Isoperimetric Inequalities for Densities of Lattice-periodic Sets

Peter Braß*

B 97-05 June 1997

Abstract

The minimum boundary length density of a lattice-periodic set with given period-lattice and area density is determined, together with the extremal sets, and a conjecture on the higher-dimensional analogue is made. This improves previous results of Hadwiger for d-dimensional sets with integer period lattice and of Schnell and Wills for twodimensional sets with arbitrary period lattice.

^{*} Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany email: brass@inf.fu-berlin.de

Isoperimetric Inequalities for Densities of Lattice-periodic Sets

by

Peter Brass, Berlin

Abstract. The minimum boundary length density of a lattice-periodic set with given period lattice and area density is determined, together with the extremal sets, and a conjecture on the higher-dimensional analogue is made. This improves previous results of Hadwiger for Z^d -periodic d-dimensional sets and of Schnell and Wills on twodimensional sets with arbitrary period-lattice.

1. Introduction

A set $X \subset \mathbb{R}^d$ is lattice-periodic with period lattice Γ iff the lattice translations from Γ are symmetries of X, that is $X + \gamma = X$ for each $\gamma \in \Gamma$. Figure 1 shows a periodic set and the fundamental parallelograms of its period lattice.

Any nonempty such set X is necessarily unbounded, but if it is reasonably well-formed (e.g. is locally the limit of polyhedral approximations) we can define its volume density v(X) and perimeter density p(X) as the average amounts of X and ∂X per unit volume of \mathbb{R}^d . The isoperimetric problem for lattice-periodic sets then is to determine the minimum perimeter density of a set with given period lattice and volume density. Since we may exchange X and its complement without changing the perimeter density, the minimum perimeter density is the same for the volume densities v and 1-v.

This problem was first studied by Hadwiger [1] for the case of Z^d -periodic sets; he proved the lower bound $p(X) \geq 8v(X) \left(1 - v(X)\right)$, which remarkably holds independent of the dimension d. This bound is sharp only for $v(X) \in \{0, \frac{1}{2}, 1\}$ and holds only for the special period lattice Z^d .

Figure 1.

1991 Mathematics Subject Classification: 51M16 Key words: isoperimetric inequalities, periodic sets

In the two-dimensional case SCHNELL and WILLS [4] extended this bound to arbitrary period lattices $\Gamma \subset \mathbb{R}^2$, proving

$$p(X) \ge 8 \frac{\min\{\|\gamma\| \mid \gamma \ne 0, \gamma \in \Gamma\}}{\det(\Gamma)} v(X) (1 - v(X)).$$

In this two-dimensional case p(X) denotes the boundary length density and v(X) the area density of X. Again the bound is sharp only for $v(X) \in \{0, \frac{1}{2}, 1\}$. For higher dimensions d and arbitrary period lattices $\Gamma \subset \mathbb{R}^d$ SCHNELL [3] proved

$$p(X) \ge 2d^{-\frac{3}{2}} \frac{\min\left\{\det(\hat{\Gamma}) \mid \begin{array}{c} \hat{\Gamma} \text{ is a } (d-1)\text{-dimensional} \\ \text{sublattice of } \Gamma \end{array}\right\}}{\det(\Gamma)} v(X) \Big(1 - v(X)\Big).$$

Using the last successive minimum $\lambda_d(\Gamma)$ of Γ instead of the minimal subdeterminants Schnell [2] found the bound

$$p(X) \ge \frac{8}{\det(\Gamma)\lambda_d(\Gamma)} v(X) (1 - v(X)).$$

2. Results and Conjectures

Let Γ denote a lattice in \mathbb{R}^d and $X \subset \mathbb{R}^d$ a Γ -periodic set. If X is well-formed in the sense that volume and surface area are defined for some finite section (e.g. with a ball) which is big enough to contain a fundamental parallelotope of Γ , then we can define volume and perimeter densities of X. For this we can use the limits of the intersection with large balls $v(X) := \lim_{r \to \infty} \frac{\operatorname{vol}(X \cap B_r)}{\operatorname{vol}(B_r)}$ and $p(X) := \lim_{r \to \infty} \frac{\operatorname{area}(X \cap B_r)}{\operatorname{vol}(B_r)}$. Equivalently we may select a fundamental parallelotope P such that the intersection of the boundaries $\partial P \cap \partial X$ has (d-1)-dimensional measure zero and define $v(X) := \frac{\operatorname{vol}(X \cap P)}{\operatorname{vol}(P)}$ and $p(X) := \frac{\operatorname{area}(\partial X \cap P)}{\operatorname{vol}(P)}$. In the two-dimensional case considered in the theorem v and p denote the area- and boundary-length densities of X.

Theorem: Let $X \subset \mathbb{R}^2$ be a Γ -periodic set for which v(X) and p(X) are defined. Then

$$p(X) \geq 2 \min \left(\sqrt{\frac{\pi}{\det(\Gamma)}} v(X) , \frac{\min\{\|\gamma\| \mid \gamma \neq 0, \gamma \in \Gamma\}}{\det(\Gamma)} , \sqrt{\frac{\pi}{\det(\Gamma)}} \left(1 - v(X)\right) \right)$$

This lower bound is reached for each given v by one of the following sets

- 1) $X = B_r + \Gamma$ with $r = \sqrt{\frac{\det(\Gamma)}{\pi}v}$, that is the union of circular discs, one per fundamental domain,
- 2) $X = \mathbb{R}\gamma + \{t\hat{\gamma} \mid t \in \mathbb{R}, (t \lfloor t \rfloor) \leq v\}$, where γ is the minimum-norm nonzero vector of Γ and $\hat{\gamma}$ another element of Γ such that $\gamma, \hat{\gamma}$ generate a fundamental parallelogramm,
- 3) $X = \mathbb{R}^2 \setminus (B_r + \Gamma)$ with $r = \sqrt{\frac{\det(\Gamma)}{\pi}(1-v)}$, that is the plane with circular holes, one per fundamental domain.

Figure 2.

We believe that this structure of the extremal sets holds also in higher dimensions. Using κ_i for the volume of the *i*-dimensional ball of radius 1 and $\det_i(\Gamma)$ for the minimum determinants of *i*-dimensional sublattices of Γ we can state the

Conjecture: Let $X \subset \mathbb{R}^d$ be a Γ -periodic set for which v(X) and p(X) are defined. Then

$$p(X) \ge \min_{i=1,\dots,d} i \left(\frac{\det_{d-i}(\Gamma) \kappa_i}{\det_d(\Gamma)} \right)^{\frac{1}{i}} \left(\min(v(X), 1 - v(X)) \right)^{1 - \frac{1}{i}}.$$

Probably the same structure holds even if the period lattice is not fulldimensional: The sets of minimal perimeter with given volume per fundamental domain consist of i-dimensional cylinders over d - i-dimensional balls, the cylinders taken in subspaces where the determinant of the sublattice is minimal, or the complement of such a set.

3. Proof

Let X be a set with the given period lattice Γ and volume density v which is of minimum perimeter density among all such sets. We may assume X to be closed. Let $\{X_{\iota}\}_{{\iota}\in I}$ be the connected components of $X=\bigcup_{{\iota}\in I}X_{\iota}$, and let $\Lambda(X_{\iota})$ be the maximal sublattice of Γ that leaves X_{ι} invariant $(X_{\iota}+\Lambda(X_{\iota})=X_{\iota})$.

If one of the $\Lambda(X_t)$ is nontrivial, i.e. there is a nonzero vector $t \in \Lambda(X_t)$, then X_t contains with each point $p \in X_t$ the whole one-dimensional point-lattice $(p+zt)_{z\in Z}$. Since X_t is connected, there is a (shortest) arc α_p joining p and p+t in X, and this arc stays within a bounded distance to the line through p and p+t. We can extend this arc periodically to a set $\bigcup_{z\in Z}(\alpha_p+zt)\subset X_t$ which is connected, contains all the lattice points $(p+zt)_{z\in Z}$, and stays within a bounded distance to the line $(p+rt)_{r\in \mathbb{R}}$. So there is a pseudoline $\alpha_t\subset X_t$ which stays within a bounded distance to the line $(p+rt)_{r\in \mathbb{R}}$ and which cuts the plane in two halves. If there is another connected component X_j which also has nontrivial $\Lambda(X_j)$, then the associated lines may not intersect (being in distinct connected components); so each nonzero vector $s\in \Lambda(X_j)$ must be collinear with each nonzero vector $t\in \Lambda(X_t)$.

Therefore either there is one $\Lambda(X_{\iota})$ that is two-dimensional and all other X_{j} have a trivial $\Lambda(X_{j})$, or all nontrivial $\Lambda(X_{\iota})$ generate the same 1-dimensional subspace (i.e. are collinear). Since X is Γ -periodic, we have $\Gamma/\Lambda(X_{\iota})$ copies of connected component X_{ι} in X. So if there is an X_{ι} with two-dimensional $\Lambda(X_{\iota})$, we have $\Lambda(X_{\iota}) = \Gamma$, for otherwise there would be further connected components X_{j} with two-dimensional $\Lambda(X_{j})$. And if $\Lambda(X_{\iota})$ is one-dimensional, it must be generated by a primitive lattice vector of Γ , for otherwise there are several collinear copies of X_{ι} , which contain alternating points of the same one-dimensional sublattice, and which are translates of each other, so they intersect.

So there are three possible cases: either all connected components have trivial Λ , or there are connected components with a one-dimensional Λ which is generated by a primitive vector of Γ , or there is one component with $\Lambda = \Gamma$, and the complement consists of bounded sets with trivial Γ .

If there is a component X_{ι} with one-dimensional Λ which is generated by $v \in \Gamma$, then $p(X) \geq 2\frac{\|v\|}{\det(\Gamma)}$. For let $w \in \Gamma$ be a vector such that $\{v, w\}$ generates Γ (this exists, since v is primitive). Then $(zw + X_{\iota})_{z \in \mathbf{Z}}$ are further connected components of X. For each $m, n \in \mathbb{N}$ the parallelogram 0, mv, mv + nw, nw is intersected by n + O(1) copies of X_{ι} , each of which (with the exception of the first and last O(1) copies) has a boundary length of at least $2m\|v\|$ within this parallelogram (which is of area $mn \det(\Gamma)$. So the density contributed by the translates of X_{ι} is at least $2\frac{\|v\|}{\det(\Gamma)}$ for some nonzero $v \in \Gamma$. Since the set has minimal p(X), it must be at least as good as the parallel strips construction of the theorem, so v is a vector of minimum length, and there are no other connected components in X (which could only increase p(X)).

So we may restrict us to the case that no X_{ι} has one-dimensional Λ . Exchanging X and $\mathbb{R}^2 \setminus X$ one sees that the other two cases are symmetric. Therefore we consider only the first case, i.e. all connected components have trivial Λ . Then we can partition the connected components into equivalence classes by Γ ; we select one element $(\hat{X}_{\kappa})_{\kappa \in K}$ of each equivalence class. Since there is one copy of each \hat{X}_{κ} per each fundamental domain of Γ , we have $v(X) = \frac{1}{\det(\Gamma)} \sum_{\kappa \in K} \operatorname{vol}(\hat{X}_{\kappa})$ and $p(X) = \frac{1}{\det(\Gamma)} \sum_{\kappa \in K} p(\hat{X}_{\kappa})$. For each \hat{X}_{κ} we may apply the standard isoperimetric inequality, giving $p(\hat{X}_{\kappa}) \geq 2\sqrt{\pi \operatorname{vol}(\hat{X}_{\kappa})}$, so we get

$$p(X) \ge \frac{1}{\det(\Gamma)} \sum_{\kappa \in K} 2\sqrt{\pi \operatorname{vol}(\hat{X}_{\kappa})} \ge \frac{2}{\det(\Gamma)} \sqrt{\pi \sum_{\kappa \in K} \operatorname{vol}(\hat{X}_{\kappa})} = 2\sqrt{\frac{\pi}{\det(\Gamma)}} v(X).$$

The same lower bound, with 1-v(X) instead of v(X), holds in the last case (one X_{ι} with $\Lambda(X_{\iota}) = \Gamma$), in which we exchanged X and $\mathbb{R}^2 \setminus X$. The lower bound of the theorem is now the minimum of the three possibilities for the extremal sets. This proves the theorem.

4. References

[1] H. Hadwiger: Gitterperiodische Punktmengen und Isoperimetrie, Monatshefte für Mathematik 76 (1972), 410–418

- [2] U. Schnell: Lattice inequalities for convex bodies and arbitrary lattices, Monatshefte für Mathematik 116 (1993) 331–337.
- [3] U. Schnell: Minimal determinants and lattice inequalities Bull. London Math. Soc. 24 (1992) 606-612
- [4] U. Schnell and J. Wills: Two isoperimetric inequalities with lattice constraints, Monatshefte für Mathematik 112 (1991) 227–233