SERIE B — INFORMATIK

On vertical ray shooting in arrangements
Jiif Matougek*!

B 92-06
February 1992

Abstract

We consider the following problem: Given a collection H of n hyperplanes in E¢, pre-
process it so that given a query point x, a hyperplane of H lying immediately above
z can be detected quickly. We give a relatively simple solution with O(nd/logd_1 n)
space and deterministic preprocessing time and O(log n) query time. This gives a
slightly more efficient and considerably simplified alternative of a previous solution
due to Chazelle and Friedman.

*Department of Applied Mathematics, Charles University, Malostranské ndm. 25, 118 00 Praha 1,
Czechoslovakia and Institut fir Informatik, Freie Universitat Berlin, Arnimallee 2-6, W-1000 Berlin

33, Germany.
tSupported by Humboldt Research Fellowship

1 Introduction

Let H be a collection of n hyperplanes in E?, where the dimension d is fixed (and we
imagine it is a small number). A problem frequently encountered in computational geom-
etry is the point location in the arrangement of H: construct a data structure so that,
given a query point # € E?, the face of the arrangement of H containing z can be deter-
mined quickly. Clarkson [Cla87] gave a solution requiring O(n?+?) space! and expected
preprocessing time and O(logn) query time. Chazelle and Friedman [CF92] described a
solution achieving O(n?) space and O(logn) query time. Then Chazelle [Cha91] found
another data structure with the same space/query time performance, but improving the
preprocessing time to O(n?) and using a new and much simpler and cleaner method.

The data structure of Chazelle and Friedman [CF92] also enables to solve the vertical
ray shooting problem, i.e. to find a hyperplane of H lying immediately above the query
point (in the z4-coordinate direction) within the same query time. Schwarzkopf [Sch92]
simplified their solution of this problem significantly. In this note we show how to modify
Chazelle’s new solution of the point location problem also for the vertical ray shooting. In
our modification of Chazelle’s method, we use a variant of zone theorem due to Aronov
et al. [AMS91]. We also give a somewhat different exposition of Chazelle’s method.

For the above point location problem, one usually implicitly assumes that a full rep-
resentation of the arrangement is stored in the data structure; then, of course, the O(n?)
bound for space is optimal. However, there are various special versions and modifications
of the problem, where no such trivial lower bound argument is applicable. The vertical
ray shooting is one of such examples, and, indeed, the space required by Chazelle’s and
Friedman’s data structure [CF92] can be reduced to O(n?/(logn)[%/21=¢) if we only want
to answer vertical ray shooting queries (in Schwarzkopf’s simplified version, the space is
O(n/1log?=?%)). In our solution, the space requirement is O(n?/(logn)*~'), and a a fur-
ther small reduction is possible with a much more complicated data structure, which we
do not describe here. No lower bound for this problem is known, but we conjecture that
O(n?/log? n) space is asymptotically optimal for the O(logn) query time.

One often considers a more general ray shooting problem, with rays of arbitrary direc-
tions (i.e. the query is specified as a semiline, and we are interested in its first intersection
with a hyperplane of H). We do not see any way of extending our solution of the vertical
ray shooting problem to the general ray shooting. General methods are known for turn-
ing a point location algorithm into a ray shooting algorithm (see [AM91], also implicitly
in [dBHO192]); when applied to Chazelle’s point location algorithm, these yield O(n?)
space with O(log® n) query time. It would be interesting to get an algorithm for ray shoot-
ing in arrangements with O(logn) query time and O(n?) or smaller space. Finally let us
remark that one can achieve a continuous tradeofl between storage and query time for ray
shooting, with storage varying between O(n) and O(n?), see [AM91].

Throughout the paper, we will assume that the considered collection H of hyperplanes
is in general position (their arrangement is simple), and that no face of the arrangement
is vertical. This assumption can be removed either by appealing to a general perturba-
tion argument (simulation of simplicity, see [Ede87]), or by a more careful (and more
complicated) direct analysis.

!Throughout this paper, § denotes an arbitrarily small positive constant. The multiplicative constants
in the asymptotic bounds may depend on 6.

On Vertical Ray Shooting in Arrangements 3

2 Vertical decompositions

Let 7 a simplicial prism in E?, that is a vertical prism whose bases are (d—1)-dimensional
simplices. Let B(7) denote the set of the (at most d 4 2) hyperplanes bounding 7. Let H
be a collection of hyperplanes, and let ¢ be a cell of the arrangement of H U B(7) contained
in 7. For each nonvertical facet f of ¢, we consider the “vertical wall” of f inside ¢, i.e.
the set

w(f)=ecn{(z1,...,2q) € EY (21,...,24-1,1) € f for some t} .

Let Vp(c) denote the set of all nonempty vertical prisms of the form w(f) N w(f’), f, f’
nonvertical facets of ¢. It is easily seen that these prisms form a subdivision of ¢, and that
each base of such a prism is contained in a single facet of ¢. For each prism of Vy(c), let us
choose a triangulation of its base into simplices, using a number of simplices proportional
to the combinatorial complexity of the base. This is possible e.g., using so-called canonical
(or bottom-vertex) triangulation of the base, see e.g., [Cla88]. This defines a subdivision
of the prism into simplicial prisms. The collection of all simplicial prisms thus arising for
all prisms of Vp(c) will be denoted by V(¢) and called the vertical decomposition? of c.
The following lemma seems to belong to the folklore:

Lemma 2.1 For every c, |[V(c)| = O(v(c)?), where v(c) denotes the number of vertices of
the cell c.

Proof: By our general position assumptions, ¢ is “almost” a simple polytope, meaning

that the number of hyperplanes incident to each vertex is bounded by a constant. The

complexity of each prism w(f) Nw(f’') € Vo(c) is at most proportional to v(f)v(f’), thus
2

the total complexity of Vy(¢) is at most proportional to (Zf v(f)) , where the sum is over

all facets f of c. But since each vertex of ¢ is incident to a bounded number of hyperplanes,
itis 32, v(f) = O(v(c)). Since the number of simplicial prisms in V/(c) is proportional to
the total complexity of the prisms of Vj(c), the claim follows. O

For 7, H as above, let us call the union of the vertical decompositions V' (¢) for all cells
c of the arrangement of H U B(7) contained in 7 the vertical decomposition of T according
to H.

Let us say that a collection H of hyperplanes is sparse for a simplicial prism 7 if no
vertex of the arrangement of H is contained in the interior of 7. The combinatorial result
needed for our subsequent algorithm is the following:

Lemma 2.2 Let 7 be a simplicial prism in EY, let H be a collection of n hyperplanes
which is sparse for 7. Then the number of simplicial prisms in the vertical decomposition
of T according to H is O(n?"log?~%n).

Proof: Let C be the collection of cells of the arrangement of H U B(7) contained in .
By Lemma 2.1, it suffices to bound the sum Y .. v(c)?. Since each vertex of a cell ¢ € C
belongs to a hyperplane of B(7), this sum is upper bounded by

Z Z v(e)v(enb)

beB(7) c€zone(b,HUB(1))

?Let us remark that sometimes one defines a vertical decomposition otherwise, in such a way that
also the bases of the prisms are (recursively) vertically decomposed. For this kind of decomposition, no
satisfactory bounds for its complexity are known.

where zone(h, H) denotes the collection of all cells incident with a hyperplane A in the
arrangement of H. By so-called Extended zone theorem [AMS91], the inner sum is
bounded by O(n?~'log?=? n) for each b, and since there are at most d + 2 = O(1) hyper-
planes in B(7), the claim follows. O

3 The data structure

Let K be a constant, ng a parameter (both to be determined later). Let 7 be a simplicial
prism, let H be a collection of n hyperplanes, each intersecting the interior of 7. Let N
be the number of vertices of the arrangement of H in the interior of 7. We say that

o 7is poorif N <2n?/K, and
o Tis richif N > n?/K.

(Note that 7 can be both rich and poor by our definition; this is to allow for approximate
estimates of the quantity N in the algorithm.)

The following lemma summarizes the part of results of Chazelle [Cha91] we will use
essentially as a black box in our development.

Lemma 3.1 Let 7 be a simplicial prism and H collection of n hyperplanes, each inter-
secting the interior of T, n > ng. Let r be a prescribed constant, K = K(r) a large enough
constant. There is a deterministic algorithm with O(n) running time, which (correctly)
claims T poor or rich (if T is both poor and rich, it is free to choose either outcome), and
it computes a set S C H with |S| < Crlogr for an absolute constant C', and such that
the interior of each simplicial prism in the vertical decomposition of T according to S is
intersected by no more than n/r hyperplanes of H. Moreover, if T was declared poor, then
S 1is sparse for 7. O

Let us remark that Chazelle’s results are proved for simplices instead of simplicial
prisms, but the reader familiar with [Cha91] may check that this makes no real difference
in the proof. Also, Chazelle gives an upper bound on the number of vertices of the
arrangement of § inside 7, expressed in terms of K,r,n; out requirement of no such
vertices follows from his bound for large enough K.

We are ready to describe the data structure for the vertical ray shooting in the arrange-
ment of H. It will be a rooted tree 7, whose each node v stores a simplicial prism 7.
The bases of each 7, are contained in certain hyperplanes of H, and such hyperplanes are
stored together with 7,. If v is a leaf of 7, it also stores the list of hyperplanes of H
intersecting the interior of the simplicial prism 7,.

We describe a recursive algorithm for building the tree 7. The algorithm accepts a
simplicial prism 7 and the collection H, of the hyperplanes of H intersecting the interior of
7. The algorithm is first called with the whole space E¢ standing for 7 (and thus H, = H).
With a current 7 and H,, it proceeds as follows: It creates a node v and stores T as 7,
in it. Let us denote |H,,| by n,. If n, < ng, v becomes a leaf. Otherwise the algorithm
finds S C H;, as in Lemma 3.1 (with H, standing for H in that Lemma) and computes
the vertical decomposition D, of 7, according to S. For each simplicial prism 7" in D,, it
computes the collection H,:, recursively calls itself on 7/, H,: and attaches the resulting
tree as one of the subtrees of the node ». This finishes the description of the algorithm.

On Vertical Ray Shooting in Arrangements 5

Lemma 3.1 guarantees that for a child w of a node v,

and so for (say) r > 2 the tree 7 has depth O(logn). The number of children of each node
is bounded by a constant. Hence, given a query point z, we can find, in O(logn) time, a
leaf node v such that & € 7,. Then the hyperplane of H lying immediately above z must
be either the one defining the top base of 7,, or among the hyperplanes intersecting the
interior of 7,. Thus it can be detected in O(ng) additional time. If we choose ng = logn,
our data structure can answer vertical ray shooting queries in O(log n) time (here n stands
for the cardinality of the original collection of hyperplanes).

It remains to bound the space and preprocessing time required by our data structure.
The time spent for the preprocessing in a node v is, by Lemma 3.1, proportional to n, (not
counting the recursive calls of the algorithm for building the subtrees of v). The storage
needed for v is clearly also O(n,). Since each node v has O(1) sons and since n,, < n,
for every son w of v, it suffices to bound the sum ¥(7) of n, over all inner nodes v of the
tree.

Let R; denote the collection of the rich inner nodes v of 7 with ri=1ng < n, < ring
(i = 1,2,...). By (1), the simplicial prisms corresponding to nodes from the same R;
have disjoint interiors. Since the arrangement of H has fewer than n? vertices and each
simplicial prism stored in a node of R; contains at least ngr(i_l)d/ﬁ' vertices, we obtain

the estimate
nd 5
R =0 o
| | (ng sz) ()

We will now assign poor nodes to rich nodes, as follows. For a rich node v, let P;(v)
be the set of the poor inner nodes w in the subtree rooted at v, which are j levels below
v in the tree and such that there is no other rich node on the path from » to w. We also
set Py(v) = {v}. Since the root of 7 is a rich node, each poor node belongs to exactly one
P;(v).

Let v € R;. For w € Pj(v), we have

Ty S nv/rj S TZ_J”Ov

thus, in particular, P;(v) = () for j > 1.

Let f(n) = O(n? " log?=% n) be the bound from Lemma 2.2, and let g(r) = f(Crlogr),
where C' is as in the bound on the size of S in Lemma 3.1, so that ¢(r) is an upper bound
on the number of children of a poor node in the tree. We have g(n) = o(n?), so we may
pick the value of 7 in the algorithm so large that g(r) < r?/2. Since the node v has O(1)
sons, we get |P;j(v)| = O(r7%/27). Hence

i i o E it (d—1)5 di
Z Z Ny <]Z:;|Pj(v)|r2_]no =0 27‘27],]710 =0 (g—z no) .

7=0 weP;(v) i=0

Using (2), we obtain

Tdi 0 nd B B
5(7) < 1o) =0 (Z m) = O(nt ™) = O(n log'").
7 =1 "0

We have proved the following theorem:

Theorem 3.2 The vertical ray shooting problem in an arrangement of n hyperplanes can

be solved with O(n?/ log? n) space and deterministic preprocessing time and O(logn) query

time.

References

[AMO1] P. K. Agarwal and J. Matousek. Ray shooting and parametric search. In
Proc. 23. ACM symposium on Theory of Computing, 1992. To appear. Also
Tech. Report CS-1991-22, Duke University, 1991.

[AMS91] B. Aronov, J. Matousek, and M. Sharir. On the sum of squares of cell com-
plexities in hyperplane arrangements. In Proc. 7. ACM Symposium on Com-
putational Geometry, pages 307-313, 1991.

[CF92] B. Chazelle and J. Friedman. Point location among hyperplanes and vertical
ray shooting. Computational Geometry: Theory and Applications, 1992. To
appear.

[Cha91] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Tech. report CS-
TR-335-91, Princeton University, 1991. Preliminary version: Proc. 32. IEEFE
Symposium on Foundations of Computer Science, October 1991.

[Cla87] K. L. Clarkson. New applications of random sampling in computational geom-
etry. Discrete & Computational Geometry, 2:195-222, 1987.

[Cla88] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM
Journal on Computing, 17:830-847, 1988.

[dBHO192] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld.
Efficient ray shooting and hidden surface removal. Algorithmica, 1992. To
appear. Extended abstract: Proc. 7. ACM Symposium on Computational
Geometry, 1991.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[Sch92] 0. Schwarzkopf. Lecture at Freie Universitiat Berlin, January 1992.

