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Abstract. Injection of IP packet loss is a versatile method for emu-
lating real-world network conditions in performance studies. In order to
reproduce realistic packet-loss patterns, stochastic fault-models are used.
In this report we desribe our implementation of a Linux kernel module
using a Continuous-Time Gilbert Model for packet-loss injection.

1 Introduction

Testbed-driven performance and dependability evaluation of distributed systems
requires the emulation of a realistic networking environment. Common distur-
bances such as packet loss may have an adverse effect on both dependability
and performance of the network. As illustrated in e.g. [1,2], packet loss may
affect dependability of higher networking and system layers even with the reli-
able TCP protocol, which guarantees reliable data transmission. Consequently,
methods for reproducing disturbances are required.

Injection of IP packet loss is an indispensible tool when evaluating fault-
tolerant network protocols. Fault injection at the IP level also provides a con-
venient way for assessing performance and reliability of distributed systems in
which the network stack is considered just an off-the-shelf component. As the in-
jected faults force the network stack to apply the same fault-handling procedures
that are executed under real-world operating conditions (such as e.g. packet re-
transmissions in TCP), the same operational patterns of the network stack that
are present in a real network can be expected to emerge in the testbed.

IP packet loss patterns have been the focus of intense study in the past
decades (e.g. [3-5]). While in the simplest case packet loss may be described
by a Bernoulli model, packet loss is often comprised of bursts of elevated loss
probability, which can be modelled more closely with Gilbert-Elliot (GE) mod-
els [3-5]. A Gilbert-Elliot model describes the loss process as a Markov Chain
with different loss probabilities for each state.

There exist a number of fault injection modules for the Linux kernel. The
Bernoulli loss model is implemented by the default Linux kernel module Netem.!

! Note that Netem supports the injection of other disturbances as well as a simple
correlated loss model, but these are out of scope for this report.
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Fig. 1. General approach to packet-level fault-injection.

In [6] the default module was modified such that it allows replaying packet-loss
traces. The Netem-CLG (Correlated Loss Generator) module [7] extends the
default Netem implementation by a discrete-time extended Gilbert-Elliot model.
In this report we describe our implementation of a continuous-time Gilbert-
Elliot model for packet-loss generation in the Netem module. We start with the
theoretical background in Section 2. We then describe our modifications to the
default module in Section 3 before illustrating installation and use of the module
in Section 5.

2 Background

The most straightforward way of injecting packet loss according to a loss process
described by a loss model is depicted in Figure 1: One computer is set up to
act as a router between two or more hosts or networks. On this machine, the
TCP/IP stack is augmented by a fault-injection (FI) module. For each arriving
outside packet the FI module determines whether to forward the packet to its
destination or to discard it, according to the loss model. With a Bernoulli loss
model, for each packet one trial is performed and the packet is dropped according
to the outcome of this trial. With a Markovian (or Gilbert) model, the dropping
probability for the Bernoulli trial is selected according to the current state of
the model when the packet arrives. Markovian models have the advantage that
they enable accurate modelling of elevated loss models or loss bursts.

Markovian loss models, often called Gilbert models are typically defined as
Discrete-Time Markov Chains (DTMCs) (e.g. [5]). The left part of Figure 2
shows an example of a two-state discrete-time Markovian loss model with loss
probabilities [; and Iy and state transition probabilities p12 and po;. In a DTMC
loss model, state changes occur at discrete time intervals. Certainly, this view is
appropriate for modelling the loss process as described by a packet trace: Each
packet constitutes a time instant at which a state-change may occur. Implemen-
tation of fault-injection using a discrete-time model is straightforward as well:
With each arriving packet the next state is selected randomly from the possible
successor states (including the same state) of the current state.

In the NetemCG module we take an alternative view, in that we assume
a Continous-Time Markov Chain (CTMC), instead of a DTMC. Here, state
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Fig. 2. DTMC and CTMC models of the packet-loss process.

sojourn times are described by exponentially distributed random variables. The
right-hand side of Figure 2 illustrates a two-state continuous-time Markovian
loss model, again with loss rates l1,lo. Transition rates are A12 and A\9;. Packet-
loss injection according to a continuous-time Gilbert model is implemented by
playing the CTMC, as follows: Upon entering a state, the state sojourn time is
drawn from an exponential distribution with rate equal to the sum of outgoing
rates. When this time has passed, the next state is chosen based on the embedded
Markov chain.

The main difference between the DTMC and CTMC models is that the for-
mer only perform state-changes if and when a packet arrives, whereas state-
changes in the latter occur independently of the arrival process. That is, the
former actually relies on a DTMC embedded in the arrival process, whereas the
latter is independent of the arrival process. While both models are equally capa-
ble of describing a packet-loss trace, they have different effects on packet streams
whose arrival rate changes in response to packet loss, as illustrated in [8].

3 Implementation

We implemented support for the continuous-time Gilbert model as a modifi-
cation of the Netem module. The model is specified in a text file and sent to
the Netem module via the tc command from the iproute2 package [9]. Some
hands-on examples for using the module are shown in Section 5. In the follow-
ing subsections we describe a few of the implementation challenges, and our
approaches to solving them.

3.1 Parameter specification

A loss model in NetemCG consists of at least one node, and an arbitrary (in-
cluding zero) number transitions. It is possible to create a loss model with an
arbitrary number of nodes and transitions. Both the default Netem module and
the NetemCLG module only allow for small models with fixed size and thus
require only a few parameters for specifying the fault process. These parame-
ters can easily be specified on the command-line of the tc tool. However, this
simplicity comes at the cost of allowing only a limited number of states. For the
NetemCG module, where we wanted to be able to specify an arbitrary number



ModelDescription = { ‘\#’ { Comment } ‘\n’

{7 “\n’ }

| Node ‘\n’};
Comment = { Any character };
Node = NodeNumber LossProbability {[ TramsitionList ]} ‘\n’};
NodeNumber = Any natural number;
LossProbability = Any real number in [0,1];
TransitionList = { Transition };
Transition = (NodeNumber ‘,’ TransitionRate, ¢,’ Scale);
TransitionRate = Any natural number;
Scale = Any integer number;

Fig. 3. NetemCG Input File Syntax

of states, parameter specification on the command line would have been imprac-
tical. Therefore, we augmented the tc tool such that it loads model descriptions
from a text file and transmits them to the kernel module. This was made diffi-
cult by the fact that the routines used for communication with the module are
limited with respect to the size of the data to be transmitted. Note that a sim-
ilar problem was encountered by the authors of the trace-driven approach [6],
where the trace had to be loaded into the kernel module. In [6], an additional
problem was the size of the trace, which could be larger than the amount of
memory available to the module. The solution applied by [6] was to load the
trace sequentially, sending a new chunk on-demand. In NetemCG, we need the
complete model inside the module at any time, and cannot load it on-demand.

We implemented loading the model into the kernel as follows: First, the
CTMC model described in the input file is parsed and the Embedded Markov
Chain (EMC) as well as the mean sojourn times for each state are computed. We
then transmit the number of nodes, the list of nodes (specified by their sojourn
times) and finally the EMC to the kernel, using the Netlink interface.

The syntax of the model file is straightforward: Each line can contain either
whitespace, a comment, or the description of a node. Comments are specified
by starting the line with a #. Nodes are specified by the number of the node,
followed by the loss probability (in [0,1]) and the list of transitions in brackets.
Each transition is a tuple of the number of the target state, the transition rate,
and the exponent of the scale parameter (more on that in the next section).
Figure 3.1 gives the EBNF description of the input file syntax.

3.2 State Transitions

The loss process is generated in the kernel module as follows: First, each time a
packet arrives a Bernoulli experiment is performed using the current loss prob-
ability. Second, packet loss probabilities change according to the CTMC loss
model, i.e. every time the CTMC enters a new state, that state’s loss proba-
bility becomes the current loss probability. The CTMC is played based on the



EMC and the state sojourn rates. Upon entering a state, the module draws an
exponentially-distributed random number with parameter equal to that state’s
sojourn rate, and sets a kernel timer using this value. When the timer expires,
the module chooses the next state based on the outgoing probabilities in the
EMC, and enters the next state. Initially, the module is in the first state given
in the input file.

3.3 Kernel Limitations

Since the module runs within the Linux kernel, a few limitations do apply. First,
the kernel does not support floating-point numbers. This requires mapping of
random numbers in the range [0, 1] to the range of long integers ([0,23? — 1]).
Second, in order to be able to specify loss period lengths in different ranges, we
introduced a scale parameter s. The scale parameter is a natural number in the
interval [0,9] and is used as the negative exponent to base 10 when scaling the
rate. Third, in order to generate random variates with exponential distribution
efficiently, we applied the inversion method. Unfortunately, the kernel does not
support the logarithm operation. We remedied this by implementing the loga-
rithm using a table of pre-computed logarithm values, applying binary search to
identify the required value.

Note that some practical limits are imposed by both the kernel and the
range of values for the variables: First, the resolution of the kernel timer limits
the minimum sojourn time for a state. With the default resolution of 250Hz, the
minimum sojourn time is 4 ms. The maximum sojourn time is bounded by the
MAX_INT value, which is typically 232 — 1. Second, the size of data structures in
the tc command limits the maximum mean sojourn time that can be specified
to 10° ms. Third, the sum of all outgoing rates for a node must be less than 232
to avoid overflows.

4 Compilation and Installation of NetemCG

We provide the source code as patches to the Linux kernel source tree and the

iproute2 package. The patches are available at http://cst.mi.fu-berlin.de/staff/reinecke.html.
To patch the Netem module a Linux kernel version 2.6.35 and newer is re-

quired. The patch can be applied as follows:

cd <Linux kermel source>
patch -pl < netemcg-kernel.patch

The new kernel version can then be configured, compiled, and installed in the
usual way. Note that the Netem module must be selected and that kernel modules
must be compiled as well.

Likewise, the iproute2 package needs to be patched by

cd <iproute2 source directory>
patch -pl < netemcg-iproute2.patch



Fig. 4. A simple generic model.

Compilation then consists of running make. The new version may be installed
using make install, although tc can also be run directly from the source di-
rectory.

5 Examples

We start with a discussion of the model file syntax. Consider the model given
in Figure 4. The model consists of two states with loss probability p; and ps and
transition rates A; and As. In order to specify this model for use by NetemCG,
we assign numbers to the states and then give the transitions for each node. In
this example, the model can be described by the following lines:

1 pp [(2, A1 ,00]

2 po [(1, A2 ,0)]

Note the trailing zero in each transition specification. This is the value of
the scale parameter s; for the transition rate. The scale parameter allows the
specification of transition rates less than 1, since the effective transition rate is
computed as

A= -107%

To illustrate this further, let us now assume that Ay = 0.05, A\ = 0.95,p; = 0,
and py = 1.0. The resulting model file examplel.model is

(2,5,2)]

0.
1. (1,95,2)]

10.0[
21.0[

If the model is saved in the file examplel, it can be loaded into NetemCG
with the following command

tc qdisc add dev ethO root netem model examplel.model

Finally, let us consider a larger loss model, as shown in Figure 5. This model
contains multiple states and multiple transitions. Note that state 2 has two
outgoing transitions. We can specify the model as

1 0.0 [(2,2,0)]
2 1.0 [(1,5,1)(3,5,1)]
3 0.5 [(1,3,0)]
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Fig. 5. Example 2: Loss model with multiple nodes und multiple transitions.

A3 =0.5

6 Conclusion

In this report we gave a description of the NetemCG module for injecting packet
loss using a continuous-time Gilbert-model with arbitrary structure and size.
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