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1 Introduction
Because of their referential transparency, pure functional languages are especially well
suited for implementation on parallel machines. Since they do not allow side effects, subex-
pressions can be evaluated in arbitrary order or in parallel. Lazy functional languages with
lazy evaluation retain this property as well. But with these languages a subexpression will
not be evaluated until its result is necessary for another computation. Therefore it is not
possible to decide if a subexpression is ever evaluated. There is only one situation where
this decision can be made - when a function is called which is known to evaluate its argu-
ment in any case. A lot of work has been done to find as many of these arguments as possi-
ble (strictness analysis). Until now the information obtained by this analysis has not proved
to be able to produce enough independently evaluable expressions to saturate large multi-
processors. One reason for this is the fact that strictness only means that evaluation to weak
head normal form is necessary. But expressions are much more complex and often they are
evaluated further than to weak head normal form. The evaluation transformer analysis [2,
17, 18] addresses this topic. It reasons about the amount of evaluation an argument will go
through, if the function is evaluated with a particular amount of evaluation. If for instance a
call to a function which counts elements of lists is evaluated, the complete list structure will
be evaluated, but no element needs any evaluation. The argument for a function adding all
elements of number lists will be evaluated completely, i.e. evaluation to normal form. The
evaluation transformer analysis1 seems to produce many more computable expressions than
simple strictness analysis.
Some work to implement lazy functional languages using evaluation transformers has al-
ready been done [1, 6, 8, 10, 12]. But all these approaches mainly deal with evaluators for
simple structured types like lists and trees. The problems arising when using evaluators for
general structured types are not addressed. One reason for this is the absence of practicable
analysis methods for this general case. [17] deals with evaluation transformer analysis for
structured types, but it restricts the types which can be analysed. Further work on practica-
ble analysis methods is on the way [18].
This report defines a universally valid evaluator space containing evaluators for general
structured types as well as polymorphic types, and a parallel abstract machine which imple-
ments evaluation transformers on distributed memory parallel computers like Fujitsu
AP1000 and Cray T3D. As compiler input, a core language program annotated with type
and evaluation transformer information for each function is assumed.
Section 2 defines the evaluator space for structured types. In section 3 the representation of
evaluators at runtime is introduced. Section 4 outlines the abstract machine model used to
implement the language.

2 The Evaluator Space
The amount of evaluation an expression can go through is mainly determined by its type.
Expressions of atomic types like numbers can only be evaluated to normal form, which is
equal to weak head normal form in this case. Another evaluator which can be applied to all
expressions is “no evaluation”. Expressions of structured types can go through many differ-
ent kinds of evaluation.

                                                       
1 There is another terminology: evaluators are called contexts, evaluation transformer analysis is called
context analysis and evaluation transformers are called context maps.
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2.1 Polymorphic Types
Since in modern functional programming polymorphic types play an important role, it is
necessary to pay special attention to this feature. Therefore an evaluator space containing
parameterised evaluators for polymorphic types is defined in this report. Functions over
polymorphic types can have transformers for parameterised evaluators.

An example for the problem addressed here is the function reverse for polymorphic lists.
Some of the evaluators of type [α]2 are for instance:

• no evaluation
• evaluate to weak head normal form
• evaluate the complete list structure and do not evaluate any element
• evaluate the complete list structure and evaluate each element using evaluator a

One of the evaluation transformers of reverse : [α] -> [α] is:
“If the application of reverse is evaluated
to weak head normal form, then the complete
structure of its argument will be evaluated,
but no element needs to be evaluated. ”

Another evaluation transformer of reverse : [α] -> [α] is:
“If the application is evaluated to complete
structure, and each element is evaluated using
evaluator a, then the argument will be evalu-
ated to the same degree.”

The evaluator a belongs to type α. The transformer is valid for all types α and all evaluators
a.
Because it is desirable to compile a function over polymorphic types only once, the types
used for α during runtime cannot be determined at compile time. In the case of separate
compilation they are not even known. By introducing parameterised evaluators, the result-
ing code is able to split the evaluator at runtime into parts for each argument type and can
propagate them to the appropriate subexpressions.

2.2 Runtime Updating of Evaluators
Often the function called at runtime is not known at compile time. An example for this case
is the function select.

During the execution of app the evaluator valid for list is not known until expr has

been evaluated. In particular it is not known at compile time. There is no evaluation trans-
former information for app available. The only safe evaluation which can be applied to

                                                       
2 In the remainder Greek letters like α,β and τ are used for type variables and Latin letters like a,b and c are
used for evaluator variables.

> select = if expr then
>            reverse
>          else
>            λx.[]
> app list = select list
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list is “no evaluation”. But since reverse has an evaluation transformer, the reduction
process is able to initiate the evaluation of list to complete structure as soon as the ex-
pression reverse list has been built. The evaluator will be determined at runtime.
The expression used as argument list can be used in other expressions as well. So it
might have already obtained an evaluator. In this case it is necessary to “merge” two evalu-
ators to obtain a new one which performs as much evaluation as both evaluators one after
the other would do.

2.3 Evaluators
The evaluator ξNO

3, which does nothing, can be applied to all types. Atomic types like num-
bers and structured types, containing only parameterless constructors, allow only one addi-
tional evaluator ξNF = ξWHNF which evaluates a term to its normal form. Evaluators for struc-
tured types are defined recursively over the structure of the type. A structured type has
some polymorphic type arguments and consists of some alternatives having a constructor
and zero or more type expressions as arguments. Evaluators for a given structured type are
defined by a tuple of evaluators - one for each argument type of the constructors. For re-
cursive type definitions the evaluators can also be defined recursively. Each evaluator ex-
cept ξNO implies the evaluation to weak head normal form.

The example for the following explanations is a tree parameterised by types for values con-
tained in leaves and nodes.

> data Tree α β = Leaf α
>               | Node (Tree α β) β (Tree α β)

Some evaluators might be:
• No evaluation

ξNO

• Evaluation to weak head normal form and a given evaluation a to the argument if the
term is a leaf and evaluation b to the second argument if the term is a node, no recursive
evaluation

ξHEAD a b= {Leaf(a), Node(ξNO, b, ξNO)}4

• The evaluation to weak head normal form ξWHNF can be obtained by parameterising ξHEAD

with ξNO for both subtypes.
• Evaluation of the complete structure and a given evaluation a to the values of all leaves

and evaluation b to the values of all nodes
ξTREE a b= {Leaf(a), Node(ξTREE a b, b, ξTREE a b)}

• The evaluation which evaluates the complete structure and no value can be obtained by
parameterising ξTREE with ξNO for both subtypes.

                                                       
3 The letter ξ for evaluators was introduced by [2] because it looks like the letter E.
4 evaluate to WHNF, apply the appropriate evaluators to the arguments of the resulting constructor
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• Evaluation of an alternating path through the tree starting left and a given evaluation b to
the values of all nodes on the path, a given evaluation a to the value of the leaf at the end
of the path

ξPL a b= {Leaf(a), Node(ξPR a b, b, ξNO)}
• Evaluation of an alternating path through the tree starting right and a given evaluation b

to the values of all nodes on the path, a given evaluation a to the value of the leaf at the
end of the path

ξPR a b= {Leaf(a), Node(ξNO, b, ξPL a b)}

2.4 Combining Evaluators
Two evaluators can be combined to one evaluator which performs exactly as much evalua-
tion as the two evaluators would do one after the other. The combination operator is de-
noted by ∪ξ .

ξ1= {Leaf(a1), Node(b1,c1,d1)}
ξ2= {Leaf(a2), Node(b2,c2,d2)}
⇒
ξ1 ∪ξ

α β( )Tree ξ2= {Leaf(a1 ∪ξ
α  a2), Node(b1 ∪ξ

( )Tree ab  b2, c 1 ∪ξ
β  c 2,d1 ∪ξ

α β( )Tree  d2)}

The combination of evaluators must not depend on the parameters of the combined opera-
tors.

The combination operation ∪ξ
τ

 for evaluators of type τ satisfies the rules:

(1) aτ ∪ξ
τ  aτ = aτ

(2) aτ ∪ξ
τ  bτ = bτ ∪ξ

τ  aτ

(3) (aτ ∪ξ
τ  bτ) ∪ξ

τ  cτ = aτ ∪ξ
τ  (bτ ∪ξ

τ  cτ)

Examples:
(ξTREE a b) ∪ξ

α β( )Tree (ξTREE ξNO ξNO ) = (ξTREE a b)

(ξHEAD a1 b1) ∪ξ
α β( )Tree (ξTREE a2 b2) = (ξHTREE a1 b1 a2 b2)

with: ξHTREE a1 b1 a2 b2 = {Leaf(a1),Node(ξTREE a2 b2, b1, ξTREE a2 b2)}

(ξTREE a1 b1) ∪ξ
α β( )Tree  (ξPL a2 b2) = (ξSPL a1  b1 a2 b2)

with:
              ξTPL a1 b1 a2 b2= {Leaf(a1 ∪ξ

α  a2), Node((ξTPR a1 b1 a2 b2), b1 ∪ξ
β

 b2, (ξTREE a1 b1))}

              ξTPR a1 b1 a2 b2= {Leaf(a1 ∪ξ
α  a2), Node((ξTREE a1 b1), b1 ∪ξ

β
 b2, (ξTPL a1 b1 a2 b2))}

The set of evaluators for a particular type τ found in the source program is finite. The set of
evaluators which can be constructed by combining an arbitrary number of evaluators from
the source program forms the evaluator space Eτ for type τ. The properties of ∪ξ

τ  ensure
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the finiteness of Eτ. The set of evaluators found in the source program is a system of
generators for Eτ. Its existence is sufficient for the implementation proposed in this report.
For a more efficient implementation it is desirable to find an orthogonal basis for Eτ. Until
now it is not completely clear how such a basis can be constructed. In the remaining parts of
this report the set of evaluators which generates the evaluator space is called evaluator basis
although it is only proved to be a system of generators.

3 Evaluator Representation
The input for compilation described in this report is a core language program annotated by
evaluation transformer information. Each function has a transformer which maps evaluators
for the function application to evaluators for arguments. The finite set of evaluators for each
type found in the source program is collected, completed with respect to ∪ξ  and the

evaluator basis is computed.

3.1 Evaluator Identifiers
During runtime an evaluator is represented by an identifier. The main idea is to choose this
identifier in such a way that the combination of two evaluators is simply a binary OR opera-
tion. This trick leads to a very efficient implementation of dynamic evaluator changes.

The first bit in each identifier indicates whether this identifier is continued in the next ma-
chine word5. Each of the evaluators in the evaluator basis corresponds to a bit in the main
identifier starting at the fifth bit. The evaluator ξWHNF which plays a special role corresponds
to the first bit of these. Because all other evaluators can be defined as a combination of basis
evaluators, their identifiers are composed from the basis identifiers by binary OR.
The bit for ξWHNF is set to 1 in all evaluator identifiers except ξNO. The main identifier is fol-
lowed by identifiers for the parameters. Because an evaluator can be combined from all
evaluators contained in the evaluator basis, it possibly uses all parameters of these evaluat-
                                                       
5 The word size depends on the target processor.

number of bits for parameter length fields

number of bits for first parameter evaluator-1

number of bits for second parameter evaluator-1

identifier for second parameter evaluator

identifier for first parameter evaluator

main identifier for evaluator

00 10

1 if the identifier is continued in the next word

0 0 11

Figure 1: Evaluator Identifier
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ors. Therefore the identifier has as many parameters as all basis evaluators together. The
lengths of the parameter identifiers are not known for polymorphic types, hence each pa-
rameter is preceded by its length. The number of bits used for the parameter length is de-
termined once and stored in the second to fourth bit of the complete identifier. If all pa-
rameter types are atomic, the length information is omitted. The length of the main identifier
need not be stored since it is only used in contexts where the type the expression delivers is
known. The first bit is used to determine the length of the complete identifier in situations
where the type is unknown. Because the length fields in all evaluators for a particular type
are equal, they will not be changed during binary OR operations6.

3.2 Examples
Expressions of atomic types like numbers or functions can only be evaluated using ξWHNF =
ξNF or ξNO. The evaluation basis for such types only contains ξWHNF. The main identifier
needs only one bit. There are no arguments, therefore it is not necessary to store the number
of bits for the argument length fields. The following identifiers are assigned to the evaluat-
ors:

ξNO = 0.07

ξWHNF = 0.1

Expressions of list types can be evaluated using the evaluators:
ξNO

ξWHNF a = {Nil, Cons a ξNO}
ξSPINE a = {Nil, Cons a (ξSPINE a)}

Possibly there are more sophisticated evaluators, but in this example the source program is
assumed to contain only these three. The evaluator basis contains ξWHNF and ξSPINE. Since
each of them has one argument, the complete identifier needs two arguments. The main
identifier 10 is assigned to ξWHNF. The evaluator ξSPINE corresponds to the main identifier
11. The first bit for ξWHNF is set in identifiers for all types except for ξNO.
If the list is parameterised with atomic types, the following identifiers are assigned to the
evaluators:

ξNO = 0.000.00.0.0
ξWHNF ξNO = 0.000.10.0.0
ξSPINE ξNO = 0.000.11.0.0
ξWHNF ξWHNF = 0.000.10.1.0
ξSPINE ξWHNF = 0.000.11.0.1

This example uncovers a problem of the chosen evaluator basis. The identifiers
0.000.11.0.1 and 0.000.11.1.1 describe the same evaluator. It would be better to take

ξTSPINE a = {Nil, Cons(ξNO , ξWHNF a ∪ξ  ξTSPINE a)}

as the second basis evaluator.

                                                       
6 This is also valid for instances of polymorphic types, because only evaluators for the same instance of a
polymorphic type are combined.
7 To improve readability the identifier parts are separated by dots.
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If the list is parameterised with a list of atomic types the following identifiers are assigned to
the evaluators:

ξNO = 0.011.00.110.0000000.110.00000008

ξSPINE (ξWHNF ξWHNF) = 0.011.11.110.0000000.110.0001010
ξWHNF (ξSPINE ξNO) = 0.011.10.110.0001100.110.0000000
ξWHNF (ξSPINE ξNO) ∪ξ ξSPINE (ξWHNF ξWHNF)= 0.011.11.110.0001100.110.0001010

The type Tree defined in section 2.3 has four evaluators in the evaluator basis:
ξHEAD a b= {Leaf(a), Node(ξNO, b, ξNO)}
ξTREE a b= {Leaf(a), Node(ξTREE a b, b, ξTREE a b)}
ξPL a b= {Leaf(a), Node(ξPR a b, b, ξNO)}
ξPR a b= {Leaf(a), Node(ξNO, b, ξPL a b)}

Thus the main identifier is four bits long. Each of the evaluators has two arguments. The
complete identifier needs eight arguments. If it is parameterised with atomic types the fol-
lowing identifiers are assigned to the evaluators:

ξHEAD a b= 0.000.1000.a.b.0.0.0.0.0.0
ξTREE a b= 0.000.1100.0.0.a.b.0.0.0.0
ξPL a b= 0.000.1010.0.0.0.0.a.b.0.0
ξPR a b= 0.000.1001.0.0.0.0.0.0.a.b

The letters a and b are replaced by 1 if the corresponding subexpression must be evaluated
and otherwise by 0.

4 The Abstract Machine
The abstract machine described in this section is spineless and almost tagless. The activation
records controlling the reduction process are placed in graph nodes. This makes handling of
tasks across different processors much easier. There is no special scheduling processor. All
processors are involved in load balancing, synchronisation, etc. This enables the machine to
be scalable even on large networks of processors. Because shared memory multiprocessor
machines are not truly scalable, the parallel machine underlying the abstract model is as-
sumed to have a distributed memory architecture.
The parallel abstract machine has a number of processing elements. Each element contains a
processor and local memory. The access times to local memory are assumed to be much
shorter than accesses to other processing elements. At every moment each processor exe-
cutes different instructions on different data (MIMD - multiple instruction multiple data). It
is not practicable to load each processor on machines with many processing elements with
its own program. Therefore all processors are assumed to run the same program (SPMD -
single program multiple data). The parallel abstract machine model does not commit the
kind of communication between processing elements. There are only a few more abstract
communication instructions like “transfer a graph node from processing element x to proc-
essing element y”. The actual implementation is shifted into the runtime system. This en-
ables the machine to be implemented on different types of distributed memory computers as
efficiently as possible.

                                                       
8 The size of machine words is assumed to be at least 32 bit. If it were 16 bit, the identifier would be split
into the words 1.011.00.110.0000000 and 0.110.0000000. The first bit indicating whether the id is
continued in the next word, is contained in each word.
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The abstract machine works on three different types of data. The graph nodes are used to
represent expressions still to be evaluated. They build a possibly cyclic graph. There is one
start node which represents the main function call of the functional program. The second
data structure is the reducible nodes queue which holds references to graph nodes reducible
at the moment. The third data structure represents function tables. These tables contain
pointers to functions which handle different events. Graph nodes always refer to a function
table. The tables are statically allocated at program start-up time.

4.1 Graph Nodes
The expressions still to be evaluated are represented as a graph.

An ordinary graph node consists of several parts:
• a pointer to a function table
• a pointer to a list of graph nodes waiting for the weak head normal form of this graph

node
• a pointer to a list of graph nodes waiting for the normal form of this graph node
• a counter used to count the subexpression not yet evaluated completely
• references to other graph nodes, one for each argument
• an entry which holds the current evaluator identifier

Because the number of arguments and the size of evaluators vary, the size of graph nodes is
not fixed. Their size cannot even be computed at compile time. The function table is a stati-
cally created array of function pointers to handle the different events which can happen to a
graph node. The references to arguments point to graph nodes. The evaluator is stored at
the end of the graph node. Thus it is not necessary to know the evaluator size to access the
arguments.

arguments

evaluator

counter

nodes waiting for NF

nodes waiting for WHNF

function table

Figure 2: Ordinary Graph Node
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Indirection graph nodes are used to refer to another graph node. They are necessary if a

graph node has to be updated with a constructor or function application requiring more
space than before. The node is updated with an indirection node containing a reference to a
new graph node. Because these nodes are always located on the same processing element,
they do not contain a processor field. If a graph node is located at another processor, an
indirection node points to it. Only these indirection nodes contain a processor field. In order
to avoid multiple references from one processor to the same node at another processor, all
references to this node are routed through the same indirection node.

Graph nodes are allocated dynamically and may become unused without notification. There-
fore a garbage collector is necessary. In other implementations of functional programming
languages many different techniques are used. Generational garbage collection seems to be
the most successful technique [15]. Although they have several drawbacks, simple algo-
rithms as weighted reference counting have proved to work satisfactorily [9, 11]. Recent
work also promises good properties for mark and scan algorithms [4, 19].

4.2 Reducible Nodes Queue
The reducible nodes queue (RNQ) is the main control structure of the abstract machine de-
scribed here. Each processor has its own queue. It holds references to graph nodes in local
memory still to be reduced. The main execution loop of the machine takes one node from
the queue and performs the necessary steps for its reduction. These steps may lead to other
reduction tasks. A reducible node is appended to the RNQ if the processor has the possibil-
ity to continue evaluation in more than one direction. This can happen in two cases:
• A function application has an evaluation transformer which initiates evaluation for argu-

ments. All the nodes which have received an evaluator are appended to the RNQ. The
processor continues the normal reduction process.

• A function has more than one strict argument. The first arguments are appended to the
RNQ. The last one is evaluated by the processor itself.

The reduction process for a program is started by creating a node for the main function and
appending it to the reducible nodes queue. The reduction stops if this main node has been
evaluated to normal form.
If a processor needs to evaluate a node located on another processing element, it informs
the other one. The exact technique used to notify other processors depends on the underly-
ing architecture. On the other processing element the task will be appended to the RNQ.
The reducible nodes queue always points to nodes on the same processing element. This is
commonly called “owner computes rule”. If a processor runs out of work, i.e. its RNQ is
empty and the main node has not yet reached normal form, it queries other processors for
work. Another processor which has enough reducible nodes transfers at least one node.

graph node

processor

function table

Figure 3: Indirection Graph Node
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Then the evaluation process continues until again a processor runs out of work. The tech-
nique, not to transfer tasks to other processors before the other processor has run out of
work, is also called lazy task creation [13]. If all processors are busy, no transfers take
place.
The reducible nodes queue is used from both ends. The local processor always uses the one,
while reducible nodes transferred to other processing elements are taken from the other.
This hopefully leads to transfers of large tasks. Evaluation requests from other processors
are put at the “local” end of the queue. In order to prevent the other processing element
from waiting they should be served as fast as possible.
The structure of the RNQ entries depends on the underlying architecture. On machines with
a message based communication system like Fujitsu AP1000 the reducible nodes queue only
holds pointers to graph nodes. On virtual shared memory machines like Cray T3D, where
communication is done by accessing the memory of another processing element, the RNQ
also contains additional data which determines the action to be performed. This is necessary
if a particular communication cannot be done by the initiating processing element alone.
Then an action is put into the RNQ and the other processor will execute it when it accesses
the reducible nodes queue the next time. In this case the RNQ partly works like a message
queue.

4.3 Graph Node Function Table
There are five events a graph node must deal with:
evaluate: The node has to be evaluated with a particular evalua-

tor.
evaluateWHNF: The node has to be evaluated with a particular evalua-

tor. It has to notify the father node if weak head normal
form is reached.

evaluateNF: The node has to be evaluated to normal form. It has to
notify the father node if the evaluation has been com-
pleted.

activate: The node has just been removed from the RNQ and has
to be reduced.

childEvaluated: A subnode (child) has been evaluated to (weak head)
normal form.

A function table consists of  a couple of function pointers. For each of the six events an
entry exists. These entries point to functions which handle events. Only these five events are
possible for all types of graph nodes. So it is not necessary to look at the type of a node
before “jumping” to the appropriate message handler. This has already been used in many
implementations of functional programming languages, for instance the spineless tagless G-
machine [14], the Three Instructions Machine [16] and the jump-machine [3].
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A graph node can take seven different states. A node reacts in each of these states very dif-
ferently to a particular event. Therefore one function table corresponds to each state. For
each function four function tables and for each constructor three function tables exist. State
transitions are performed by replacing the function table pointer. All events, their meaning
and the actions performed as response to each event are listed below:

State APP:
The node represents a function application. It is not yet clear if it will ever be evalu-
ated. No evaluator is assigned to the node. The lists of fathers waiting for (weak
head) normal form are empty. The counter field is undefined.
• Event: evaluate; arguments: evaluator
 • assign evaluator to graph node
 • call the appropriate evaluation transformer
 • change state to RED_WHNF
 • insert the node into the RNQ or call activate9

• Event: evaluateWHNF; arguments: evaluator, father
 • assign evaluator to graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for weak head normal form
 • change state to RED_WHNF
 • insert the node into the RNQ or call activate

                                                       
9 This depends on whether there are other possible reduction paths to continue. If there is only this one, the
node is activated immediately without using the reducible nodes queue.

APP

RED_WHNF

CON

CON_NF

RED_NF

NF

evaluateNF

evaluateWHNF

evaluateNF

evaluateNF

childEvaluated

childEvaluated

childEvaluated

RED

evaluate

evaluateWHNF

evaluateNF

childEvaluated

Figure 4: States for Ordinary Graph Nodes
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• Event: evaluateNF; arguments: evaluator, father
 • assign evaluator to graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for normal form
 • change state to RED_NF
 • insert the node into the RNQ or call activate
The events activate and childEvaluated do not occur.

State RED:
The node represents a function application which must be evaluated at least to weak
head normal form. It already has an evaluator. The lists of fathers waiting for (weak
head) normal form are empty. There are two different cases for a node in state RED.
Prior to the call of activate, the node is contained in the reducible nodes queue
of its processing element and the counter field is undefined. Afterwards it is not
contained in the RNQ and the counter field holds the number of arguments not in
weak head normal form but necessary for the reduction of the function application.
• Event: evaluate; arguments: evaluator
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
• Event: evaluateWHNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for weak head normal form
 • change state to RED_WHNF
• Event: evaluateNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for normal form
 • change state to RED_NF
• Event: activate
 • store number of strict arguments in the counter field
 • initiate the evaluation of strict arguments by calling their evaluateWHNF-

handlers
• Event: childEvaluated
 • decrease the counter
 • if the counter reaches zero reduce the graph node (i.e. update)

State RED_WHNF:
The node represents a function application which must be evaluated at least to weak
head normal form. It already has an evaluator. The list of fathers waiting for weak
head normal form contains at least one reference. The list of fathers waiting for
normal form is empty. There are two different cases for a node in state RED_WHNF.
Prior to the call of activate, the node is contained in the reducible nodes queue
of its processing element and the counter field is undefined. Afterwards it is not
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contained in the RNQ and the counter field holds the number of arguments not in
weak head normal form but necessary for the reduction of the function application.
• Event: evaluate; arguments: evaluator
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
• Event: evaluateWHNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for weak head normal form
• Event: evaluateNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • call the appropriate evaluation transformer
 • insert father into the list of fathers waiting for normal form
 • change state to RED_NF
• Event: activate
 • store number of strict arguments in the counter field
 • initiate the evaluation of strict arguments by calling its evaluateWHNF-

handler
• Event: childEvaluated
 • decrease the counter
 • if the counter reaches zero reduce the graph node (i.e. update)
 • if the node is updated to weak head normal form, call the childEvalu-

ated-handler for all fathers in the appropriate list and change state to
CON_NF.

State RED_NF:
The node represents a function application which must be evaluated to normal form.
This state is very similar to RED_WHNF, but the list of fathers waiting for weak
head normal form is possibly empty. The list of fathers waiting for the normal form
contains at least one reference. The evaluator assigned to the node is ξNF. Therefore
any new evaluator would not change it.
• Event: evaluate; arguments: evaluator
 • do nothing
• Event: evaluateWHNF; arguments: evaluator, father
 • insert father into the list of fathers waiting for weak head normal form
• Event: evaluateNF; arguments: evaluator, father
 • insert father into the list of fathers waiting for normal form
• Event: activate
 • store number of strict arguments in the graph node
 • initiate the evaluation of strict arguments by sending evaluateWHNF
• Event: childEvaluated
 • decrease the counter
 • if the counter is zero, reduce the graph node
 • update the graph node
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 • if the node is updated to weak head normal form, call the childEvalu-
ated-handler for all fathers in the appropriate list and change state to
CON_NF.

State CON:
The node represents a constructor expression. The lists of fathers waiting for (weak
head) normal form are empty. The counter field is undefined.
• Event: evaluate; arguments: evaluator
 • combine evaluator with the evaluator already assigned to the graph node
 • send evaluator parameters to the subexpressions
• Event: evaluateWHNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • send evaluator parameters to the subexpressions
 • notify father by calling its childEvaluated-handler
• Event: evaluateNF; arguments: evaluator, father
 • combine evaluator with the evaluator already assigned to the graph node
 • send evaluator parameters to the subexpressions
 • insert father into the list of fathers waiting for normal form
 • change state to CON_NF
 • call the activate-handler
The events activate and childEvaluated do not occur.

State CON_NF:
The node represents a constructor expression and must be evaluated to normal form.
The list of fathers waiting for weak head normal form is empty. The list of fathers
waiting for normal form contains at least one reference. There are two different
cases for a node in state CON_NF. Prior to the call of activate, the node is con-
tained in the reducible nodes queue of its processing element and the counter field is
undefined. Afterwards it is not contained in the RNQ and the counter field holds the
number of arguments not yet in normal form.
• Event: evaluate; arguments: evaluator
 • do nothing
• Event: evaluateWHNF; arguments: evaluator, father
 • notify father by sending childEvaluated
• Event: evaluateNF; arguments: evaluator, father
 • insert father into the list of fathers waiting for normal form
• Event: activate
 • store number of subexpression in the graph node
 • call the evaluateNF-handlers for all subexpressions
• Event: childEvaluated
 • decrease the counter
 • if the counter is zero, change state to NF and call the childEvaluated-

handlers of all fathers contained in the appropriate list.
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State NF:
The node represents a constructor expression and has reached normal form. The lists
of fathers waiting for (weak head) normal form are empty. The counter field is un-
defined.
• Event: evaluate; arguments: evaluator
 • do nothing
• Event: evaluateWHNF; arguments: evaluator, father
 • notify father by calling its childEvaluated-handler
• Event: evaluateNF; arguments: evaluator, father
 • notify father by calling its childEvaluated-handler
The events activate and childEvaluated do not occur.

State IND_L:
The node is an indirection to a graph node on the same processor. All events are
propagated to the node the indirection points to. The event activate does not
occur.

State IND_R:
The node is an indirection to a graph node on another processor. All events are
propagated to the node the indirection points to. The event activate does not
occur.

4.4 Communication Instructions
There are several situations in the parallel abstract machine where communication between
processing elements is necessary.
• One of the four events evaluate, evaluateWHNF, evaluateNF, childEvalu-
ated is propagated to another processing element. activate events are never sent to
other processing elements.

• A processing element has run out of work and queries another element for work.
• As response to such a request a reducible graph node is transferred to another processing

element.
The communication between processing elements on machines with message based com-
munication is done by active messages [5, 3]. This means each message contains a pointer
to a message handler function which does the necessary things to respond to the message.
The processing element which receives a message only has to call this function. It is not
necessary to look after a message id. The SPMD model where all processors run the same
program makes this technique possible.
On virtual shared memory architectures like Cray T3D the possibility of accessing the mem-
ory of other processors directly without interrupting the other processor promises much
more efficient communication. This advantage can be used for work requests and node
transfers in a rather straightforward way. The processing element which runs out of work
reads the reducible nodes queue of the other element. If there are enough nodes the
processing element reads a graph node, creates a copy of it in its own memory and over-
writes the source with an indirection. All other messages depend on the graph node state. It
is not yet completely clear how to use direct memory access in these cases. The first idea is
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to introduce more sophisticated entries in the reducible nodes queue. If each entry contains
an action, the receiving processing element could call the appropriate event handler as soon
as it accesses the RNQ the next time.

5 Conclusion and Further Work
This report outlines a technique to implement lazy functional languages on distributed
memory parallel machines using the evaluation transformer model of evaluation. It intro-
duces for the first time the possibility of handling evaluators even for structured types. But a
lot of work still has to be done.
• The theoretical foundation has to be worked out. In particular the construction of an

evaluator basis should be investigated.
• Each graph node maintains lists of father nodes which must be notified if a (weak head)

normal form is reached. Another possibility to carry out this notification is to let the fa-
ther check the reduction state of its subnodes regularly. Some work [7] promises a better
performance for this polling technique.

• On modern microprocessors pipelining and caching try to minimise memory accesses
during program execution. The extensive use of function tables may lead to poor per-
formance on these processors since jumps may cause pipeline breaks. It should be inves-
tigated whether some kind of tagging nodes instead of general taglessness performs bet-
ter.

• The implementation proposed in this report may not be the most efficient for all possible
functional programs. It has to be investigated which kinds of programs will be supported
best.

• Some implementation experiments have already been done. A simple prototype has been
implemented, but the main work is still to be carried out.
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