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Abstract

The minimum boundary length density of a lattice-periodic set with given
period-lattice and area density is determined, together with the extremal sets,
and a conjecture on the higher-dimensional analogue is made. This improves
previous results of Hadwiger for d-dimensional sets with integer period lattice

and of Schnell and Wills for twodimensional sets with arbitrary period lattice.
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Abstract. The minimum boundary length density of a lattice-periodic set with given period lattice and
area density is determined, together with the extremal sets, and a conjecture on the higher-dimensional
analogue is made. This improves previous results of Hadwiger for Z ¢_periodic d-dimensional sets and of
Schnell and Wills on twodimensional sets with arbitrary period-lattice.

1. Introduction

A set X C IR? is lattice-periodic with period lattice I iff the lattice translations from T’
are symmetries of X, that is X +~v = X for each v € I'. Figure 1 shows a periodic set
and the fundamental parallelograms of its period lattice.

Any nonempty such set X is necessarily unbounded, but if it is reasonably well-
formed (e.g. is locally the limit of polyhedral approximations) we can define its volume
density v(X) and perimeter density p(X) as the average amounts of X and 0X per unit
volume of IR?. The isoperimetric problem for lattice-periodic sets then is to determine
the minimum perimeter density of a set with given period lattice and volume density.
Since we may exchange X and its complement without changing the perimeter density,
the minimum perimeter density is the same for the volume densities v and 1 — v.

This problem was first studied by HADWIGER [1] for the case of Z%-periodic sets; he
proved the lower bound p(X) > 8v(X) (1 - U(X)), which remarkably holds independent

of the dimension d. This bound is sharp only for v(X) € {0, 5,1} and holds only for the
special period lattice Z¢.

Figure 1.
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In the two-dimensional case SCHNELL and WILLS [4] extended this bound to arbitrary
period lattices I' C IR?, proving

q min{|y[| | ¥ # 0,7 € T'}

p(X) 2 det(T)

v(X)(1 - v(X)).

In this two-dimensional case p(X) denotes the boundary length density and v(X) the area

density of X. Again the bound is sharp only for v(X) € {0, 5,1}. For higher dimensions

d and arbitrary period lattices I' C IR? SCHNELL [3] proved

. e [ is a (d— 1)-dimensional
mm{det(r) | sublattice of I’

det(T)

p(X) >2d7> } v(X)(1 - v(X)).

Using the last successive minimum A4(I") of I' instead of the minimal subdeterminants
Schnell [2] found the bound

p(X) > m o(X) (1 =0 (X)).

2. Results and Conjectures

Let I denote a lattice in IR? and X € IR? a I-periodic set. If X is well-formed in the sense
that volume and surface area are defined for some finite section (e.g. with a ball) which
is big enough to contain a fundamental parallelotope of I', then we can define volume
and perimeter densities of X. For this we can use the limits of the intersection with large
. i vOl(XNBy) . qi area(XNBy) .
balls v(X) 1= lim Ovol(iBr) and p(X) := lm %. Equivalently we may select a
fundamental parallelotope P such that the intersection of the boundaries P N 0X has
(d — 1)-dimensional measure zero and define v(X) : = Vovlgigf) and p(X) : = %(XP?P).
In the two-dimensional case considered in the theorem v and p denote the area- and

boundary-length densities of X.
Theorem : Let X C IR? be a I'-periodic set for which v(X) and p(X) are defined. Then

. po min{||7y[| | y#0,7€T} -
p(X) 2 2min (/X)L (1 o)) )

This lower bound is reached for each given v by one of the following sets

1) X = B, + T with r = \/detT(F)v, that is the union of circular discs, one
per fundamental domain,

2) X =Ry+{ty |t € R,(t— [t]) < v}, where v is the minimum-norm
nonzero vector of I' and 4 another element of I" such that v,y generate

a fundamental parallelogramm,
3) X = R?\ (B, +T) with r = /(1 — ), that is the plane with
circular holes, one per fundamental domain.
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Figure 2.

We believe that this structure of the extremal sets holds also in higher dimensions.
Using «; for the volume of the i-dimensional ball of radius 1 and det;(I") for the minimum
determinants of i-dimensional sublattices of I' we can state the
Conjecture: Let X C IR? be a I'-periodic set for which v(X) and p(X) are defined.

Then

1-1

Al ) (o)1 - o)

X)> min (
)z, det,(T)
Probably the same structure holds even if the period lattice is not fulldimensional:
The sets of minimal perimeter with given volume per fundamental domain consist of
i-dimensional cylinders over d — i-dimensional balls, the cylinders taken in subspaces
where the determinant of the sublattice is minimal, or the complement of such a set.

3. Proof

Let X be a set with the given period lattice I' and volume density v which is of minimum
perimeter density among all such sets. We may assume X to be closed. Let {X,},c; be
the connected components of X = J,c; X,, and let A(X,) be the maximal sublattice of
" that leaves X, invariant (X, + A(X,) = X,).

If one of the A(X,) is nontrivial, i.e. there is a nonzero vector ¢ € A(X,), then X,
contains with each point p € X, the whole one-dimensional point-lattice (p + zt),cz.
Since X, is connected, there is a (shortest) arc o, joining p and p + ¢ in X, and this arc
stays within a bounded distance to the line through p and p +¢t. We can extend this
arc periodically to a set ,cz(a, + 2t) C X, which is connected, contains all the lattice
points (p + zt),cz, and stays within a bounded distance to the line (p + rt),cr. So there
is a pseudoline o, C X, which stays within a bounded distance to the line (p+7t),cgr and
which cuts the plane in two halves. If there is another connected component X; which
also has nontrivial A(Xj), then the associated lines may not intersect (being in distinct
connected components); so each nonzero vector s € A(X;) must be collinear with each
nonzero vector t € A(X,).



Therefore either there is one A(X,) that is two-dimensional and all other X; have
a trivial A(X}), or all nontrivial A(X,) generate the same 1-dimensional subspace (i.e.
are collinear). Since X is I-periodic, we have F/A(XL) copies of connected component
X, in X. So if there is an X, with two-dimensional A(X,), we have A(X,) = T, for
otherwise there would be further connected components X; with twodimensional A(X}).
And if A(X,) is one-dimensional, it must be generated by a primitive lattice vector of
[, for otherwise there are several collinear copies of X,, which contain alternating points
of the same one-dimensional sublattice, and which are translates of each other, so they
intersect.

So there are three possible cases: either all connected components have trivial A,
or there are connected components with a one-dimensional A which is generated by a
primitive vector of I', or there is one component with A = T', and the complement
consists of bounded sets with trivial I'.

If there is a component X, with one-dimensional A which is generated by v € I', then
p(X) > 2dl|t”(“) For let w € T" be a vector such that {v,w} generates I (this exists, since
v is primitive). Then (zw + X,),cz are further connected components of X. For each
m,n € IN the parallelogram 0, mv, mv + nw, nw is intersected by n + O(1) copies of X,
each of which (with the exception of the first and last O(1) copies) has a boundary length
of at least 2m||v|| within this parallelogram (which is of area mndet(I’). So the density
contributed by the translates of X, is at least 2 dgt(”) for some nonzero v € ['. Since
the set has minimal p(X), it must be at least as good as the parallel strips construction
of the theorem, so v is a vector of minimum length, and there are no other connected
components in X (which could only increase p(X)).

So we may restrict us to the case that no X, has one-dimensional A. Exchanging X
and IR? \ X one sees that the other two cases are symmetric. Therefore we consider only
the first case, i.e. all connected components have trivial A. Then we can partition the
connected components into equivalence classes by ['; we select one element ()A(H)He Kk of
each equivalence class. Since there is one copy of each X per each fundarnental domain
of I', we have v(X) = det E vol(X,) and p(X) = det E p(X,). For each X, we

@)
may apply the standard isoperimetric inequality, giving p(X ) > 2\/7TV01(XK), so we get

%2\/#\701 Z ) ﬂ’g(vol(f(,g) = 2”det(F)U(X)'

The same lower bound, with 1 —uv(X) instead of v(X), holds in the last case (one X, with
A(X,) = T), in which we exchanged X and IR*\ X. The lower bound of the theorem
is now the minimum of the three possibilities for the extremal sets. This proves the
theorem.

P(X) 2 det
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