is

αS0 > ask > π. Noting that αS0(π0) < π0, this implies that buy herding requires

that αS0(π) − αS0(π0) >> π − π0. Such a disproportionate surge in individual
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optimism compared to the increase of optimism exhibited by the market, can well

be interpreted as (possibly unwarranted) exuberance on the part of the S0 type

trader. The intuition is similar for sell herding of S1. We would, however, la-

bel the required disproportionate increase in individual pessimism as (potentially

exaggerated) desperation of the S1 type traders.

Su�cient Condition: Before stating the formal su�cient condition for herd-

ing, let us develop some intuition �rst. Su�ciency for e.g. buy herding requires

that at some point the degree of optimism α surmounts the ask price for good,

i.e. ∃π∗ > π0, where π∗ < 1 such that α(π) > ask(π) for all prices π ∈ (π∗; 1). If

such an optimism function coincides with high primary ambiguity δ0, then this is

su�cient for S0 to buy the asset, at least for prices in a neighborhood of 1.

If δ0 is large the trader's lack of con�dence in her additive belief component

is strong. Consequently, her asset valuation is strongly biased towards the non-

additive component α. If her faith in her gut-feeling is su�ciently strong, α(π) >

ask(π) over-compensates the fact that her additive belief component Eπ[V | S0] <

ask(π) driving her asset valuation CEUS0(π) above the ask price for π close to 1.

If primary ambiguity is too low, then no amount of optimism will ever drive the

low signal's valuation of the asset above the ask price.35

This su�ciency condition is in line with the intuition that for example re-

tail traders are more prone to herding than professionals. Indeed, the worse a

trader's understanding about �nancial markets in general and the functioning of

a particular �nancial asset, the higher her degree of perceived primary ambiguity

and the more likely, that she will eventually engage in herd behavior.

Theorem 5.3. Su�cient Condition For Herding

Consider the CEU model with varying α.

Let the level of primary ambiguity

δ0 > 1− µ(1− q) + θ

q(µ+ 2θ)
,

where q denotes the signal precision, µ the informed trader share and

θ := (1 − µ)/3 is the probability that a noise trader buys, sells or holds one unit

35Compare the case of a pure optimist in the Appendix.
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of the asset.

If αS0(1) = 1, then buy herding occurs with positive probability.

If αS1(0) = 0, then sell herding occurs with positive probability.

Proof: The mathematical proof is again left to the Appendix. The principal

idea of the proof has been outlined prior to the statement of Theorem 5.3.

A few remarks regarding Theorem 5.3 are in order.

First, the requirement that αS0(1) = 1 (αS1(0) = 0) has intuitive appeal. In

the limiting case, when the market becomes con�dent about either state of the

world beyond any doubt, i.e. if risk vanishes completely, then even CEU traders

who perceive ambiguity should value the asset at 1 and 0 respectively.

Second, we note that the minimum required amount of primary ambiguity δ0

depends on the informed trader share µ and the signal precision q. Comparative

static analyses reveal that δ∗0 = 1 − µ(1−q)+θ
q(µ+2θ) increases in both µ and q.36 That

is, an increase in µ and q tends to reduce investor proclivity to engage in herd

behavior. This appears to be intuitive in the case of q. Better informed traders

should ceteris paribus be less easily swayed by the crowd to change their trade

decisions. In the case of µ the result is driven by the fact that the market maker

faces a higher risk that his counter-party is informed. To compensate for that

risk, he quotes a higher bid-ask spread which makes extreme switches of traders

from selling to buying and vice versa less likely, compare the discussion of the

impact of information risk on herding intensity in Paper 1 of this thesis.

Finally, we note that the way Theorem 5.3 is stated, it hinges on (A2). A

general version of the su�ciency result that does not require (A2) is provided in

Section 5.8.B in the Appendix of this paper.

The question remains, whether we expect to observe herding implied by

Theorems 5.2 and 5.3 in the real world.

36The formal derivation of these results is based on elementary calculus and has, thus, been
omitted from the paper.
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Since there is strong evidence that risk aversion moves pro-cyclically, see

e.g. Bollerslev et al. (2011), we conjecture that ambiguity aversion or optimism

should exhibit similar features given the conceptual proximity of these preference

parameters.

Moreover, we would argue that there are abundantly many real-world ex-

amples where investor behavior showed corresponding characteristics. Popular

precedents are the dot-com bubble at the turn of the millenium, the recent US

house price bubble as well as the bubble of the Shanghai Composite Index in

2015.

Finally, the relevance of investor herding under ambiguity can be motivated

micro-economically by the �ndings of Heath and Tversky (1991). They provide

experimental evidence that once the judged probability of an ambiguous event is

high, individuals tend to become ambiguity loving. If the price πt is in a neigh-

borhood of 1, even an S0 type trader is fairly con�dent that the high state is true.

Hence, according to Heath and Tversky (1991), S0 should assign a higher proba-

bility to the high state than prescribed by her additive belief component.37 This

would support the idea of Theorem 5.3 that (potentially irrational) exuberance

and despair may drive investor herding at least for prices close to 1 and 0.

A Class of Optimism Functions Allowing for Investor Herding: We

provide a class of optimism functions α(π|q, π0) that are su�cient for herd

behavior if δ0 > 1− µ(1−q)+θ
q(µ+2θ) .

For the low signal, we have

αS0(πt) =

E[V | S0, πt] + E[V | S0, πt]
πt−β1
β1

, if πt ≤ β1

E[V | S0, πt] + (1− E[V | S0, πt])
πt−β1
1−β1 , if πt > β1,

(5.5)

where β1 ≥ π0. If β1 = π0, then in line with (A1) the corresponding CEU asset

valuation of the low signal is initially equal to the additive component, i.e.

37Note that strong pessimism also re�ects ambiguity lovingness in the sense of Heath and
Tversky (1991). The mere di�erence is that a high degree of con�dence regarding the low state
causes CEU traders to assign a higher probability to the low state, than their additive belief
would dictate.
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CEUS0(π0) = E[V | S0]. The larger β1, the more pessimistic S0 and the longer

it takes before the low signal eventually becomes exuberant. S0 needs to observe

a much stronger buy side accumulation of traders before she will decide to follow

the crowd and buy the asset. Indeed, note that for β1 > π0, we have

CEUS0(π0) < E[V | S0] which means that S0 initially has a pessimistic view on

the investment opportunity. She needs to overcome this a priori skepticism

before she becomes inclined to invest in V . As long as β1 < 1, su�ciency for

buy herding as implied by Theorem 5.3 holds.

Similarly for the high signal, we have

αS1(πt) =

E[V | S1, πt] + E[V | S1, πt]
πt−β2
β2

, if πt ≤ β2

E[V | S1, πt] + (1− E[V | S1, πt])
πt−β2
1−β2 , if πt > β2,

(5.6)

where β2 ≤ π0. The interpretation of β2 for the high signal is symmetric to the

interpretation of β1 for the low signal.

5.4.3.2 Contrarianism With Varying α

The intuition and mechanisms driving contrianism are the same for varying α as

under GBU. Thus, we do not provide formal necessary and su�cient conditions.

We point out, however, that necessary conditions for contrarianism can be

stated in a similar fashion as for herding. One simply has to exchange the

intervals from which π is chosen in Theorem 5.2. For su�ciency, consider a CEU

trader, whose degree of optimism α essentially stays constant for all π ∈ [ε; 1− ε]
or even changes in a countercyclical fashion, then by similar arguments as in

Section 5.4.2, the initial valuation of the low (high) signal would rise above

(drop below) the ask (bid) price as the price decreases (increases).

Now, that we have derived fairly general conditions for herding and

contrarianism in the CEU model, we shall shift our focus on the analysis of

market outcomes and social learning.
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5.4.4 Market Outcomes and Social Learning in the CEU Model

This section illustrates that herding and contrarianism in the CEU model have

an equal potential to prevent the market from learning about the asset's

fundamental value and to move prices away from fundamentals.

Monotonicity of the informed trader expectations, i.e.

CEU [V | S0, Ht] < CEU [V | S1, Ht], implies that whenever an informed trader

type engages in herding or contrarianism all informed traders take the same

action. That is, both types of investor behavior necessarily lead to an

informational cascade. If an informational cascade occurs at t, social learning

stops and the price �xes at π∗ until the end of trading, i.e. πτ ≡ π∗ for all

t < τ ≤ T . Such a price consensus is inherently ine�cient since it prevents the

market from learning about the asset's true value and consequently from pricing

the asset at it's fundamental, compare Chamley (2004).

In that sense, herding as well as contrarianism in the CEU model lead to

ine�cient market outcomes. This would be of minor concern if prices generally

moved towards the asset's fundamental until the informational cascade takes

place. That is, if V = 1 (V = 0), we observed π∗ > π0 (π∗ < π0) with high

probability. This is, however, not necessarily the case as we illustrate by

discussing Figures 5.3 and 5.4.

Figure 5.3 depicts a situation, where the low signal S0 (the high signal S1)

engages in buy (sell) herding with positive probability. We focus only on the

buy herding case. Initially, at π0 = 0.5, the low signal values the asset as if she

was an SEU maximizer, i.e. CEUS0(π0) = Eπ0 [V | S0]. The low signal's

optimism function αS0 ensures that her asset valuation CEUS0(π) is highly

elastic with respect to the degree of optimism exhibited by the market. Indeed,

as S0 observes an increasingly strong price upsurge, she not only contracts the

optimistic market sentiment but really becomes overly enthusiastic regarding

the prospect of investing into the risky asset V .

As the price π rises above π1, the low signal changes her trading decision

from selling to holding. In line with Lemma 5.1, the quoted bid price is equal to
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Figure 5.3: Irrational exuberance and buy herding

Notes: Informed trader asset valuations CEUS , bid price bidCEU and ask price askCEU are
depicted with respect to the price πt. The primary ambiguity is δ0 = 0.5, the informed trader
share is µ = 0.3, the initial prior is π0 = 0.5 and the signal precision is q = 0.6. α·(πt) is given
by Equations (5.5) and (5.6) with β1 = β2 = 0.5.

S0's valuation of the asset. As CEUS0(π) becomes greater than πt, the market

maker quotes a bid price equal to πt. If additional buys are observed, the price πt

eventually rises above π2. At that point, S0's exuberance causes her to start buy

herding. An informational cascade occurs, since all informed trader types buy at

that point. Social learning stops and the price is �xed at π∗ = 0.75.38

To see that π∗ = 0.75 becomes the price consensus with relevant

probability even if the low state is true, i.e. if V = 0, note that S0 engages in

buy herding if the trade history contains at least 7 more buys than sells. Even

though V = 0, there is ample potential for a buy side accumulation of traders.

All high signals and one third of the noise traders buy the asset upon arrival. As

long as there is no informational cascade, the buy probability, i.e. the

probability of a price increase, is µ(1 − q) + θ = 0.353 for the model

parameterization of Figure 5.3. Similarly, the probability to observe a price

decrease is µq + θ = 0.413. Given the high short-term dispersion of a

38Note, that the discontinuity of the ask price at π = 0.26 indicates that the symmetrically
modeled high signal starts selling. An informational cascade occurs, because at that point all
informed traders sell and the price is �xed at 0.25.



Fifth Paper 137

Figure 5.4: Market outcomes under contrarianism

Notes: Informed trader asset valuations CEUS , bid price bidCEU and ask price askCEU are
depicted with respect to the price πt. The degree of optimism is α = 0.5 for both informed
trader types, the primary ambiguity is δ0 = 0.3, the initial prior is π0 = 0.5, the informed trader
share is µ = 0.3 and the signal precision q = 0.6.

price-process that is governed by these probabilities, it is apparent that the

likelihood of prices moving away from fundamentals due to herding is far from

negligible. The situation is symmetric for sell herding if V = 1.

Figure 5.4 illustrates the case where the low signal (high signal) may become a

buy (sell) contrarianist. In line with the GBU rule, α = 0.5 for both informed

trader types. Assuming that π0 = 0.5, S0 sells initially and S1 buys initially. Let

us focus on the buy contrarianism case. As sells are observed, the asset price π

decreases. As π falls below π2, S0 stops selling and starts holding. If additional

sells cause the price to drop below π1, S0 switches from holding into buying, thus

acting as a buy contrarianist. Since at that point both informed trader types

buy the asset, an informational cascade occurs. Social learning stops and the

asset price remains constant at 0.3 = π∗ < π1 for all remaining trade periods.

Now, assume that V = 1 is the true state. The probability of a price decrease

in t is µ(1 − q) + θ = 0.353 as long as there is no informational cascade.39 This

39The probability of price increase is µq + θ = 0.413.



138 Fifth Paper

is due to the fact that the low signal reveals her private information through her

action regardless of whether she sells or holds, compare price updating in Lemma

5.2. If S0 sells (holds), prices decrease after an observed sell (hold).

If the trade history contains at least 4 more sells than buys, S0 engages in

buy contrarianism. The market �agrees� with considerably positive probability

to depreciate the asset value to 0.3 = π∗ even though V = 1 is the true state.

To make these insights more precise, we derive a formula for the probability of

such wrong cascades due to herding as well contrarianism in the following

section. We can use this formula to conduct comparative statics on the

likelihood that herders and contrarians move prices away from fundamentals.

5.4.5 Investors Moving Prices away from Fundamentals - Deri-

ving the Probability of a Wrong Cascade

We have illustrated that herding and contrarianism in the CEU model may lead

to price distortions. The aim of this section is to quantify the probability of such

an event and investigate how this probability is related to other model

parameters.

To keep things tractable, let us assume without loss of generality that either

herding or contrarianism are possible but not both. In addition, we assume

symmetry of αS0 and αS1 in the sense that the minimum number of price

increases (decreases) after which the informed traders start herding or acting as

contrarians are the same for the high and low signals.40 We denote this number

as n∗.

Under these assumptions the probability of prices moving away from fun-

damentals coincides with the probability of a buy herding (sell contrarianism)

induced cascade if V = 0 and vice versa a sell herding (buy contrarianism) in-

duced cascade given V = 1. We obtain

40This also includes the GBU case of �xed α. The result easily generalizes to the case where
the symmetry assumption is dropped. A look at the proof of Lemma 5.3 in the Appendix will
reveal why this is true.
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Lemma 5.3. Probability Of A Wrong Informational Cascade

Consider the CEU model, where either herding or contrarianism is possible. Let n∗

be the minimum number of price increases (decreases) after which the low (high)

signal starts herding or acting as a contrarian. Then, the probability of an in-

formational cascade where all informed traders buy herd (act as sell contrarians),

given that V = 0, is equal to the probability of an informational cascade where

all informed traders sell herd (act as buy contrarians), given that V = 1. This

probability is given by

Pn∗ =
1

exp
(
− ln

(
µ(1−q)+θ
µq+θ

)
n∗
)

+ 1
. (5.7)

Proof: The proof is fairly technical and, thus, details are left to the Appendix.

The idea of the proof is that the probabilities to observe a price increase,

decrease or constant prices are the same as long as there is no informational

cascade. This makes the problem of calculating Pn∗ equivalent to a two-sided

gambler's ruin problem with 2n∗ possible states. We can speci�y the transition

probabilities in each state. Then standard techniques of linear algebra yield the

desired result.

To get a broader perspective of how the probability of wrong cascades reacts to

shifts in model parameters, let us analyze the comparative statics of Pn∗ .

Lemma 5.4. Comparative Statics Of Price Distortions

In the CEU model, the probability of prices moving away from fundamentals Pn∗

• Decreases with the informed trader share µ;

• Decreases with the signal precision q;

• Increases with the degree of primary ambiguity δ0;

• Increases with the degree of individual optimism α if investors are prone to

herding;
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• Decreases with the degree of individual optimism α if investors are prone to

contrarianism;

Proof: Since the proof is fairly technical, it is left to the Appendix.

The results of Lemma 5.4 are fairly intuitive. Since µ can be seen as the quantity

of fundamentally relevant information in the market and q can be viewed as the

quality of the same, it is straight forward that an increase of both should reduce

the likelihood that prices move away from fundamentals. If there are more and

better informed traders, then prices should more accurately re�ect the asset's true

value.

Likewise an increase in primary ambiguity δ0 will make investors more

prone to irrational exuberance (desperation) in the case of herding and will

make the belief updating of potential contrarian traders even more sluggish. In

both cases, higher ambiguity will cause CEU traders to rely more on their gut

feeling which may advise them to take wrong actions. Hence the probability of

prices moving away from fundamentals increases. The di�erent results for a

change in α stem from the fact that we see α as a function in π. We de�ne an

increase in α as a general increase of individual optimism elasticity with respect

to a change in market sentiment π.41 Now, consider a CEU trader who is prone

to contrarianism. If her individual optimism reacts more elastically to price

changes, then her belief updating tends to be less sluggish, thus, reducing her

contrarian tendencies. Similarly if the CEU trader is prone to herding, a higher

α implies that her willingness to ignore her private signal and follow the crowd

increases.

We have investigated the conditions under which herding and contrarianism are

possible in the CEU model. Both lead to informational cascades and, thus,

prevent the market from con�dently learning about the true state and may

cause price distortions. In fact, we �nd that price distortions are equally likely

41Formally, α1 is said to be greater than α2 if and only if α1(π) < α2(π) ∀π ∈ (0;π0) and
α1(π) > α2(π) ∀π ∈ (π0; 1).
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under contrarianism and under herding. Given the antithetical nature of the two

types of behavior, however, we would have expected that herding and

contrarianism result in di�erent market outcomes. To carve out these di�erences

we shall depart from the assumption that investor preferences are common

knowledge and consider a perturbed version of the model. We will discuss the

details of this approach and it's insights in the next section.

5.5 Price Dynamics under Herding and

Contrarianism - the Perturbed CEU Model

This section provides insights regarding di�erences of stylized price dynamics un-

der herding and contrarianism, respectively. In the CEU model, however, herding

and contrarianism lead to informational cascades, i.e. constant prices. To circum-

vent this issue, we assume that market participants exhibit marginal uncertainty

regarding investor preferences. The resulting setup is called the perturbed CEU

model because it resembles in spirit the concept of a perturbed game.

5.5.1 The Perturbed CEU Model

All de�nitions and assumptions from Sections 5.2 and 5.3 hold. In particular, all

informed traders are CEU maximizers. Yet, now we assume that market

participants perceive ambiguity regarding informed traders' preferences. That is,

they do not fully discount the possibility that informed traders are ambiguity

neutral. More precisely, the market believes that informed traders have

neo-additive CEU preferences with probability 1 − ε and are expected value

maximizers as in the baseline model with probability ε for some arbitrarily small

ε > 0.42

The most important property of the perturbed CEU model is the absence of

42The fact that market participants perceive ambiguity regarding other informed traders'
preferences is in line with the game theoretic literature, compare e.g. Eichberger and Kelsey
(2014) and Eichberger and Kelsey (2000). In the context of these frameworks an agent's belief
regarding the other players' ambiguity preferences may deviate from the truth.
We note that Ford et al. (2013) focus their analysis exclusively on the somewhat extreme case

of ε = 1.
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(a) Herding

(b) Contrarianism

Figure 5.5: Herding and contrarianism in the perturbed model

Notes: Figure (a) depicts informed trader asset valuations CEUS , bid price bidε−CEU and ask
price askε−CEU with respect to the price πt in a market prone to herding. For illustrative
purposes, we set ε = 0.25. The primary ambiguity is δ0 = 0.5, the informed trader share
is µ = 0.3, the initial prior is π0 = 0.5 and the signal precision is q = 0.6. α·(πt) is given
by Equations (5.5) and (5.6) with β1 = β2 = 0.5. Figure (b) depicts informed trader asset
valuations CEUS , bid price bidε−CEU and ask price askε−CEU with respect to the price πt
prone to contrarianism. For illustrative purposes, we set ε = 0.25. The primary ambiguity
is δ0 = 0.3, the informed trader share is µ = 0.3, the initial prior is π0 = 0.5 and the signal
precision is q = 0.6. α = 0.5 for both informed trader types in line with GBU.



Fifth Paper 143

(full) informational cascades. Figure 5.5 illustrates this fact by showing that

even under herding and contrarianism the market maker quotes a positive

bid-ask spread. This implies that the market still infers information from

observed trade decisions at even if all informed traders take the same action in t.

As a consequence, the price πt continues to evolve under herding and

contrarianism in the perturbed model.43

The absence of informational cascades stems from the market's belief that a

share of ε of the informed traders are expected value maximizers and, thus, behave

as in the baseline model. Consider for instance a situation where both signals buy

the asset (e.g. buy herding in Figure 5.5 (a)). The market believes that a share

of ε of the S0 type traders still acts as in the baseline model without ambiguity

and sells the asset, compare Proposition 5.1. Hence, an observed sell is viewed

to contain some information as the market does not fully discount the possibility

that the trade is carried out by an S0 type informed trader. Consequently, πt

decreases in line with Bayes' rule after a sell is observed. The argument is similar

for a price increase after an observed buy.

Note, however, that the amount of information inferred from a trade under

herding and contrarianism may be very small, particularly if ε is small.

Consequently, herding and contrarian regimes can be seen as partial

informational cascades in the sense of Avery and Zemsky (1998) and Park and

Sabourian (2011).

The second key property of the perturbed model is that it inherits the results

regarding the necessary and su�cient conditions for herding and contrarianism

derived in the CEU model, see Theorems 5.1, 5.2 and 5.3.

To see why this is true, assume that in line with (A1) the low signal sells

initially while the high signal buys initially. As long as S1 buys and S0 does

not, the market maker quotes the same ask price as in the CEU and baseline

model without ambiguity.44 Since S0's asset valuation is also not a�ected by the

43The corresponding formal results on market maker price setting and price updating are
notationally tedious in the perturbed CEU model and, thus, left to Section 5.8.C in the Appendix
of this paper, see Propositions 5.4 and 5.5.

44Compare market maker pricing results for the CEU model (Lemma 5.1) and the perturbed
model (Proposition 5.4 in Section 5.8.C in the Appendix).
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Probability of a Probability of a Probability of a

Price Increase Price Decrease Constant Price

Buy Herding µ+ θ θ θ

Sell Contrarianism θ µ+ θ θ

Sell Herding θ µ+ θ θ

Buy Contrarianism µ+ θ θ θ

Table 5.1: Transition probabilities for πt under herding and contrarianism

Notes: This table reports the transition probabilities of the price process in the perturbed CEU
model given that CEU traders herd or act as contrarians respectively. µ is the share of informed
traders. θ = (1− µ)/3 is the probability for a noise trader to either buy, sell or hold.

perturbation assumption, the conditions for CEUS0 surpass the ask price, i.e. for

S0 to buy herd or act as a buy contrarian are the same as in the CEU model.

Indeed, since the model parameterizations in Figures 5.5 (a) and (b)

coincide with the ones used for Figures 5.3 and 5.4, respectively (aside from the

perturbation parameter ε), the cut-o� prices for herding and contrarianism

(π∗, π∗∗) from Figures 5.5 (a) and (b) are precisely equal to the corresponding

cut-o� prices depicted in Figures 5.3 and 5.4.

Since we have established that herding and contrarianism are possible in the

perturbed CEU framework and that learning always continues we can now study

how prices evolve under herding and contrarianism.

5.5.2 Prices under Herding and Contrarianism in the Perturbed

CEU Model

Before deriving formal results we want to develop some intuition for the price

dynamics by looking at the price process' transition probabilities under the

di�erent regimes.

Table 5.1 reports the probabilities of whether πt moves up, down or remains

constant given that investors herd or act as contrarians. We note that under all

four regimes a price increase (decrease) coincides with an observed buy (sell).
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As a consequence, the probability for a price increase (decrease) is the same as

the probability of a buy (sell). The same argument applies for constant prices

and observed holds.45

Consider for instance the case of buy herding. The total probability of

observing a buy is the probability of an informed buy plus the probability of

a noise buy. Since under buy herding all informed traders buy the asset, the

probability of an informed buy is µ. Similarly, since one third of the noise traders

buys the asset, the probability of observing a noise buy is θ = (1 − µ)/3. Thus,

the total probability of observing a buy under buy herding and, hence, a price

increase is µ + θ. Likewise, since the only traders selling under buy herding are

noise traders, the probability of observing a sell and, thus, a price decrease is θ.

By a similar line of reasoning the probability of a price decrease under sell

contrarianism is µ + θ. Since only noise traders buy under sell contrarianism,

the probability of a price increase is θ.

Avery and Zemsky (1998) show that the price in their model eventually

converges to 1 if the majority of the informed traders buys while it converges to

0 if the majority of the informed traders sells.

The same principal should govern the price process in the perturbed CEU

model under herding and contrarianism. We conjecture that buy herds in the

perturbed CEU model push prices towards 1 (the majority buys), while sell

contrarianists pull it back towards π0 (the majority sells). Similarly, sell herds

should push the price towards 0 while buy contrarians pull it back up towards

π0.

These hypotheses are con�rmed by the following two propositions.

Proposition 5.2. Prices in the Perturbed Model - Herding

In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the cut-o� prices, such

that S1 sell herds for all π < π∗ (S0 buy herds for all π > π∗∗).

Then the market will become con�dent regarding the low (high) state with positive

probability, regardless of the true state of V .

45Compare the price updating rules in the perturbed model summarized in Proposition 5.5 in
Section 5.8.C in the Appendix for details.
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Proof: We discuss the proof for the buy herding case only. The sell herding

case is symmetric. For the buy herding statement we need to show that

P ( lim
t→∞

πt = 1) > 0. First note that by the law of total probability, we have

P ( lim
t→∞

πt = 1)

= P ( lim
t→∞

πt = 1|∃τ ≥ 0 : πτ > π∗∗)P (∃τ ≥ 0 : πτ > π∗∗).
(5.8)

The second probability on the r.h.s. of Equation (5.8) is greater zero by the

assumption that buy herding is possible. For the �rst probability on the r.h.s. of

Equation (5.8), we de�ne πBHt := (πt|πt > π∗∗) to be the price process under buy

herding. Observe that πBHt is a sub-martingale with respect to the history Ht,

i.e. E[πBHt+1 |Ht] > πBHt .46 Then, the martingale convergence theorem implies that

πBHt → Π for t→∞ almost surely, i.e. P ( lim
t→∞

πBHt = Π) = 1.

Since, the sub-martingale property implies that πBHt ∈ (π∗∗; 1) increases almost

surely for t→∞ and since πBHt < 1 for all t by de�nition, it follows that Π = 1.

This implies that P ( lim
t→∞

πt = 1|∃τ ≥ 0 : πτ > π∗∗) > 0 and, thus, concludes the

proof that a market prone to buy herding will become con�dent regarding the

high state with positive probability regardless of the true state of V .

Proposition 5.3. Prices in the Perturbed Model - Contrarianism

In the perturbed CEU model, let π∗ < π0 (π
∗∗ > π0) be the cut-o� prices, such that

S0 acts as a buy contrarian for all π < π∗ (such that S1 acts as a sell contrarian

for all π < π∗).

Then the price will rise above π∗ (drop below π∗∗) again almost surely.

Proof: Consider the sell contrarian case. We need to show that

P (∃τ > t : πτ ≤ π∗∗|πt > π∗∗) = 1.

Similar to before, we de�ne πSCt := (πt|πt > π∗∗). We observe that πSCt is a

super-martingale with respect to the history Ht, i.e. E[πSCt+1 | Ht] < πSCt .47 In

other words, prices fall almost surely as long as there is sell contarianism.

Moreover, there exists a π̃t > π∗∗ such that π̃t+1 < π∗∗ if there is a sell in t.

46The proof for this is left to Section 5.8.C in the Appendix.
47The proof for this is left to Section 5.8.C in the Appendix.
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Both arguments together yield that the price will drop below π∗∗ almost surely

given there is sell contrarianism at some time t. The argument is symmetric for

buy contrarianism.

Propositions 5.2 and 5.3 state that the price evolves quite di�erently under herding

and contrarianism in the perturbed CEU model. According to Proposition 5.2,

herding causes the market to become con�dent about one of the states. A buy herd

eventually drives the price towards 1 while a sell herd drives the price towards 0.

Since this may happen regardless of the true state of V , the perturbed CEU model

predicts that the market herds on the wrong state with positive probability.48

In line with Proposition 5.3, contrarianism prevents the market from learning

about the true state and anchors the price on some interval π∗ < π0 < π∗∗.

Hence, both types of investor behavior still distort prices but they do so in very

dissimilar ways.

The di�erent stylized price movement under herding and contrarianism in the

perturbed CEU model are illustrated in Figure 5.6.

The herding case is depicted in Figure 5.6 (a). In line with the previously il-

lustrated model outcome in Figure 5.5 (a), S0 engages in buy herding as soon

as the price surpasses π∗∗.49 The �rst buy herd forms right before period 400.

We observe, that this buy herd is broken shortly thereafter. This is due to a

random arrival of noise traders selling the asset who push the price below π∗∗.

When the second buy herd starts after period 400, however, it persists until period

T = 2000. The sub-martingale property now governs the price process resulting

in a long term price increase towards 1. Thus, the longer the herd persists, the

less likely it is broken. In line with Park and Sabourian (2011) we refer to this

48Note that this result partly driven by the assumption that the market operates under the
wrong assumption that a share of ε traders are SEU maximizers. Still, it provides qualitatively
valuable insights as it is fair to assume that investor preferences are typically not accurately
estimated in the real world. Since, moreover, there is a strong consensus regarding the validity
of the e�cient market hypothesis, we conjecture that markets tend to underestimate the share
of investors deviating from SEU.

49Note, that the model parameterizations in Figure 5.6 are exactly as the corresponding model
parameterizations in Figure 5.5.
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(a) Con�dent Herding On The Wrong State

(b) Anchored Price Movement und Contrarianism

Figure 5.6: Prices under herding and contrarianism

Notes: Figure (a) shows a simulated price path under herding for T = 2000 time periods. As
before, the primary ambiguity is δ0 = 0.5, the informed trader share is µ = 0.3, the initial prior
is π0 = 0.5 and the signal precision is q = 0.6. α·(πt) is given by Equations (5.5) and (5.6)
with β1 = β2 = 0.5. The pertubation term is ε = 0.25. Figure (b) shows a simulated price
path under contrarianism for T = 2000 time periods. The primary ambiguity is δ0 = 0.3, the
informed trader share is µ = 0.3, the initial prioris π0 = 0.5 and the signal precisionis q = 0.6.
α = 0.5 for both informed trader types in line with GBU. The pertubation term is ε = 0.25.
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as the self-enforcing nature of herding. By period 800, the price is well above

0.9. For it to fall below π∗∗ = 0.74 again, many consecutive (noise trader) sells

would have to be observed. The probability for such an event is already very

small. Indeed, since we expect πt to increase further on average (sub-martingale

property), the probability of the herd being broken vanishes as t→ T . Note that

the market becomes con�dent that the asset's true value is 1, while V in fact is

0, i.e. the market con�dently herds on the wrong state.

Also observe that the price is considerably less volatile when S0 type informed

traders buy herd compared to when they do not. This is in line with the char-

acteristics of a partial informational cascade. Since the market is certain that

most informed traders have CEU preferences and knows that they engage in buy

herding as π > π∗∗, the informational content the market infers from an observed

trade drops signi�cantly under buy herding. Since the price dynamics are mainly

determined by the inferable information from an observed trade, prices become

less volatile when S0 buy herds, compare Avery and Zemsky (1998) and Park and

Sabourian (2011).50

The price evolution under contrarianism is depicted in 5.6 (b). In line with

Figure 5.5 (b), S0 engages in buy contrarianism (S1 engages in sell

contrarianism) as soon as the price surpasses π∗∗ (falls below π∗). In line with

Proposition 5.3, the price mainly stays on (π∗;π∗∗). The contrarian regimes are

always very short due to the self-defeating nature of contrarianism, compare

Park and Sabourian (2011). As soon as the price exceeds π∗∗, for instance, sell

contrarians pull the price below π∗∗ again causing the regime to end rather

quickly. As a consequence, contrarians prevent the market from becoming

con�dent regarding either state and, hence, from learning. In T = 2000, the

asset price is still very far away from the asset's fundamental value V = 0.

While for given model parameterization the price evolution is always similar in a

market prone to contrarianism, the outcome could have been di�erent under

herding. A sell herd could have driven the price towards the asset's fundamental

50In the case of an informational cascade the information content of a trade is 0 and, thus,
the price remains constant, compare the CEU model.
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value of 0. As a consequence, we want to study the a priori probability of a

wrong herd similar to the CEU model.

5.5.3 Price-Distorting Herding in the perturbed model

Quantifying the probability of price-distorting herds in the perturbed model is

more complicated than in the CEU model. When informed traders change their

trade decisions in the perturbed model, the probability and the extend of price

increases and decreases varies. Yet, our ability to derive an analytical formula

for the probability of wrong cascades in the CEU model in Lemma 5.3 hinges

on the fact that price changes and their probabilities are �x as long as there is

no cascade and trivial when there is an informational cascade. Hence, we are

not able to provide a similarly appealing result for the perturbed model. We

can, however, leverage Lemma 5.3 to infer upper and lower boundaries for the

probability of wrong herds:

Lemma 5.5. Probability of Wrong Herds in the Perturbed Model

Consider the perturbed CEU model, where only herding is possible and assume

symmetry between the signals as in Lemma 5.3. Let P εWH denote the probability

of a wrong herd in the perturbed CEU model. Let n∗ be the minimum number of

price increases (decreases) after which the low (high) signal starts herding. Let

k∗ < n∗ be the minimum number of observed price increases (decreases) after

which the low (high) signal starts holding. Then P εWH ∈ [Pn∗ ;Pk∗ ], where P· is as

in Equation (5.7).

Proof: See Appendix.

In the perturbed model, the probability of wrong buy herds tends to be even larger

than in the CEU model. Driver for this result is the market's erring assumption

that a share of ε of the informed traders are SEU maximizers. As long as pref-

erences are common knowledge (CEU model), the price process is a martingale

and cannot exhibit long term trends away from the asset's fundamental. In the

perturbed model, on the other hand, such a wrong trend is possible.
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Let V = 0 be the true state and assume for illustrative purposes that ε = 1,

that is, the market assumes that all informed traders are SEU maximizers al-

though they have CEU preferences. Once S0 switches into holding, the market

does not accurately adjust the asset price downward anymore. Instead of depre-

ciating the price after an observed hold (CEU model), the market depreciates the

price after a sell. Yet, the probability to observe a sell is only θ (noise trader sell)

since S0 holds. For πt to be a martingale, however, the probability of a downward

revision would need to be µ+ θ.

Hence, price decreases occur less often than they should. This results in an

upward drift in the price process, i.e. a trend away from V = 0 (sub-martingale

property). This e�ect is ampli�ed if S0 engages in buy herding.

These trends have the overall e�ect to drive prices away from fundamentals

with greater probability in the perturbed model than in the CEU model.

We note, that the comparative statics of the lower boundary of P εWH are readily

provided by Lemma 5.4. For the comparative statics of the upper boundary Pk∗ ,

we �nd that the e�ect of an increase in µ is, indeed. An increase in q has weaker

e�ects on Pk∗ than on Pn∗ .

5.5.4 The Burst Of A Bubble

Given the initial motivation of this paper, we would like to conclude this section

by illustrating how the CEU model can be leveraged to explain the formation

and subsequent burst of bubbles. As we have seen in the previous sections, the

perturbed CEU model can explain the formation of a bubble. Yet, it cannot

endogenously produce the burst of bubble before the asset's true value is revealed

after the �nal period T .

To overcome this issue, we will allow ambiguity in the perturbed CEU

model to be exogenously removed at some period τ < T . Indeed, it is

conceivable that unexpected events like the September 11 attacks on the United

States in 2001 or Mario Draghi's �whatever it takes� speech in 2012 may cause

jumps in primary ambiguity δ0 or remove it altogether. The result is illustrated

in Figure 5.7.
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Figure 5.7: The formation and burst of a bubble

Notes: The �gure shows a simulated price path for T = 2000 periods. The primary ambiguity
δ0 = 0.5, the informed trader share is µ = 0.3, the initial prior π0 = 0.5 and the signal precision
q = 0.6. α·(πt) is given by Equations (5.5) and (5.6) with β1 = β2 = 0.5. The perturbation
parameter ε = 0.25 for illustrative purposes.
Primary ambiguity δ0 is set equal to 0 after t = 800 periods. The true state is V = 0.

The model parameterization used to simulate the price path in Figure 5.7 allows

for (wrong) herding. The asset's fundamental value is V = 0. Due to noise

trading and trading of high signals, we observe an increase in the price in the

�rst 70 periods. Shortly after t = 70, the low signal type traders engage in buy

herding for the �rst time. The buy herd is broken a few times. A persistent buy

herd forms only after period 110. Prices increase further towards 1 in line with

Proposition 5.2. This continues until period 800, where some exogenous event

removes the ambiguity, thereby bringing the herd to a halt.

Once ambiguity is removed, informed traders become expected value ma-

ximizers. Hence, S0 type traders sell the asset. Since V = 0 is the true state,

there are more S0 type traders in the market than traders with a high signal. In

line with the baseline model, we expect a price correction and that πt eventually

converges towards 0.
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Since the informed traders' signal precision q = 0.6 is relatively low, it

takes the market some time to learn that V = 0 is the true state. It is not before

period 1000 that the market starts learning that the asset is wrongly priced.

From period 1000 to 1300 the market corrects it's assessment. We observe a

sharp decline in the asset's value accompanied by regimes of increasing

volatility. After period 1300 volatility diminishes as the market becomes

increasingly con�dent regarding the low state and the standard learning

mechanisms of Avery and Zemsky (1998) take predominant e�ect.

Event Study - The Subprime Mortgage Crisis: Let us apply these theoret-

ical insights to real world events in the years 2002 to 2007. Consider Collateralized

Debt Obligations (CDOs), highly complex and non-transparent credit derivatives

that enjoyed unprecedented popularity among investors in the years leading up

to the recent global �nancial crisis in 2007 and became essentially worthless once

the underlying collaterals (sub-prime mortgages) defaulted in large numbers.

In a noteworthy statement of Warren Bu�et in the annual report of Berk-

shire Hathaway in 2002, he outlaws complex derivatives such as CDOs as time

bombs and �nancial weapons of mass destruction. He claims that these products

depend on too many variables and have far too long times-to-maturity to be val-

ued accurately. To make things worse, sub-prime mortgages, i.e. credits with a

very high default risk, became a predominant collateral for CDOs between 2002

and 2007.

If we think of Warren Bu�et's view as rational in an economic sense and

take into account the high risk associated with the CDOs' collaterals, a rational

assessment of CDOs should result in a low probability for the event �I earn money

with CDOs (in the long run)�. At the same time, Mr. Bu�et's argument implies

that the perceived ambiguity associated with CDOs should be high even among

professional traders, i.e. δ0 should be large. Indeed, since there was insu�cient

information regarding the actual default risks of the CDO's collaterals, let alone

correlation structures of defaults, there was no way for investors to accurately

assess the value of a CDO.
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The incessantly high AAA-rating of CDOs by US rating agencies added to

investors' perceived ambiguity as it contradicted their objective belief that CDOs

with sub-prime mortgages as collaterals are inherently risky. In conjunction with

increasing evidence of high returns and the general market sentiment - everybody

was buying them - this contributed to a highly optimistic view of investors on the

event �I earn money with CDOs (in the long run)�. In neo-additive terms, this

means that investors not only had a high δ but also a tremendously elastic α.

These are the required ingredients for price distorting herding under ambiguity.

Only after default rates increased across subprime mortgages in the end of

2006 and the beginning of 2007, investors realized that they had erred. To speak

in model terms, the ambiguity was removed - it then was clear that many CDOs

were essentially worthless. Interestingly, this did not a�ect the CDO prices at

�rst. Only as time passed and default rates skyrocketed, the market depreciated

CDO prices to re�ect their true value.

5.6 Robustness Discussion

5.6.1 Multiple Prior Setup With Smooth Ambiguity Functions

In this section we want address the question, whether our results hold if we choose

a di�erent approach to model ambiguity. For this, we translate the CEU model

into a multiple prior setup and investigate whether similar results hold under the

assumption that informed investors form beliefs according to smooth ambiguity

functions as proposed by Klibano� et al. (2005).

To model informational ambiguity in a multiple prior context, we follow

the ideas provided by Gollier (2011) and assume that investors �nd it plausible

that the precision of their signal is either q with probability 1 or it is uniformly

distributed across [0; 1]. In addition, we assume that either distribution for q

is considered to be equally likely, i.e. occurs with probability d = 0.5. This

captures informational ambiguity in the sense that the informed trader has a

lack of con�dence that her private information signal is fundamentally driven.

Thus, the informed trader's second-order belief d is closely related the degree
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of perceived ambiguity in the neo-additive CEU model. As a suitable family of

smooth ambiguity functions, consider

Φ(x) =

exp(−ax), if a 6= 0

x if a = 0
.

The parameter a would re�ect the informed trader's degree of optimism similar

to α in the CEU setup. If a > 0, the informed trader is pessimistic, for a < 0, she

is optimistic. For a = 0, she is ambiguity neutral. The informed traders' asset

valuation is given by

VS =− 1

a
log
(
d

∫ 1

0
exp (−aEq[V | S, π]) dq

+ (1− d) exp (−aEq[V | S, π])
) (5.9)

if a 6= 0. While we can obtain results similar to Theorems 5.1, 5.2 and 5.3 as well

as Lemmas 5.3 and 5.4 by the same arguments as in the neo-additive CEU model,

we would loose some of the intuition provided in this paper. The parameters

d and a cannot be linked as nicely to the parameters in the Avery and Zemsky

(1998) framework, as δ0 and α.

To gain some intuition how a pro-cyclical time varying a in the multiple

prior setup can drive (potentially price-distorting) herd behavior, we suggest to

set a(p) = −K tan (π(p− 0.5)) for some K > 0, where in this case p represents

the price and π the actual number π.

5.6.2 Risk Preferences

By the same line of reasoning as for the multiple prior setup with smooth am-

biguity functions, we argue that the results of this paper can be reproduced

in a framework where informed traders have varying risk preferences. If risk-

preferences move pro-cyclically (counter-cyclically) in the same way ambiguity

preferences do, we �nd that herding (contrarianism) becomes possible in the Av-

ery and Zemsky (1998) framework.
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To see this for herding, take Φ and a(p) as before and note that the informed

traders asset valuation becomes VS = Φ−1 (E[Φ(V ) | S, ·]). For contrarianism,

repeat the exercise with �xed a.51

This is appealing from a theoretical perspective, in the sense that it gen-

eralizes the results presented in this paper. Indeed, experimental evidence from

Drehmann et al. (2005) and Cipriani and Guarino (2005) suggests that investors

in the Avery and Zemsky (1998) baseline model, do engage in contrarian behavior

to some extent. This indicates that latent (or even counter-cyclical) risk prefer-

ences may play a role in decision-making underrisk in social learning settings. The

same experiments, however, generally �nd no evidence of herd behavior casting

strong doubt on the economic relevance of pro-cyclical changes in risk preference

for risky investment decisions.

We would argue that this does not impede the validity of the herding re-

sults derived in this paper. The choices in Drehmann et al. (2005) and Cipriani

and Guarino (2005) are not choices under ambiguity. In line with Heath and

Tversky (1991), we conjecture that investors facing ambiguity, exhibit ambiguity

lovingness but not risk lovingness as they become con�dent about either state.

When viewing the ambiguity preference parameter α as a measure for opti-

mism and pessimism it's link to investor herding is also intuitively more appealing

than for risk lovingness. While it is conceivable that investors contract optimism

exhibited by the market and become overly enthusiastic regarding an investment

opportunity, it is di�cult to argue, why they would all of a sudden like the risk

associated with a particular investment.

5.6.3 More States, More Di�erent Types Of Traders

The results derived in this paper carry over to the more complex versions of Avery

and Zemsky (1998) or the frameworks presented by Park and Sabourian (2011)

and Cipriani and Guarino (2014). The important thing to note is that traders that

perceive informational ambiguity may become prone to herding (contrarianism),

even if they receive monotone private signals in the sense of Park and Sabourian

51This does not come as a surprise, since Décamps and Lovo (2006) show that di�erences in
risk preferences between informed traders and market maker are su�cient for herding in a setup
closely related to the Avery and Zemsky (1998) framework.
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(2011).52 Hence, herd (contrarian) behavior is not limited anymore to certain

signal types like the u-shaped (hill-shaped) trader in Park and Sabourian (2011) or

the low precision signal in Cipriani and Guarino (2014). As a consequence, herds

or contrarianists in those models may consist of much larger shares of informed

traders and, thereby, have the potential to drive prices away from fundamentals

even in the long run.

5.6.4 Heterogeneous Attitudes Towards Ambiguity and Degrees

Of Perceived Ambiguity

Instead of assuming a particular α for the informed traders, one could assume

that the degree of optimism is distributed randomly across the population of

informed traders. As the market grows more or less con�dent about either state,

one could shift the mean and the variance of the distribution. If the mean of

that distribution was to shift in a way that it ful�lls the su�cient conditions

for herding of Theorem 5.3 and it's variance was connected to e.g. the variance

of the public belief πt, then herding would still be possible. In that case not

all informed traders with a particular private signal would change their trading

decision simultaneously and there would always be a certain amount of traders

that do not change their decision to follow or act against the crowd. If the share

of traders engaging in herd or contrarian behavior is large enough, however, price

distortions are still possible in principle. Yet, if the distribution of the informed

traders is part of the common knowledge structure, the price process will remain a

martingale even under herding or contrarianism, compare e.g. Avery and Zemsky

(1998). Hence, herds, while potentially persistently price-distorting, will not drive

the price towards the wrong state in the long run. A detailed analysis of such a

model would be an interesting avenue for future research.

Similarly, we could consider a heterogeneous population of informed traders

that perceive di�erent degrees of primary ambiguity. If the distribution of the

primary ambiguity levels is part of the common knowledge structure of the model,

the same argument applies as before for the likely model outcomes and, thus

should be included in future analyses.

52In that sense, every signal in a two-state world is monotone.
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5.7 Conclusion

We have provided a comprehensive framework to explain how ambiguity may af-

fect investor behavior and social learning in the two-state, two-trader version of

the Avery and Zemsky (1998) model. As we review Avery and Zemsky's model

setup without Knightian uncertainty, we observe that it implies that neither herd-

ing nor contrarianism are possible. We �nd that ambiguity and an invariant degree

of optimism result in strong contrarian tendencies among informed traders but

still preclude herd behavior. When allowing the individual degree of optimism to

vary with market prices, herding becomes possible. It is necessary for herding,

that the individual degree of optimism increases with market prices, i.e. with the

degree of optimism exhibited by the market as a whole. If informed traders be-

come overly exuberant or gloomy regarding an investment prospect they perceive

a su�ciently high amount of primary ambiguity, then this is su�cient for herding

to occur with positive probability.

We �nd, that herding and contrarianism alike cause informational cascades,

thereby, preventing the market from pricing the asset at it's fundamental value.

Indeed, contrarianism as well herding moves prices away from fundamentals with

positive probability. Such wrong cascades are qualitatively di�erent for herding

and contrarianism. If the market is marginally uncertain regarding investor pref-

erences, informational cascades are only partial. In that case, the self-defeating

nature of contrarianism bounds prices away from the asset's potential fundamen-

tal values in the long run. The self-enforcing nature of herding, on the other hand,

has the potential to drive price towards the wrong state.

Aside from the already mentioned theoretical extensions, the natural next

step is to put the theoretical predictions of the CEU model to the test. Conduct-

ing experiments in a similar spirit as Drehmann et al. (2005) and Cipriani and

Guarino (2005), where we add ambiguous components to the information signals

to re�ect the assumptions of the CEU model presented in this paper, would be

an exciting avenue for future research. Similarly, one could test experimentally

whether ambiguity regarding the distribution of the risky asset as proposed by

Dong et al. (2010) leads to herding or contrarianism respectively.
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From an empirical perspective, it may be interesting to investigate possi-

bilities to measure the degree of primary ambiguity. If we assume for instance,

that the absolute number of professional or expert traders for a particular asset

is constant, then an increase in the number of traders would hint at an increase

of average primary ambiguity. Similarly, one could investigate investor behavior

in the aftermath of unexpected events, that are relevant to the valuation of the

asset. It would be interesting to analyze whether joint evidence of higher primary

ambiguity and investor coordination have predictive power regarding future price

reversals, that would be consistent with price-distorting herding.
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5.8 Appendix

This Appendix is structured as follows. Section 5.8.A provides an intuitive exam-

ple why it is reasonable to assume that an economically relevant share of market

participants perceives ambiguity when facing investment decisions. Section 5.8.B

contains the all proofs omitted from the main part. Section 5.8.C provides the

formal results for the perturbed model discussed in Section 5.5 in the main part.

Section 5.8.D discusses market outcomes of a purely optimistic market under

GBU, thus detailing the results of Section 5.4.2 in the main part. Section 5.8.E

collects results from Avery and Zemsky (1998) that are relevant to this paper.

Section 5.8.F discusses in further detail the relationship between di�erent de�ni-

tions for informational cascades and why we chose the one provided by Avery and

Zemsky (1998). Section 5.8.G is a repository of the most important de�nitions

and results from Chateauneuf et al. (2007) that are needed to con�rm that our

application of NEO-additive CEU preferences to the model of Avery and Zemsky

(1998) is correct. Finally, Section 5.8.H discusses some inconsistencies of the GBU

rule as prices approach 0 or 1, thereby, supporting the idea that it is reasonable

that α varies with the price.

5.8.A Example of an Investor Facing Informational Ambiguity

As an example for informational ambiguity, consider a risk-neutral rational retail

investor who has to decide whether or not to buy a particular stock (e.g. BMW -

a German car manufacturer). She will make money on the investment if the price

of the stock goes up, she will lose money if the price goes down.

She receives a recommendation from her online broker to buy the BMW

stock but she has little knowledge about the German automotive industry (and

BMW in particular). She knows her online broker is right 60 % of the times but

she is not fully sure about her broker's agenda in this case because she sees that

the BMW stock price has depreciated during the past month.

Given that she is rational and risk-neutral, she should buy the stock if and

only if she believes that the price of the BMW stock will rebound with a proba-
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bility greater than 50%. In the present case, however, the information does not

enable her to determine the relevant probability exactly.53

There are many di�erent ways the retail trader might process the online bro-

ker's recommendation and the stock price information to arrive at a probability

assessment. She could think that her broker would not make such a recommen-

dation if he did not have some valid information that the BMW stock price will

go up. If such recommendations were made arbitrarily, the broker would risk to

alienate and eventually loose customers who make losses as they follow the bro-

ker's recommendation. Despite BMW's recent downturn, she assigns a probability

greater than 50% that the BMW stock price will go up again. Put di�erently,

she retains an optimistic attitude towards the investment prospect. On the other

hand, she might also think that the broker recommends buying the BMW stock

because he wants to sell out it's own BMW shares before the price drops further.

This pessimistic view would lead to a probability assignment of less than 50% to

an increasing stock price. Finally, she might retain a skeptical view on the online

broker's recommendation but she might be less pessimistic than in the previous

scenario. Since she knows little about cars and nothing about the broker's moti-

vation for the recommendation, she might conclude that she could as well toss a

fair coin to decide what to do, i.e. she assigns a probability of precisely 50% to

an increasing stock price.

5.8.B Mathematical Proofs

In this section provide the remaining proofs of the main part of this paper.

Proof of Theorem 5.1: To proof this, we restate some of the results of Ford

et al. (2013):

Lemma 5.6. In the CEU model with δ0 > 0 and α ∈ [0; 1] �xed and πt ∈ [0; 1],

we have

53One could argue that she would only need to update an uninformative prior with a noisy
signal according to Bayes' rule to conclude that the price will go up with 60% probability.
Yet, this would only be true if the retail trader was con�dent that the online broker's success
probability of 60% does apply to the current situation.
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• The ask price in the Avery and Zemsky model is increasing and concave in

πt.

• The bid price in the Avery and Zemsky model is increasing and convex in

πt.

• CEUS1(πt) is increasing and concave in πt.

• CEUS0(πt) is increasing and convex in πt.

All properties hold in a strict sense.

Proof: The proof is provided in Ford et al. (2013).

With this, we can immediately prove the impossibility of herding in the CEU

model with �xed α. We will conduct the proof for the impossibility of herding for

the low signal S0. The proof is symmetric for S1.

Let us start with the impossibility of buy herding. For buy herding to be

possible, S0 has to sell initially, i.e.

x1 := CEUS0(π0) < bidCEU (π0) < π0.

Moreover, we have that

y1 := CEUS0(1) = (1− δS0(1)) + δS0(1)α = 1− δS0(1)(1− α) ≤ 1.

Now assume that the market price has increased, i.e. πt > π0. Then πt can

be written as a convex combination of π0 and 1. That is, ∃λ ∈ (0; 1) such that

πt = λπ0 + (1−λ). In line with Lemma 5.6, convexity of CEUS0(πt) implies that

∀λ ∈ [0; 1], we have

λx1 + (1− λ)y1 > CEUS0(πt).

Since x1 > π0 and y1 ≤ 1, it immediately follows that

λx1 + (1− λ)y1 < λπ0 + (1− λ) = πt ≤ askCEU (πt),
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which in turn implies that CEUS0(πt) < askCEU (πt) ∀πt ∈ [π0; 1]. This is

equivalent to the fact that S0 never buy herds.

The assumption of monotonicity of the CEU asset valuation implies that if S0

buys so does S1. This constitutes an informational cascade and, thus, S0 can

never sell herd.

For argument's sake, however, let us drop the monotonicity assumption for

a moment. Sell herding would then still be impossible: Assume that S0 buys

initially (and S1 does not). Hence, we have

x1 := CEUS0(π0) > π0.

Moreover, we have again

y1 := CEUS0(1) ≤ 1.

Let m1 := y1−x1
1−π0 . Then m1 denotes the average slope of CEUS0(πt) on [π0; 1].

Since x1 < π0 and y1 ≤ 1, it follows that m1 < 1. Hence, since CEUS0(πt) is

convex and increasing, it follows that

∂CEUS0

∂πt
(π0) ≤ m1 < 1.

Again invoking that x1 > π0, this implies that the tangent Θ1 of CEUS0 in π0

lies above πt on [o;π0]. Moreover, convexity of CEUS0 implies that CEUS0 ≥ Θ1

for all πt. Hence, we conclude that bidCEU (πt) < πt < θ1 ≤ CEUS0 for all

πt ∈ [0;π0], which precludes the possibility that S0 engages in sell herding.

We continue the proof by showing the possibility of contrarian behavior for S0.

Again, the argument is symmetric for the high signal.

Let S0 sell initially, then only buy contrarianism is possible. Hence, we have

to �nd a πt ∈ (0;π0), such that CEUS0(πt) > askCEU (πt). Noting that

CEUS0(0) = δS0(0)α > 0 = askCEU (0),
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continuity of CEUS0 and askCEU implies that CEUS0 > askCEU in a whole

neighborhood of zero, i.e. ∃ε > 0 : CEUS0(πt) > ask(πt) ∀πt ∈ [0; ε]. But this

already implies that S0 engages in buy contrarianism ∀πt ∈ [0; ε].

As before, monotonicity of CEU beliefs actually prevents sell contrarianism of

S0 from being possible. For argument's sake, let us drop this assumption for a

moment. Then sell contrarianism of S0 is indeed possible.

Let S0 buy initially. For S0 to act as a sell contrarian, we have to �nd a

πt ∈ (π0; 1), such that CEUS0(πt) < bidCEU (πt). Noting that

CEUS0(1) = (1− δS0(1)) + δS0(1)α = 1− δS0(1)(1− α) < 1 = bidCEU (1)

and invoking a continuity argument as before implies that there exists ε̃ > 0

such that CEUS0(πt) < bid(πt) ∀πt ∈ [1 − ε̃; 1]. Hence, S0 may engage in sell

contrarianism.

Note that for the impossibility of buy herding, we could have actually shown

that CEUS0 < bid for all π ∈ [π0; 1]. Intuitively, the argument would be that the

increase of CEUS0(π) in π is lower than the increase of the low signal's SEU

belief E[V | S0, π] from the baseline model. Monotonicity in conjunction with

convexity of CEUS0 and E[V | S0, π] as well as the fact that E[V | S0, 1] = 1

imply that CEUS0 must remain below the bid price. That is, even weak forms of

herding, i.e. switches from selling (buying) to holding are impossible if α is �xed.

Proof of Theorem 5.3: Again due to symmetry, we show only the buy

herding statement. First, we note that αS0(1) = 1, implies that

CEUS0(1) = 1 = ask(1), where ask(·) ≥ askCEU (·) denotes the ask price from

the baseline model, see Equation (5.35).

Noting that (A2) implies that CEUS0 is regular, we get

∂CEUS0

∂π
=

∂

∂π
[(1− δS0(π))Eπ[V | S0] + δS0(π)αS0(π)]

= (1− δS0(π))
∂

∂π
Eπ[V | S0] + δ′S0

(π) (αS0(π)− Eπ[V | S0])
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+δS0(π)α′S0
(π)

and evaluating it at π = 1, we get

∂CEUS0

∂π
(1) = (1− δS0(1))

∂

∂π
E1[V | S0] + δS0(1)α′S0

(1), (5.10)

where we used the fact that αS0(1) = E1[V | S0] = 1. Since α′S0
(1) = 0 due to

(A2), we infer that CEUS0 must be strictly increasing in 1 and thus also in a

neighborhood of 1.

Moreover, ask(π) is also strictly increasing in 1 and in a neighborhood of 1

(compare Lemma 5.6). For CEUS0 to be greater than ask in a neighborhood of

1 it is thus su�cient, if
∂CEUS0

∂π
(1) <

∂ask

∂π
(1). (5.11)

Plugging in the right hand side of Equation (5.10) into the left hand side of

Inequality (5.11) and using that α′S0
(1) = 0, we �nd that Inequality (5.11) is

equivalent to

(1− δS0(1))
∂

∂π
E1[V | S0] <

∂ask

∂π
(1). (5.12)

Solving for δS0(1) yields

δS0(1) >
∂
∂πE1[V | S0]− ∂ask

∂π (1)]
∂
∂πE1[V | S0]

. (5.13)

Now observing that

δS0(1) =
δ0

(1− δ0)(1− q) + δ0
,

∂

∂π
E1[V | S0] =

q

1− q
,

∂ask

∂π
(1) =

µ(1− q) + θ

µq + θ
,

we can solve Inequality (5.13) for δ0 and obtain

δ0 > 1− µ(1− q) + θ

q(µ+ 2θ)
,
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which according to our initial argument is su�cient for the low signal to buy at

prices in a neighborhood of 1.

We note that if we were to drop assumption (A1), then Theorem 5.3 would hold

trivially if the low (high) signal were to buy (sell) initially given that there is no

informational cascade. For this, we would only have to exchange αS0 and αS1 in

the buy and sell herding conditions. Then, the su�cient condition for sell

herding implies that αS0(π) < bid(π) ≤ bidCEU after a su�ciently strong price

drop and, thus, CEUS0(π) < bidCEU (π), which implies sell herding on the part

of the low signal. The argument for S1 is symmetric. A similar argument can be

made if the de�nition for herding included switches from hold to buy and sell

and the informed traders held initially.

If the second part (A2) is dropped (i.e. regularity still holds), then we require an

additional condition regarding α′S0
(1) and α′S1

(0).

Corollary 5.1. General Su�cient Condition For Herding

Consider the CEU model with varying α, where (A1) and (A3) hold and α is

su�ciently regular in π.

Let

C :=
K1

K2
+

(1− δ0)

δ0K2
(µ+ θ)(1− 2q),

where q denotes the signal precision, µ the informed trader share and

θ := (1− µ)/3 and K1 := µ(1− q) + θ and K2 := µq + θ.

If αS0(1) = 1 and α′S0
(1) < C, then buy herding occurs with positive probability.

If αS1(0) = 0 and α′S1
(0) < C, then sell herding occurs with positive probability.

Proof: For the buy herding case, simply note that the α′S0
(1) term does not

disappear in Inequality (5.12). Then, solving it for α′S0
(1) yields the condition

α′S0
(1) < C. The argument for sell herding is identical.
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The boundary C implies that high primary ambiguity δ0 still contributes towards

the possibility of herding. The higher δ0, the less negative the second summand of

C, the larger C and the less binding the slope condition for the optimism function.

If, however, α increases too strongly in 1, i.e. α′S0
(1) ≥ K1/K2, that is, the degree

of optimism is rather inelastic with respect to changes in market sentiment for

moderate prices, then no amount of primary ambiguity will lead to herd behavior.

In that sense, herding in the CEU model requires a departure from the

certainty e�ect implied by propsect theory, compare e.g. Barberis and Thaler

(2003). The certainty e�ect implies that individuals facing risk tend to undervalue

probabilities close to 1 and overvalue probabilities close to 0. We would again

appeal to the �nding of Heath and Tversky (1991) that this is not necessarily the

case for probability judgments under ambiguity.

Proof of Lemma 5.3: We will focus the proof on the herding case. The argu-

ments are identical for the contrarian case.

Before we start the actual proof, let us state a supporting Lemma that will

also help with our subsequent comparative static analysis.

Lemma 5.7. Consider the CEU model. Let herding be possible and let wlog

∃!π∗ > π0, π
∗∗ < π0 such that S0 engages in buy herding for π > π∗ and S1

engages in sell herding for π < π∗∗.54 Then Equations

π∗ =
(µq + θ)xπ0

(µq + θ)xπ0 + (µ(1− q) + θ)x(1− π0)
(5.14)

and

π∗∗ =
(µ(1− q) + θ)xπ0

(µ(1− q) + θ)xπ0 + (µq + θ)x(1− π0)
(5.15)

have unique solutions x∗ > 0 and x∗∗ > 0 respectively. Then n∗ := bx∗c + 1

de�nes the minimum number of price increases the low signal has to observe before

engaging in buy herding. Similarly, n∗∗ := bx∗∗c+1 de�nes the minimum number

of price decreases the low signal has to observe before engaging in sell herding.

54This assumption is made for convenience. The su�cient condition only implies that there
exist such π but not that they are unique. We would then have to consider the respective
minimum or maximum over all such π.
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Proof: Uniqueness and positivity of the solutions of Equations (5.14) and (5.15)

with respect to x follow from the fact that r.h.s of Equation (5.14) is π0 for

x = 0, goes to 1 as x → ∞ and is strictly increasing in x, while the r.h.s of

Equation (5.15) is π0 for x = 0, goes to 0 as x→∞ and is strictly decreasing in

x. The de�nitions of n∗ and n∗∗ are immediately implied by Corollary 5.3.

We note that there are no closed-form solutions for x∗ and x∗∗ in general.

Moreover, we have n∗∗ = n∗, if we assume symmetry between αS0 and αS1 in the

sense of Section 5.4.5. Finally, note that we can state a similar result for the

contrarian case with the mere di�erence that π∗ and π∗∗ need to be exchanged.

Under the symmetry assumption for αS0 and αS1 , the problem of calculating

Pn∗ in Lemma 5.3 essentially reduces to a common ruin problem. To see this,

note that price updating in the CEU model (Lemma 5.2) immediately implies

that the probabilities P ({π increases in t}|πt−1, V ),

P ({π decreases in t}|πt−1, V ) and P ({π remains constant in t}|πt−1, V ) remain

constant as long as πt−1 ∈ [π∗∗;π∗], where t ≥ 1 and π∗, π∗∗ are from Lemma

5.7. In particular, we have

P ({π increases in t}|πt−1, V ) = P (at = {buy} | V ) =: pb,

P ({π decreases in t}|πt−1, V ) = P (at = {sell} | V ) =: ps,

P ({π remains constant in t}|πt−1, V ) = P (at = {hold} | V ) =: ph.

(5.16)

Now, we de�ne for t ≥ 0

it+1 :=


it + 1 if π increases in t

it − 1 if π decreases in t

it if π remains constant in t

, (5.17)

where i0 = 0. Then π < π∗∗ is equivalent to it = −n∗ and π > π∗ is equivalent

to it = n∗ under the symmetry assumption. Let πit denote the price process.
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We derive the probability of an informational cascade under buy herding given

that V = 0. The case of sell herding when V = 1 is symmetric.

Let AπICB denote the event of a buy side informational cascade given that

the price is π. Then, initially, we have

P (Aπ0ICB|V = 0) =P (Aπ1ICB ∩ {i1 − i0 = 1}|V = 0)

+ P (A
π−1

ICB ∩ {i1 − i0 = −1}|V = 0)

+ P (Aπ0ICB ∩ {i1 − i0 = 0}|V = 0).

(5.18)

We have decomposed Aπ0ICB disjointly and then used the additivity of probability

measures for disjoint events. Now noting that the events Aπ·ICB and {i1−i0 = −1}
are independent and incorporating Equations (5.16), Equation (5.18) becomes

P (Aπ0ICB|V = 0) =pbP (Aπ1ICB|V = 0) + psP (A
π−1

ICB|V = 0)

+ phP (Aπ0ICB|V = 0).
(5.19)

Denoting P (k) := P (AπkICB|V = 0) and solving (5.19) for k = 0, we get

(1− ph)P (0) = pbP (1) + psP (−1).

Since this holds for all integers k ∈ [−n∗ + 1;−n∗ + 1] and moreover, P (n∗) = 1

and P (−n∗) = 0, shifting variables to j = k + n∗ yields the following system of

linear equations

(1− ph)P (j) = pbP (j + 1) + psP (j − 1) ∀j = 1, . . . , 2 ∗ n∗ − 1

∧ P (0) = 0 (5.20)

∧ P (2n∗) = 1.

Since, on the other hand 1 = ps + pb + ph, we have that

(1− ph)P (j) = pbP (j) + psP (j).
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Equations j = 1, . . . 2n∗−1 from Equation System (5.20) are, therefore, equivalent

to

(P (j + 1)− P (j))
pb
ps

= (P (i)− P (i− 1)).

Let K := pb
ps
. By backwards induction starting at j = 2n∗ − 1 we then get

P (j)− P (j − 1) = K2n∗−j(P (2n∗)− P (2n∗ − 1)) (5.21)

for j = 1, . . . , 2n∗ − 1. Now noting that

1 = P (2n∗)− P (0) =

2n∗∑
j=0

(P (j + 1)− P (j))

=
2n∗∑
j=0

K2n∗−j(P (2n∗)− P (2n∗ − 1))

= (1− P (2n∗ − 1))
2n∗∑
j=0

Kj

= (1− P (2n∗ − 1))
1−K2n∗

1−K
,

where the last equation holds because
∑2n∗

j=0K
j is a geometric sum. Solving this

for P (2n∗ − 1) yields that

P (2n∗ − 1) =
K −K2n∗

1−K2n∗
.

Now noting that P (j − 1) = (P (j − 1) − P (j)) + P (j) for j = 1, . . . , 2n∗ − 1

and inserting Equations (5.21) allows us to invoke another backward induction

argument to conclude that

P (j) =
Kj −K2n∗

1−K2n∗
. (5.22)

Setting j = n∗ in Equation (5.22), basic algebra to transform the fraction yields

P (n∗) = Kn∗ 1−Kn∗

1−K2n∗

= Kn∗ 1

1 +Kn∗
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=
1

exp(− ln(K)n∗) + 1
.

Noting that pb = µ(1 − q) + θ and ps = µq + θ if V = 0, and plugging these

quantities in for K yields the formula for Pn∗ in Equation (5.7).

We state an immediate consequence of Lemma 5.3.

Corollary 5.2. Under the same conditions as in Lemma 5.3, the probability of a

correct informational cascade is given by

P̃n∗ =
1

exp
(
− ln

(
µq+θ

µ(1−q)+θ

)
n∗
) . (5.23)

The prove is identical to the one of Lemma 5.3. It implies, in particular that

Equation (5.22) becomes

P̃ (j) =
K−j −K−2n∗

1−K−2n∗
(5.24)

for arbitrary j ∈ [0; 2n∗], where j is the number of price decreases that needs to

be observed before the correct informational cascade occurs.

Proof of Lemma 5.4: To develop an understanding for the idea of the proof

note that a parameter shift can have two e�ects on Pn∗ . First, it may a�ect P·

directly. Second, it may cause n∗ to vary. Noting that Pn∗ decreases in n∗, this

has an indirect e�ect on the probability of wrong herds. Changes in n∗ occur as

discrete jumps. Locally, this indirect e�ect on P· is, therefore, zero. It becomes

relevant only for larger parameter shifts.

We �rst summarize the relevant calculus in a support lemma. Note that

under the assumptions of Section 5.4.5, we have that askCEU = ask if the market

is prone to buy herding and buy contrarianism and that bidCEU = bid if the

market is prone to sell herding and sell contrarianism. Hence, we can rely on the

analytics of ask and bid from the Avery and Zemsky model to derive the results

of Lemma 5.8.
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Lemma 5.8. Consider the CEU model. Let Pn∗ be as in Equation (5.7). Then

the following hold

(i) ∂P·
∂µ < 0, ∂P·∂q < 0

(ii) ∂Px
∂x < 0

(iii) ∂ask
∂µ > 0, ∂ask∂q > 0

(iv) ∂bid
∂µ < 0, ∂bid∂q < 0

(v) ∂CEUS
∂µ = 0

(vi) ∂CEUS
∂δ0

> 0 i� αS > E[V | S, π];
∂CEUS
∂δ0

< 0 i� αS > E[V | S, π]

(vii) ∂CEUS
∂q =

∂Eq [V |S,π]
∂q + δq

(
∂αq
∂q −

∂Eq [V |S,π]
∂q

)
+

∂δq
∂q (αq − Eq[V | S, π])

(viii)
∂δq
∂q > 0 if δ = δS0 and π > 0.5 or if δ = δS1 and π < 0.5.

(ix)
∂Eq [V |S0,π]

∂q < 0,
∂Eq [V |S0,π]

∂q > 0

Proof: For (i) note that

exp

(
− ln

(
µ(1− q) + θ

µq + θ

))
=

µq + θ

µ(1− q) + θ

Di�erentiating the r.h.s. with respect to µ and q yields quantities > 0. Applying

the quotient rule, therefore implies (i).

For (ii) note that

∂Px
∂x

=
− ln

(
µq+θ

µ(1−q)+θ

)
exp(·)

f2
.

Noting that µq + θ > µ(1− q) + θ implies that ln(·) > 0 and, thus (ii).

For (iii) and (iv) we refer to the reader to the market microstructure literature,

e.g. Glosten and Milgrom (1985).

(v) follows from the assumption that α is independent of µ.

For (vi) note that
∂δδ0
∂δ0

=
1

f2
> 0.
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The remainder follows from the de�nition of CEUS .

(vii) is a mere application of di�erentiation rules.

For (viii) note that e.g.

δS0 =
δ0

(1− δ0) [π(1− q) + q(1− π)] + δ0
.

Di�erentiating with respect to q yields that the sign of ∂δq
∂q is determined by

−δ0(1 − δ0)(1 − 2π), which is greater than 0 if and only if π > 0.5. The

argument is symmetric for δS1 .

Finally, (ix) follows from the literature, see e.g. Chamley (2004).

For the main proof we make the assumption that the immediate e�ects of q on

n∗ dominate the ancillary e�ects transmitted through changes in the ambiguity

parameters. That is, we assume that the increasing e�ect of q on the ask price

and the decreasing e�ect of q on the additive component of S0's CEU belief

∂ask

∂q
− (1− δq)

∂Eq[V | S0, π]

∂q

dominate the ancillary e�ect that an increase in q actually increases CEUS0 due

to it's e�ect on δ and α

δq
∂αq
∂q

+
∂δq
∂q

(αq − Eq[V | S0, π]) .

That is, the di�erence of these terms should be positive.

Similarly, the di�erence between

(1− δq)
∂Eq[V | S1, π]

∂q
− ∂bid

∂q

and

δq
∂αq
∂q

+
∂δq
∂q

(Eq[V | S1, π]− αq)
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should also be positive.

Then, (i)-(v) together imply that an increase in µ decreases P· and increases n∗.

For the increase in n∗ note that an increase in µ increases the ask price and

decreases CEUS0 (decreases the bid price and increases CEUS1). The decrease

in P· and the increase n∗ together imply unambiguously that Pn∗ decreases in µ.

(i)-(iv) and (vii) in conjunction with our previously made assumptions im-

ply the e�ects of an increase in q on the probability of a wrong cascade. The

assumptions are required to ensure that q unambiguously increases n∗. Beyond

that, the argument is identical to the one of the increase of µ.

(vi) implies that an increase in δ0 causes investors to more heavily rely on

their gut feel parameter α. In the case of contrarianism this means that CEU

beliefs become less elastic to changes in π, which shifts the cut-o� points towards

π0 and, hence decreases n∗, which in turn implies an increase in Pn∗ . In the case

of herding CEU beliefs become more elastic, which again shifts the cut-o� points

towards π0.

For the increase in α note that we de�ne such an increase as follows: α1

is said to be greater than α2 if and only if α1(π) < α2(π) ∀π ∈ (0;π0) and

α1(π) > α2(π) ∀π ∈ (π0; 1). Now consider some π > π0. An increase in α then

implies an in increase in CEUS regardless of the signal type. For the low signal

prone to buy herding this means that the cut-o� point π∗ moves left, i.e. n∗

decreases and Pn∗ increases. For the high signal, who is prone to contrarianism

this means that π∗ moves right, i.e. n∗ increases and Pn∗ decreases. The argument

is symmetric if π < π0.

Proof of Lemma 5.5: We start by proving that Pn∗ ≤ P εWH . We can again

focus on the buy herding case given V = 0 due to symmetry. For ease of notation

we assume without loss of generality that ε = 1. The line of reasoning is identical

if 0 < ε < 1.

Let it be de�ned as in Equation (5.17) and let πit be the corresponding

price process. Moreover, let ps and pb be the true buy and sell probabilities

in the perturbed model given V = 0. Note that pb and ps correspond to the
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respective buy and sell probabilities in the CEU model. Finally, let p̃s and p̃b be

the corresponding buy and sell probabilities as perceived by the market.

We note that for it ∈ [−k∗ + 1; k∗ − 1], we have ps = p̃s and pb = p̃b since

both informed traders act as in the baseline model without ambiguity.

For it ∈ [k∗;n∗ − 1], we have that S0 holds and S1 buys and, thus,

pb
ps

=
µ(1− q) + θ

µq + θ
<
µ(1− q) + θ

θ
=
p̃b
p̃s
. (5.25)

Hence, the CEU model assumptions imply a lower probability for strong buy side

accumulations than in the perturbed model. This indicates that Pn∗ underesti-

mates P εWH .

Correspondingly, for it ∈ [−n∗+ 1;−k∗], we have that S1 holds and S0 sells,

thus yielding
pb
ps

=
µ(1− q) + θ

µq + θ
>

θ

µq + θ
=
p̃b
p̃s
. (5.26)

Hence, the CEU model assumptions imply a higher probability for strong sell side

accumulations than the perturbed model. This indicates that Pn∗ overestimates

P εWH .

Now, aggregating the net underestimation and net overestimation for some

it,1 ∈ [−n∗ + 1;−k∗] and some it,2 ∈ [k∗;n∗ − 1] respectively, we get[
µ(1− q) + θ

µq + θ
− µ(1− q) + θ

θ

]
+

[
µ(1− q) + θ

µq + θ
− θ

µq + θ

]
= µ

θ(1− 2q)− µq(1− q)
θ(µq + θ)

< 0.

Due to symmetry we can consequently infer that for it ∈ [−n∗+ 1;n∗− 1], Pn∗ in

total underestimates P εWH .

For it ≤ −n∗ Pn∗ underestimates P εWH in the sense that in the CEU model

social learning stops and the sell herd can never be broken to result in a buy herd

after all.

For it ≥ n∗, Pn∗ overestimates P εWH in the sense that in the CEU model

social learning stops and the buy herd can never be broken to result in a sell herd

after all.
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Since, however, for it ≥ n∗, we have that

p̃s
p̃b

=
θ

µq + θ
, (5.27)

and for it ≤ −n∗, we have
p̃b
p̃s

=
θ

µq + θ
, (5.28)

we conclude that the probability to observe a sell herd given that there is currently

buy herding is exactly equal to the probability to observe a buy herd given that

there is currently sell herding. Hence, the associated over- and underestimation

of Pn∗ versus P εWH cancel out.

In total Pn∗ is, thus, a lower boundary for P εWH .

We move to show that Pk∗ ≥ P εWH . For this to see, note that as above the

probability of it becoming ≥ |k∗| in the CEU model and the perturbed CEU

model is the same. Again, we focus on the buy herding case, where V = 0 and

when ε = 1 without loss of generality.

In the perturbed model, the probability of observing a price reversal given that

it ≥ k∗ is relatively higher than the probability of observing a price reversal into

the opposite direction given that it ≤ −k∗. Note that if it ≥ k∗, then
p̃s
p̃b

= θ
µ(1−q)+θ . Similarly, if it ≤ −k∗, then p̃b

p̃s
= θ

µq+θ . Observing that the second

ratio is smaller than the �rst one, this con�rms our claim.

Now, invoking a similar symmetry argument as in the lower boundary case, we

conclude that Pk∗ is, indeed an upper boundary of P εWH .

If k∗ = n∗, then PNCKWH = Pn∗ . This implies in particular that probabilities of

wrong herds and wrong learning coincide if there is no bid-ask spread.

5.8.C Formal Results for the Perturbed Model

The perturbed CEU model is described by the following two Propositions.

Proposition 5.4. Equilibrium Prices in the Perturbed CEU Model

For any time t, let bidt and askt be the bid and ask prices that are quoted in the
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Avery and Zemsky model. Let πt be the public belief in the perturbed CEU model.

Moreover, let

bidεt :=
(µ(1− q)ε+ θ)πt

(µ(1− q)ε+ θ)πt + (µqε+ θ)(1− πt)
,

bid1−εt :=
(µ(q(1− ε) + (1− q)) + θ)πt

(µ(q(1− ε) + (1− q)) + θ)πt + (µ((1− q)(1− ε) + q) + θ)(1− πt)
,

askεt :=
(µqε+ θ)πt

(µqε+ θ)πt + (µ(1− q)ε+ θ)(1− πt)
,

ask1−εt :=
(µ(q + (1− q)(1− ε)) + θ)πt

(µ(q + (1− q)(1− ε)) + θ)πt + (µ((1− q) + q(1− ε)) + θ)(1− πt)
.

Then, the market maker quotes the following bid and ask prices

bidε−CEUt =


min{bidεt;CEUS0

(πt)}, if CEUS0
(πt) ≥ bidt

bidt, if CEUS0(πt) < bidt ∧ CEUS1(πt) ≥ bidt

bid1−εt , if CEUS0
(πt) < bidt ∧ CEUS1

(πt) < bidt

and

askε−CEUt =


max{askεt ;CEUS1(πt)}, if CEUS1(πt) ≤ askt

askt, if CEUS1
(πt) > askt ∧ CEUS0

(πt) ≤ askt

ask1−εt , if CEUS1
(πt) > askt ∧ CEUS0

(πt) > askt.

Proof: The proof is essentially a repeated application of Bayes' rule and game

theoretic arguments as in the proof of Lemma 5.1. We outline the proof for

bidε−CEUt when CEUS0(πt) ≥ bidt. The arguments for the other cases are similar.

First note that by monotonicity of the informed traders asset valuation, i.e.

CEUS0(πt) < CEUS1(πt), the high signal does not sell if the low signal does not

sell. Consequently, by Bayes' rule the bid price under the zero-pro�t condition

for the market maker is

bidε−CEUt =
P̃ (at = {sell}|Ht, V = 1)P (V = 1|Ht)

P̃ (at = {sell}|Ht)
= bidεt,

since P (V = 1|Ht) = πt, P̃ (at = {sell}|Ht, V = 1) = µ(1 − q)ε + θ and P̃ (at =

{sell}|Ht) = (µ(1− q)ε+ θ)πt + (µqε+ θ)(1− πt). Thus, noting that bidεt > bidt,
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we have to distinguish between the case where CEUS0(πt) < bidεt and where

CEUS0(πt) ≥ bidεt.
If CEUS0(πt) < bidεt, then quoting bidε−CEUt = bidεt would cause the low

signal to sell at πt. Yet, if S0 sells, the market maker makes zero-pro�t only

when quoting bidt < bidεt. Hence, he makes an average loss on every sell he

�lls of bidt − bidεt, causing him to eventually go out of business. As long as the

market maker quotes bidε−CEUt > CEUS0(πt) and S0 sells at πt a similar argument

applies.

Consequently, it must be that bidε−CEUt ≤ CEUS0(πt) to ensure that S0

holds. When quoting bidε−CEUt < CEUS0(πt), then the market maker makes an

expected pro�t of bidεt − bidε−CEUt . His Bertrand competition can then quote a

more competitive bid price, b̃id, where

bidε−CEUt < b̃id < CEUS0(πt).

By this the competition draws away all noise traders from the market maker,

making a slightly smaller but still positive expected pro�t bidεt − b̃id on every sell

they �ll.

The market maker's best response to b̃id would then be a similar increase in

the quoted bid price. This price war continues until

bidε−CEUt = b̃id = CEUS0(πt).

Hence, for CEUS0(πt) < bidεt, bid
ε−CEU
t = CEUS0(πt) is the equilibrium bid

price.

If CEUS0(πt) ≥ bidεt, then the market maker quotes bidε−CEUt = bidεt ac-

cording to the zero pro�t condition. Hence,

bidε−CEUt = min{bidεt;CEUS0(πt)},

if the low signal stops selling.
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Key thing to note here is that askε−CEUt = askt (bidε−CEUt = bidt) as long S1

buys (S0) sells. As a consequence, the analytics of a switch from selling to buying

and vice versa are the same as in the unperturbed CEU model. This, in turn

implies that Theorems 5.1, 5.2 and 5.3 also hold in the perturbed model.

Moreover, since bidεt < ask1−ε
t (bid1−ε

t < askεt), there is a positive bid-ask

spread even if all informed traders take the same action. This is because the

market (maker) believes there is a share of ε SEU traders in the market. Hence,

there is no complete informational cascade in the perturbed CEU model since the

market still infers information from the trades and updates prices accordingly.

This is formalized in

Proposition 5.5. Public Belief Updating in the perturbed CEU Model

Under the assumptions and with the notation of Proposition 5.4, let

h1
t :=

(µ(1− q)(1− ε) + θ)πt
(µ(1− q)(1− ε) + θ)πt + (µq(1− ε) + θ)(1− πt)

,

h2
t :=

(µq(1− ε) + θ)πt
(µq(1− ε) + θ)πt + (µ(1− q)(1− ε) + θ)(1− πt)

.

Then:

(1) If the high CEU-signal buys and the low CEU-signal sells at time t, then πt+1

is as in the model of Avery and Zemsky, see Equation (5.39).

(2) If the high CEU-signal buys and the low signal holds at time t, then

πt+1 =


askt, if at = {buy}

bidεt, if at = {sell}

h1
t , if at = {hold}.

(5.29)

(3) If the high CEU-signal holds and the low CEU-signal sells at time t, then

πt+1 =


askεt , if at = {buy}

bidt, if at = {sell}

h2
t , if at = {hold}.

(5.30)
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(4) If both CEU-signals buy at time t, then

πt+1 =


ask1−ε

t , if at = {buy}

bidεt, if at = {sell}

πt, if at = {hold}.

(5.31)

(5) If both CEU-signals sell at time t, then

πt+1 =


askεt , if at = {buy}

bid1−ε
t , if at = {sell}

πt, if at = {hold}.

(5.32)

Proof: The proof is similar to the one of Lemma 5.2. For the sake of completeness

let us consider case (4), which corresponds e.g. to a buy herding regime.

By Bayes' rule the updated prior belief after action at is observed is given by

πt+1 = P [V = 1|Ht+1] =
P̃ (at|Ht, V = 1)P (V = 1|Ht)

P̃ (at|Ht)
.

When choosing at = {buy} and at = {sell}, then the updating rule for πt+1 after

an observed buy and sell immediately follow from Proposition 5.4. That the

price remains stable after a hold can also be inferred from the above formula.

Intuitively, it re�ects that the market considers a hold to be conducted by a

noise trader for sure. All informed traders that are considered to be present on

the market either buy (high signal S1 or CEU preferences) or sell (low signal S0

with SEU preferences) the asset. As a consequence, a hold bears no

informational value.
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To prove Propositions 5.2 and 5.3 in the main part, we need the following support

propositions

Proposition 5.6. In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the

cut-o� prices, such that S1 sell herds for all π < π∗ (S0 buy herds for all π > π∗∗).

Then πBHt := (πt|πt > π∗∗) is a sub-martingale with respect to Ht and π
SH
t :=

(πt|πt < π∗) is a super-martingale with respect to Ht.

Proof: We only show that πBHt is a sub-martingale. The proof is symmetric for

πSHt . To show that πBHt is a sub-martingale with respect to Ht, we need to prove

that E[πBHt+1 | Ht] ≥ πBHt . Since πBHt+1 is bounded by de�nition other martingale

properties follow immediately.

Note that showing E[πBHt+1 | Ht] ≥ πBHt is equivalent to showing

E[πt+1 | Ht, πt > π∗∗] ≥ πt.

Let pb := P [at = {buy}|Ht, πt > π∗∗], ps := P [at = {sell}|Ht, πt > π∗∗] and

ph := P [at = {hold}|Ht, πt > π∗∗] be the actual probabilities to observe a buy, sell

and hold respectively given that S0 buy herds. Then from Case (4) of Proposition

5.5, we infer that

E[πt+1 | Ht, πt > π∗∗] = pbask
1−ε
t + psbid

ε + phπt. (5.33)

Now de�ne

p̃b := (µ(q + (1− q)(1− ε) + θ)πt + (µ((1− q) + q(1− ε) + θ)(1− πt)

and

p̃s := (µ(1− q)ε+ θ)πt + (µqε+ θ)(1− πt)

to be the unconditional probabilities of a buy and sell respectively as perceived by

market participants. Observe that ph = θ and that pb = p̃b + x and ps = p̃s − x,
where x = εµ((1− q)πt + (1− πt)q).
Moreover, we set

p̃1
b := µ(q + (1− q)(1− ε) + θ
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and

p̃1
s := µ(1− q)ε+ θ

to be the corresponding buy and sell probabilities conditional on V = 1.

In line with Proposition 5.4, we can then rewrite the r.h.s. of Equation (5.33) so

that we have

E[πt+1 | Ht, πt > π∗∗] = pb
p̃1
b

p̃b
πt +

p̃1
s

p̃s
πt + phπt

=

(
(p̃b + x)

p̃1
b

p̃b
+ (p̃s − x)

p̃1
s

p̃s
+ θ

)
πt

=

(
p̃1
b + p̃1

s + θ + x

(
p̃1
b

p̃b
− p̃1

s

p̃s

))
πt

=

(
1 + x

(
p̃1
b

p̃b
− p̃1

s

p̃s

))
πt,

where for the last step observe that p̃1
b = µq + µ(1 − q)(1 − ε) + θ and p̃1

s =

µ(1−q)ε+θ and, thus, p̃1
b+p̃

2
s = µ+2θ. Since moreover µ+3θ = 1 by de�nition the

last equality holds. Based on this, however, showing E[πt+1 | Ht, πt > π∗∗] ≥ πt

is equivalent to showing that p̃1
b p̃s − p̃1

sp̃b > 0. Noting that p̃s = θ + x and that

p̃b = µ + θ − x and plugging in the respective formulae, basic manipulations of

the l.h.s. of the last inequality yield

p̃1
b p̃s − p̃1

sp̃b

= µx− µ2ε(1− q) + 2θx− 2µε(1− q)θ

= µ2ε [(1 + 2θε)((1− q)πt + (1− πt)q − (1− q))]

= µ2ε [(1 + 2θε)(1− πt)(2q − 1)] > 0,

since q > 0.5, which concludes the proof.

Proposition 5.7. In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the

cut-o� prices, such that S0 is a buy contrarian for all π < π∗ (S1 is a sell

contrarian for all π > π∗∗).

Then πSHt := (πt|πt > π∗∗) is a super-martingale with respect to Ht and
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πSHt := (πt|πt < π∗) is a sub-martingale with respect to Ht.

Proof: The proof is point-symmetric to the one for Proposition 5.6.

5.8.D Discussion of a Purely Optimistic Market in the CEU

Model

We limit our attention to the purely optimistic case since the purely pessimistic

case is symmetric. The subsequent analysis holds in the CEU model as well as in

the perturbed CEU model, yet we state formal results only for the CEU model.

We start by noting that in a purely optimistic market, the high signal always

buys. Since 1 = α > Eπt [V | S1, Ht] for all πt ∈ (0; 1), it follows that

CEUS1(πt) > Eπt [V | S1] > ask(πt) for all πt ∈ (0; 1).

For the low signal, one of three cases is possible depending on the primary

ambiguity δ0. If δ0 > δ∗, i.e. if it is high enough, then the purely optimistic low

signal always buys, too. If δ0 < δ∗∗, i.e. if it is low enough, then S0 essentially

behaves as in the case where α ∈ (0; 1). If δ0 is between the two cut-o� points, then

S0 will buy at low prices but eventually switch into holding as πt approaches 1.

Lemma 5.9. In the CEU model with α = 1 and δ0 > 0, the high signal always

buys. For the low signal: ∃δ∗, δ∗∗ ∈ (0; 1) with δ∗ > δ∗∗, such that

• S0 always buys if and only if δ0 > δ∗,

• ∃π∗ < 1 such that S0 sells ∀πt ∈ (π∗; 1) if and only if δ0 < δ∗∗,

• ∃π∗∗ < 1 such that S0 holds ∀πt ∈ (π∗∗; 1) if and only if δ∗ ≥ δ0 ≥ δ∗∗,

where δ∗ =
−K1+

√
K2

1+4K2

2 and δ∗∗ =
−K3+

√
K2

3+4K4

2 with

K1 =
2(1− q) (µ(1− q) + θ)− q(µq + θ)

(µq + θ) + q (µ(1− q) + θ)

K2 =
(1− q) [q(µq + θ)− (1− q) (µ(1− q) + θ)]

q [(µq + θ) + q (µ(1− q) + θ)]
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K3 =
2(1− q)(µq + θ)− q (µ(1− q) + θ)

(µ(1− q) + θ) + q(µq + θ)

K4 =
(1− q) [q (µ(1− q) + θ)− (1− q)(µq + θ)]

q [(µ(1− q) + θ) + q(µq + θ)]

Proof: For S1, there is nothing left to show.

For S0, note that by a calculus argument similar to the ones used in the proof of

Theorem 5.3, we have that S0 always buys if and only if

∂CEUS0

∂πt
(1) <

∂ask

∂πt
(1).

To see that this inequality holds if and only if δ0 > δ∗, plug in the respective

formulas to obtain a quadratic inequality of the form δ2
0 +K1δ−K2 > 0. Observe

that the l.h.s. of this inequality has two roots one which is < 0. Consequently,

for this inequality to hold, δ0 must be greater than the larger root, which is given

by δ∗.

Observe again that the calculus arguments from the proof of Theorem 5.1 yield

that S0 sells the asset when the price is in a neighborhood of 1 if and only if

∂CEUS0

∂πt
(1) >

∂ask

∂πt
(1).

As before, this inequality holds if and only if δ2
0 + K3δ − K4 < 0. A similar

argument as in the previous case yields that for δ0 > 0, this holds if and only if

δ0 < δ∗∗.

With both cut-o� points given, it follows immediately that S0 holds in a

neighborhood of 1 (but never buys) if and only if δ∗ ≥ δ0 ≥ δ∗∗.

Figure 5.8 illustrates the trade behavior of the CEU traders if they are purely

optimistic. In Figure 5.8 (a), the low signal always buys. Indeed, the primary

ambiguity level δ0 = 0.5 is above the cut-o� point δ∗ = 0.47 from Lemma 5.9.

Since S1 always buys as well, there is no social learning in a purely optimistic

market. The market by default is in the state of an informational cascade.
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(a) High primary ambiguity δ0 = 0.5

(b) Low primary ambiguity δ0 = 0.1

Figure 5.8: Low signal trading decisions in case of pure optimism

Notes: Low signal CEU beliefs as well as bid and ask prices with respect to πt for high and low
primary ambiguity δ0. The degree of optimism is α = 1, the informed trader share is µ = 0.3
and the signal precision q = 0.7. The cut-o� points according to Lemma 5.9 are δ∗ = 0.47 and
δ∗∗ = 0.22.

In the perturbed model, the informed traders would drive the asset price

towards α = 1, regardless of the initial prior and independently of the true value

of V .

This is the paragon of irrational exuberance driving the asset price away

from it's fundamental value. Observe, however, that this is not a case of investor

herding in the sense of De�nition 5.1. While informed traders accumulate on the

buy side of the market, they never change their initial trading decision. The herd-

like behavior exhibited by the informed traders is due only to the high degree

of perceived ambiguity in conjunction with the fundamentally unrelated pure

optimism.
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In Figure 5.8 (b), the low signal sells if πt > π2 and buys only if πt < π1

due to a low degree of primary ambiguity. Indeed, her additive belief component

dominates, making her act as though in the baseline model if prices are high. This

case is covered by Theorem 5.1. Once the price drops below π1 a buy contrarian

cascade occurs. This happens with positive probability even if V = 1. So even a

purely optimistic market does not necessarily become con�dent regarding V = 1.

Contrary to the case where α < 1, there is, however, at least the possibility that

the market con�dently learns about V = 1, since high signal traders always buy.

In the perturbed model, there is no informational cascade. If V = 0 is the

true state, the majority of low signals in the market will prevent the price from

remaining above π2 for extended periods of time. If the price is below π2 or even

below π1, however, the likelihood of observing a price increase is greater than that

of a further price decrease. Hence, we would assume, the price to always revert

towards π2. If V = 1, the market will con�dently learn about the correct true

state, as the majority of the high signals eventually pushes the price arbitrarily

close to 1.

5.8.E Collection of Additional Results from Avery and Zemsky

For the reader's convenience we have collected relevant formulas for the Avery

and Zemsky (1998) model in the following.

Lemma 5.10. Formulas of the Avery and Zemsky Framework

In the Avery and Zemsky (1998) framework with initial prior π0, informed trader

share µ, symmetric binary signals P [S|V ] with signal precision q and noise traders

that buy, sell or hold with equal probability θ, the following equations hold.

(i) Buy and sell probabilities conditional on V :

P (at = {buy}|V = 0) = P (at = {sell}|V = 1) = µ(1− q) + θ

P (at = {sell}|V = 0) = P (at = {buy}|V = 1) = µq + θ
(5.34)

(ii) Ask price in t:

askt =
(µq + θ)πt

(µq + θ)πt + (µ(1− q) + θ)(1− πt)
(5.35)
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(iii) Bid price in t:

bidt =
(µ(1− q) + θ)πt

(µ(1− q) + θ)πt + (µq + θ)(1− πt)
(5.36)

(iv) Expected value asset valuation by low signal in t:

E[V | S0, Ht] =
(1− q)πt

(1− q)πt + q(1− πt)
(5.37)

(v) Expected value asset valuation by high signal in t:

E[V | S1, Ht] =
qπt

qπt + (1− q)(1− πt)
(5.38)

(vi) Price updating after observing trade action in t:

πt+1 =


askt, if at = {buy}

bidt, if at = {sell}

πt, if at = {hold}

(5.39)

The proofs can be found in Avery and Zemsky (1998).

In addition, we provide some interesting properties of the public belief πt in the

Avery and Zemsky model. The following proposition shows that the public belief

can be uniquely identi�ed with any order imbalance in the trade history Ht.

Proposition 5.8. Public Belief And Order Imbalance

Let (µ, q, π0) be some model parameterization of the Avery and Zemsky (1998)

and let noise traders buy, sell or hold with equal probability θ. Moreover, let Ht be

some trade history containing b buys, s sells and h holds, where z := b−s denotes
the trade imbalance. Then, πt does not depend on the order at which traders arrive

at the market if b, s, h remain unchanged. In particular, πt only depends on the

model parameters and z.

Before we provide the proof we would like to state a few implications of Proposition

5.8. Indeed, it suggests that we can view πt as a measure for general market



188 Fifth Paper

sentiment. The larger πt, the larger the buy side accumulation of traders, the

more optimistic the market as a whole and vice versa.

Based on Proposition 5.8, we can also derive the following formula for πt based

on model parameters µ, q and π0 as well as the order imbalance z.

Corollary 5.3. With the same notation as in Proposition 5.8, we have

πt(z) =


(µq+θ)zπ0

(µq+θ)zπ0+(µ(1−q)+θ)z(1−π0) , if z > 0

(µ(1−q)+θ)−zπ0
(µ(1−q)+θ)−zπ0+(µq+θ)−z(1−π0)

, if z < 0

π0, if z = 0

(5.40)

Proof of Proposition 5.8 and Corollary 5.3 To prove Proposition 5.8, we

�rst show the following

Lemma 5.11. In the Avery and Zemsky (1998) framework with prior probability

π0, at any time τ ∈ [1;T ], we have

πt = P (V = 1|Ht) =

∏τ
t=1 P (at|V = 1)π0∏τ

t=1 P (at|V = 1)π0 +
∏τ
t=1 P (at|V = 0)(1− π0)

(5.41)

Proof: We show this via induction over τ . Let τ = 1. Using Equation (5.39),

Bayes' rule and the law of total probability readily imply that

π1 = P (V = 1|H1) =
P (a1|V = 1)π0

P (a1|V = 1)π0 + P (a1|V = 0)(1− π0)
.

Now let us assume that the statement from Lemma 5.11 is true for any τ ≥ 1,

then as for τ = 1, we get

πτ+1 =
P (aτ+1|V = 1)πτ

P (aτ+1|V = 1)πτ + P (aτ+1|V = 0)(1− πτ )
.

Now using the induction assumption, we can plug in the r.h.s. of Equation (5.41)

for πτ and get:

πτ+1 =
P (aτ+1|V = 1)

∏τ
t=1 P (at|V = 1)π0

C
,
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where

C :=P (aτ+1|V = 1)
τ∏
t=1

P (at|V = 1)π0

+ P (aτ+1|V = 0)

τ∏
t=1

P (at|V = 0)(1− π0).

As we absorb the terms P (aτ+1|·) into the respective products, we have shown

that Equation (5.41) holds for τ + 1, which concludes the proof.

Now continuing the proof of Proposition 5.8, we consider any history Ht of length

≥ 2 (if Ht contains less than two actions, then there is nothing to show). Now let

σ(Ht) denote an arbitrary permutation of actions contained in Ht, then σ(Ht) =:

H̃t de�nes a second history with equal length as well as equal number of buys,

sells and holds as Ht. Applying Equation 5.41, we see that P (V = 1|Ht) and

P (V = 1|H̃t) are identical up to a commutation within the product terms
∏

(·).
Consequently, we have P (V = 1|Ht) = P (V |H̃t), which prooves that πt does not

depend on the order of arrival of traders as long as their trading decisions remain

unchanged.

For the second part of Proposition 5.8 assume that history Ht contains b buys s

sells and h holds. Let us assume without loss of generality that b ≥ s. Moreover,

for notational convenience, let us denote pB· = P (at = {buy}|V = ·), pS· = P (at =

{sell}|V = ·) and pH· = P (at = {buy}|V = ·) for the remainder of the proof. Since

the order of the actions is not important, we can rewrite Equation (5.41) as

πt = P (V = 1|Ht) =
(pB1 )b(pS1 )s(pH1 )hπ0

(pB1 )b(pS1 )s(pH1 )hπ0 + (pB0 )b(pS0 )s(pH0 )h(1− π0)
.

Now noting that pS0 = pB1 and vice versa and that pH0 = pH1 , we can factorize the

denominator so that we get

πt = P (V = 1|Ht) =
(pB1 )b(pS1 )s(pH1 )hπ0

(pB1 )s(pS1 )s(pH1 )h[(pB1 )b−sπ0 + (pB0 )b−s(1− π0)]
.

Setting b− s = z and reducing the fraction, we get

πt = P (V = 1|Ht) =
(pB1 )zπ0

(pB1 )zπ0 + (pB0 )z(1− π0)
. (5.42)
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For s > b, symmetry implies that we can simply replace the buy probabilities

in Equation (5.42) with the corresponding sell probabilities, which concludes the

proof that πt only depends on z and the model parameters. To see that Corollary

5.3 holds, use the formulas for P (at|V ) according to Lemma 5.10.

5.8.F Informational Cascades

Proposition 5.9. In the two-state, two-trader version of the Avery and Zemsky

(1998) framework, an informational cascade occurs if and only if all informed

traders take the same action.

The �if� part of the result generalizes to any number and even to a continuum of

states and di�erent informed traders as long as all model parameters are common

knowledge and the conditional signal distribution P (S|V ) is not constant in V .

In general settings, e.g. confounded learning, informational cascades may occur

if agents take di�erent actions, compare Exercise 4.6 in Chamley (2004).

Proof:

�⇐�: Let us assume all informed traders take the same action at t. Let this action

without loss of generality be a buy. Then:

P (at = buy|Ht, �trade is informed�)

=P (S = S0|Ht) + P (S = S1|Ht) = 1
(5.43)

and

P (at = buy|Ht, V, �trade is informed�)

=P (S = S0|Ht, V ) + P (S = S1|Ht, V ) = 1
(5.44)

as well. We also note that the corresponding conditional probabilities for any

informed trader action other than a buy are zero. Hence, we get

P (at = buy|Ht, V )

= P (�informed buy�|Ht, V ) + P (�uninformed buy�|Ht, V )

= P (at = buy|Ht, V, �trade is informed�)P (�trade is informed�|Ht, V )



Fifth Paper 191

+P (�uninformed buy�|Ht, V ).

Now noting that the probability µ that a trade is informed and the probability

θ that an uninformed trader buys do not depend on the state of the world and

applying equations (5.43) and (5.44), we get

P (at = buy|Ht, V )

= P (at = buy|Ht, �trade is informed�)P (�trade is informed�|Ht)

+P (�uninformed buy�|Ht)

= P (at = buy|Ht).

For any action other than buy, we have that P (at|Ht, V ) = θ = P (at|Ht) and,

therefore, the probability is independent of the state of the world, which concludes

this part of the proof.

We note that common knowledge is crucial to the proof since Equations (5.43) and

(5.44) would not necessarily hold if the informed traders' actions were obscured

by some unobservable preference parameters.

�⇒�: We proof this indirectly by assuming that without loss of generality the low

signal sells at t while the high signal buys. Then:

P (at = buy|Ht, �trade is informed�)

=P (S = S1|Ht) = πtq + (1− πt)(1− q)
(5.45)

and

P (at = buy|Ht, V, �trade is informed�) = P (S = S1|Ht, V )

=

πtq, V = V1

(1− πt)(1− q) V = V0

.
(5.46)
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We infer from equations 5.45 and 5.46 that

P (at = buy|Ht, �trade is informed�) 6= P (at = buy|Ht, V, �trade is informed�),

which readily implies that P (at = buy|Ht, V ) 6= P (at = buy|Ht) and, therefore,

concludes the second part of the proof.

5.8.G CEU and NEO-Additivity Toolbox

This section is a summary of the most important concepts and results of

Chateauneuf et al. (2007) and Eichberger et al. (2010). It is the mathematical

foundation for Section 5.3.

Capacities and Choquet Expected Utility (CEU): Let S ⊂ R denote a

non-empty set of possible states of the world. Let σ(S) =: E denote the corre-

sponding Borel Sigma-Algebra of all possible subsets of S. Note that by de�nition

∀s ∈ S : {s} ∈ E .

De�nition 5.3. Capacity

A capacity is a mapping ν : E → [0; 1] that assigns likelihood values to events in

a way that it ful�lls the following properties:

(i) Monotonicity: ∀E,F ∈ E, where E ⊆ F : ν(E) ≤ ν(F )

(ii) Normalization: ν(∅) = 0 and ν(S) = 1.

We note that a capacity de�nes a normalized measure. A special case of capacities

are probability measures. Yet, capacities in general are not additive with respect

to E . This non-additivity implies in particular that for some event E, where

0 < ν(E) < 1, we do not necessarily have that ν(E) = 1 − ν(EC), where EC

denotes the complement of E. Therefore, capacities are suited to model agent

behavior under ambiguity.

Capacities are designed to explain the Ellsberg paradox of Ellsberg (1961).

In Ellsberg's experiment individuals are confronted with the choice of drawing a
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ball from one of two urns. They know that the �rst urn contains 50 white balls

and 50 black balls while the composition of the second urn is unknown. Subjects

win money, if they draw a white ball. Most participants choose to draw from

urn 1, where the composition is known. This implies that they assign a

probability of less than 50% of drawing a white ball from urn 2. Now, Savage's

sure thing principle would predict that when the winning condition is changed

to drawing a black ball, subjects should prefer urn 2 to urn 1. A corresponding

repetition of the experiment shows, however, that subjects still tend to prefer

urn 1 to urn 2, thus, violating Savage's SEU framework.

Next we de�ne the Choquet integral with respect to capacities for a set of

simple functions:

De�nition 5.4. Choquet Integral

Let f : S → B ⊂ R, where B has a �nite number of elements. The Choquet

integral with respect to the capacity ν is de�ned as∫
f dν :=

∑
t∈f(S)

t · [ν({s | f(s) ≥ t})− ν({s | f(s) > t})].55

The Choquet integral is interpreted as the expected value under ambiguity. If

we think of f being a utility function, it is natural to denote CEU :=
∫
f dν as

the Choquet Expeted Utility of an individual that perceives ambiguity and has

ambiguity preferences that are captured by ν.

NEO-Additive Capacities: We provide a simpli�ed de�nition for neo-additive

capacities that is su�cient for this study.

55Note that the term ν({s | f(s) ≥ t}) − ν({s | f(s) > t}) very much reminds us of decision
weights from prospect theory according to Tversky and Kahneman (1992). Yet, while probability
weightings are merely distortions of objective probabilities designed to capture individuals' ten-
dencies to wrongly assess given probabilities, capacities model how individuals assign likelihoods
to outcomes, for which no (single) probability is available.
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De�nition 5.5. NEO-Additive Capacity

Let π be a probability measure on (S, E) and let

ηα =


0 E = ∅

α E 6= ∅ ∧ E 6= S

1 E = S

be the Hurwicz capacity and let δ, α ∈ [0; 1], then a neo-additive capacity ν(· |
π, δ, α) is de�ned as

ν(E | π, δ, α) := (1− δ)π(E) + δηα(E).

The CEU with respect to a neo-additive capacity is shown by Chateauneuf et al.

(2007) to be

CEUneo[f ] = (1− δ)Eπ[f ] + δ(α ·max
x∈B
{f−1(x)}

+(1− α) ·min
x∈B
{f−1(x)}).

(5.47)

The function f again is a simple function in the sense of De�nition 5.4. When

assuming that informed traders have neo-additive CEU preferences in the Avery

and Zemsky (1998) framework, f is the identity as we maintain the assumption

of risk neutrality. Since there are only two states V0 = 0 and V1 = 1, the

non-additive part simpli�es to δ(α · 1 + (1 − α) · 0) = δα. The parameter δ

describes the degree of perceived ambiguity, while the parameter α measures the

attitude towards ambiguity.

The absolute ambiguity attitude in the sense Ghirardato and Marinacci (2002)

for individuals with neo-additive CEU preferences is then given by the following

Proposition 5.10. Absolute Ambiguity Attitude

Let �neo denote a preference relation that can be represented by a neo-additive

capacity ν(E | π, δ, α). Then, �neo is ambiguity averse (loving) in the sense of

Ghirardato and Marinacci (2002) if and only if α < (>)Eπ[·]. It is ambiguity

neutral if and only if α = Eπ[·].
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Proof: According to Proposition 15 in Ghirardato and Marinacci (2002), a pref-

erence relation is ambiguity neutral if and only if it is SEU. In the case of neo-

additive capacities this would mean that CEUneo = Eπ. Now, let us assume

that without loss of generality utilities are normalized (or canonical), that is,

max{u−1(x)} from Equation (5.47) equals 1 and min{u−1(x)} = 0. Now solv-

ing Equation (5.47) for α, we get α = Eπ. Hence, neo-additive preferences are

ambiguity neutral if and only if α = Eπ.

If α̃ > Eπ, it follows that CEU α̃neo > CEUαneo. This, in turn, implies that

CEUαneo is more ambiguity averse than CEU α̃neo according to De�nition 4 in

Ghirardato and Marinacci (2002). Since we have already shown that CEUαneo is

SEU, De�nition 9 in Ghirardato and Marinacci (2002) implies that CEU α̃neo
ambiguity loving. The argument for absolute ambiguity aversion is

symmetric.

General Bayesian Updating (GBU) Rule: The following GBU rule for neo-

additive capacities is derived and discussed by Eichberger et al. (2010).

Proposition 5.11. General Bayesian Updating

Let E ⊆ S be some conditioning event and let ν(· | π, δ, α) be an unconditional

neo-additive capacity. Let π(E) > 0. Then:

• The capacity νE(· | π, δ, α) that is conditioned on E is neo-additive as well;

• The additive probability π is updated to πE according to Bayes' rule, i.e.

πE(A) = π(A ∩ E)/π(E) for A ∈ E;

• αE = α;

• δE = δ
(1−δ)π(E)+δ .

5.8.H Inconsistencies of GBU in the CEU Model

An important reason why α should vary with π is that it allows consistent assump-

tions regarding asymptotic ambiguity attitudes as the market becomes con�dent
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about either state.

If α ∈ (0; 1) is constant, then for both informed trader types

αrelt =
α

Eπt [V | Ht, S]
→ α < 1, as πt → 1 (5.48)

and

αrelt =
α

Eπt [V | Ht, S]
→∞, as πt → 0. (5.49)

In other words, informed traders become pessimistic as the market becomes con-

�dent about the high state. Similarly, traders become absolute optimistic as the

market becomes con�dent about the low state. Hence, a �xed α in the CEU

model does not guarantee that the informed traders' preference for ambiguity is

invariant. Indeed, if an informed trader is optimistic at t = 0 and the market

con�dently learns that the high state is true, the informed trader will eventually

become pessimistic. Yet, why of all times, would traders become pessimistic, when

the market expresses strong or even full con�dence about the high state and vice

versa? If the market gets con�dent about either state of the world, risk becomes

vanishingly small. In the limiting case that π ∈ {0; 1}, there is no uncertainty,

Knightian or otherwise. Hence, CEU-investors should value the asset at 0 or 1

respectively just like their SEU counterparts from the baseline model. This is

guaranteed if α(0) = 0 and α(1) = 1.

One might argue that there should, indeed, be no perceived ambiguity in the case

of full con�dence. That is, the degree of perceived ambiguity δ should go → 0 as

πt → {0; 1}. We would agree that such an assumption would be feasible as well

but it would be an altogether di�erent model. The way we understand ambiguity

in this paper is that it cannot be learned away. The level of primary ambiguity

δ0, for instance, is associated with the complexity of the �nancial product or the

level of expertise of the trader. Therefore, it does not vanish, even if the market

becomes con�dent about the true state of V . Moreover, the ambiguity stemming

from the informed trader's private information is highest when it contrasts to

the view of the market, see Figure 5.2. For a low signal, the perceived informa-

tional ambiguity is, indeed, highest if the market con�dently believes that V = 1.

Hence, there is ambiguity if the market is con�dent, but it's e�ect on the informed
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traders' decision making should become marginal. If we assume regularity of α

in π, this also implies that neo-additive Choquet preferences in the CEU model

are consistent with smooth ambiguity preferences in the Klibano� et al. (2005)

approach.
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