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ABSTRACT. There is a natural way to associate with a poset P a hypergraph
Hp, called the hypergraph of incomparable pairs, so that the dimension of
P is the chromatic number of Hp. The ordinary graph Gp of incomparable
pairs determined by the edges in Hp of size 2 can have chromatic number
substantially less than Hp. We give a new proof of the fact that the dimension
of P is 2 if and only if Gp is bipartite. We also show that for each ¢ > 2, there
exists a poset P for which the chromatic number of the graph of incomparable
pairs is ¢, but the dimension of P is at least (3/2)¢~!. However, it is not known
whether there is a function f : R — R so that if P is a poset and the graph of
incomparable pairs has chromatic number at most ¢, then the dimension of P
is at most f(t).

1. INTRODUCTION

There are many interesting analogies between dimension theory for finite par-
tially ordered sets (posets) and chromatic number for finite graphs. In addition,
researchers have quite frequently applied results and techniques from graph theory
to research problems for posets. For example, the fact that there exist graphs with
large girth and large chromatic number has been used to show that there exist
posets with large dimension and large girth. As a second example, the dimension
of interval orders is closely linked to the chromatic number of double shift graphs
(see Fiiredi, Hajnal, R6d]l and Trotter [3]). As a third example, Yannakakis [9] used
a connection with graph coloring to show that the question of determining whether
the dimension of a poset is at most ¢ is NP-complete for every ¢ > 3.

In this paper, we study a very natural connection between dimension and chro-
matic number. With a finite poset P, we will associate a hypergraph Hp so that
the dimension of P is equal to the chromatic number of Hp. This hypergraph is
called the hypergraph of incomparable pairs. The edges of size 2 in Hp determine
an ordinary graph Gp, which is called the graph of incomparable pairs.

It is natural to ask whether there is any relationship between the dimension of a
poset and the chromatic number of its graph of incomparable pairs. The answer is
yes—at least when the graph is bipartite. The following theorem was first proved
by Doignon, Ducamp and Falmagne [1] using a variant of dimension based on the
concept, of Ferrer’s relations. In Section 5, we will give a new proof of this result
using only familiar concepts in dimension theory.
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Theorem 1.1. Let Gp be the graph of incomparable pairs of a poset P which is
not a total order. Then the dimension of P is 2 if and only if the chromatic number
of Gp is 2.

When the graph of incomparable pairs of a poset P is not bipartite, the dimension
of P can be much larger. In Section 4, we will construct for each ¢ > 2 a poset Py
for which the chromatic number of the graph of incomparable pairs is ¢. However,
the dimension of P will be at least (3/2)!1.

As a consequence, it is natural to pose the following question.

Question 1.2. Does there exist a function f : R = R so that if P is a poset and

the graph of incomparable pairs has chromatic number at most t, then the dimension
of P is at most f(t).

If such a function exists, then our example shows that it must grow fairly rapidly,
at least exponentially. However, we tend to believe that there is no such function.
In particular, we believe that there exist posets of arbitrarily large dimension for
which the graph of incomparable pairs is 3-colorable.

2. NOTATION AND BACKGROUND MATERIAL

Throughout this paper, we consider a partially ordered set (or poset) P = (X, P)
as a structure consisting of a set X and a reflexive, antisymmetric and transitive
binary relation P on X. We call X the ground set of the poset P, and we call P a
partial order on X. The notations ¢ <y in P,y >z in P and (z,y) € P are used
interchangeably, and the reference to the partial order P is often dropped when its
definition is fixed throughout the discussion. We write z < y in P and y > x in P
when z < yin P and z #y. When z,y € X, (z,y) ¢ P and (y,z) ¢ P, we say x
and y are incomparable and write z||y in P. When P = (X, P) is a poset, we call
the partial order P? = {(y, ) : (z,y) € P} the dual of P and we let P4 = (X, P%).

A partial order P on a set X is called a linear order (also, a total order) when
no two distinct points of X are incomparable. If P and @) are partial orders on the
same ground set, we say @ is an extension of P if P C @), and we call @ a linear
extension of P if () is a linear order and it is also an extension of P.

If R is a family of linear extensions of P, we call R a realizer of P if P = NR,
ie., forall z,y € X, x <y in P if and only if z < y in L for every L € R. The
dimension of the poset P = (X, P), denoted dim(P) or dim(X, P), is the least
positive integer ¢ so that P has a realizer R = {L;, Lo, ..., L;} of cardinality ¢. In
this article, we will need only a few basic facts about dimension, but the interested
reader is referred to Trotter’s monograph [4] and survey articles [5], [6] and [7] for
additional information.

Assuming some basic familiarity with concepts for posets such as chains, an-
tichains, cartesian products and disjoint sums, we summarize some elementary
properties of dimension in the following propositions, referring the reader to [4] for
proofs and references.

Proposition 2.1. Let P = (X, P) and Q = (Y, Q) be posets. Then:
1. dim(P + Q) = max{2,dim(P),dim(Q)}.
2. dim(P x Q) < dim(P) + dim(Q), with equality holding if P and Q have
greatest and least elements.
3. The removal of a point from P decreases dim(P) by at most one.
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4. If A is a mazimum antichain in P, then dim(P) < |A| and dim(P) <
max{2,|X — A|}.

5. If A is a mazimal antichain in P and X — A # 0, then dim(P) < 1 +
2width(X — A, P(X — A)).

6. If A is the set of mazimal elements of P and X — A # 0, then dim(P) <
1+ width(X — A, P(X — A)).

7. dim(P) = dim(P%). O

Let P = (X, P) be a poset, and let F = {Q, = (Y;,Q.) : ¢ € X} be a family
of posets indexed by the elements of X. Define the lexicographic sum of F over
P, denoted ), p F, as the poset Q = (Y,Q) where Y = {(z,y) : v € X,y € Y, }
and (z1,y1) < (22,y2) in @ if and only if z; < x2 in P, or if both z; = z2 and
y1 < y2 in (Qz,. With this definition, a disjoint sum is just a lexicographic sum over
a two-element antichain.

Here is the general formula for dimension and lexicographic sums (see [4]).

Proposition 2.2. LetP = (X, P) be a poset, and let F = {Q, = (Y, P,) : x € X}
be a family of posets. Then

(1) dim()  F) = max{dim(P), max{dim(Q,) : z € X }}.
zeP
O

A lexicographic sum ) _p F is trivial if either P has only one point, or every
poset in F is a one point poset; otherwise the sum is mon-trivial. A poset is
decomposable if it is isomorphic to a non-trivial lexicographic sum; otherwise it is
indecomposable. A poset is t-irreducible if it has dimension ¢ but the removal of any
point leaves a subposet of dimenson ¢ — 1 (this is the analogue of a critical graph).
Finally, a poset is irreducible if it is t-irreducible for some ¢ > 2. Evidently, every
irreducible poset is indecomposable, a fact which will be exploited later.

Given a poset P = (X, P), let inc(P) = {(z,y) € X x X : ||y in P}. Then let
L be a linear extension of P. We say L reverses the incomparable pair (z,y) when
x>y in L. Let S C inc(P). We say that L reverses S when = > y in L, for every
(z,y) € S. Finally, if R is a family of linear extensions of P and S C inc(P), we
say R reverses S if each pair of S is reversed by some L in R.

Note that a family R of linear extensions of P is a realizer of P if and only if
for every (x,y) € inc(P), there exists L € R so that ¢ > y in L, i.e., R is a realizer
of P if and only if it reverses the set of all incomparable pairs. For this reason, it
is convenient to have a test which determines whether there is a linear extension
reversing a given subset S C inc(P).

For an integer k > 2, a subset S = {(z;,y;) : 1 < i < k} C inc(P) is called
an alternating cycle when x; < y;41 in P, for all ¢ = 1,2,...,k. In this last
definition, the subscripts are interpreted cyclically, i.e., yx+1 = y1. An alternating
cycle S = {(zs,y:) : 1 < i < k}is strict if ; < y; in P if and only if j =4+ 1,
for all 7,5 = 1,2,...,k. When an alternating cycle is strict, the following three
statements hold:

1. The elements in {x1,,..., 2} form a k—element antichain.

2. The elements in {y1,ys,...,yr} form a k—element antichain.

3. If i,j € [k] and z; is comparable to y;, then j =i+ 1.

In Figure 2, we show an alternating cycle of length 4 while Figure 3 illustrates
a strict alternating cycle of length 3. The following elementary result is due to
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F1GURE 2. A Strict Alternating Cycle of Length 3.

Trotter and Moore [8]. See [4] for a short proof and a number of applications.

Theorem 2.3. Let P = (X, P) be a poset and let S C inc(P). Then the following
statements are equivalent.

1. There exists a linear extension L of P which reverses S.
2. S does not contain an alternating cycle.
3. S does not contain a strict alternating cycle.

3. GRAPHS, HYPERGRAPHS AND CRITICAL PAIRS

Evidently, a poset has dimension 1 if and only if it is a linear order, so it makes
sense to restrict our attention to posets which are not linear orders. Let P =
(X, P) be any such poset. Then we associate with P a hypergraph Hp, called
the hypergraph of incomparable pairs, defined as follows. The vertices of Hp are
the incomparable pairs in the poset P. The edges of Hp are those sets S of
incomparable pairs satisfying:

1. No linear extension of P reverses all incomparable pairs in S.

2. If T is a proper subset of S, then there is a linear extension of P which reverses

all incomparable pairs in 7.

Note that the edges of the hypergraph Hp correspond to strict alternating cycles.
Then let Gp denote the ordinary graph determined by all edges of size 2 in Hp.
The following proposition is immediate.
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F1cURE 3. The Standard Example S;

Proposition 3.1. Let P = (X, P) be a poset and let Hp and Gp denote the
hypergraph and graph of incomparable pairs, respectively. Then

dim(P) = x(Hp) > x(Gp).
O

Call a pair (z,y) € inc(P) a critical pair if u < z in P implies u < y in P and
v >y in P implies v > x in P, for all u,v € X. Then let crit(P) denote the set of
all critical pairs. The following elementary proposition serves to explain why the
concept of a critical pair is important to the study of realizers.

Proposition 3.2. Let R be a family of linear extensions of a partial order P on a
ground set X. Then R is a realizer of P if and only if for every (z,y) € crit(P),
there exists some L € R so that x >y in L. O

In other words, a family R of linear extensions is a realizer if and only if it
reverses the set of critical pairs, and the dimension of P is just the minimum size
of a family of linear extensions reversing all critical pairs. Accordingly, it makes
sense to define the hypergraph of critical pairs HE as the subhypergraph of Hp
induced by the critical pairs. Similarly, we define the graph of critical pairs Gp
as the subgraph of Gp induced by the critical pairs. The following lemma follows
easily from Proposition 3.2.

Lemma 3.3. For every poset P = (X, P),
dim(P) = x(Hp) = x(Hp) > x(Gp) = x(Gp).
O

For those readers who are not familiar with posets and dimension, we present
four examples to illustrate the properties of the graphs and hypergraphs we have
introduced in this section.

For an integer n > 3, let S,, denote the poset of height two with n minimal
elements aj,as,...,a,, n maximal elements by, bs,...,b, and ordering a; < b; if
and only if i # j. We call S,, the standard example of an n-dimensional poset. The
diagram for S; is shown in Figure 3.

Example 3.4. The hypergraph of critical pairs of the standard example Sy, is just
an ordinary graph, namely the complete graph on n vertices. O

Example 3.5. In Figure 3, we show a 3-dimensional poset called the “chevron.”
For this poset, the hypergraph of critical pairs is again an ordinary graph—a cycle
on 5 vertices. O
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F1GURE 4. The Chevron and its Hypergraph of Critical Pairs

LN

F1cURE 5. The Spider, A 3-dimensional Poset

Example 3.6. A poset known as the “spider” is shown in Figure 3. The hyper-
graph of critical pairs contains two edges of size 3. However, the graph of critical
pairs for the spider is an odd cycle on 9 vertices. O

4. THE ROLE OF THE HYPERGRAPH EDGES

In this section, we present an example which serves to illustrate the essential
role of the hypergraph edges (those of size at least 3) in determining the dimension
of a poset.

Example 4.1. For each integer t > 2, we construct a poset P; for which the
chromatic number of the graph of incomparable pairs is t. However, the dimension
of P will be at least (3/2)171.

We proceed by induction on t. For t = 2, we take P, as the height 2 poset
having three minimal elements x1, x5 and z3; three maximal elements y;, y» and
ys3; with comparabilities 1 < y=2, 2 < y3 and z3 < y;.

P, has 6 critical pairs. Set

Vi = {(fl,yl); (m27y2)> ($3>y3)} and V2 = {(1‘1,y3), (1'2,y1); (m37y2)}'
Then
1. Crit(PQ) =V uUs,
2. V7 and V4 are independent in the graph of critical pairs, and
3. V1 and V; are strict alternating cycles in the hypergraph of critical pairs.

As a consequence, the chromatic number of the graph of critical pairs is 2. Fur-
thermore, the graph of critical pairs contains a complete subgraph of size 2, namely
the edge between the pairs (z1,y;) and (z3,y2).

Now the dimension of P» is also 2, but in order to set up the induction, we note
that there are 3 critical pairs in V7 and no linear extension can reverse more than 2
of them. This shows that the dimension of P is at least (3/2)!. We say that the
critical pairs in V; are wertical while the critical pairs in V5 are slanted.
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Now suppose that we have constructed P; for some ¢t > 2. For inductive purposes,
we suppose that the chromatic number of the graph of critical pairs is ¢ and that
the graph of critical pairs contains a complete graph of size t. We suppose further
that all critical pairs are min-max pairs; the chromatic number of the graph of
critical pairs of Py is ¢; and there is a subset of 3t~! vertical critical pairs so that
no linear extension reverses more than 2/~! of these pairs.

We then construct P;,; by starting with three disjoint copies Q;, Q2 and Qs
each isomorphic to P;. Then add comparabilities to make each minimal element
of Q; less than each maximal element of Q;41 (cyclically). The vertical pairs in
P, are just those which are vertical in one of Q1, Q2 and Qg, so that Py, has
3(3t71) = 3! vertical critical pairs as desired. Furthermore, any linear extension
reverses critical pairs from at most two of Q;, Q2 and Q3, and at most 2t~ pairs in
any one copy of P;. Thus any linear extension of P, reverses at most 2(2¢71) = 2¢
vertical critical pairs in P.yq. This shows that the dimension of Py, is at least
(3/2)t.

We next show that the graph of critical pairs of P11 is t+ 1. To show that it at
most t + 1, color the critical pairs in each Q; just as in P;. This is allowable since
no critical pair in Q; is adjacent to a critical pair in Q; when ¢ # j. Then color
all critical pairs of the form (z,y) where z is a minimal element in Q;+1 and y is
maximal in Q; with a new color.

On the other hand, note that if x is minimal in Q3 and y is maximal in Qa,
then (x,y) is adjacent to all critical pairs in Q; in the graph of critical pairs. This
shows that the chromatic number of the graph of critical pairs of Pyy is t + 1. It
also shows that the graph contains a complete subgraph of size t + 1.

5. PROOF OF THEOREM 1

Let P = (X, P) be a poset which is not a linear order. If dim(P) = 2, then it
follows trivially that the chromatic number of both graphs Gp and Gp is 2.

Now suppose that x(Gp) = x(G§) = 2. We show that dim(P) = 2. We
argue by contradiction. Suppose this statement is false. Of all counterexamples,
choose one for which the cardinality of X is minimum. Then it follows that P is
3-irreducible. In turn, this implies that P is indecomposable.

Now let ¢ be any proper 2-coloring of the the graph Gp of incomparable pairs of
P, say using the colors in {1,2}. For each i = 1,2, let S; denote the set of critical
pairs which are assigned color i by ¢. Since dim(P) = 3, one of S; and S> contains
a strict alternating cycle. Of all strict alternating cycles contained in one of the
color classes, consider those of minimum length and let this minimum length be k.
For each strict alternating cycle S = {(z;,y;) : 1 < i < k} contained in a color
class, let f(S) count the number of points in

U {u o <u<yiga}

We then choose a strict alternating cycle S of length k contained in a single color
class for which f(S) is as large as possible. Without loss of generality, we may
assume that S is contained in color class 1.

Claim 1. The length k of the alternating cycle S is 3.

Proof. First note that k& > 3, for if £k = 2, then the vertices in S are adjacent in both
Gp and Hp. It follows that for each ¢ = 1,2,...,k, z; is incomparable with both
yi—1 and y;12. So we may choose critical pairs (u;,v;) and (w;,2;) with u; < xy,
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w; < x4y yio1 < v; and Y2 < 2;. For each i = 1,2,...,k, note that (w;,z;) is
adjacent to (z;+1,¥i+1) so each (wj, z;) is assigned color 2.
We claim that for each i = 1,2,. .., k, the critical pair (u;,v;) is assigned color 2.

For suppose that some (u;,v;) is assigned color 1. Then {(u;,v;)} U {(z;,y;): 1<
j <k,j#1i,i— 1} forms an alternating cycle of length k¥ — 1. Any minimal length
alternating cycle among these k — 1 pairs is strict, thus contradicting the choice of
k. So we conclude that each pair (u;,v;) is assigned color 2.

Then observe that for each i = 1,2,...,k, {(ui,vi), (wiy1,vit1), (Wi—1,2i—1)} 18
an alternating cycle of length 3 and all three pairs are assigned color 2. This shows
k = 3, as claimed. O

Claim 2. For each i = 1,2, 3, the incomparable pair (z;,y;—1) is a critical pair.

Proof. S'" = {(u;,v;) : 1 < i < 3} is a strict alternating cycle and f(S’) > f(95).
Furthermore, f(S') > f(S) unless u; = x; and y;—1 = v; fori =1,2,3. O

Now consider the subposet Q induced by the points in the strict alternating
cycle S. We observe that Q is a disjoint sum of three connected subposets Q1, Q2
and Qs, each of height at most 2. Furthermore, we may label these three subposets
so that:

1. For eachi = 1,2, 3, if a is minimal in Q; and b is maximal in Q;+1, then (a,b)

is a critical pair assigned color 1 by ¢.

2. For each i = 1,2, 3, if a is minimal in Q; and b is maximal in Q;_1, then (a, b)

is a critical pair assigned color 2 by ¢.

Now let Qg be the largest subposet of P consisting of three non-empty connected
components Q1, Qa2, Qs, each of height at most 2, satisfying conditions (1) and (2)
as given above. Then let Y consist of all points in the ground set X which are
not in the subposet Qp. Since P is indecomposable, we know that Qg is a proper
subposet of P, i.e., Y # (). Furthermore, there exists some point d € Y which is
comparable to some but not all points of Qg.

Claim 3 Any point in Y which is less than some minimal point in Qg is less than
all points of Qg. Dually, any point in Y which is greater than any maximal point
in Qo is greater than all points of Q.

Proof of the Claim. Suppose that y € Y and that y is less than some minimal
point of Qp. Without loss of generality, we may assume that y < a; for some
minimal point a; of the connected subposet Q; of Qg. We show that y < ao
for every minimal element as of Qs. Suppose to the contrary that there is some
minimal element as of Q2 for which y||as.

Let bs be any maximal point in Q3. Then we know that (as,bs) is a critical
pair assigned color 1 by ¢. Also, since (ay, bs) is critical and y < a1, we know that
y < b3.

Now choose a maximal point by in Q; with a1 < b;. Then we know that (az,b1)
is critical and is assigned color 2 by ¢. It follows that the incomparable pair (y, a2)
is adjacent to both (as,b3) and (a2,b1) in Gp, i.e,. (y,a=2) is adjacent to vertices
in each of the two color classes, which is impossible. The contradiction completes
the proof of the assertion that y is less than every minimal point in Q,. But this
argument is cyclic, so we may conclude that y is less than all minimal elements in
all three components. In turn, it follows that y is less than all elements of Qg as
claimed. A
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We are now ready to complete the proof of our theorem. Choose a point y € Y
which is comparable with some but not all points in Qg. Without loss of generality,
we may assume that

1. y is incomparable with all minimal points of Q.
2. There is a maximal point b; in Q; so that y < b;.
3. Any point less than y is comparable with all points of Q.

We will complete the proof by showing that the subposet Qg is not maximal. To
accomplish this, we show that

e y is incomparable with all points in Q2 and Q3.

e For each maximal point by in Q2, the incomparable pair (y, bs) is critical and
assigned color 1 by ¢.

e For each maximal point b3 in Qa, the incomparable pair (y, bs) is critical and
assigned color 2 by ¢.

Suppose first that y is comparable with maximal points in all three components
of Qp. Then none of the maximal points comparable to y can also be a minimal
point. It follows that P contains the 3-dimensional spider (see Figure 3) and thus
x(Gp) > 3). This is a contradiction.

Now suppose that y is comparable with maximal points in exactly two of the
three components of Qq, say Q1 and Q. Choose a maximal point by in Qs with
y < by. Then let ag be any minimal element of Qg. It follows that the incomparable
pair (y,a3) is adjacent to both (as,b;) and (a3, bs) in Gp, but ¢ assigns different
colors to these two critical pairs. The contradiction shows that y is comparable
only with points from Q; and incomparable with all points in Q> and Q3.

We next show that for each maximal point b in Qs, the incomparable pair (y, bs)
is critical and assigned color 1 by ¢. Let v’ < y. Then v’ is less than all points of
Qo by property (3) above. In particular, this shows u’ < by. On the other hand,
let b > by. Then by Claim 3, we know that b is greater than all points of Qp. Thus
b> by >yandb>y. Thus (y,bs) is critical. Now let ay be any minimal element of
Q2 with as < by. Then (as,by) is critical and assigned color 2 by ¢. Since (as, b;)
and (y, b2) are adjacent, we conclude that ¢ assigns color 1 to (y, bs).

The argument to show that for each maximal point b3 of Q3, the incomparable
pair (y, bs) is critical and assigned color 2 by ¢ is dual. We conclude that we can add
y to Q1 which contradicts the assumption that the cardinality of Qg is maximum.
With this remark, the proof of Theorem 1.1 is complete. O

6. SOME OPEN PROBLEMS

Originally, we thought that with just a little attention to detail, we could modify
the construction presented in Section 4 to settle Question 1.2 in the negative. After
spending some time on this effort, we feel that it may take a new idea. We still
think it would be quite surprising should this question have an affirmative answer.

Among the several interesting open problems relating graph coloring and posets,
we want to mention one very interesting problem involving planar graphs and a
combinatorial connection discussed briefly in Section 1. With a graph G = (V, E),
we associate a poset Ag, called the adjacency poset of G, and defined as follows.
Ag is a height 2 poset contain an incomparable min-max pair (z',z") for every
vertex x € V. For each edge e = {z,y}, the poset A contains the order relations
' <y"” and y' < z”. Tt is straightforward to verify that x(G) < dim(Ag).
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The dimension of the incidence poset of a graph can be bounded from above
by a function of the chromatic number of the graph. However, this is not true for
adjacency posets. For example, the adjacency poset of a bipartite graph can have
arbitrarily large dimension—consider the cover graphs of standard examples. Also,
since there exist graphs with large girth and large chromatic number, taking the
adjacency poset, we see that there exist posets with large dimension for which the
comparability graph has large girth.

Here is one interesting class of graphs for which the dimension of adjacency
posets is bounded. The proof of the following theorem is given in [2].

Theorem 6.1. If Ag is the adjacency poset of a planar graph, then dim(Ag) <
10. O

From below, we can show that there exists a planar poset whose adjacency poset
has dimension 5. Perhaps this is the right upper bound for Theorem 6.1.
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