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Abstract� Given a partially ordered set P � �X�P �� a function F which as�
signs to each x � X a set F �x� so that x � y in P if and only if F �x� � F �y�
is called an inclusion representation� Every poset has such a representation�
so it is natural to consider restrictions on the nature of the images of the
function F � In this paper� we consider inclusion representations assigning to
each x � X a sphere in Rd� d�dimensional Euclidean space� Posets which have
such representations are called sphere orders� When d � �� a sphere is just an
interval from R� and the class of 	nite posets which have an inclusion repre�
sentation using intervals from R consists of those posets which have dimension
at most two� But when d � 
� some posets of arbitrarily large dimension have
inclusion representations using spheres in R

d� However� using a theorem of
Alon and Scheinerman� we know that not all posets of dimension d � 
 have
inclusion representations using spheres in Rd� In ���� Fishburn and Trotter
asked whether every 	nite ��dimensional poset had an inclusion representation
using spheres �circles� in R�� In ���� Brightwell and Winkler asked whether
every 	nite poset is a sphere order and suggested that the answer was nega�
tive� In this paper� we settle both questions by showing that there exists a
	nite ��dimensional poset which is not a sphere order� The argument requires
a new generalization of the Product Ramsey Theorem which we hope will be
of independent interest�

�� Introduction

Given a partially ordered set �poset� P � �X�P �� a function F which assigns to
each x � X a set F �x� is called an inclusion representation of P if x � y in P if
and only if F �x� � F �y�� Every poset has such a representation� For example� just
take F �x� � fy � X � y � x in Pg� In recent years� there has been considerable
interest in inclusion representations where the images of the function F are required
to be geometric objects of a particular type� with attention focused on circles and
spheres� We refer the reader to �	
 for a summary of results in this area and an
extensive bibliography�

As is well known� the �nite posets of dimension at most two are just those which
have inclusion representations using closed intervals of the real line R� Because a
closed interval of R can also be considered as a sphere in R� � it is natural to ask
which posets have inclusion representations using disks �circles� in R� � For historical
reasons� these posets are called circle orders� Fishburn ��
 showed that all interval
orders are circle orders� Also� the so called standard examples of ndimensional
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posets� the �element and �n � ��element subsets of f�� �� � � � � ng� ordered by in
clusion� are circle orders� So among the circle orders are some posets of arbitrarily
large dimension�

Call a poset P a sphere order if there is some d � � for which it has an inclusion
representation using spheres in Rd � Using the �degrees of freedom� theorem of Alon
and Scheinerman ��
� it follows that not all posets of dimension d�� have inclusion
representations using spheres in Rd � In particular� when d � �� we conclude that
there are �dimensional posets which are not circle orders� In this case� an explicit
example can be given� as Sidney et al� ���
 have shown that the �dimensional poset
consisting of the �� proper nonempty subsets of f�� �� �� �g ordered by inclusion is
not a circle order�

In ���
� Scheinerman and Wierman used a very nice Ramsey theoretic argument
to show that the countably in�nite �dimensional poset Z� is not a circle order�
They also noted that f�� �� � � � � ng�f�� �� � � � � ng�N is not a circle order when n is
su�ciently large� Additional contributions along this line appear in Hurlbert ���
�
Lin ���
 and FonDerFlaass ��
� The last of these proves that f�� �g� f�� �� �g� N
is not a circle order�

These results leave open the following question�

Question �� Is every �nite ��dimensional poset a circle order�

This question was raised by Fishburn and Trotter at the Ban� meeting on ordered
sets in ���� but has also been posed by other researchers� Although the results
in the preceding paragraph suggest that the answer is negative� some evidence
supports a positive answer� As shown in ���
� for every �nite �dimensional poset
P and every integer n � �� P has an inclusion representation using regular ngons
in the plane� So it is natural to surmise that as n��� we may be able to pass to
a limit and obtain the desired inclusion representation using circles�

Some of the motivation for questions involving inclusion representations for
posets comes from the parallel concept of intersection graphs� For example� Mae
hara ���
 showed that for every �nite graph G � �V�E�� there is some d � � so
that G is the intersection graph of a family of spheres in Rd � The corresponding
question for posets was posed independently by Brightwell and Winkler ��
 and by
Meyer ���
� Brightwell and Winkler also conjectured that the answer is negative�

Question �� Is every �nite poset a sphere order�

This paper settles Question � and Question � with the following result�

Theorem ���� There exists a �nite ��dimensional poset which is not a sphere or�
der�

Inclusion representations that use circles and spheres have other applications and
have been studied for a variety of reasons� For example� Scheinerman ���
 proved
that a graphG � �V�E� is planar if and only if the poset formed by its vertices and
edges� ordered by inclusion� is a circle order� Knight ���
 has studied representation
problems using nonstandard analysis� while Meyer ���
� ���
� ��	
 and Brightwell
and Gregory ��
 have investigated the modeling of time and space with spheres� an
approach of interest to physicists�

Additional information on circle and sphere orders appears in Scheinerman ���
�
���
� while more general geometric objects are considered in Fishburn and Trot
ter ��
� Sidney et al� ���
� Tanenbaum ���
� Urrutia ��	
 and other papers cited in
Fishburn and Trotter �	
�
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The remainder of the paper is organized as follows� Section � provides basic no
tation and terminology� Section � outlines the proof� Section � gathers important
Ramsey theoretic tools essential to our argument� tools which we feel will have ap
plications beyond this paper� In Sections ����� we present the proof of Theorem ����
Section �� discusses related problems and research directions�

�� Notation and Terminology

For positive integers n and t� let n denote the chain � � � � 	 	 	 � n��� and let nt

denote the cartesian product of t copies of n� so that �i�� i�� � � � � it� � �j�� j�� � � � � jt�
in nt if ik � jk in R for k � �� �� � � � � t� Also let R� denote the set of all positive
real numbers�

Given a poset P � �X�P �� recall that the the minimum cardinality of a family
of linear extensions of P whose intersection is P is called the dimension of P and is
denoted by dim�P�� We refer the reader to ���
 for additional background material
on the subject of dimension for partially ordered sets and to ���
 and ���
 for more
discussion of connections between graphs and posets� Here we will need only the
well known fact that a �nite poset has dimension at most t if and only if there
is an integer n for which it is isomorphic to a subposet of nt� Hence� to prove
Theorem ���� it then su�ces to establish the following result�

Theorem ���� There exists an integer n� so that if n � n�� the �nite ��dimensional
poset n� is not a sphere order�

For positive integers n� d and t� we consider inclusion representations of the
poset nt using spheres from R

d � We use the letters u� v� w� x� y� z� B and T
to denote elements of nt� For example� the coordinates of x for t � � would be�
x���� x���� x���

�
� Also� we write� for example� x � ��� �� 	� to indicate the element

in n� with x��� � �� x��� � � and x��� � 	�
Given an inclusion representation F of n�� using spheres in Rd � the center of the

sphere F �x� will be denoted by c�x�� We never refer explicitly to the coordinates
of c�x�� as we wish to emphasize that our argument is independent of the value of
d�

We will also use the symbol s �with various subscripts� to denote points in Rd

which may or may not be centers of spheres in our representation� We denote the
Euclidean distance between points s� and s� from R

d by ��s�� s��� When x and y
are points in n�� we abbreviate �

�
c�x�� c�y�

�
by ��x� y�� Accordingly� the inclusion

rule may be stated as follows�

x � y in n� if and only if r�y�� r�x� � ��x� y�����

In other words� one sphere is contained in another when the di�erence in their
radii is at least as large as the distance between the centers� Technically speaking�
we should write �F �x� y� because the distance between c�x� and c�y� depends on
F � However� in our proof� once an inclusion representation F is determined� we
make at most two modi�cations to the representation� and both leave the distance
between centers invariant�

Given two points s� and s� in Rd � let L�s�� s�� denote the line they determine�
The line L�c�x�� c�y�� will be abbreviated by L�x� y��

Given three noncollinear points s�� s� and s�� let ��s�� s�� s�� denote the angle
at s� determined by L�s�� s�� and L�s�� s��� Also let ��s�� s�� s�� denote the angle
formed at s� by L�s�� s�� and L�s�� s��� Then let p�s�� s�� s�� denote the unique
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s� p�s�� s�� s�� s�

��s�� s�� s��

h�s�� s�� s��

s�

��s�� s�� s��

Figure �

point on L�s�� s�� which is closest to s�� and let h�s�� s�� s�� � �
�
s�� p�s�� s�� s��

�

�see Figure ��� As usual� when discussing centers� we will just write ��x� y� z��
��x� y� z�� p�x� y� z� and h�x� y� z��

The proof of our main theorem uses a large constant N which we somewhat ar
bitrarily take as N � ������ More modest values would work but would undermine
the Ramsey theoretic perspective we have adopted� More importantly� in a certain
sense� the perspective we have taken is forced� Given any collection of spheres�
elementary Lorentz transformations may be applied to relocate the centers so that
they are very close to being collinear� So this paper can be viewed as an e�ort to
work with small errors�a task that sometimes requires large constants�

The following notation is used throughout� When e� and e� are positive quanti
ties� we write

e� �� e� when Ne� � e��

Also� we write

e� � e� when e� � e��� � ��N��

We use e� 		 e� as an alternative for e� �� e�� and e� � e� for e� � e�� When
e� � e� � e�� we will write e� 
 e�� Furthermore� our inequalities will be strong
enough to allow the natural notion that if e� 
 e� and e� 
 e�� then e� 
 e��

When arguing to a contradiction using quantities compared with this notation�
we must be careful to avoid such traps as believing that

e� � e� � e� � e� � e� � e�

results in a contradiction� because it only leads to the conclusion that the �ve
quantities are approximately the same� So to obtain a contradiction� we will always
show �at least� something like

e� � e� and �e� � e��

Also� our argument will make extensive use of a principle which we call di�eren�
tiation and develop in Section �� To illustrate this principle� consider an injective
function f � n� � R� and let x and y be distinct elements of n�� Because f is
injective� f�x� �� f�x�� In arguments that follow� we will control the behavior of f
so that one of the following three situations always obtains�
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f�x� �� f�y��

f�x� 		 f�y��

f�x� 
 f�y��

In other words� we want to exclude the middle ground where� for example�

f�x��� � ��N� � f�y� � Nf�x��

When f maps distinct points x and y so that f�x� 
 f�y�� we will need to
examine how di�erences behave� In this case� when f�x� � f�y� � f�z�� we want
to have either

f�y�� f�x� �� f�z�� f�y��

or

f�y�� f�x� 		 f�z�� f�y��

and never

f�y�� f�x� 
 f�z�� f�y��

Let e�� e� and e� be positive positive real numbers� We write

e� � e� � zero�e��

when e� �� e�� e� � e� � e�� and e� � e� � e�� The basic idea here is that we will
have three quantities satisfying a weak version of the triangle inequality

ei � ej � ek

for all distinct i� j� k � f�� �� �g� We will then discover that e� is much larger than
e�� leading to the conclusion that e� and e� are almost exactly the same size�

�� Outline of the Proof

We will assume that we have an inclusion representation of n� using spheres in
R
d and argue to a contradiction�provided n is su�ciently large�
The basic idea of the proof is straightforward� We envision the centers of the

spheres as being nearly collinear along some line in Rd � Each sphere will have as
its radius a value which is almost exactly the same as the distance from its center
to the center c�B� of the bottom point B � ��� �� ��� Given any two other points x
and y in n�� the center of one will be much closer to c�B�� say by a mulitiplicative
factor of N � ����� or more�

For distinct points x and y from n�� we de�ne

gap�x� y� � r�y�� r�x� � ��x� y��

When x � y� gap�x� y� 	 �� and when x is incomparable to y� gap�x� y� � ��
However� in all cases� ��x� y� and jr�y� � r�x�j will be approximately equal� so we
will need to pay careful attention to the magnitude of the error terms�

For three distinct points x� y and z� let

��x� y� z� � ��x� y� � ��y� z�� ��x� z��

Clearly� ��x� y� z� � �� and ��x� y� z� 	 � when the centers are not collinear�
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The proof of our main theorem focuses on a �element chain x � z and the
quantity gap�x� z�� We will obtain upper bounds on gap�x� z� by considering a
point incomparable to both x and z� For example� suppose v is such a point� Then

r�z�� r�x� �
�
r�v� � r�x�

�
�
�
r�z�� r�v�

�
� ��x� v� � ��v� z��

so that

gap�x� z� � ��x� v� z��

Since this bound holds for any point incomparable to both x and z� we may consider
several candidate points and take the best bound they produce�

To obtain a lower bound� we consider an integer k and a chain C of �k�� points
having x as its bottom element and z as its top element� Let C � fx � u� � u� �
	 	 	 � u�k
� � zg be such a chain� Then

r�z�� r�x� � r�u�k
��� r�u��

�

�kX

i��

�
r�ui
��� r�ui�

�

	

�kX

i��

��ui
�� ui�

�

kX

i��

�
��u�i
�� u�i��� � ��u�i��� u�i� u�i
��

�

� ��u�� u�k
�� �

kX

i��

��u�i��� u�i� u�i
���

� ��x� z� �

kX

i��

��u�i��� u�i� u�i
���

Setting

��x�C� z� �
kX

i��

��u�i��� u�i� u�i
���

we conclude that

gap�x� z� 	 ��x�C� z��

In all cases� we will obtain a contradiction by carefully choosing a point v� with v
incomparable to both x and z� and a chain C having x and z as its bottom and top
elements so that

��x� v� z� � ��x�C� z��

The chain C will often consist of x� z and one intermediate point� but there are
cases that need several intermediate points�

The argument depends heavily on Ramsey theory to assure that our representa
tion is suitably regular� However� we must avoid any dependence on the dimension
of the space from which the spheres in the representation are taken�

Finally� we encourage the reader to observe the key role played by dominating
coordinates� a concept which is introduced in the next section�
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�� Extensions of The Product Ramsey Theorem

Given a �nite set S and an integer k with � � k � jSj� we denote the set of all

kelement subsets of S by
�
S
k

�
� Given integers t and k and �nite sets S�� S�� � � � � St�

we call an element of
�
S�
k

�
�
�
S�
k

�
� 	 	 	 �

�
St
k

�
a grid �also� a kt grid �� The sets

S�� S�� � � � � St are called factor sets of the grid� Using the natural order� a set of n
integers is just an nelement chain� so considered as a poset� S� � S� � 	 	 	 � St is
isomorphic to n� � n� � 	 	 	 � nt� where ni � jSij for i � �� �� � � � � t�

The following Product Ramsey Theorem� stated here in poset form� will be
used extensively in making certain uniformizing assumptions about the inclusion
representation� We refer the reader to ���
 for the proof and additional material on
Ramsey theory�

Theorem ���� Given positive integers m� k� r and t� there exists an integer n�
so that if n � n� and f is any map which assigns to each kt grid of nt a color
from f�� �� � � � � rg� then there exists a subposet P isomorphic to mt and a color

 � f�� �� � � � � rg so that f�g� � 
 for every kt grid g from P�

We will refer to the least n� for which the conclusion of the preceding theorem
holds as the Product Ramsey number PR�m� k� r� t��

Recall that x � y in nt if and only if x�i� � y�i� for i � �� �� � � � � t� So it does
not follow that x�i� � y�i� for i � �� �� � � � � t when x � y in nt� Nevertheless� the
following elementary proposition allows us to assume that if x �� y� then x�i� �� y�i�
for i � �� �� � � � � t� We view this proposition as a �spacing� tool in that it allows us
to assume that distinct points have all coordinates distinct and separated by some
reasonable amount�

Proposition ���� Let m� n and G be positive integers with n � Gmt� Then the
function I � mt � nt de�ned �cyclically	 by

I�x��i� � G
tX

j��

x�i� j � ���m� ��t�j��

is an embedding� Furthermore�

�� If x� y �mt� i � f�� �� � � � � tg and x�i� � y�i�� then I�x��i� � I�y��i��
�� If x� y �mt and x �� y� then jI�x��i� � I�y��i�j � G for i � �� �� � � � � t�

In what follows� we refer to the integer G in the preceding theorem as the gap
size of the embedding I �

Let P be a poset and let f map P into R� We say f is monotonic if it is either
orderpreserving or orderreversing� Now consider an orderpreserving function f
which maps nt �or a subposet of nt� to R� We say that f is dominated by coor
dinate 
 if for all x and y from its domain� f�x� � f�y� whenever x�
� � y�
��
Dually� given an orderreversing function f � we say that f is dominated by 
 if for
all x and y from its domain� f�x� 	 f�y� whenever x�
� � y�
��

In ��
� Fishburn and Graham used the Product Ramsey Theorem to obtain the
following result�

Theorem ���� Given integers m and t� there exists an integer n� so that if n �
n� and f is any injective function from nt to R� then there exist a coordinate

 � f�� �� � � � � tg and a subposet P isomorphic to mt so that the restriction of f to
P is monotonic and dominated by coordinate 
�
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We stated the preceding theorem �and all to follow� in terms of injective func
tions� because all the functions we consider may be assumed to be injective� If this
assumption is dropped� then a modestly more complicated concept of domination
is needed� and the conclusions of the theorems have additional cases� However� the
basic principles we discuss here apply to arbitrary functions�

Here is one elementary consequence of coordinate domination�

Proposition ���� Let f � g and h be monotonic injective functions from nt to R� �
each dominated by a coordinate� If h�x� � f�x�g�x� for all x in nt� then two of the
three functions are dominated by the same coordinate�

Proof� We provide the proof when f is orderpreserving and g is orderreversing�
all other cases being similar�

Suppose the conclusion fails and f � g and h are dominated by distinct coor
dinates� say f by coordinate �� g by coordinate � and h by coordinate �� Then
consider the points x� � ��� �� �� �� �� � � � � ��� x� � ��� �� �� �� �� � � � � ��� and x� �
��� �� �� �� �� � � � � ��� Observe that h�x�� � h�x�� � h�x��� x���� � �� x���� � � and
x���� � �� Thus h cannot be dominated by coordinate �� regardless of whether it
is orderpreserving or orderreversing�

Note that if f is a monotonic function from nt to R� and f is dominated by
coordinate 
� then the reciprocal of f is also dominated by coordinate 
� as is the
square of f �

One central concept in our proof is the notion of how fast a function changes�
Now a sequence� even a strictly increasing sequence� doesn�t have to change very
much at all� but in this case� di�erences can change dramatically�

To provide further motivation� we present the following elementary proposition�

Proposition ���� For positive integers m and N with N 	 �� there exists an
integer n� so that if n � n� and a� � a� � 	 	 	 � an is any strictly increasing
sequence of real numbers� then there exists a subsequence ap� � ap� � 	 	 	 � apm so
that for all i� j� k� l with � � i � j � k � l � m� either

apj � api 		 apl � apk �

or

apj � api �� apl � apk �

We will be studying functions de�ned on nt in what follows� Setting ui �
�i� i� � � � � i�� the values of f�ui� form a long sequence� and we will want �at least�
to control the behavior of f on a long subchain in a manner indicated by the
conclusions of Proposition ����

With these comments in mind� we present the basic de�nitions which will de
scribe how a function changes� We say an orderpreserving function f � X � R�

advances conservatively in magnitude if f�y� 		 f�x� whenever f�y� 	 f�x�� Simi
larly� we say that an orderreversing function f retreats aggressively in magnitude if
f�y� �� f�x� whenever f�y� � f�x�� We abbreviate these two de�nitions with the
symbols ACM and RAM� respectively� The basic idea is that an ACM function
advances in a manner that postpones large changes as long as possible� Dually� a
RAM function retreats rapidly� making large changes as soon as possible� Both
properties are de�ned in terms of a parameter N � which we �x in this paper by
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setting N � ������ Nevertheless� our de�nitions make complete sense with any
value of N which exceeds ��

We say a function f � X � R� is nearly constant if f�x� 
 f�y� for all x� y � X �
We abbreviate this property with the notation NC� Evidently� the three properties
ACM� RAM and NC are mutually exclusive� However� a function can be NC
without being monotonic�

As discussed in Section �� when a function is nearly constant� we still need to
describe how its di�erences behave� Accordingly� when f is anNC orderpreserving
function� we say that f advances conservatively if f�y� � f�x� �� f�z� � f�y�
whenever f�x� � f�y� � f�z�� Similarly� we say that an orderpreserving NC
function f advances aggressively if f�y�� f�x� 		 f�z�� f�y�� whenever f�x� �
f�y� � f�z��

Dually� if f is an NC orderreversing function� we say that f retreats conserva�
tively if f�x�� f�y� �� f�y�� f�z� whenever f�x� 	 f�y� 	 f�z�� and we say that
f retreats aggressively if f�x�� f�y� 		 f�y�� f�z� whenever f�x� 	 f�y� 	 f�z��

We use the abbreviationsAC� AA� RC� and RA for the four properties de�ned
in the preceding two paragraphs� so for example� the statement f is RC means
that f is an NC orderreversing function which retreats conservatively� Note that
we have de�ned these last four properties only for NC functions�

Let L � fAC�AA�RC�RA�ACM�RAMg� We call the elements of L change
labels� Now for any function f � at most one of these change labels applies�and for
many functions� none of them is appropriate� The �t elements of L � f�� �� � � � � tg
are called change patterns� A function f � nt � R� is said to be uniform if there
exists a change pattern �L� 
� so that f is L and is dominated by coordinate 
� In
this case� we say that f satis�es the change pattern �L� 
��

With this background material in mind� we state a theorem which is only a gentle
extension of Theorem ���� However� we will need an even stronger result� one for
which the following theorem is an immediate corollary�

Theorem ���� Given positive integers m� t and N with N 	 �� there exists an
integer n� so that if n � n� and f � nt � R� is any injective function� then
there exist a subposet Q isomorphic to mt and a change pattern �L� 
�� so that the
restriction of f to Q is a uniform function satisfying �L� 
��

To prove our main theorem� we need to uniformize a large number of functions�
a number which goes to in�nity with n� The preceding result would allow us to
handle only a bounded number of functions� Fortunately� the functions we need to
uniformize have additional structure�

Let k and s be positive integers with � � s � k� and let A be a function which
maps the kt grids of nt to R� � Then for each �k� ��t grid g� we can de�ne a
function Ag�s on certain points in nt� namely on those points x �the set of such
points may be vacuous� in nt so that for each i � �� �� � � � � t� the coordinate x�i� is
larger than the smallest s � � integers in the ith factor set of g and less than the
largest k� s� Of course� when the ith coordinate of x is added to the ith factor set
of g for i � �� �� � � � � t� we obtain a kt grid g�� So we can de�ne Ag�s�x� � A�g���
Note that the function Ag�s has as its domain a poset which is a product of t
chains�although in general the lengths of these chains is not constant� We call
Ag�s a �k� s�induced function�

To make this more concrete� suppose we have an inclusion representation of
n� using spheres from R

d � Then we can de�ne a function A which maps the
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�� grids from n� to R� as follows� With each �� grid g�� we associate a chain
x � y � z� and then de�ne A�g�� � ��x� y� z�� the angle at x formed by L�x� y� and
L�x� z�� Now consider� for example� the value s � �� Then consider the �t grid
g � f��� ��g � f�	� ��g � f��� ��g� It follows that the ��� ��induced function Ag��

is de�ned on a subposet isomorphic to �� � �� � ��� Of course� the size of the
subposet on which the function Ag�s is de�ned depends both on g and s� However�
if the set of points on which Ag�s is de�ned is nonempty� we can discuss the issue
of whether Ag�s is uniform�

We are ready to present the main uniformizing theorem needed to prove Theo
rem ���� In the proof� we sketch those details which are included in the proof of
Theorem ��� and concentrate on those which are new to this paper�

Theorem ��	� Given positive integers m� t� k and N with N 	 �� there exists an
integer n� so that if n � n� and A is any injective function which maps the kt grids
of nt to R� � then there exist k change patterns �L�� 
��� �L�� 
��� � � � � �Lk� 
k� and
a subposet P isomorphic to mt so that for every s � �� �� � � � � k and every �k� ��t

grid g in P� the �k� s��induced function Ag�s is uniform and satis�es change pattern
�Ls� 
s��

Proof� Before beginning the proof� we comment that it is essential that the change
pattern of an induced function Ag�s depends only on s� not on g� There are only k
choices for s� but the number of choices for g can be much larger than n� To help
the reader keep track of sizes� we will always use g� g� and g�� �with subscripts� to
denote grids of size �k� ��t� kt and �k � ��t� respectively�

Set q � ���mtN logN��k and l � k���t�� 	��t�� Then set r � �l� The value of
q is taken to insure that q is comfortably larger than mt� N logN and k� We now
show that the value n� � PR�q� k � �� r� t� satis�es the conclusion of our theorem�
To accomplish this� we start with a poset P � P� isomorphic to nt

�� We will then
determine subposets P�� P� and P� with Pi
� a subposet of Pi for i � �� �� �� For
each i � �� �� �� �� Pi will be isomorphic to nt

i� The values of the other parameters
are n� � q� n� � n� � �k and n� � m�

To show that the speci�ed value of n� works� we �rst describe a coloring of the
�k� ��t grids in nt�

Let A be any injective function which maps the kt grids of nt
� to R� � We use A

to de�ne a coloring of the �k� ��t grids of nt
� using r colors�

Given a �k � ��t grid g��� we temporarily relabel the factor sets so that each
is just f�� �� � � � � k � �g� For each s � �� �� � � � � k� we consider the set Gs of all
kt grids having factor sets of the form f�� �� � � � � s � �� e� s � �� s � �� � � � � k � �g�
where e � fs� s � �g� For each s� there is a natural correspondence between grids
in Gs and subsets of f�� �� � � � � tg� So we can label these grids as g��S� s� where
S � f�� �� � � � � tg� With this convention� g���� s� corresponds to the subgrid in
which every factor set is f�� �� � � � � s� s��� s��� � � � � k��g� When the value of s is
�xed� we may just refer to a grid as a subset of f�� �� � � � � tg�

Now �x a value of s� Then consider all the images of the grids in Gs under the
map A� using the abbreviation A�S� for A�g��S� s��� As a consequence� some of the
following statements will be true �T� and some will be false �F��

�� A�S�� � A�S���
�� A�S�� �� A�S���
�� A�S�� � A�S���
�� A�S���A�S�� �� A�S��� A�S���
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To emphasize that these statements actually depend on both g�� and s� we refer
to them collectively as ��g��� s��

In each of the �rst three forms� there are ��t ordered pairs of variables for which
the statement can be meaningfully expressed� In the last form� there are ��t ordered
�tuples for which the statement makes sense� So summing over all s� there are
l � k���t � � 	 ��t� statements altogether� It follows that we may associate with g��

a boolean string of T�s and F�s of length l� There are r � �l such strings�
Since n� � PR�q� k � �� r� t�� there is a subposet P� isomorphic to qt so that

all �k� ��t grids in P� receive the same color� This uniform color is then an
assignment of truth values so that the issue of whether statements in ��g��� s� are
true or false depends only on s and not on g��� Accordingly� for the subposet P�

in which all grids receive the same color� we can refer to statements in the family
��s�� deleting g�� from our earlier notation�

Now let P� denote all those x � P� so that �k � x�i� � n���k for i � �� �� � � � � t�
Then P� is isomorphic to n� with n� � n� � �k as promised� �This technical step
is just to save some space at the top and bottom of P���

Since n� 	 �mt� we may use the spacing proposition to choose a subposet P� of
P�� with P� isomorphic to mt� so that P� is embedded by I in P� with gap size ��

In the remainder of the proof� we concentrate on points from P�� but we discuss
their coordinates in P�� via the embedding I �

Now �x a value of s� We show that there exists a change pattern �L� 
� so that if
g is any �k� ��t grid in P�� the induced �k� s� function Ag�s is uniform and satis�es
the change pattern �L� 
��

Let g be any �k� ��t grid in P�� We may assume without loss of generality that
the subposet Q of points in P� on which Ag�s is de�ned is nontrivial� else there is
nothing to prove�

If x and y are distinct points from Q� then the coordinates of x and y together
with the grid g form a �k� ��t grid g��� Although g�� depends on g� x and y� all
�k� ��t grids receive the same color� so we can track the behavior of their images
in some canonical grid� say the one in which all factor sets are just f�� �� � � � � k��g�

As before� we associate x and y with subsets of f�� �� � � � � tg� If x � y� then x � �
and y � f�� �� � � � � tg� so Ag�s is orderpreserving if and only if the statement

A��� � A�f�� �� � � � � tg�

from ��s� is true�
Now suppose Ag�s is orderpreserving� We explain why Ag�s is dominated by a

coordinate 
 which depends only on s�
Consider the grids corresponding to the singleton sets f�g� f�g� � � � � ftg� and the

order of their images under A� Suppose that the largest of these is A�f
g�� We
now show that Ag�s is dominated by coordinate 
� and assume that 
 � � without
loss of generality�

Now consider the points v�� v�� � � � � vt in P� where

�� vi��� � i� ��
�� vi�j� � n� � � for j � �� �� � � � � t� i� �� and
�� vi�j� � � for j � t� i� �� � � � � t�

We claim that Ag�s�vi� � Ag�s�vi
�� for i � �� �� � � � � t� �� To see this� note that
for each i� we can add a �k� ��t grid to the coordinates of vi and vi
� to form a
�k� ��t grid for which vi � f�g and vi
� � ft� i� �g�

It follows that Ag�s��� t� �� t� �� � � � � t� �� � Ag�s�t� �� �� �� �� � � � � ���
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Now let x and y be distinct points from Q with x��� � y���� We show that
Ag�s�x� � Ag�s�y�� This is certainly true if x � y� so we assume that x and
y are incomparable� Since the coloring of grids is uniform� and Ag�s is order
preserving� we conclude that Ag�s�x� � Ag�s�x���� n� � �� n� � �� � � � � n� � �� �
Ag�s�y���� �� �� �� � � � � �� � Ag�s�y��

The situation when Ag�s is orderreversing is dual�
We now show that the restriction of Ag�s to P� is uniform and has a change

pattern which depends only on s� Suppose �rst that Ag�s is orderpreserving�
Consider the following statement from ��s��

A�f�� �� � � � � tg� � A����

Suppose �rst that this statement is false� Then we know that Ag�s�y� � �� �
��N�Ag�s�x� for every �element chain from Q�

Recall that q 	 ��N logN � Consider the chain u� � u� � 	 	 	 � uq � � in P��
where ui � �i� i� � � � � i� �coordinate values in P��� Then consider two other auxiliary
chains v� � v� � 	 	 	 � vk and w� � w� � 	 	 	 � wk from P� �P�� where vi�j� � i
for i � �� �� � � � � k and all j � �� �� � � � � t� Also� wi�j� � n��k���i for i � �� �� � � � � k
and all j � �� �� � � � � t� These coordinate values are de�ned in P�� so vk � u� and
uq�� � w��

Then for each i � �� �� � � � � q � �� we may consider the grid g�i determined by ui
and appropriate portions of the two auxiliary chains� i�e� s � � of the points from
the bottom and k�s from the top� Together� they form a kt grid g�i� For simplicity�
we write A�ui� rather than A�g�i��

For each i� j � �� �� � � � � q � �� with i � j� we may consider the points ui and uj
together with portions of the auxiliary chains as forming a �k� ��t grid in which
ui and uj occur as levels s and s� �� In such a grid� ui � � and uj � f�� �� � � � � tg�

With the choice j � i � �� we conclude that A�ui
�� � �� � ��N�A�ui� for
i � �� �� � � � � q � �� Since q 	 ��N logN � it follows that A�u��� �� A�uq����
Therefore the statement

A��� �� A�f�� �� � � � � tg�

from ��s� is true� and Ag�s�x� �� Ag�s�y� for every �element chain x � y�
Now suppose that x and y are any two points fromQ and that Ag�s�x� � Ag�s�y��

Since Ag�s is dominated by coordinate 
� we know that x�
� � y�
�� Since the gap
size is at least �� we may choose an integer � so that x�
� � � � � � � � y�
��
Now let u and v be any two points in Q so that u � v� u�
� � � and v�
� � ����
Then Ag�s�x� � Ag�s�u�� Ag�s�u� �� Ag�s�v� and Ag�s�v� � Ag�s�y�� It follows that
Ag�s�x� �� Ag�s�y�� so that Ag�s is ACM�

Now suppose that the statement

A�f�� �� � � � � tg� � A���

from ��s� is true� Then Ag�s�y� � Ag�s�x� for every �element chain x � y from
Q� Let B be the bottom element of Q and let T be the top element� Then
Ag�s�B�� � Ag�s�x� � Ag�s�T � for every other point x from P�� This shows that
Ag�s is NC�

We now show that Ag�s is either AC or AA� Suppose �rst that the statement

A�f�g��A��� �� A�f�� �� � � � � tg��A�f�g�

from ��s� is true� Then it follows that for every �element chain x � y � z in
Q� Ag�s�y� � Ag�s�x� �� Ag�s�z� � Ag�s�y�� Now let x� y and z be any three



POSETS WHICH ARE NOT SPHERE ORDERS ��

points from P with Ag�s�x� � Ag�s�y� � Ag�s�z�� Then� since the gap size in
P� is � and Ag�s is dominated by coordinate 
� we may �nd a �element chain
w� � w� � w� so that w��
� � x�
� � y�
� � w��
� � w��
� � z�
�� Since
Ag�s�y��Ag�s�x� � Ag�s�w���Ag�s�w�� and Ag�s�w���Ag�s�w�� � Ag�s�z��Ag�s�y��
it follows that Ag�s�y� � Ag�s�x� �� Ag�s�z� � Ag�s�y�� We conclude that Ag�s is
AC�

Dually� if the statement

A�f�g��A��� 		 A�f�� �� � � � � tg��A�f�g�

from ��s� is true� then Ag�s is AA�
Now suppose that both statements from ��s� are false� Then� referring to the

chain u� � u� � � � � � uq�� discussed earlier in the proof� we note that if � � i �
j � k � l � q � �� we have�

�
A�uj��A�ui�

�
�N � A�ul��A�uk� � N

�
Ag�s�uj�� Ag�s�ui�

�
�

It follows that the interval �A�u��� A�uq���
 is divided up into q � � disjoint
subintervals� Choose an integer j with � � j � q � � so that the length of the
interval �A�uj�� A�uj
��
 is as small as possible� Then set i � �� k � j � � and
l � q � � to conclude that the length of �A�u��� A�ui�
 is at most N times the
length of �A�uj�� A�uk�
� Similarly� the length of �A�ul�� A�uq���
 is at most N
times the length of �A�uj�� A�uk�
� Being generous� we can conclude that j � N
and q � j � N � so that q � �N � This contradicts the fact that q 	 ��N logN �

A dual argument shows that when Ag�s is orderreversing� it is either RAM or
NC� When it is NC� it is either RC or RA�

Note that Theorem ��� is just the special case of Theorem ��	 obtained when k � ��
Although we stated Theorem ��	 in terms of a single function A� it is clear that we
can apply it to a bounded number of functions� In fact� this result�and for that
matter� all the Ramsey theoretic material discussed here�can be treated in much
greater generality�

Before leaving this section� we point out two important implications of the pre
ceding Theorem ��	� Let f � n� � R� be a uniform function� Now let x� y � n� and
suppose that we know that f�y� � �� � ��N�f�x�� Even with no information as to
which change pattern f satis�es� not even knowing whether it is order preserving or
order reversing� we may still conclude that f�y� 	 Nf�x�� We call this phenomenon
the prinicple of di�erentiation� It results from using the Ramsey theoretic tools de
veloped in this section to eliminate the case in which �����N�f�x� � f�y� � Nf�x��

Second� the theorem allows us to recover from errors� For example� in arguments
to follow� we will say that e� 
 e� and e� 
 e� imply e� � e� 
 e� � e�� Similarly�
if we know that e� � ��N and e� � ��N � we will conclude that e� � e� � ��N �
Technically speaking� this may not quite be true� But by restricting to a subposet�
we can strengthen the bounds so that such conclusions can be made �at least a
bounded number of times� with impunity�

�� Part �� Uniformizing the Representation

This section begins the proof of Theorem ���� As discussed in Section �� we prove
Theorem ��� by showing that if n is su�ciently large� the �nite �dimensional poset
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n� is not a sphere order� We start with the assumption that we have an inclusion
representation F using spheres for n� and then argue to a contradiction�provided
n is su�ciently large� The issue of how large n must be is decided in six steps� We
begin by setting n � n� and P � P� � n��� Then� for each i � �� �� � � � � �� we will
choose an appropriate subposet Pi of Pi��� with Pi isomorphic to n�i � At each
step� we increase the uniformity of the inclusion representation for the remaining
points� The �nal poset P	 is isomorphic to ���� which is certainly of modest size
in comparison to other quantities we have discussed� But to obtain this �nal poset�
we must start with a very large poset� The relative sizes between n�� n�� � � � � n	 will
be clear from the material to follow�

To begin� we assume that the spheres used in our representation are in �general
position�� i�e��

�� No two spheres are tangent�
�� All centers are distinct�
�� No three centers are collinear�
�� No four centers are coplanar�
�� All radii are distinct and positive�
�� The angles determined by any three centers are distinct�
	� The distances from any center to the line passing through two other centers

are all distinct�

This assumption is allowed by the fact that we may add �in an order preserving
manner� a small quantity to each radius without disturbing the inclusion relation�
We may then make small perturbations in the center locations�

Assuming that n� is su�ciently large in terms of n�� we may apply Theorem ���
to �nd a subposet P� isomorphic to n�� on which the radius function r is uniform�

When x � y� we know that r�x� � r�y�� so the function r must be order
preserving on P�� Without loss of generality� we assume that it is dominated by
coordinate �� So r satis�es one of the following three change patterns� �ACM� ���
�AC� ��� or �AA� ��� However� we want to assume that r is ACM�

Should r be AA� we choose a large positive number R�� with r�x� � R� for every
x � P�� We then take a new representation by setting  r�x� � R� � r�x�� Note
that we are merely taking advantage of the well known fact that the dual of a �nite
sphere order is again a sphere order�together with the trivial observation that n�

is self dual� Now that the change has been made� we drop the hat and use r�x� to
denote the new radius function� Obviously� the new function is again uniform�

So now we have a representation of P� on which the radius function is either
AC or ACM� If it is AC� we let B� � ��� �� �� and r� � r�B��� We then de�ne a
new radius function  r�x� � r�x� � r�� Since  r�y� �  r�x� � r�y� � r�x� for every x
and y in P�� we could equally well use  r as our radius function�

Now let x � y be any two elements of P� with  r�x� �  r�y� and x 	 B�� Then
r�B�� � r�x� � r�y�� It follows that N  r�x� � N�r�x� � r�� � N�r�x� � r�B��� �
r�y� � r�x� � r�y� � r�B�� �  r�y�� It follows that  r is a uniform ACM function�
Again� we drop the hats and use r to denote the new radius function� However� we
now have a representation where the least element has a circle of radius zero� Since
the criteria for uniformity are expressed in terms of strict inequalities� we add a
small quantity to the radius of the bottom element�

We next describe three functions A� B and C to which we will apply Theorem ��	�
In each case� we take the value k � �� With each �� grid g in P�� we associate a
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�element chain x � y � z and then set A�g� � ��x� y� z�� B�g� � h�x� y� z� and
C�g� � h�x� y� z���x� y� z����

After applying Theorem ��	 three times� once for each of these functions� we
may assume that we have a subposet P� isomorphic to n�� so that we have nine
change patterns� one for each ordered pair from fA�B�Cg � f�� �� �g� so that the
nine classes of ��� s�induced functions they produce are uniform and have a change
pattern depending only on the class�

We are only concerned with �ve of these nine classes�

�� The ��� �� and ��� �� functions induced by A�
�� The ��� �� and ��� �� functions induced by B�
�� The ��� �� function induced by C�

We �nd it convenient to use the symbols !� "� K� H � and G to denote these
functions� so that�

�� For each �element chain x � z� the ��� ��induced function !�x� y� z� is de�ned
on those y with x � y � z by setting !�x� y� z� � ��x� y� z��

�� For each �element chain x � y� the ��� ��induced function "�x� y� z� is de
�ned on those z with x � y � z by setting "�x� y� z� � ��x� y� z��

�� For each �element chain y � z� the ��� ��induced function K�x� y� z� is de
�ned on those x with x � y � z by setting K�x� y� z� � h�x� y� z��

�� For each �element chain x � z� the ��� ��induced function H�x� y� z� is de
�ned on those y with x � y � z by setting H�x� y� z� � h�x� y� z��

�� For each �element chain x � z� the ��� ��induced function G�x� y� z� is de
�ned on those y with x � y � z by setting G�x� y� z� � h�x� y� z���x� y� z����

We will return to the discussion of these induced functions after we develop some
geometric aspects of our construction�

�� Part �� Geometric Implications

Now let u� � ��� n� � �� n� � ��� and let �� � r�u��� Setting n� � n� � �� and
letting P� consist of all x � P� whose coordinates satisfy � � x�i� � n� � � for
i � �� �� �� it follows that P� is isomorphic to n��� Also� note that N�� � r�x� for
every x from P��

Claim �� For all x� y � P� with x��� � y���� r�y� 
 ��x� y��

Proof� Let u � P�� Then B� � u� so that F �B��  F �u�� and r�u� � r�B�� 	
��u�B��� so r�u� 	 ��u�B�� � r�B�� 	 ��u�B��� On the other hand� u is incompa
rable to u�� so r�u�� r�u�� � ��u� u�� � ��u�B�� � ��B�� u�� � ��u�B�� � r�u�� �
��u�B�� � ��� It follows that

��x�B�� � r�u� � ��x�B�� � ���

for every u � P�� Thus r�u� 
 ��u�B��� for every u in P��
Noting that ��y�B�� � ��x�B�� � ��x� y� and ��x� y� � ��y�B�� � ��x�B��� we

see that r�y�� ��x� y� � zero
�
r�x�

�
� Therefore� r�y� 
 ��x� y��

When x� y and z are distinct points in P�� we know that ��x� y� z� � ��x� y� �
��y� z� � ��x� z� 	 �� However� we can actually write the following elementary
identity�

��x� y� z� � ��x� y���� cos��x� y� z�� � ��y� z���� cos ��x� y� z������
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Note that

��x� y� sin��x� y� z� � h�x� y� z� � ��y� z� sin ��x� y� z��

Also� ��x� y� 
 r�y�� ��y� z� 
 r�z� and r�y� �� r�z� imply that ��x� y� z� ��
��x� y� z�� We conclude that

��x� y� z� 
 r�y��� � cos��x� y� z���

When x��� � y��� � z���� the preceding discussion shows that the angle ��x� y� z�
is very small� But at this point� we cannot make such a claim for ��x� y� z�� However�
we now show that we may assume that all ��x� u� z� are very small� provided x �
u � z�

To accomplish this� we use the Product Ramsey Theorem� With each �� grid g�
we associate a chain x � u � z� Color the grid red if ��x� u� z� � ��N � otherwise�
color it blue� Setting n� � PR�n�� �� �� ��� we may �nd a subposet P� isomorphic to
n� so that all �� grids in P� receive the same color� Now set n� � n�� and n� � �	�
We may then choose a subposet P� isomorphic to n�� via the embedding I de�ned
in the spacing proposition�

Claim �� For every ��element chain x � u � z in P�� ��x� u� z� � ��N �

Proof� Suppose to the contrary that ��x� u� z� � ��N for some �element chain in
P�� Considering coordinates in P�� we see that P� contains a blue �t grid� Thus
all �� grids in P� are blue�

Then consider the following points in P�� x � u� � ��� �� ��� v � ��� �� 	��
u � u� � ��� �� �� and z � u	 � ��� �� ��� Because r is dominated by coordinate ��
we know that N�r�v� � r�u��

Since

��x� u� z� � r�u�
�
�� cos��x� u� z�

�

and ��x� u� z� � ��N � we conclude that �N���x� u� z� � r�u�� On the other hand�
since

�
��cos��x� v� z�

�
� �� we know that ��x� v� z� � r�v�� Thus� r�u� � �N�r�v��

But� since r�u� 	 N�r�v�� this last inequality fails badly� The contradiction com
pletes the proof�

For the remainder of the proof� we will use the symbols B � ��� �� �� and T �
���� ��� ��� to denote the top and bottom elements of P�� Also� we let B

� � ��� �� ���
B�� � ��� �� ��� T �� � ���� ��� ���� T � � ���� ��� ���� We then let P	 consist of those
points x in P� with � � x�i� � �� for i � �� �� �� Then B � B� � x � T � � T for
every x in P	� As anticipated� n	 � n� � � � ���

Also� in P	� we will let C � fu� � u� � 	 	 	 � u�g denote the nine element chain
with ui � �i� i� i�� for i � �� �� � � � � �� Of course� we intend that the coordinates of
the points in C are given in P	 rather than in P��

For emphasis� we point out that the triangle inequality holds for angles in Rd �

Proposition ���� Let x�� x�� x� and x� be distinct points from n�� Then

��x�� x�� x�� � ��x�� x�� x�� 	 ��x�� x�� x��� and���

��x�� x�� x�� � ��x�� x�� x�� 	 ��x�� x�� x������

If s�� s� and s� are distinct points from R
d � then ��s�� s�� s�� � ��s�� s�� s�� and

��s�� s�� s�� � ��s�� s�� s��� So the triangle inequalities in Proposition ��� can be
written in several di�erent forms�
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x�
p�x�� x�� x��

p�x�� x�� x��

x�

p�x�� x�� x��

x�

x�

Figure �

On the other hand� note that h�s�� s�� s�� �� h�s�� s�� s�� in general� In fact� the
two quantities can be far apart� However� due to the uniform behavior of the radius
function� we do have approximate symmetry in the �rst two coordinates for centers�

Proposition ���� Let x�� x� and x� be distinct points from n� with x���� � x����
and x���� � x����� Then

h�x�� x�� x�� 
 h�x�� x�� x�� 
 r�x����x�� x�� x���

Proof� Observe that

h�x�� x�� x�� � ��x�� x�� sin ��x�� x�� x��

and

h�x�� x�� x�� � ��x�� x�� sin ��x�� x�� x���

Because ��x�� x�� x�� � ��x�� x�� x�� and ��x�� x�� 
 r�x�� 
 ��x�� x��� it follows
that

h�x�� x�� x�� 
 h�x�� x�� x�� 
 r�x����x�� x�� x���

We consider the next corollary as providing a �weak� version of the triangle in
equality for the height function �see Figure ��� From an intuitive standpoint� we
consider this the �view back from in�nity��

Corollary ���� Let x�� x�� x� and x� be points from n� with xi��� � x���� for
i � �� �� �� Then

h�x�� x�� x�� � h�x�� x�� x�� � h�x�� x�� x������

Proof� We know that ��x�� x�� x�� � ��x�� x�� x�� 	 ��x�� x�� x��� From Proposi
tion ���� we note that

�� h�x�� x�� x�� 
 r�x����x�� x�� x���
�� h�x�� x�� x�� 
 r�x����x�� x�� x���
�� h�x�� x�� x�� 
 r�x����x�� x�� x���

Clearly� these statements imply the conclusion of the corollary�
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Because the expression h�x�� x�� x�� is �approximately� symmetric in the �rst two
coordinates� we can write the �weak� triangle inequalities for height in several dif
ferent forms� just as was the case for angles� For example� we could have written

h�x�� x�� x�� � h�x�� x�� x�� � h�x�� x�� x���

Claim �� For all x� y and z in P	 with x��� � y��� � z���� ��x� y� z� � ��N �

Proof� Using the weak triangle inequality� we see that h�x� y� z� � h�B� x� z� �
h�B� y� z�� so that

sin��x� y� z� 
 h�x� y� z��r�y� � r�x� sin ��B� x� z��r�y� � sin��B� y� z��

Now ��B� x� z� � ��B� x� T � � ��B� z� T � � ��N � Similarly� ��B� y� z� � ��N �
Thus sin��x� y� z� � ��N �

We may now use the following estimates for any three points x� y and z with
x��� � y��� � z����

��x� y� z� 
 r�y����x� y� z��� and h�x� y� z� 
 r�y���x� y� z��

	� Part �� Applications of Uniformity

This section develops properties of the various functions involving angles and
distances� Already� we know that the radius function r is ACM and dominated by
coordinate ��

Without loss of generality� we may assume �

�� There is a coordinate 
� and a change label L� � L so that for every �element
chain x � z in P�� the map !�x� y� z�� de�ned on those y with x � y � z is
uniform and satis�es change pattern �L�� 
���

�� There is a coordinate 
� and a change label L� � L so that for every �element
chain x � y in P�� the map "�x� y� z�� de�ned on those z with x � y � z is
uniform and satis�es change pattern �L�� 
���

�� There is a coordinate 
� and a change label L� � L so that for every �element
chain y � z in P�� the map K�x� y� z�� de�ned on those x with x � y � z is
uniform and satis�es change pattern �L�� 
���

�� There is a coordinate 
� and a change label L� � L so that for every �element
chain x � z in P�� the map H�x� y� z�� de�ned on those y with x � y � z is
uniform and satis�es change pattern �L�� 
���

�� There is a coordinate 
� and a change label L� � L so that for every �element
chain x � z in P�� the map G�x� y� z�� de�ned on those y with x � y � z is
uniform and satis�es change pattern �L�� 
���

When x � P	� we use the shorthand notations� !�x� � !�B� x� T �� "�x� �
"�B�B�� x�� K�x� � K�x� T �� T �� H�x� � H�B� x� T � and G�x� � G�B� x� T �� Also�
for example� when we say that ! is dominated by coordinate 
�� we mean that
!�x� � !�B� x� T � is dominated by 
�� It is important to remember that� for
example� for all x � z� the function !�x� y� z�� de�ned on y with x � y � z� satis�es
the same change pattern as !�x��

We now begin to gather some information about other patterns present in P��
For reasons which will become clear� we concentrate on the ��� ��induced functions
! and H � and we make extensive use of the principle of di�erentiation�

Claim �� The function ! cannot be ACM�
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Proof� Suppose to the contrary that ! is ACM� Then for every �element chain
x � z� the map !�x� y� z� de�ned on those y with x � y � z is ACM� It follows
that

�� ��u�� u�� u��� ��u�� u�� u�� � zero
�
��u�� u�� u��

�
�

�� ��u�� u�� u��� ��u�� u�� u�� � zero
�
��u�� u�� u��

�
�

�� ��u�� u�� u��� ��u�� u�� u�� � zero
�
��u�� u�� u��

�
�

Therefore� ��u�� u�� u�� 
 ��u�� u�� u�� 
 ��u�� u�� u�� 
 ��u�� u�� u��� It follows
that ��u�� u�� u�� 
 ��u�� u�� u��� However� the fact that ! is ACM requires that
��u�� u�� u�� 		 ��u�� u�� u���

The next claim is dual to the preceding one�except for the fact that it uses the
weak version of the triangle inequality�

Claim �� The function H cannot be RAM�

Proof� Suppose to the contrary that H is RAM� Then for every �element chain
x � z� the map H�x� y� z� de�ned on those y with x � y � z is RAM� It follows
that

�� h�u�� u�� u��� h�u�� u�� u�� � zero
�
h�u�� u�� u��

�
�

�� h�u�� u�� u��� h�u�� u�� u�� � zero
�
h�u�� u�� u��

�
�

�� h�u�� u�� u��� h�u�� u�� u�� � zero
�
h�u�� u�� u��

�
�

Therefore� h�u�� u�� u�� 
 h�u�� u�� u�� 
 h�u�� u�� u�� 
 h�u�� u�� u��� It follows
that h�u�� u�� u�� 
 h�u�� u�� u��� However� the fact that H is RAM requires
h�u�� u�� u�� �� h�u�� u�� u���

Next we begin to consider the issue of coordinate domination� The next two claims
are again dual�

Claim �� If ! is NC� then H is ACM and dominated by coordinate 
�

Proof� Let s� � ��� �� �� and s� � ��� �� ��� Since !�s�� 
 !�s��� and r�s�� ��
r�s��� we know that H�s�� �� H�s��� From the preceding claim� we know that H
cannot be RAM� Evidently� it is not NC� so it must be ACM� Furthermore� it
must be dominated by coordinate �� since s��i� 	 s��i� for i � �� ��

Claim 	� If H is NC� then ! is RAM and dominated by coordinate 
�

Proof� Again� let s� � ��� �� �� and s� � ��� �� ��� Since H�s�� 
 H�s��� and
r�s�� �� r�s��� we know that !�s�� �� !�s��� We know that ! cannot be ACM�
Evidently� it is not NC� so it must be RAM� Furthermore� it must be dominated
by coordinate �� since s��i� 	 s��i� for i � �� ��

Here is another useful property�

Claim 
� If ! is dominated by coordinate �� then H is ACM and dominated by
coordinate 
�

Proof� Once again� consider s� � ��� �� �� and s� � ��� �� ��� The inequalities
r�s�� �� r�s�� and ��s�� 	 ��s�� imply H�s�� �� H�s��� so H is ACM and
dominated by coordinate ��
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The remainder of the argument is by cases which depend on the change patterns of
! and H � Originally� this would have resulted in ��� � ��� cases� which would have
been unbearable even for the most patient of readers� But in view of the results of
the claims in this section� we only have � cases�

Case �� ! is RAM� H is ACM�
Case �� ! is NC� H is ACM�
Case �� H is NC� ! is RAM�

Moreover� in Case �� we know that H is dominated by coordinate �� while in
Case �� we know that ! is dominated by coordinate �� Also� following the pattern
evidenced in this section� Cases � and � will be dual�

Since we are arguing by contradiction� we will show that each of the cases is
impossible� When this is accomplished� our proof will be complete�

�� Part �� Case � of �

In this section� we assume ! is RAM and H is ACM� We assume without loss
of generality that 
�� the coordinate which dominates ! is either � or ��

Let y be a point with x��� � y��� � z��� and x � z� We obtain some estimates
on ��x� y� z� and ��x� y� z��

First� note that

��B� x� T �� ��B� x� z� � zero
�
��B� z� T �

�
�

so that !�x� � ��B� x� T � 
 ��B� x� z��
Furthermore� exactly one of the following statements is true�

�� ��B� y� T �� ��B� y� z� � zero
�
��B� z� T �

�
�

�� ��B� z� T �� ��B� y� z� � zero
�
��B� y� T �

�
�

The issue as to which of the two statements is true is decided by the order of
y�
�� and z�
��� Noting that ��B� y� T � � !�y� and ��B� z� T � � !�z�� we can
then say that ��B� y� z� 
 maxf!�y��!�z�g�

Now suppose that x � u � z is a chain� We know that !�z� �� !�u�� so that
!�B� u� z� 
 !�u�� Since H is uniform and ACM� we know that h�B� x� Z� �
h�B� u� z�� It follows that�

h�B� u� z�� h�x� u� z� � zero
�
h�B� x� z�

�
�

Thus h�B� u� z� 
 h�x� u� z�� Therefore� !�u� 
 h�B� u� z��r�u� 
 h�x� u� z��r�u� 

��x� u� z�� i�e�� !�u� 
 ��x� u� z��

Recall that G�x� � H�x�!�x���� It follows that ��x� u� z� 
 G�u�� The impor
tant fact here is that this estimate is independent of both x and z�

For the remainder of this case� we will �x notation for the following points in
P	� x � ��� �� ��� z � ��� �� ��� v � ��� �� ��� and w � ��� ��� ��� Note that x and z
are just the bottom and top elements of the chain C � fu� � u� � 	 	 	 � u�g�

As outlined in Section �� we have the following lower bound on gap�x� z��

gap�x� z� 	 ��x�C� z� �

�X

i��

��u�i��� u�i� u�i
���

Since ��u�i��� u�i� u�i
�� � G�u�i�� we can write

��x�C� z� � G�u�� �G�u�� �G�u	� �G�u��
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We now turn our attention to the problem of �nding relatively tight upper bounds
on gap�x� z��

To do this� we consider the points v and w� but we need to consider subcases
depending on the coordinate that dominates !�

Subcase �a� ! is dominated by coordinate ��

In this subcase� it is straightforward to verify that�

�� ��B� v� z� 
 !�v��
�� ��B�w� z� 
 !�w��
�� h�B� v� z� 
 H�v��
�� h�B�w� z� 
 H�w��

Using the property that H is ACM� we know that exactly one of the following
statements is true�

�� H�x� 		 H�v��
�� H�v� 		 H�x��

Recall that ��B� x� z� 
 !�x�� so that H�x� 
 r�x�!�x� 
 r�x���B� x� z� 

h�B� x� z�� Also� h�B� v� z� 
 r�v���x� v� z� 
 r�v�!�v� 
 H�v�� If the �rst state
ment listed above is true� then

h�B� x� z�� h�x� v� z� � zero
�
h�B� v� z�

�
�

and thus h�B� x� z� 
 h�x� v� z�� In this case� we see that ��x� v� z� 
 r�x�!�x��r�v��
Now if the second statement holds� then

h�B� v� z�� h�x� v� z� � zero
�
h�B� x� z�

�
�

and h�B� v� z� 
 h�x� v� z�� In this case� we conclude that ��x� v� z� 
 !�v�� So we
may then write�

��x� v� z� 
 maxfr�x�!�x��r�v��!�v�g�

Applying the same argument to w� we can write�

��x�w� z� 
 maxfr�x�!�x��r�w��!�w�g�

Therefore�

��x� v� z� 
 maxfr�x�G�x��r�v�� G�v�g�

and

��x�w� z� 
 maxfr�x�G�x��r�w�� G�w�g�

Now we consider the implications of the �weak� inequality

��x�C� z� � minf��x� v� z����x�w� z�g�

At this point� the argument depends on the coordinate dominating G� Suppose
�rst thatG is dominated by coordinate �� IfG is orderpreserving� then ��x�C� z� �
�G�v�� but G�v� 
 maxfr�x�G�x��r�v�� G�v�g� which is a contradiction�

Now suppose G is orderreversing� Then ��x�C� z� � �G�w� and ��x�C� z� �
�G�v�� which implies that r�x�G�x��r�v� 		 G�v� and r�x�G�x��r�w� 		 G�w��
Thus H�x� 		 H�v� and H�x� 		 H�w�� However� there is no coordinate i �
f�� �� �g for which x�i� 	 v�i� and x�i� 	 w�i�� We conclude thatG is not dominated
by coordinate ��
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Because the de�nitions of v and w are symmetric between coordinates � and �� we
can assume without loss of generality that G is dominated by coordinate �� If G is
orderpreserving� then maxfr�x�G�x��r�v�� G�v�g � G�x�� but ��x�C� z� � �G�x��

So G must be orderreversing� Now ��x�C� z� � �G�w�� so r�x�G�x��r�w� 	
G�w�� This implies that H�x� 	 H�w�� so that H must be dominated by co
ordinate �� This is impossible� because ! is dominated by coordinate �� G by
coordinate � and G 
 H���� The contradiction completes the proof of this sub
case�

Subcase �b� ! is dominated by coordinate ��

In this subcase� we know from Claim � that H is dominated by coordinate �� It
follows without loss of generality that we may assume G is dominated by coordi
nate � or ��

Now it is straightforward to verify that�

�� ��B� v� z� 
 !�v��
�� ��B�w� z� 
 !�z��
�� h�B� v� z� 
 H�v��
�� h�B�w� z� 
 r�w�!�z��

Since H is ACM and dominated by coordinate �� we know that H�v� 		 H�x�
and H�w� 		 H�x�� Therefore� h�B� v� z� � h�x� v� z� � zero

�
h�B� x� z�

�
� so that

h�B� v� z� 
 h�x� v� z�� !�v� 
 ��x� v� z� and ��x� v� z� 
 G�v��
Now r�w�!�z� 		 r�w�!�w� 
 H�w� 		 H�x�� so h�B�w� z� � h�x�w� z� �

zero
�
h�B� x� z�

�
� Therefore ��x�w� z� 
 !�z� and ��x�w� z� 
 r�w�G�z��r�z��

We now consider the implications of ��x�C� z� � minfG�v�� r�w�G�z��r�z�g�
Regardless of whetherG is orderpreserving or orderreversing� sinceG is dominated
by coordinate � or �� we see that ��x�C� z� � �G�v�� The contradiction completes
both the proof of the subcase as well as Case ��

�� Part �� Case � of �

In this case� we assume ! is NC� By Claim �� H is ACM and dominated by
coordinate �� Without loss of generality� we may assume that 
�� the coordinate
which dominates "� is either � or ��

Claim �� The function " is ACM�

Proof� Suppose to the contrary that " is not ACM� Let x � y � z � w be a
�element chain in P�� Since ! is NC� we know ��x� y� w� 
 ��x� z� w�� Since " is
not ACM� we know ��x� y� w� � ��x� y� z�� and thus ��x� z� w� � ��x� y� z��

Since H is ACM� we know that h�x� z� w� 		 h�x� y� w�� so that h�x� z� w� �
h�y� z� w� � zero

�
h�x� y� w�

�
� Thus h�x� z� w� 
 h�y� z� w� so that ��x� z� w� 


��y� z� w�� It follows that

��x� y� z� � ��x� z� w� 
 ��x� y� w� 
 ��y� z� w��

In particular� ��x� y� z� � ��y� z� w��
On the other hand� ��x� y� z� � ��x� y� w� � ��x� z� w� � ���y� z� w�� It follows

that ��x� y� z� 
 ��y� z� w��
Now let w� � w� � 	 	 	 � w	 be a chain in P�� It follows that

��w�� w�� w�� 
 ��w�� w�� w�� 
 ��w�� w�� w�� 
 ��w�� w�� w	��



POSETS WHICH ARE NOT SPHERE ORDERS ��

and therefore

��x�� y�� z�� 
 ��x�� y�� z��

for any two �element chains x� � y� � z� and x� � y� � z� from P��
Now consider the following points in P	� x � ��� �� ��� v � ��� �� ��� u � ��� �� ��

and z � ��� �� ��� Since x � u � z is a �element chain� we know that ��x� u� z� 

��B�B�� B��� so that ��x� u� z� 
 r�u����B�B�� B������

On the other hand� ��x� v� z� � ��x� z� T � � ��x� v� T �� Also� h�B� v� T � �
h�x� v� T � � zero

�
h�B� x� T �

�
implies h�x� v� T � 
 h�B� v� T � so that ��x� v� T � 


��B� v� T �� Thus ��x� y� z� � ���B�B�� B����
In turn� this implies that ��x� v� z� � �r�v����B�B�� B���� and thus r�u� � �r�v��

However� r�u� 		 r�v�� The contradiction completes the proof�

Claim ��� For all ��element chains x � y � z � w� ��x� y� w� 
 ��y� z� w� 

"�w��

Proof� Since ! is NC� we know that ��x� y� w� 
 ��x� z� w�� Thus h�x� y� w� ��
h�x� z� w�� This implies that

h�x� z� w�� h�y� z� w� � zero
�
h�x� y� w�

�
�

Thus h�x� z� w� 
 h�y� z� w� and ��x� z� w� 
 ��y� z� w�� It follows that ��x� y� w� 

��y� z� w��

Observing that this pattern holds for any �element chain� we may also conclude
that

"�w� � ��B�B�� w� 
 ��B�� x� w� 
 ��x� y� z��

So for chains� the behavior of " depends only on the last coordinate� The next
claim extends this to certain triples which are not chains�

Claim ��� If x��� � y��� � z���� x��� � z��� and y��� � z���� then ��x� y� z� 

"�z��

Proof� Since " is ACM and dominated by coordinate � or �� we know that
��B�B�� z� � "�z� 		 "�y� � ��B�B�� y�� Thus

��B�B�� z�� ��B� y� z� � zero
�
��B�B�� y�

�
�

and "�z� 
 ��B� y� z��
Similarly� we know that "�z� 
 ��B� x� z�� Now H is dominated by coordinate ��

so h�B� y� z� 		 h�B� x� z�� Thus

h�B� y� z�� h�x� y� z� � zero
�
h�B� x� z�

�
�

It follows that h�B� y� z� 
 h�x� y� z� and thus "�z� 
 ��B� y� z� 
 ��x� y� z��

Now we consider the following points in P	� x � ��� �� ��� v � ��� �� ��� u � ��� �� ��
and z � ��� �� ���

From Claim ��� it follows that ��x� u� z� 
 "�z� 
 ��x� v� z�� Thus ��x� u� z� 

r�u�"��z��� and ��x� v� z� 
 r�v�"��z���� This requires r�u� � r�v�� Since u��� 	
v���� we know that r�u� 		 r�v�� The contradiction completes the proof of Case ��
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��� Part �� Case � of �

In this case� we assume that H is NC and ! is RAM� Because this case is
dual to Case �� we outline only the statements necessary to complete the proof� Of
course� the key idea here is to focus on the function K�

From Claim 	� we know that ! is dominated by coordinate �� So �rst� we prove
the following claim�

Claim ��� The function K is RAM�

The reader should note that the proof will hinge on the situation where h�x� y� z�
is nearly constant for all �element chains x � y � z� But this will lead to a
contradiction by considering the same four points as in the proof of Claim ��

Next� the following claims are established�

Claim ��� For all ��element chains x � y � z � w� h�x� y� w� 
 h�x� z� w� 

H�x��

Claim ��� If x��� � y��� � z���� x��� � z��� and x��� � y���� then h�x� y� z� 

H�x��

To complete the argument� we consider the following points� x � ��� �� ��� u �
��� �� ��� w � ��� �� �� and z � ��� �� ��� In this case� we conclude that

��x� u� z� 
 h��x� u� z���r�u� 
 H��x���r�u��

while

��x�w� z� 
 h��x�w� z���r�w� 
 H��x���r�w��

Thus� we must have r�w� � r�u�� Instead� we know r�w� 		 r�u�� With this
remark� the proof of Case � and our principal theorem is complete�

��� Concluding Remarks

Not surprisingly� our original proof was quite di�erent from the one given here�
It was speci�c to the plane and showed only that there was a �nite �dimensional
poset that was not a circle order� Many details of this approach did not extend to
the general problem� and some new techniques were necessary to work around the
apparent obstacles� In the end� the proof of the general result is simpler�

It is tempting to conjecture that there is a poset of modest size� say at most ���
points� which is not a sphere order� Certainly� new ideas will be required to prove
the existence of such a poset�
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