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Abstract� There is a natural way to associate with a poset P a hypergraph
HP� called the hypergraph of incomparable pairs� so that the dimension of
P is the chromatic number of HP� The ordinary graph GP of incomparable
pairs determined by the edges in HP of size � can have chromatic number
substantially less than HP� We give a new proof of the fact that the dimension
of P is � if and only if GP is bipartite� We also show that for each t � �� there
exists a poset P for which the chromatic number of the graph of incomparable
pairs is t� but the dimension of P is at least �����t��� However� it is not known
whether there is a function f � R� R so that if P is a poset and the graph of
incomparable pairs has chromatic number at most t� then the dimension of P
is at most f�t��

�� Introduction

There are many interesting analogies between dimension theory for �nite par�
tially ordered sets �posets� and chromatic number for �nite graphs� In addition�
researchers have quite frequently applied results and techniques from graph theory
to research problems for posets� For example� the fact that there exist graphs with
large girth and large chromatic number has been used to show that there exist
posets with large dimension and large girth� As a second example� the dimension
of interval orders is closely linked to the chromatic number of double shift graphs
�see F�uredi� Hajnal� R�odl and Trotter 	
��� As a third example� Yannakakis 	�� used
a connection with graph coloring to show that the question of determining whether
the dimension of a poset is at most t is NP�complete for every t � 
�

In this paper� we study a very natural connection between dimension and chro�
matic number� With a �nite poset P� we will associate a hypergraph HP so that
the dimension of P is equal to the chromatic number of HP� This hypergraph is
called the hypergraph of incomparable pairs� The edges of size 
 in HP determine
an ordinary graph GP� which is called the graph of incomparable pairs�

It is natural to ask whether there is any relationship between the dimension of a
poset and the chromatic number of its graph of incomparable pairs� The answer is
yes�at least when the graph is bipartite� The following theorem was �rst proved
by Doignon� Ducamp and Falmagne 	�� using a variant of dimension based on the
concept of Ferrer�s relations� In Section �� we will give a new proof of this result
using only familiar concepts in dimension theory�
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Theorem ���� Let GP be the graph of incomparable pairs of a poset P which is

not a total order� Then the dimension of P is 
 if and only if the chromatic number

of GP is 
�

When the graph of incomparable pairs of a posetP is not bipartite� the dimension
of P can be much larger� In Section �� we will construct for each t � 
 a poset Pt

for which the chromatic number of the graph of incomparable pairs is t� However�
the dimension of P will be at least �
�
�t���

As a consequence� it is natural to pose the following question�

Question ���� Does there exist a function f � R � R so that if P is a poset and

the graph of incomparable pairs has chromatic number at most t� then the dimension

of P is at most f�t��

If such a function exists� then our example shows that it must grow fairly rapidly�
at least exponentially� However� we tend to believe that there is no such function�
In particular� we believe that there exist posets of arbitrarily large dimension for
which the graph of incomparable pairs is 
�colorable�


� Notation and Background Material

Throughout this paper� we consider a partially ordered set �or poset� P � �X�P �
as a structure consisting of a set X and a re�exive� antisymmetric and transitive
binary relation P on X � We call X the ground set of the poset P� and we call P a
partial order on X � The notations x � y in P � y � x in P and �x� y� � P are used
interchangeably� and the reference to the partial order P is often dropped when its
de�nition is �xed throughout the discussion� We write x � y in P and y � x in P
when x � y in P and x �� y� When x� y � X � �x� y� �� P and �y� x� �� P � we say x
and y are incomparable and write xky in P � When P � �X�P � is a poset� we call
the partial order P d � f�y� x� � �x� y� � Pg the dual of P and we let Pd � �X�P d��

A partial order P on a set X is called a linear order �also� a total order� when
no two distinct points of X are incomparable� If P and Q are partial orders on the
same ground set� we say Q is an extension of P if P � Q� and we call Q a linear

extension of P if Q is a linear order and it is also an extension of P �
If R is a family of linear extensions of P � we call R a realizer of P if P � �R�

i�e�� for all x� y � X � x � y in P if and only if x � y in L for every L � R� The
dimension of the poset P � �X�P �� denoted dim�P� or dim�X�P �� is the least
positive integer t so that P has a realizer R � fL�� L�� � � � � Ltg of cardinality t� In
this article� we will need only a few basic facts about dimension� but the interested
reader is referred to Trotter�s monograph 	�� and survey articles 	��� 	�� and 	�� for
additional information�

Assuming some basic familiarity with concepts for posets such as chains� an�
tichains� cartesian products and disjoint sums� we summarize some elementary
properties of dimension in the following propositions� referring the reader to 	�� for
proofs and references�

Proposition ���� Let P � �X�P � and Q � �Y�Q� be posets� Then�

�� dim�P�Q� � maxf
� dim�P�� dim�Q�g�

� dim�P � Q� � dim�P� � dim�Q�� with equality holding if P and Q have

greatest and least elements�


� The removal of a point from P decreases dim�P� by at most one�
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�� If A is a maximum antichain in P� then dim�P� � jAj and dim�P� �
maxf
� jX 	Ajg�

�� If A is a maximal antichain in P and X 	 A �� 
� then dim�P� � � �

width

�
X 	A�P �X 	A�

�
�

�� If A is the set of maximal elements of P and X 	 A �� 
� then dim�P� �
� � width

�
X 	A�P �X 	A�

�
�

�� dim�P� � dim�Pd��

Let P � �X�P � be a poset� and let F � fQx � �Yx� Qx� � x � Xg be a family
of posets indexed by the elements of X � De�ne the lexicographic sum of F over
P� denoted

P
x�PF � as the poset Q � �Y�Q� where Y � f�x� y� � x � X� y � Yxg

and �x�� y�� � �x�� y�� in Q if and only if x� � x� in P � or if both x� � x� and
y� � y� in Qx� � With this de�nition� a disjoint sum is just a lexicographic sum over
a two�element antichain�

Here is the general formula for dimension and lexicographic sums �see 	����

Proposition ���� Let P � �X�P � be a poset� and let F � fQx � �Yx� Px� � x � Xg
be a family of posets� Then

dim�
X

x�P

F� � maxfdim�P��maxfdim�Qx� � x � Xgg����

A lexicographic sum
P

x�PF is trivial if either P has only one point� or every
poset in F is a one point poset� otherwise the sum is non�trivial� A poset is
decomposable if it is isomorphic to a non�trivial lexicographic sum� otherwise it is
indecomposable� A poset is t�irreducible if it has dimension t but the removal of any
point leaves a subposet of dimenson t	 � �this is the analogue of a critical graph��
Finally� a poset is irreducible if it is t�irreducible for some t � 
� Evidently� every
irreducible poset is indecomposable� a fact which will be exploited later�

Given a poset P � �X�P �� let inc�P� � f�x� y� � X �X � xky in Pg� Then let
L be a linear extension of P � We say L reverses the incomparable pair �x� y� when
x � y in L� Let S � inc�P�� We say that L reverses S when x � y in L� for every
�x� y� � S� Finally� if R is a family of linear extensions of P and S � inc�P�� we
say R reverses S if each pair of S is reversed by some L in R�

Note that a family R of linear extensions of P is a realizer of P if and only if
for every �x� y� � inc�P�� there exists L � R so that x � y in L� i�e�� R is a realizer
of P if and only if it reverses the set of all incomparable pairs� For this reason� it
is convenient to have a test which determines whether there is a linear extension
reversing a given subset S � inc�P��

For an integer k � 
� a subset S � f�xi� yi� � � � i � kg � inc�P� is called
an alternating cycle when xi � yi�� in P � for all i � �� 
� � � � � k� In this last
de�nition� the subscripts are interpreted cyclically� i�e�� yk�� � y�� An alternating
cycle S � f�xi� yi� � � � i � kg is strict if xi � yj in P if and only if j � i � ��
for all i� j � �� 
� � � � � k� When an alternating cycle is strict� the following three
statements hold�

�� The elements in fx�� x�� � � � � xkg form a k�element antichain�

� The elements in fy�� y�� � � � � ykg form a k�element antichain�

� If i� j � 	k� and xi is comparable to yj � then j � i� ��

In Figure 
� we show an alternating cycle of length � while Figure 
 illustrates
a strict alternating cycle of length 
� The following elementary result is due to



� S� FELSNER AND W� T� TROTTER

x1

y2

y3
x3 = y4

x1

x2

x4

Figure �� An Alternating Cycle of Length ��
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Figure �� A Strict Alternating Cycle of Length 
�

Trotter and Moore 	��� See 	�� for a short proof and a number of applications�

Theorem ���� Let P � �X�P � be a poset and let S � inc�P�� Then the following

statements are equivalent�

�� There exists a linear extension L of P which reverses S�

� S does not contain an alternating cycle�


� S does not contain a strict alternating cycle�


� Graphs� Hypergraphs and Critical Pairs

Evidently� a poset has dimension � if and only if it is a linear order� so it makes
sense to restrict our attention to posets which are not linear orders� Let P �
�X�P � be any such poset� Then we associate with P a hypergraph HP� called
the hypergraph of incomparable pairs� de�ned as follows� The vertices of HP are
the incomparable pairs in the poset P� The edges of HP are those sets S of
incomparable pairs satisfying�

�� No linear extension of P reverses all incomparable pairs in S�

� If T is a proper subset of S� then there is a linear extension of P which reverses

all incomparable pairs in T �

Note that the edges of the hypergraph HP correspond to strict alternating cycles�
Then let GP denote the ordinary graph determined by all edges of size 
 in HP�
The following proposition is immediate�
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b5b1 b2 b3 b4

a1 a2 a3 a4 a5

Figure �� The Standard Example S�

Proposition ���� Let P � �X�P � be a poset and let HP and GP denote the

hypergraph and graph of incomparable pairs� respectively� Then

dim�P� � ��HP� � ��GP��

Call a pair �x� y� � inc�P� a critical pair if u � x in P implies u � y in P and
v � y in P implies v � x in P � for all u� v � X � Then let crit�P� denote the set of
all critical pairs� The following elementary proposition serves to explain why the
concept of a critical pair is important to the study of realizers�

Proposition ���� Let R be a family of linear extensions of a partial order P on a

ground set X� Then R is a realizer of P if and only if for every �x� y� � crit�P��
there exists some L � R so that x � y in L�

In other words� a family R of linear extensions is a realizer if and only if it
reverses the set of critical pairs� and the dimension of P is just the minimum size
of a family of linear extensions reversing all critical pairs� Accordingly� it makes
sense to de�ne the hypergraph of critical pairs Hc

P
as the subhypergraph of HP

induced by the critical pairs� Similarly� we de�ne the graph of critical pairs Gc

P

as the subgraph of GP induced by the critical pairs� The following lemma follows
easily from Proposition 
�
�

Lemma ���� For every poset P � �X�P ��

dim�P� � ��HP� � ��Hc

P
� � ��GP� � ��Gc

P
��

For those readers who are not familiar with posets and dimension� we present
four examples to illustrate the properties of the graphs and hypergraphs we have
introduced in this section�

For an integer n � 
� let Sn denote the poset of height two with n minimal
elements a�� a�� � � � � an� n maximal elements b�� b�� � � � � bn and ordering ai � bj if
and only if i �� j� We call Sn the standard example of an n�dimensional poset� The
diagram for S� is shown in Figure 
�

Example ���� The hypergraph of critical pairs of the standard example Sn is just

an ordinary graph� namely the complete graph on n vertices�

Example ���� In Figure �� we show a 
�dimensional poset called the �chevron��

For this poset� the hypergraph of critical pairs is again an ordinary graph	a cycle

on � vertices�
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Figure �� The Chevron and its Hypergraph of Critical Pairs

Figure �� The Spider� A 
�dimensional Poset

Example ��	� A poset known as the �spider� is shown in Figure �� The hyper�

graph of critical pairs contains two edges of size 
� However� the graph of critical

pairs for the spider is an odd cycle on � vertices�

�� The Role of the Hypergraph Edges

In this section� we present an example which serves to illustrate the essential
role of the hypergraph edges �those of size at least 
� in determining the dimension
of a poset�

Example ���� For each integer t � 
� we construct a poset Pt for which the

chromatic number of the graph of incomparable pairs is t� However� the dimension

of P will be at least �
�
�t���

We proceed by induction on t� For t � 
� we take P� as the height 
 poset
having three minimal elements x�� x� and x�� three maximal elements y�� y� and
y�� with comparabilities x� � y�� x� � y� and x� � y��
P� has � critical pairs� Set

V� � f�x�� y��� �x�� y��� �x�� y��g and V� � f�x�� y��� �x�� y��� �x�� y��g�

Then

�� crit�P�� � V� � V��

� V� and V� are independent in the graph of critical pairs� and

� V� and V� are strict alternating cycles in the hypergraph of critical pairs�

As a consequence� the chromatic number of the graph of critical pairs is 
� Fur�
thermore� the graph of critical pairs contains a complete subgraph of size 
� namely
the edge between the pairs �x�� y�� and �x�� y���

Now the dimension of P� is also 
� but in order to set up the induction� we note
that there are 
 critical pairs in V� and no linear extension can reverse more than 

of them� This shows that the dimension of P� is at least �
�
�

�� We say that the
critical pairs in V� are vertical while the critical pairs in V� are slanted�
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Now suppose that we have constructedPt for some t � 
� For inductive purposes�
we suppose that the chromatic number of the graph of critical pairs is t and that
the graph of critical pairs contains a complete graph of size t� We suppose further
that all critical pairs are min�max pairs� the chromatic number of the graph of
critical pairs of Pt is t� and there is a subset of 
t�� vertical critical pairs so that
no linear extension reverses more than 
t�� of these pairs�

We then construct Pt�� by starting with three disjoint copies Q�� Q� and Q�

each isomorphic to Pt� Then add comparabilities to make each minimal element
of Qi less than each maximal element of Qi�� �cyclically�� The vertical pairs in
Pt�� are just those which are vertical in one of Q�� Q� and Q�� so that Pt�� has

�
t��� � 
t vertical critical pairs as desired� Furthermore� any linear extension
reverses critical pairs from at most two ofQ�� Q� andQ�� and at most 
t�� pairs in
any one copy of Pt� Thus any linear extension of Pt�� reverses at most 
�
t��� � 
t

vertical critical pairs in Pt��� This shows that the dimension of Pt�� is at least
�
�
�t�

We next show that the graph of critical pairs of Pt�� is t��� To show that it at
most t� �� color the critical pairs in each Qi just as in Pt� This is allowable since
no critical pair in Qi is adjacent to a critical pair in Qj when i �� j� Then color
all critical pairs of the form �x� y� where x is a minimal element in Qi�� and y is
maximal in Qi with a new color�

On the other hand� note that if x is minimal in Q� and y is maximal in Q��
then �x� y� is adjacent to all critical pairs in Q� in the graph of critical pairs� This
shows that the chromatic number of the graph of critical pairs of Pt�� is t� �� It
also shows that the graph contains a complete subgraph of size t� ��

�� Proof of Theorem �

Let P � �X�P � be a poset which is not a linear order� If dim�P� � 
� then it
follows trivially that the chromatic number of both graphs GP and Gc

P
is 
�

Now suppose that ��GP� � ��Gc

P
� � 
� We show that dim�P� � 
� We

argue by contradiction� Suppose this statement is false� Of all counterexamples�
choose one for which the cardinality of X is minimum� Then it follows that P is

�irreducible� In turn� this implies that P is indecomposable�

Now let � be any proper 
�coloring of the the graphGP of incomparable pairs of
P� say using the colors in f�� 
g� For each i � �� 
� let Si denote the set of critical
pairs which are assigned color i by �� Since dim�P� � 
� one of S� and S� contains
a strict alternating cycle� Of all strict alternating cycles contained in one of the
color classes� consider those of minimum length and let this minimum length be k�
For each strict alternating cycle S � f�xi� yi� � � � i � kg contained in a color
class� let f�S� count the number of points in

�k
i
�fu � xi � u � yi��g�

We then choose a strict alternating cycle S of length k contained in a single color
class for which f�S� is as large as possible� Without loss of generality� we may
assume that S is contained in color class ��
Claim �� The length k of the alternating cycle S is 
�

Proof� First note that k � 
� for if k � 
� then the vertices in S are adjacent in both
GP and HP� It follows that for each i � �� 
� � � � � k� xi is incomparable with both
yi�� and yi��� So we may choose critical pairs �ui� vi� and �wi� zi� with ui � xi�
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wi � xi� yi�� � vi and yi�� � zi� For each i � �� 
� � � � � k� note that �wi� zi� is
adjacent to �xi��� yi��� so each �wi� zi� is assigned color 
�

We claim that for each i � �� 
� � � � � k� the critical pair �ui� vi� is assigned color 
�
For suppose that some �ui� vi� is assigned color �� Then f�ui� vi�g � f�xj � yj� � � �
j � k� j �� i� i	 �g forms an alternating cycle of length k 	 �� Any minimal length
alternating cycle among these k 	 � pairs is strict� thus contradicting the choice of
k� So we conclude that each pair �ui� vi� is assigned color 
�

Then observe that for each i � �� 
� � � � � k� f�ui� vi�� �ui��� vi���� �wi��� zi���g is
an alternating cycle of length 
 and all three pairs are assigned color 
� This shows
k � 
� as claimed�

Claim �� For each i � �� 
� 
� the incomparable pair �xi� yi��� is a critical pair�

Proof� S� � f�ui� vi� � � � i � 
g is a strict alternating cycle and f�S�� � f�S��
Furthermore� f�S�� � f�S� unless ui � xi and yi�� � vi for i � �� 
� 
�

Now consider the subposet Q induced by the points in the strict alternating
cycle S� We observe that Q is a disjoint sum of three connected subposets Q�� Q�

and Q�� each of height at most 
� Furthermore� we may label these three subposets
so that�

�� For each i � �� 
� 
� if a is minimal in Qi and b is maximal in Qi��� then �a� b�
is a critical pair assigned color � by ��


� For each i � �� 
� 
� if a is minimal in Qi and b is maximal in Qi��� then �a� b�
is a critical pair assigned color 
 by ��

Now let Q� be the largest subposet of P consisting of three non�empty connected
components Q�� Q�� Q�� each of height at most 
� satisfying conditions ��� and �
�
as given above� Then let Y consist of all points in the ground set X which are
not in the subposet Q�� Since P is indecomposable� we know that Q� is a proper
subposet of P� i�e�� Y �� 
� Furthermore� there exists some point d � Y which is
comparable to some but not all points of Q��
Claim � Any point in Y which is less than some minimal point in Q� is less than
all points of Q�� Dually� any point in Y which is greater than any maximal point
in Q� is greater than all points of Q��

Proof of the Claim� Suppose that y � Y and that y is less than some minimal
point of Q�� Without loss of generality� we may assume that y � a� for some
minimal point a� of the connected subposet Q� of Q�� We show that y � a�
for every minimal element a� of Q�� Suppose to the contrary that there is some
minimal element a� of Q� for which yka��

Let b� be any maximal point in Q�� Then we know that �a�� b�� is a critical
pair assigned color � by �� Also� since �a�� b�� is critical and y � a�� we know that
y � b��

Now choose a maximal point b� in Q� with a� � b�� Then we know that �a�� b��
is critical and is assigned color 
 by �� It follows that the incomparable pair �y� a��
is adjacent to both �a�� b�� and �a�� b�� in GP� i�e�� �y� a�� is adjacent to vertices
in each of the two color classes� which is impossible� The contradiction completes
the proof of the assertion that y is less than every minimal point in Q�� But this
argument is cyclic� so we may conclude that y is less than all minimal elements in
all three components� In turn� it follows that y is less than all elements of Q� as
claimed� 
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We are now ready to complete the proof of our theorem� Choose a point y � Y
which is comparable with some but not all points in Q�� Without loss of generality�
we may assume that

�� y is incomparable with all minimal points of Q��

� There is a maximal point b� in Q� so that y � b��

� Any point less than y is comparable with all points of Q��

We will complete the proof by showing that the subposet Q� is not maximal� To
accomplish this� we show that

� y is incomparable with all points in Q� and Q��
� For each maximal point b� in Q�� the incomparable pair �y� b�� is critical and
assigned color � by ��

� For each maximal point b� in Q�� the incomparable pair �y� b�� is critical and
assigned color 
 by ��

Suppose �rst that y is comparable with maximal points in all three components
of Q�� Then none of the maximal points comparable to y can also be a minimal
point� It follows that P contains the 
�dimensional spider �see Figure 
� and thus
��GP� � 
�� This is a contradiction�

Now suppose that y is comparable with maximal points in exactly two of the
three components of Q�� say Q� and Q�� Choose a maximal point b� in Q� with
y � b�� Then let a� be any minimal element of Q�� It follows that the incomparable
pair �y� a�� is adjacent to both �a�� b�� and �a�� b�� in GP� but � assigns di�erent
colors to these two critical pairs� The contradiction shows that y is comparable
only with points from Q� and incomparable with all points in Q� and Q��

We next show that for each maximal point b� inQ�� the incomparable pair �y� b��
is critical and assigned color � by �� Let u� � y� Then u� is less than all points of
Q� by property �
� above� In particular� this shows u� � b�� On the other hand�
let b � b�� Then by Claim 
� we know that b is greater than all points of Q�� Thus
b � b� � y and b � y� Thus �y� b�� is critical� Now let a� be any minimal element of
Q� with a� � b�� Then �a�� b�� is critical and assigned color 
 by �� Since �a�� b��
and �y� b�� are adjacent� we conclude that � assigns color � to �y� b���

The argument to show that for each maximal point b� of Q�� the incomparable
pair �y� b�� is critical and assigned color 
 by � is dual� We conclude that we can add
y to Q� which contradicts the assumption that the cardinality of Q� is maximum�
With this remark� the proof of Theorem ��� is complete�

�� Some Open Problems

Originally� we thought that with just a little attention to detail� we could modify
the construction presented in Section � to settle Question ��
 in the negative� After
spending some time on this e�ort� we feel that it may take a new idea� We still
think it would be quite surprising should this question have an a�rmative answer�

Among the several interesting open problems relating graph coloring and posets�
we want to mention one very interesting problem involving planar graphs and a
combinatorial connection discussed brie�y in Section �� With a graph G � �V�E��
we associate a poset AG� called the adjacency poset of G� and de�ned as follows�
AG is a height 
 poset contain an incomparable min�max pair �x�� x��� for every
vertex x � V � For each edge e � fx� yg� the poset AG contains the order relations
x� � y�� and y� � x��� It is straightforward to verify that ��G� � dim�AG��
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The dimension of the incidence poset of a graph can be bounded from above
by a function of the chromatic number of the graph� However� this is not true for
adjacency posets� For example� the adjacency poset of a bipartite graph can have
arbitrarily large dimension�consider the cover graphs of standard examples� Also�
since there exist graphs with large girth and large chromatic number� taking the
adjacency poset� we see that there exist posets with large dimension for which the
comparability graph has large girth�

Here is one interesting class of graphs for which the dimension of adjacency
posets is bounded� The proof of the following theorem is given in 	
��

Theorem 	��� If AG is the adjacency poset of a planar graph� then dim�AG� �
���

From below� we can show that there exists a planar poset whose adjacency poset
has dimension �� Perhaps this is the right upper bound for Theorem ����
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