Object Graph Analysis

André Spiegel
spiegel@inf.fu-berlin.de

TECHNICAL REPORT B—99-11
July 1999

Abstract

The run-time structure of an object-oriented program can be represented by an object
graph. Approximating this graph statically is a prerequisite for higher level analyses such
as distribution analysis and concurrency analysis; it is also helpful in contexts of software
maintenance and re-engineering. However, most existing techniques for static analysis of
object-oriented programs are not adequate for deriving general object graphs from the
source code. We have therefore developed a new algorithm that is capable of doing so.
The algorithm is defined for the Java language, of which it covers all language features
except class loader interactions and run-time reflection. It is flow-insensitive but context-
sensitive, and therefore has a low computational complexity. This paper describes the
algorithm and presents results that our implementation obtained for several non-trivial
example programs of considerable size.

Keywords: Static analysis, run-time structure, object graph, Java.

Freie Universitat Berlin
Institut fir Informatik
Takustrale 9

D-14195 Berlin, Germany

1 Introduction

For object-oriented programs, static analysis typically answers questions such as: what
is the run-time type of an expression that appears in the code [PS91, PC94]; where does
a certain pointer variable point to at run-time [Ste96, SH97, CRL99]; what method will
actually be called in a dynamically dispatched call [GDDC97]. This information is useful,
either directly or indirectly, for compiler optimizations such as static binding of method
calls.

However, this is a fairly traditional view of an object-oriented program. It considers
the program to be a static sequence of statements, grouped in procedures (methods),
manipulating a passive data structure on the heap (the objects). This is not the view
that programmers are trained to have. For them, a program at run-time consists of a set
of objects that interact with each other by invoking methods or accessing fields; following
either a single or multiple flows of control. Some of the program’s objects might happen
to share the same code; nonetheless the programmer views them as separate entities.

This is often more than a philosophical issue. For example, when programs are dis-
tributed across multiple machines, the unit of distribution is generally the object, not the
class. Program understanding, as required for software maintenance and re-engineering,
is another area where an object-oriented view of a program is needed.

In this paper, we present an algorithm that analyzes the source code of a Java program
to derive an object graph from it, representing the program’s run-time structure. We
have developed this algorithm as part of a system that can distribute Java programs
automatically [Spi0Oa, Spi0Ob]. However, it has turned out as a very useful tool for
program understanding as well, allowing the programmer to quickly grasp the essential
structure of a program before even looking into the source code. In addition, we believe
our algorithm is a vital contribution to all sorts of analyses where the storage structure of
an object-oriented program is sought, e.g. concurrency analysis (model checking) [Cor98|.

The result of our algorithm is a graph, the nodes of which represent the objects that
will exist at run-time, with three kinds of edges between them: creation edges, reference
edges, and usage edges. The algorithm approzimates the actual run-time structure in
that (a) some nodes in the object graph may be summary nodes that represent zero to
many actual run-time objects, (b) reference edges and usage edges are conservative, and
(c) at least in the final object graph, we consider objects as unstructured containers of
references, abstracting from their internal structure.

According to the way in which analysis algorithms are usually classified (as in e.g.
[SHI7]), our algorithm is largely flow-insensitive (it does not consider the actual flow
of control within methods), it is however contezt-sensitive in the sense that method in-
vocations and field accesses are distinguished at the level of objects, not types. Due to
its flow-insensitivity, the algorithm is of low computational complexity (essentially poly-
nomial). Initial experience with our implementation shows that non-trivial real-world
programs can thus be analyzed in acceptable time; detailed results are given below.

This paper is organized as follows. In section 2, we review existing techniques for static
analysis of object-oriented programs, showing that they are not sufficient for constructing
general object graphs. Section 3 describes our algorithm, and section 4 discusses its
complexity. In section 5, we show the object graphs of three example programs, and
present quantitative results for several others. Section 6 discusses possible improvements
of the algorithm, and section 7 concludes the paper.

public class Main {

public static void main (...) {

1: Worker wl = new Worker();
2: Worker w2 = new Worker();
3: wl.doWork(); ... w2.doWork();

// maybe in parallel

e
; O——0O

Worker Algorithm

public class Worker { D
4: Algorithm a; -
5: public Worker() { Maln\
6: a = new Algorithm(); O"O
} Worker Algorithm
7: public void doWork() {
8: while (...)
9: a.calculate (...);
}
}
public class Algorithm {
10: public void calculate (...) { ... }
}

Figure 1: Example Program and Corresponding Object Graph

2 Related Work

Our work is related to, but distinct from, existing techniques for call graph construction,
concrete type inference, and points-to analysis of object-oriented programs. There is
considerable overlap between these areas, e.g. points-to analysis often involves some kind
of call graph construction and vice versa, yet the headings under which we discuss them
do indicate the primary focus of the corresponding research.

Call graph construction ([GDDC97] and references therein) is concerned with finding,
for each call site in a program, the corresponding set of methods that may be invoked at
run-time, the goal being compiler optimizations such as static binding of method invo-
cations, or to enable method inlining and further interprocedural analyses. Call graphs,
as introduced in the literature, are distinct from object graphs in that they refer to the
static types of a program, not the dynamic instances. As an example for this difference,
consider the program in Figure 1, where two Worker objects each use an Algorithm object
to perform a calculation. A call graph for this program is easy to construct, as all calls are
monomorphic: the call sites in line 3 refer to Worker.doWork () in line 7, while in line 9,
Algorithm.calculate() in line 10 is called. This call graph, while it is sufficient for the
kinds of compiler optimization that we mentioned above, does not, however, imply the
run-time structure of the program in the sense that is shown in figure 1, which represents
the relations between instances. For this information to be captured in a call graph, a
notion of calling context that includes the identity (not the type) of the implicit this
parameter would be required. We are not aware of any such approach.

Concrete type inference [PS91, PC94, GI98] subsumes techniques to derive, for expres-
sions appearing in the program code, precise type information, thus potentially reducing or
eliminating polymorphism, and thereby enabling compiler optimizations similar to those
mentioned above. It is clear, however, that this also does not capture relations between
instances: in the example program, all types are easily resolved monomorphically, but
this only represents the fact that, e.g. Worker objects access Algorithm objects, but not

their numbers and one-to-one correspondence.

Based on this observation, an extension of type inference has been described by
Philippsen and Haumacher [PH98]. In their algorithm, helper polymorphism is intro-
duced into programs in order to make the types of separate instances distinct, so that
traditional type inference can then be used to yield instance-level structure (in this case,
for the purpose of locality optimization in concurrent Java programs). The technique
is, however, only applied to Threads and Runnable objects. If it were extended to the
general case, it could yield similar results to the algorithm we present here. A difference
is however that the algorithm of Philippsen and Haumacher is flow-sensitive, and thus
problematic for larger programs (very long running times are reported in [Hau98]). It
is also questionable whether the attempt to create, ideally, a separate type for each in-
stance, is conceptually sound, as it blurs the otherwise useful distinction between types
and instances.

A third large body of research is subsumed by the term points-to analysis. Citing
[CRL99], the goal of points-to analysis is to determine, at each program point, the objects
to which a pointer may point during execution. Some of this research is stack-oriented
(e.g. [And94, Ste96, SHIT]), i.e. it only considers pointer variables on the stack (whether
they point to the stack or to heap-allocated storage), but not pointers between objects
on the heap, and thus it is not immediately relevant for our purposes.

In [CRL99], an approach called Relevant Context Inference (RCI) is described, which
extends traditional stack-oriented techniques towards object-oriented programming, i.e.
to general pointer structures between heap-allocated objects. A closer look, however,
reveals that RCI does not accurately provide the information we are interested in. The
main reason for this is that RCI identifies object allocations and pointer expressions by
their textual location in the program code, not parameterized by the instance they appear
in at run-time. In our example program in listing 1, RCI would summarize the two
Algorithm objects into a single node “objects created at line 67, and thus lose their
identity. While it is true that our own algorithm uses summary nodes frequently as well,
it folds the object graph to a much lesser degree than RCI does.

Also subsumed under the term points-to analysis, other research has focused entirely on
heap-allocated data structures [CWZ90, VHU92, SRW96, Cor98|. The common method-
ology of these analyses is to perform an abstract interpretation of the program code and
to construct, for each statement, a storage structure graph that represents the possible
heap structures at that statement. Often, this approach is used to allow some kind of
shape analysis of the heap structure, e.g. to prove that, if a procedure receives a list-like
data structure, it preserves the property of list-ness during execution [CWZ90, SRW96].

More closely related to our work, Vitek et al. [VHU92| and Corbett [Cor98] have
applied the above approach to object graphs of complete programs. Both algorithms are
flow-sensitive; they may thus provide higher accuracy than our algorithm at the cost of
prohibitive performance for larger programs. The algorithm of Vitek et al. is defined for
a Smalltalk-like toy language, while Corbett’s algorithm is part of a model checker for
concurrent Java programs. No implementation or performance figures are reported for
either algorithm. It must also be noted that both approaches suffer from their heritage
of traditional, non-object-oriented program analysis: they maintain the notion of a static
program code that manipulates a passive data structure on the heap. One of the results of
this is that the analysis of polymorphic method calls becomes more complicated than it
could be if the objects were considered “active” first-class entities, as in our approach. To

reduce polymorphism, Vitek et al. employ the common, type-based technique of including
k levels of the dynamic call chain as context information. In Corbett’s algorithm, on the
other hand, all method calls must be inlined prior to the actual analysis (implying that
recursion cannot be analyzed), and polymorphism is accounted for by simply inlining the
code of all corresponding method implementations in a switch statement — which, as the
author acknowledges, results in an exponential complexity and also forfeits much of the
precision that a flow-sensitive algorithm could otherwise have.

By contrast, our own algorithm is flow-insensitive (and thus applicable to large pro-
grams), and based entirely on the notion of objects which, at run-time, organize themselves
into an object graph. We will now describe this algorithm in detail.

3 The Algorithm

The entities that our algorithm deals with are the types of a program, and the objects that
these types are instantiated to at run-time. Our model of these entities — the “ontology”
of our algorithm — is shown in Figure 2.

JavaType <

Interface

defines

StaticType W | | DynamicType @

_— isinstantiated to ——

RuntimeObject
AWV

4
0..n

StaticObject []

DynamicObject

| ConcreteObject O | | IndefiniteObject ©

Figure 2: Ontology

In Java, objects are defined by reference types, which can be classes, interfaces, or
arrays. As we are not concerned with primitive types, we will also use the word Java type
as a shorthand for classes, interfaces, and arrays.

Java types may have “static” and “non-static” members. To deal with this distinction
in a natural way, it is helpful to introduce a slightly different type model for analysis
purposes: we say that a Java type defines, optionally, both a static type (comprising the
static members) and a dynamic type (the non-static members). We consider these types,
and their instances, entirely separate entities'. Of a static type, precisely one instance

! There is, in fact, no special connection between the instances of a Java class and the static members
of that class, as compared to static members of other classes. The instances do have privileged access to
any private members of their class, but this is only a question of accessibility and not important for our
analyses.

exists at run-time (a static type is pretty much the same as a module), while a dynamic
type may have an arbitrary number of instances. We use the common term analysis type,
or simply type, to refer to both static types and dynamic types in the following.

At run-time, types are instantiated to objects. We call the single instance of a static
type a static object, and the instances of a dynamic type dynamic objects. Of the latter,
there are two further subcategories: a concrete object represents a single instance of a
dynamic type, the existence of which at run-time is certain. An indefinite object, on
the other hand, summarizes 0 to n objects of a dynamic type; the algorithm cannot
determine their precise number. (Note, though, that the use of indefinite objects does
not mean that the algorithm degenerates into a mere type-based analysis: for a given
dynamic type, several indefinite objects may exist in an object graph; each represents
those instances of the type that occur in a certain context.)

The relations between objects that we are interested in are creation, reference, and
usage. We say that

e an object a creates an object b if the statement by which object b is allocated is
executed in the context of object a;

e an object a references another object b if, at any time during execution, a reference
to b appears in the context of a (either in a field, variable, or parameter, or as the
actual value of an expression; we also say that a owns a reference to b or simply
that a knows b);

e an object a uses an object b if a invokes any methods or accesses any fields of b.

It is clear that usage implies reference, because an object can only use another object
if it owns a reference to it, but not vice versa (e.g. a collection object owns references to
the objects contained in it, but does not usually invoke any methods of these objects).
Similarly, creation usually implies reference, because an object that creates another object
immediately receives a reference to it. (An exception are object allocations that occur
as actual method parameters; some of these cases are recognized by the algorithm, see
section 3.3 for details.)

The object graph is constructed in the following steps:

Step 1. Find the set of types that the program consists of.

Step 2. Build a type graph from these types, which captures usage relations and data
flow relations at the type level.

Step 3. Approximate the object population of the program, which yields the nodes of the
object graph, plus creation edges and initial reference edges.

Step 4. Propagate references in the object graph, based on the data flow information
from the type graph.

Step 5. Create usage edges in the object graph.

We will now describe each of these steps in detail.

3.1 Finding the types of the program

The Java types that a program consists of are those contained in the dependency closure
of the program’s main class. We say that a Java type depends on another type if it makes
any kind of syntactic reference to it (an obvious exception being class java.lang.0bject,
which is part of every program although it needn’t be referred to explicitly). The set of
Java types naturally implies the set of analysis types of the program, according to the
ontology described above.

This definition ensures what may be called the closed-world assumption of our algo-
rithm: at run-time, control cannot reach any statement that is not covered by the static
dependency closure.

It must be noted, though, that Java programs can dynamically modify and extend
themselves through explicit class loader interaction and run-time reflection. Naturally, the
use of these features poses a whole set of new problems for any static analysis algorithm.
We are not adressing these in our work, and our algorithm cannot handle programs that
make use of these features. At present, this does not seem like a serious limitation, as few
programs actually fall into this category. Future research in this area is however desirable.

Our algorithm is also restricted to analysis of complete programs; we have not inves-
tigated techniques to analyze libraries, and to combine such analyses incrementally when
analyzing programs that use these libraries.

3.2 Constructing the type graph

Ultimately, we are interested in the run-time objects of the program and their relations.
However, what we have so far is only the set of types from which the objects will be
instantiated. Our next step is therefore to analyze some relations at the type level, cap-
turing them in a type graph, which will later be used when we construct the actual object
graph.

A relation between two types is a folding of the relations between any objects that are
instantiated from these types. To deal with this folding, a natural shorthand terminology
will be used in the following: we say that “a type A calls a method of another type B” if
the code of A contains a method call statement, the syntactic target of which is a method
declared in type B. As our algorithm is flow-insensitive, the existence of such a statement
is enough for us to conclude that at run-time, any object that is instantiated from A
might call any object instantiated from B (subtyping will be dealt with at a later stage).
An analogous definition holds for expressions such as “type A accesses a field of type B”,
etc.

O O

reference ™ nefw new 7 d
. «_reference reference .- reference
run-time N e
objects . dataflow €~ .-7%. dataflow .

reference

type graph . ,,,,, <ABD> ,,. .< _<ABD> .
B A B

import edge
(a) Export (b) Import
Figure 3: Data Flow between Objects

Given this, we can define the type graph as a directed graph, G; =< T, E,, E,, E; >,
where T' is the set of types that we computed in the first step, and E,, F., and FE; are
usage edges, export edges, and import edges, respectively.

A usage edge < A, B >, simply means that type A uses type B, i.e. it calls methods
or accesses fields of type B.

Export edges and import edges are data flow edges which indicate that references of a
certain type may propagate from objects of one type to objects of another type, e.g. as
parameters of method calls or by direct field accesses. We distinguish two fundamental
kinds of such reference propagation (see fig. 3): to export a reference means that an object
a owns a reference to an object d, and passes it to an object b. To import a reference
means that an object a owns a reference to an object b, from which it receives a reference
to an object d which only b knew before.

In the type graph, we represent this by export edges and import edges from a type A
to a type B, annotated by a third type D, which is the type of the data. The type graph
contains an export edge < A, B, D >, if

e A calls a method of B, and at least one of the actual parameters of this method call
is of type D, or

e A assigns (writes) to a field of B, and the actual r-value of the assignment is of type
D, or

e B is an array and A assigns (writes) references to objects of type D into B,
and there is an import edge < A, B, D >; if

e A calls a method of B that has D as its declared return type, or
e A reads a field of B, the declared type of which is D, or

e B is an array with element type D and A reads elements of B.

Two remarks about these definitions. First, they imply that we do not give full object
status to exceptions, although they might, technically, be used to carry (and hence, pass)

7

objects of arbitrary types as a payload. However, this is not a principal restriction; see
section 6 for a discussion of alternatives.

Second, a note about subtyping and polymorphism. In principle, we do not need
to consider these at this stage of the algorithm, because the information can easily be
inferred conservatively from the type graph constructed so far. For example, an export
edge < A, B, D >, that we found syntactically implies analogous export edges for all
subtypes of A, B, and D within the program. In other words, if an object of type A
may export references of type D to objects of type B, then any object of any subtype
of A might also export references of type D or any subtype of D to any object of type
B or any subtype of B. It is however a pure implementation issue whether we actually
insert additional data flow edges to cover these cases, as they are completely redundant.
In our implementation, we chose to propagate edges to subtypes on both their source and
destination side (A and B), in order to speed up subsequent interpretation of the graph
(in step 4 of the algorithm), but we do not create additional edges for subtypes of the
data types (D) in order not to use too much memory.

We may now proceed to construct the object graph, which is a directed graph G, =<
O,E., E,, E, >, where O is the set of run-time objects of the program (we also call it the
object population), and E., E,., and E, are sets of creation edges, reference edges, and
usage edges, respectively.

In step 3 of the algorithm (section 3.3), the object population is constructed, using
indefinite objects (summary nodes) where necessary and concrete objects where possible.
In step 4 (section 3.4) the reference structure within the object population is computed,
and in step 5 (section 3.5), usage relations are inferred.

3.3 Generating the object population

The object population of a program is a complete, but finite representation of the poten-
tially infinite set of objects that the program will create at run-time. In the terms of our
algorithm, the object population is a set of static objects, concrete objects and indefinite
objects, which form the nodes of the object graph. The algorithm constructs this set by
examining the object allocation statements? in the program, determining which objects
may (or definitely will) create which other objects.

We distinguish two kinds of allocation statements: an initial allocation is an object
allocation that is executed exactly once whenever the enclosing type is instantiated, and
never thereafter (in the context of this particular object). A non-initial allocation, on the
other hand, is an object allocation of which the algorithm cannot determine how often, if
ever, it will be executed at run-time.

Our algorithm considers an allocation as initial for its enclosing type A if

e it is the r-value of a field initializer of A, or

e it occurs plainly in an initialization method of A, where plainly means that it is not
nested in any kind of control structure, and an initialization method is defined as
either

2An object allocation is a new expression in Java. Another way to create an object is to clone() an-
other object; in this case, the precise type of the new object may not be known statically. Conservatively,
a call to a.clone() can be considered to allocate an indefinite object of type A and every subtype of A
in the program.

the constructor® of A, or

a static initializer of A, or

the main() method, if A is the program’s static main type
(and there is no explicit call to main() within the program), or

the run() method, if A is a Runnable object
(and there is no explicit call to run() in the program), or

a private method of A that is called exactly once and plainly from another
initialization method of A.

Based on this definition, the algorithm can compute, recursively, which objects create
which other objects. It begins by adding the static objects of the program (one static
object for each static type is trivially part of the object population), and then proceeds
as follows:

e For each static object of a type A that is added to the object population, the
algorithm adds one concrete object for each initial allocation of A, and one indefinite
object for each type that is non-initially allocated in A.

e For each concrete object of a type A that is added to the object population, concrete
objects and indefinite objects are added in the same manner as for a static object.

e For each indefinite object of a type A that is added to the object population, all
allocation statements in A are treated as non-initial allocations, i.e. for each type
that is allocated in A, an indefinite object is added to the object population.

Intuitively, the above means that static objects and concrete objects may recursively
create further concrete objects — those that they allocate initially. Indefinite objects,
however, may only create further indefinite objects (because it is not known how many
objects an indefinite parent object actually represents). Also, note that the non-initial
allocations of a type are summarized by the types being allocated. An indefinite object
therefore represents all instances of a certain type that may be created by a given parent
object, excluding any concrete objects of the same type that were created by that parent.
(We chose not to distinguish individual allocation statements within the parent type for
indefinite objects, because that keeps the size of the object graph somewhat smaller. We
have found this to produce adequate results for our purposes.)

Whenever a concrete object or indefinite object is added to the graph, we also add
both a creation edge and a reference edge from the parent object to the new object. In
the next step, these initial references will be propagated within the graph to determine
which objects may know and use which other objects at run-time. However, there are
three special cases that need to be considered.

First, static objects are referred to by name in Java, not by object references. To deal
with this in a uniform way, we therefore add “pseudo” reference edges from each dynamic
object to any static objects it uses, according to the type graph.

3Dynamic types with multiple constructors may have different sets of initial allocations for each
constructor, and the chaining of constructors along the inheritance hierarchy also needs to be considered.
The details are straightforward; we are omitting them here for brevity.

Second, if an object allocation appears directly as an actual method parameter, then
the creator does not actually receive a reference to the created object. However, at this
stage of the algorithm it is not usually known which object is actually called and receives
the reference. The only exception are allocations that are used directly as constructor
parameters, because here the receiver is immediately known. The algorithm adequately
handles this case, in all other cases, we conservatively consider the creator to own the
reference, which is later propagated to the possible receivers in step 4.

A third special case that needs to be considered are cycles in the creation structure:
if an indefinite object allocates an indefinite object that has the same type as one of
its (transitive) parent objects, the algorithm would not terminate, and create an infinite
amount of objects. (For concrete objects, this cannot happen because these are allocated
initially — a cycle here would mean that the program itself falls into endless recursion
immediately after startup.) For indefinite objects, the algorithm recognizes cycles by
keeping track of all parents for each indefinite object. If a cycle is detected for a type A,
the algorithm does not add a further indefinite object of type A, but rather adds creation
and reference edges back to the existing parent of type A, and terminates the recursion.

3.4 Propagating References

After the object population has been computed, the object graph contains the representa-
tion of all objects that could possibly exist at run-time, connected by creation edges and
reference edges. We now use the data flow information from the type graph to propagate
the references edges within the object graph until a fix point is reached.

The actual algorithm corresponds exactly to the scenarios shown in Fig. 3: it iterates
over all triples of objects < a, b, d > for which reference edges < a,b >, and < a,d >, (or
< b,d >,) exist, and matches the types of the objects against the data flow edges of the
type graph. If a corresponding edge exists, a new reference < b,d >, (or < a,d >,) is
added to the graph.

It is here that subtyping must be accounted for. If the type graph did not contain
redundant data flow edges for subtypes (see section 3.2), we’d have to search it for data
flow edges of the form < A, B, D > where A, B, and D are the types or any supertypes
of a, b, and d. But as our type graph has been constructed to contain redundant edges
for all subtypes of sources and destinations already, we only need to search for supertypes
of D, which is further simplified because in the implementation, we combine all edges
between two types into a single edge annotated with a set of data types.

3.5 Adding usage edges

After the object references have been propagated, it is known which object could possibly
interact with which other objects. We may now add usage edges to the graph: there is a
usage edge between two objects a and b if there is a usage edge < A, B >, between their
types A and B in the type graph, and there is a reference edge < a,b >, in the object
graph.

As in the previous step, subtyping is adequately considered here. When the type
graph was constructed (see section 3.2), redundant usage edges were added for all known
subtypes on both the source and destination side. In other words, this means that if an

10

object a of type A knows an object b of type B, and A or any supertype of A uses B or
any supertype of B, then the object a is considered to use object b.

4 Complexity

Let s be the number of statements in the program, ¢ the number of types in the program,
and n the number of run-time objects (the size of the object population computed in step
3). The first and the second step of the algorithm are uncritical: the first step — finding
the types of the program — only involves standard syntactic type inference (better than
O(s?)), and the second step (construction of the type graph) is linear in s.

Constructing the object population (in step 3) is linear in n, the number of run-time
objects needed. It is not obvious how this number relates to the static size of the program.
The worst case occurs when only concrete objects are used, as each concrete object could
allocate an arbitrary number of further concrete objects, provided that types of parent
objects are not used again and that each such allocation occurs due to an individual
statement in the code. In a program with ¢ types, each of which contains s/t initial
allocation statements, the size of the object graph is thus (s/t)".

This exponential complexity is however unlikely to occur in practice. In real programs,
concrete objects represent the static part, or “skeleton” of the run-time structure, which is
usually small, while everything that depends on input data or user interaction is modelled
by indefinite objects. In the eleven programs discussed in section 5.4, there is in fact a
roughly linear correspondence between s and n: the final object graphs contain about
one object (static, concrete, or indefinite) for every 10-50 lines of source code.

In step 4, references are propagated among triples of objects using fix-point iteration
(similar to computing the transitive closure). Our algorithm is optimized in that it only
considers those references that were created in the previous step for further propagation.
For each reference, this requires work that is linear in n, and since at most n? reference
edges may exist in the graph, the entire step has complexity O(n?).

Step 5, the creation of usage edges, is again uncritical: checking whether a usage
edge is needed between two objects, and possibly creating the edge, requires essentially
constant time, and it must be done for each pair of objects connected by a reference edge,
which is at most n? times.

The overall complexity of the algorithm is thus O(n?®), where n appears to be linear
in the size of the program s for real-world programs.

5 Case Studies

We will illustrate the kinds of results that our algorithm delivers in a number of case
studies now. We will look in detail at the object graphs of three small to moderately sized
programs (sections 5.1, 5.2, and 5.3), and discuss the performance of our implementation
in section 5.4.

11

5.1 Case Study 1: Producer/Consumer

Figure 4 shows the object graph of a simple producer/consumer program. This program
is the same that Corbett analyzed in his paper [Cor98|, with one added complexity:
rather than passing primitive integers from the producer to the consumer, we modified
the program to use Integer objects, so that they would be visible in the object graph.
The complete code of the program is listed in appendix A.

O——0O

/rhread Produce\\ / Integer[]

[]

Main\ Integer \ /IntBuﬁer

O—0

Thread Consumer
[] static object — usage edge
O concrete object - creation edge
© indefinite object = reference edge

Figure 4: Object Graph of the Producer/Consumer Program

The structure of the program is immediately clear from the graph: there is a Producer
and a Consumer object, which both implement the Runnable interface; they are ex-
ecuted in parallel by corresponding Thread objects. Producer and Consumer share
the IntBuffer object, through which the Integer objects are passed. Internally, the
IntBuffer stores the Integer objects in an array. For clarity, we have omitted the cre-
ation edges for all objects except for the Integer objects, and one reference edge from
Main to the IntBuffer object. Each usage edge shown naturally implies a reference edge.

All objects in the graph are concrete, i.e. it is certain that only one instance of them
will exist at run-time, except for the Integer objects, which are created in arbitrary
numbers by the Producer. They are referenced (but not used) by the IntBuffer and its
internal array; the Consumer does use them (extracting the integer value and printing it).

5.2 Case Study 2: Hamming’s Problem

Hamming’s problem is one of the four Salishan problems, a suite of typical parallel pro-
gramming problems often used to compare the expressiveness of parallel programming
languages. For Hamming’s problem, the task is to output a sorted sequence of integers of
the form p’, where i = 0,1,2, ... and p is any of a given set of prime numbers {a,b,c,...}.
The parallel implementation is to have one thread for each of the primes, which computes
the p’ values for that prime. All threads deliver their results to a centralized manager
which selects the next number for the sequence among them.

Figure 5 shows the object graph of a Java implementation of this algorithm. The size
of the program is about 170 LOC; the object graph is computed in 6 seconds (see section

12

5.4 for detailed results). All creation edges have been omitted from the graph; all usage
edges and reference edges are shown (each usage edge implies a reference edge).

Integer

» ; ThreaN
O
Object MinFinde.r"'»-.. D/@Processor

StreamProcessor

static object

concrete object

CHONN

indefinite object

""" = reference edge

usage edge Vector Integer

Figure 5: Object Graph for Hamming’s Problem

The graph shows an indefinite number of StreamProcessor objects (one for each
prime). The sequence of numbers produced by each is internally stored in an IntStream
queue, which in turn is realized as a Vector of Integer objects. All StreamProcessors
use a common MinFinder object to which they deliver their results (the reference to the
MinFinder is obtained from a static variable in the StreamProcessor class). Internally
MinFinder uses an instance of java.lang.0Object for synchronization purposes.

A non-trivial property of this object graph is that polymorphism in the Vector class is
adequately analyzed here: as with all Java collection classes, the element type of Vector is
Object, i.e. anything could be stored in a Vector. However, due to the way we compute
the reference structure within the graph, we can infer correctly that in these Vector
objects, only the Integer objects created by the corresponding IntStream are stored.
We have found that even in large programs where many different collections for different
actual element types are used, the algorithm usually determines correctly which objects
are stored where.

However, there is also a counter-example in this graph. The object used for synchro-
nization by the MinFinder is actually of type java.lang.0bject. This object is created
by the main Hamming object, and passed to the MinFinder. Since the algorithm is flow-
insensitive, it must be assumed that any object could be passed along this edge, and
therefore the MinFinder receives references to all objects that Hamming knows, i.e. also
the indefinite Thread object and the two arrays (static objects are not passed). Further-
more, since MinFinder invokes methods of the Object instance, it must also be assumed
that it uses all other objects that it knows, including the ones that were mistakenly passed
to it in the previous step. The graph thus contains several spurious reference and usage
edges.

13

Despite this imprecision, the object graph is not only useful for understanding the
program, but also for deciding on a distribution policy. The StreamProcessor objects,
although their actual number is not known statically, can be assigned to available nodes
in a round-robin fashion. It is implied by the graph that the IntStream, Vector, and
Integer objects are used privately by each StreamProcessor, they therefore do not need
to be remotely invokable, or be considered by a consistency protocol if a DSM system
is used. Under the assumption that the other objects of the program are all assigned to
a single node, it can be inferred that actually only the MinFinder itself is ever invoked
across a distribution boundary, and must thus be remotely invokable (see [Spi00b] for a
more detailed discussion of possible distribution analyses).

5.3 Case Study 3: Chess Opening Database

Figure 6 shows the object graph of a graphical database for chess openings. The program
has about 2,500 LOC; the object graph is computed in 52 seconds (detailed results in
section 5.4). Unlike the previous examples, we have greatly simplified this graph for
presentation.

Scanner

Cache
MovesView

Position MoveList
BoardView

O

TurnView Position

MovelList

distribution
boundary

Figure 6: Object Graph for a Chess Opening Database

The program is intended to help chess players familiarize themselves with various open-
ings. It displays a graphical chess board on which the user can make arbitrary moves; the
program looks these moves up in a database and displays the name of the corresponding
opening, and possibly a commentary on the move. The database is implemented as a
simple text file.

The object graph shows the graphical user interface on the left; the objects that
implement the database are on the right. There are actually two separate Board objects:
one is used as the application model for the graphical chess board on the screen; the other

14

is used internally by the Parser to interpret algebraic notation found in the text file.
Some interesting properties can be shown regarding these two objects:

e The Position and MoveList objects used internally by the two Board objects are
indefinite, because they are not created initially. However, despite the uncertainty
about their actual numbers at run-time, the graph makes it clear that each Board
has its own private objects of those types, and does not pass them to the outside.

e The left Board object communicates heavily with the user interface objects on the
far left side. These interactions are realized through the Subject-Observer pattern,
i.e. the Board object is a subclass of a Subject class that stores a list of Observer
objects, which are updated on request. Of course, the right Board object also
has such a list. However, reference propagation shows that none of the Observer
objects is ever registered with the right Board object, and therefore it cannot invoke
methods of them at run-time.

The information implied by the object graph allows for an efficient distribution of
the program, turning it into a client/server application where the graphical user interface
resides on a client machine, while the database is on the server. Using the distribution
boundary shown in figure 6 (which can be found be graph partitioning), only the Database
object needs to be remotely invokable, and a maximum of fast local communication is
achieved (see [Spi00a] for a more detailed discussion of this example).

5.4 Performance

We have implemented the algorithm using the Barat framework for static analysis of Java
programs [BS98]. The implementation itself comprises 2,000 lines of Java code (non-
comment, non-blank).

Using this implementation, we have run the algorithm on a set of programs, ranging
from 75 to 10,000 lines of code (excluding the Java standard library). The programs are
briefly described in table 1. Each program was written by a different author; none was
adapted for the analysis in any way. Experiments were made using JDK 1.2 (with JIT
enabled) on a Sun UltraSparc 10 with 128 MB of memory, running under Solaris 2.6.

program H description ‘

buffer producer/consumer example

hamming || Hamming’s Problem (Salishan benchmark)
red RC5 cracking program

paraffins || Paraffins Problem (Salishan benchmark)
trace simple ray tracer

sepia graph drawing demo

chess chess opening database

73 73 machine simulator

jhotdraw || drawing application framework

vgj graph drawing tool

javafig Java version of xfig (presentation viewer)

Table 1: Example Programs

15

size objects edges
program lines® ‘ types® | static ‘ CONCT. ‘ indef. ‘ total | creat. ‘ ref. ‘ usage
buffer 74 10 1 6 0 7 6 8 7
hamming 174 24 5 4 5 14 9 22 17
reh 263 11 2 10 1 13 11 23 22
paraffins 556 43 7 1 52 60 53 296 205
trace 915 47 5 0 31 36 85 257 177
sepia 1,176 49 6 4 124 | 134 128 | 2,728 854
chess 2,474 133 21 37 58 | 116 98 446 275
73 3,917 164 35 142 72| 249 217 733 464
jhotdraw 6,163 276 39 22 250 | 311 272 1 9,236 | 2,848
vgj 10,352 197 47 15 319 | 381 375 | 7,633 | 4,700
javafig 10,699 218 49 25 385 | 459 445 | 4,263 | 3,844

*without comments and blank lines
bexcluding standard library, except when directly referenced

Table 2: Analysis Results

program H step 1¢ ‘ step 2 ‘ step 3 ‘ step 4 ‘ step 5 ‘ total time ‘

buffer 2.6 0.4 0.5 0.0 0.0 3.5
hamming 4.6 0.5 0.5 0.1 0.0 5.7
red 2.8 0.6 0.8 0.2 0.0 4.4
paraffins 7.4 0.8 1.6 1.6 0.0 11.4
trace 10.5 1.0 2.8 1.2 0.0 15.5
sepia 9.1 1.2 4.5 39.5 0.1 54.4
chess 34.2 4.0 10.5 3.0 0.0 51.7
z3 71.0 6.6 6.6 9.7 0.3 94.2
jhotdraw 156.2 22.4 29.1 | 767.7 0.9 976.3
vgj 124.9 12.4 21.6 | 682.1 0.4 841.4
javafig 182.8 13.1 27.6 | 124.0 0.3 347.8

*includes I/O and parsing

Table 3: Times needed for Analysis (in seconds)

The results shown in tables 2 and 3 indicate that the algorithm generally scales well
for programs up to 10,000 lines of code, with computation times on the order of several
minutes at most. The number of reference and usage edges, and the times needed to com-
pute them, is strikingly high for some programs, though, and might turn out problematic
for even larger programs. We are tackling this problem in the following ways:

e When visualizing the object graphs, displaying several thousand reference or usage
edges is clearly not useful. We have found it convenient to display only the creation
edges at first, and to lay out the graphs according to these. This gives a very
intuitive insight into the hierarchical structure of a program. Our analysis tool then
lets the user selectively display reference or usage edges leading to or coming from

16

6

a certain object in the graph. We have found this an excellent means to explore the
run-time structure of a program.

The high numbers of reference and usage edges are generally due to fine-grained
objects which are extensively passed around and hence, aliased, within the object
graph. For larger programs, it could be useful to either suppress such small objects
from the graph completely (if no data passes through them), or to collapse the types
of such objects into a single indefinite object. This could be done interactively by
the programmer, but automatic criteria, e.g. depending on object size, are also
conceivable.

Possible Improvements

In the form presented here, the algorithm has already proved useful for program under-
standing and distribution analysis. However, there is still room for improvements such as
the following:

e To consider ezceptions as full objects (see section 3.2) means to model the throwing

of an exception as a data flow event; just as if a method had multiple return types.
To realize this, the algorithm needs to annotate every method declaration with the
types of exceptions it may throw, and to propagate these sets of exceptions up in a
call graph, which may be constructed ad hoc using simple hierarchy analysis without
much loss of precision. In a simple solution, an object automatically imports any
indefinite exception objects owned by objects that it calls methods of; this approach
does not consider whether the object actually catches all of these exceptions, or
passes them on to its own callers. More sophisticated exception analysis, some
of which could readily be incorporated into our algorithm, has been described in
[RM99].

When indefinite objects are added to the object population, they can only create
further indefinite objects (see section 3.3). This may result in the loss of some
precision that is actually still inherent in the algorithm. For example, in the program
shown at the beginning in listing 1, if the Worker objects were not allocated initially
by the Main object, the object graph would be folded and contain only an indefinite
Worker object and an indefinite Algorithm object, thus losing the information that
there is a one-to-one correspondence between these objects. One way to remedy
this would be to mark reference edges as one-to-one-edges initially, and remove
this property if edges are exported or imported. A more general solution would be
not to consider individual objects as indefinite, but rather to introduce summary
subgraphs, which may contain concrete objects, and yet be considered indefinite as
a whole.

The algorithm could be combined with flow-sensitive techniques to provide addi-

tional precision, while still capitalizing on the object-oriented perspective we intro-
duced.

17

7 Conclusions

We have shown that existing approaches to static analysis of object-oriented programs
are mostly concerned with type-level information. While this is sufficient for common
compiler optimizations, we are currently seeing the advent of other kinds of high-level
analyses such as distribution analysis and concurrency analysis. These require instance-
level information, i.e. approximation of object graphs, but little has yet been done to
tackle this problem. The algorithm that we presented here is a step towards filling this
gap. Unlike some previous work, our algorithm embodies a decidedly object-oriented view
of the problem, which enables high accuracy even though the algorithm is flow-insensitive,
which in turn means that it has low computational complexity.

To our knowledge, our algorithm is the only true object graph algorithm that has
fully been implemented for a main stream language (Java), and validated on a range of
non-trivial example programs of considerable size. We have found the resulting object
graphs highly descriptive in terms of program understanding, and we are now using the
algorithm as part of a larger system named Pangaea, which will be able to distribute
centralized Java programs automatically [Spi0Oa, SpiOOb].

References

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C' Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

BS9S] Boris Bokowski and André Spiegel. Barat — A front-end for Java. Technical
Report TR B-98-09, Freie Universitat Berlin, December 1998.

[Cor98| James C. Corbett. Constructing compact models of concurrent Java programs.
In Proc. ACM SIGSOFT Symposium on Software Testing and Analysis, pages
1-10, 1998.

[CRL99] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant
context inference. In Proc. 26th Symposium on Principles of Programming
Languages, POPL ’99. ACM, January 1999.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Proc. Programming Language Design and Implementation,
PLDI ’90, pages 296-310. ACM, June 1990.

[GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. In Proc. OOPSLA ’97. ACM, 1997.

[GI98] Joseph Gil and Alon Itai. The complexity of type analysis of object ori-
ented programs. In Proc. ECOOP 98, number 1445 in LNCS, pages 601-634.
Springer, July 1998.

[Hau98] Bernhard Haumacher. Lokalitdtsoptimierung durch statische Typanalyse in
JavaParty. Master’s thesis, Institut fiir Programmstrukturen und Datenor-
ganisation, Universitat Karlsruhe, January 1998.

18

[PCO4]

[PHOS]

[PS91]

[RM99]

[SHY7]

[Spi00a]

[Spi00b]

[SRW96]

[Ste96]

[VHU92]

John Plevyak and Andrew A. Chien. Precise concrete type inference for object-
oriented languages. In Proc. OOPSLA 9/, pages 324-340. ACM, October
1994.

Michael Philippsen and Bernhard Haumacher. Locality optimization in Java-
Party by means of static type analysis. In Proc. 7th International Workshop
on Compilers for Parallel Computers CPC ’98, pages 34-41, Linkoping, June
1998.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference.
In Proc. OOPSLA 91, pages 146-161. ACM, 1991.

Martin P. Robillard and Gail C. Murphy. Analyzing exception flow in Java
programs. Technical Report TR-99-02, University of British Columbia, March
1999. Submitted for publication.

Marc Shapiro, IT and Susan Horwitz. Fast and accurate flow-insensitive points-
to analysis. In Proc. 2/th Symposium on Principles of Programming Lan-
guages, POPL ’97, pages 1-14, Paris, France, January 1997. ACM.

André Spiegel. Automatic distribution in Pangaea. In Proc. Workshop on
Communications-Based Systems, CBS 2000, April 2000.

André Spiegel. Efficient distribution by static analysis. Technical Report TR,
B-00-12, Freie Universitiat Berlin, FB Mathematik und Informatik, June 2000.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis
problems in languages with destructive updating. In Proc. 23rd Symposium on
Principles of Programming Languages, POPL °96, New York, January 1996.
ACM.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc. 25rd
Symposium on Principles of Programming Languages, POPL 96, pages 32-41.
ACM, January 1996.

Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-time analysis of
object-oriented programs. In Proc. CC ’92, jth Int. Conf. on Compiler Con-
struction, number 641 in LNCS, Paderborn, Germany, 1992. Springer-Verlag.

19

Appendix A: Producer/Consumer Example

The listing shown below is the complete code of the producer/consumer example (shown
as “buffer” in section 5.4). The code was taken from [Cor98| without modifications, except
that Integer objects were used instead of primitive integers.

public class IntBuffer { public class Producer implements Runnable {
protected Integer[] data; protected int next = 0;
protected int count = 0; protected IntBuffer buf;
protected int front = 0;
public Producer (IntBuffer b) {
public IntBuffer (int capacity) { buf = b;
data = new Integer[capacity]; }
} public void run() {
public void put (Integer x) { while (true) {
synchronized (this) { System.out.println ("Put " + next);
while (count == data.length) buf.put (new Integer (next++));
try { }
wait(); }
} catch (Exception e) { }
e.printStackTrace();
} public class Consumer implements Runnable {
data[(front + count) % data.length] = x;
count = count + 1; protected IntBuffer buf;
if (count == 1)
notifyAll(); public Consumer (IntBuffer b) {
3 buf = b;
} }
public Integer get() { public void run() {
synchronized (this) { while (true) {
while (count == 0) Integer x = buf.get();
try { System.out.println ("Get " + x.intValue())
wait(); }
} catch (Exception e) { }
e.printStackTrace(); }
}
Integer x = data[front]; public class Main {
front = (front + 1) 7 data.length;
count = count - 1; public static void main (String argv[l) {
if (count == data.length - 1) IntBuffer buf = new IntBuffer(2);
notifyAll(); new Thread (new Producer (buf)).start();
return x; new Thread (new Consumer (buf)).start();
¥ ¥
}
} }

Listing: Producer/Consumer Example

20

