Analytical Processing of Version Control Data:
Towards a Process-Centric Viewpoint

Technical Report B-03-07

Dirk Draheim and Lukasz Pekacki
Institute of Computer Science
Free University Berlin
email: {draheim,pekacki}@inf.fu-berlin.de

May 2003

Abstract

This technical report introduces a novel approach to enabling analytical processing of
project data. The approach exploits source code repositories for information about project
evolution. Furthermore this technical report proposes a new perspective on analyzing version
control data. It takes up a process-centric viewpoint, addresses related analysis problems like
collaboration of programmers and proposes metrics for them. The research has yielded an
implementation of the approach, which comprises visualizations that assist in examining the
evolution of software process.

Contents

1

2

Introduction

Analytical Interface for Project Data

2.1 Concepto e
2.2 DataModel e
2.3 Benefits of Version Control Data,
24 The Bloof Approach L
2.5 Usage Model

Process Quality Centric Analysis of Software Project Data

Visualizing and Examining Software Development Practices

4.1 Examining Productivity
4.2 Examining Collaboration
4.3 Further Analysis Problems

Implementation for CVS

Tools for Project Data Analysis
Further Work

Related Work

Conclusion

o~ o (=2} O O W W W w

Qo

10

1 Introduction

Version control systems (VCS) contain large amounts of historical information that can give insight
into the evolution of software projects. Unfortunately, they do not support analytical access to
the project data.

This technical report contributes the following notions:

o Analytical interface to version control data. There is need for a clean cut abstraction layer
for automatic access to VCS data. This need is satisfied by our implementation for the
Concurrent Versioning System (CVS) [8]. It provides analytical access to the project data
of most Open Source projects. It is designed for being used by researchers and practitioners
for analyzing software projects.

e Process-centric analysis of version control data. It is desired to process VCS data from a
software process-centric viewpoint. This particular viewpoint leads to exploration of process
aspects that have been neglected in other studies. Visualization of process quality aspects
points the way to precise modeling of process analysis problems - sound with respect to
theory and practice of social research [1].

Most research in the field of software evolution focuses on the attributes of the software prod-
uct itself [26][30][14]. Increasing knowledge about growth, complexity, refactoring or code decay
has been gathered through the years. Yet, only few studies have examined aspects of process
quality [31]. Software is coded by people and therefore its quality highly depends on the develop-
ment practices that came into use. For comprehending this aspect of software evolution, empirical
knowledge about process and human aspects is still needed [5].

This technical report presents a new infrastructure for accessing and analyzing project data.
We provide an overview of our system in the next section. Afterwards, in section 3, we explain
our change of perspective on project data towards a process-centric point of view. Examination of
software development practices that are related to this new viewpoint follow in section 4. Finally,
we give a brief overview of its implementation in section 5 and present tools that are built upon the
system. The technical report closes with discussions on further and related work. The Appendix
consists of example visualizations that demonstrate the capability of our software.

2 Analytical Interface for Project Data

In the course of the development of a software system, the current version of the software product
is often the only up-to-date source of information about the state and the evolution of the sys-
tem. The documentation itself is seldom synchronized with the versions and it becomes difficult
to maintain a meaningful documentation of the system changes. But, current source code and
documentation are not the only sources of data about the project. Presumably every software
project uses some sort of VCS for keeping program files synchronized and consistent.

2.1 Concept

Project data, stored in a VCS, contains a huge amount of information about the evolution of the
software product, the history of the development process and the individuals who contributed the
code. A VCS enables users to get copies of the source code, and to add source code into the
repository. It offers an interface for performing these file operations in a controlled way. During
these operations the VCS stores additional contextual data that would be useful for analyzing the
project. However, this data cannot be queried through the standard interface of the VCS. This
gap can be bridged by introducing a new method for accessing the VCS.

Our concept is providing this interface that enables the user to analyze project data. The
interface itself collects data through the default access method of the VCS. The interface is ana-
lytical because project data can be queried with high detail and complexity. It is flexible, because

Developer Fil

(1) (1)
1,1) (1,1)
Revision
lines lines
removed added

Figure 1: Data model of Bloof

generic requests can be performed on the data. In this technical report, we present its capability
for analyzing process aspects of software projects.

2.2 Data Model

VCSs keep track of the changes to the files of a software system. In order to reconstruct past
configurations of the source code most VCSs store the following context information for each
change: the file name, the changed source code, number of added and deleted lines, a time stamp,
a comment of the developer and a revision number that identifies the change. Some version control
systems, like ClearGuide [24], store additional information like purpose of change, related change
request, status of the associated request after the change etc. Although these information would
also be useful for analysis, including them into the data model would require restriction to a
specific VCS and would rule out many software projects from being analyzed. The data model is
therefore reduced to a minimal version, making it compatible with virtually every version control
system. In particular, it contains all data that is stored by the Concurrent Versioning System
CVS, which is used throughout the Open Source community.

2.3 Benefits of Version Control Data

Collection and analysis of empirical software project data is central for improving software qual-
ity and programmer productivity. Unfortunately, collection and analysis of this data is rare in
mainstream software development. Several barriers hinder data collection. The collection of em-
pirical software engineering project data is expensive in resources and time, it often interferes
with the work of developers and the validation of its accuracy is difficult. In addition, surveys on
software projects tend to be designed for controlling development cost and seldom include useful
data for developers or project managers. Overcoming these barriers in order to spread adoption of
techniques of empirical software engineering is an important goal for future software engineering
research. VCSs overbear some of these barriers.

VCS data collection is a side effect of the standard part of the development process and does
not trouble developers. VCSs store long histories of running and past projects, facilitating analysis
in the retrospective, even if no member of a project is available any more. The stored information
is fine grained, down to the level of each atomic change. Collecting data on that level by hand
is virtually impossible, especially in real life projects. Additionally, completeness of the data is

assured automatically as every artifact under version control is recorded. The data is also uniform
over time, as the way the version control system is used rarely changes. Because of the granularity
of recording, even small projects generate enough data for analysis.

Although VCS data has these benefits, it is per se not designed for drawing conclusions about
quality characteristics of a software project. In order to get this information - if it is possible at
all - several assumptions on the data and further processing are necessary. These assumptions are
discussed in section 4.

2.4 The Bloof Approach

Due to the high barriers for accessing project data, studies of software evolution tend to examine
systems that have been developed in a single organization within a uniform, often traditional
development and management environment [15][18][20][26]. Only recently, findings about Open
Source Projects have been documented [19]. In order to reproduce and compare findings about
software evolution, same empirical studies have to be applied to many different projects [16][20].
Significant results can only be provided by examining large sets of projects over long periods of
time - not only on single snapshots [29][2].

A software system that addresses these needs should therefore provide easy access to the
data of many software projects, include scalability to huge amounts of project data and support
experimentation. In addition, it should be flexible in usage and provide interoperability.

These requirements are the design criteria for the Bloof system [32]. The system provides
easy access to project data, because it accesses the data automatically. Speaking in terms of
data warehousers, a version control system like CVS is an operative data source, whereas Bloof
provides an ETL-layer (extraction, transformation, loading). Bloof is also scalable, because it
transforms the data into a new data model and stores it in a database. It is also interoperable, as
it provides a well documented analytical processing interface for performing data queries.

This design opens the way for various tools, examples of which are given in section 6. Bloof
can be used for explorative analysis of project data, because it allows user defined queries. Finally,
it can be used in a flexible way, because data access and data processing are implemented in a
clean cut abstraction layer which can be integrated in various environments.

2.5 Usage Model

Although storing data in a database provides the possibility of querying, most of the interesting
analysis problems cannot be queried in a simple database query statement. In order to ensure
interoperability, a uniform result mechanism is also necessary. Therefore two ways of accessing
project data information are supported:

e Call level interface. Generic SQL queries are supported by a query class with an SQL query
string as only parameter.

e Predefined analytical queries. They are provided as compound queries, encapsulated in the
query classes of the interface. They can be created with various parameters, and can run
queries for complex analysis problems.

In both cases, a uniform return object is returned by the interface, which can be handed over to
tools for further processing. This architecture allows different distributions of the Bloof system. A
fat server distribution serves as web application for processing data of different software projects.
Users trigger the loading of project data on the server and can perform queries on the fat server
by using a web browser. A fat client distribution runs as local application and stores the loaded
data in an internal database. A shell interface, a GUI or external tools accessing the interface
of the Bloof system can use the same infrastructure. The current implementation of the Bloof
system is coded in the Java language. Access to the analytical interface is realized as Java APL

3 Process Quality Centric Analysis of Software Project Data

Most of the studies of software evolution focus on examining the software product and its specific
features. Little attention has been paid yet to the process that comes along with the evolution of
the software. As software is mostly created manual - supported by various tools - the way how the
programming has been accomplished by the developers determines to a high degree the properties
of the result.

Product-oriented software evolution research concentrates on features like amount of source
code, code decay, coupling, cohesion and their specific behavior over various releases. Many of
these approaches make a good deal explaining the history of a software product and forecasting
problems. They also are helpful for comprehending critical spots of a software product. Still,
several aspects of the process have not been taken into account when solely concentrating on the
product features.

Because software is to a great extend produced by hand, the resulting product highly depends
on how people work and interact. Productivity, cooperation or continuity of work are main factors
of process quality. We propose a new viewpoint on software projects, which addresses these
features. Taking up a process-centric perspective we analyze the process of a software project.
This approach is process-centric, because we analyze the activities of the developers during the
process of software development.

4 Visualizing and Examining Software Development Prac-
tices

The evolution of a software system is usually complex, because it comprises the changes of large
amounts of software artifacts and great numbers of developers over long periods of time. Visu-
alization can help software engineers to cope with this complexity. The charts and tables that
can be generated by the Bloof system facilitate comprehension of evolution through the display of
product and process behavior, which otherwise is hidden in project data. The Appendix provides
an assortment of example visualizations:

e Individual cumulative productivity measured in changed LOC per day.

Team collaboration, comparing total changes with collaborative changes on a daily basis.

Distribution of changes between main modules comparing the sum of added and deleted
lines of code over the whole period of a project.

Time line of changes per month.
e Average time since a file was changes the last time.
e Time line of hours that lay between the current change an the last change of a file.

In sections 4.1 and 4.2 we delve into two example analysis problems that are related to the
process-centric perspective on software projects: productivity and collaboration. The analysis
problems lead to the phrasing of queries on project data. The results of the related queries are
shown in Figure 3 and Figure 4 in the Appendix. The visualisations has been generated by using
version control data from the GIMP project [28]. The GIMP project is a good candidate for
evolution research, because it is a heavyweight, highly successful Open Source project, used by
many people, attracting many developers and being developed and maintained for more than 5
years, now. Having undergone many releases and changes of programming staff, it is a huge source
of information about software evolution.

4.1 Examining Productivity

Basically, productivity is the rate of output per time period. In order to understand and manage
productivity one has to measure it. However, measuring productivity in the context of software
production is tricky and depends on many variables. Over decades, organizations implemented
many different productivity metrics [10].

Commonly, productivity is measured by lines of code (LOC), although there are several draw-
backs. The number of LOC used to implement functionality varies greatly between programming
languages. Programmer productivity cannot be compared by measuring LOC if different program-
ming languages are involved. Although this problem can be theoretically overcome by measuring
function points instead of LOC, this solution has no practical use for automatic measurement,
because function points can only be measured manually - by trained experts [21]. Different pro-
gramming tasks also require different productivity measurement. Metrics for maintenance need
to be kept separate from those for fresh development [11]. Project teams using different tools
or working in different hardware/software environments also need to be measured and evaluated
separately [3]. In addition, there is risk that programmers start working mainly for meeting the
productivity metric variables - producing volume, not quality - or feel discouraged from program-
ming reusable pieces of software [7][22].

It depends on specific features of the project and phase of production, which indicator provides
useful information and which parameters should be considered for measuring LOC productivity.
Although metrics are not perfect and are all subject to manipulation by programmers and manage-
ment, used with care, they can help in identifying problems and risks, evaluating project decisions
and predicting the future progress of the project. Various parameters for examining productivity
can be fed into the Bloof system, enabling the user to configure queries according to her specific
problem.

4.2 Examining Collaboration

Every process model for software development addresses the aspect of collaboration - not in the
same way, though. A conventional software project might limit cooperation of developers to
accepting tasks during meetings and defending results during reviews. In contrast, Extreme Pro-
gramming fosters collaboration from the outset. Communication, one of the four values [4] of the
method, is realized by a couple of best practices like pair programming and collective ownership.

Collaboration has obviously occurred when different, people perform changes on same artifacts
in a certain time frame. Artifacts can be modules of the system, directories, single files or file
groups. Identifying these artifacts points to spots of a software product, where people have
worked together. On the other side, taking up the viewpoint of a single programmer, her personal
grade of collaboration can be identified by analyzing shared changes of artifacts. Putting both
views together, groups of people can be identified, who are logically a team, although from the
organizational point of view they might be not. Top collaborators can be found through ranking
as can be those who work on their own. Adding the time perspective to these views, one gains
insight into the evolution of the grade of cooperation. Any of these analyses of collaboration is
supported by the Bloof system and can be performed as compound query.

However, it depends highly on the circumstances how to evaluate the results of these queries.
The development process of the specific project and the personal work style of the programmers
have to be taken into account when measuring collaboration. Attention also has to be paid
to the interpretation of the results. In some cases, editing same files is not a good indicator for
collaboration but one for bad division of work, bad design or poor communication. In fact, it is also
possible that collaboration occurs, but cannot be tracked in the project data, since not everybody
who performed changes also commits them to the repository, or - at least - does not commit them
immediately. This is especially apparent in the case of pair programming environments where two
people cooperate, but only one of them commits changes. Still, when considering these variables,
collaboration metrics can help in evaluating the development process. The Bloof system supports
the configuration of collaboration metrics by providing several parameters to a compound query.

4.3 Further Analysis Problems

Productivity and cooperation are not the only analysis problems on development process. Conti-
nuity and frequency of work, e.g., are also indicators for process quality which are implemented
in the Bloof system. There also exist various questions which are supported by our software that
do not directly address a process quality problem but still answer interesting questions related to
the process quality, like e.g.

e A developer changes only files that she created herself.
e A developer only deletes lines of code.

e A developer submits only small changes.

e A developer works on a large amount of files.

These observations can also be queried in the negative from, e.g. ”A developer works on a small
amount of files”. Performing these queries in a ranking can identify high potentials. Adding the
dimension of time gives insight into past evolution and provides indicators for prediction. Adding
a third dimension, e.g. ”Productivity time line based on sub modules of the system” allows deep
analysis of the project history. These observations can all be queried on the analytical interface
of Bloof.

Although this technical report focuses on process-centric analyses, the implementation is not
limited to this focus. Product-centric analyses like those conducted by various research studies
mentioned in section 8 are also supported by the system and are implemented as standard queries,
too.

5 Implementation for CVS

Bloof is designed to provide easy access to the data of many software projects, to allow interoper-
ation with other tools and to support experimentation on project data. Bloof is an Open Source
project being hosted by Sourceforge. It supports the version control system CVS. CVS is not only
used by many commercial organizations and research institutes, but also by most of the Open
Source projects, especially by over 60.000 projects which are located at Sourceforge. Interopera-
tion with other tools is realized in the Bloof software by separating the data access and analysis
layer from the application layer as shown in Figure 2. The Java implementation allows the usage
of the system on various platforms. Internally there is a hierarchy of query classes all of which
return a unified result object, either as Java object or as XML document. Detailed information
about Bloof is available on the project website [32].

6 Tools for Project Data Analysis

The architecture of Bloof allows access to analysis of VCS data via the Java A PI Several tools that
use this interface are developed in the Bloof project. The main distribution of the Bloof system
includes a GUI tool, the Bloof Browser, which enables the user to perform data access, analysis
and visualization. Data artifacts can be navigated, filtered and grouped. The tool provides a
set of compound queries, visualizes the results and enables the user to export them into a XML
document. A shell for querying the data model via SQL, a web server based distribution and
external visualization tools are also included.

7 Further Work

Data sources like Sourceforge open up the way for processing data of large numbers of projects.
Comparing the results of many projects could reveal patterns of software development. One of the

QUERY ANALYSIS VISUALIZATION
SHELL TOOL TOOL

"
!
“““.-||

!

.“un\““

ANALYSIS
INTERFACE

¢

DATA MODEL
deployment descriptor:
import / update-policy

IMPORT / UPADTE

¢

system border

¢

VERSION CONTROL SYSTEM

accesses

Figure 2: Architecture of the Bloof system

tasks to be done in the future of the Bloof system is the implementation of a meta project layer.
This work would also provide access to cross-project analysis of developer activities. This might be
appealing not only for researchers but for project managers who are interested in benchmarking [6],
too.

The data model can be extended by external information. More specific data about atomic
changes can be imported from systems like ClearGuide. Adding information about events in the
development process, like dates of releases, would allow automatic analysis of patterns of evolution
during or short after events. Enriching the data with more information about a change, e.g. the
actual changed content or line number, would allow more fine-grained analysis of the source code.

Including statistical tests into the calculation of the results can lead to strong predication of
correlation and significance of variables.

8 Related Work

Long term research on large software systems, which has been conducted by Lehman et al., pro-
duced a large source of information about evolution of software products [27][26] and led to the
phrasing of several laws of software evolution. Results of this work included models for growth
and complexity, prediction of errors, and guidelines used by project managers in planning software
development [25].

Evolution aspects of the software product have been investigated by many other researchers.
Analyzing frequency of changes, grow rates and change types contributed to comprehending the
evolution of software and finding reasons for success or failure in a software project [19].

Fine grained analysis produced visualization of structural changes during evolution of software
systems and has introduced several change patterns of software artifacts [23].

Expertise of developers, measured on VCS data, has been recently researched by Mockus [31].

The approach related developer expertise to developer activity on artifacts over the time. It was
measured automatically and without preconditions on the project. In some aspects, this work
is similar to our approach, however, it analyzes only one single aspect of process and does not
address the problem of data access.

The combined CSCW /project management tool PEASE [13] (platform for EASE) already offers
limited statistic features for analyzing collaboration. However the statistic features of PEASE can
only be used reasonably in projects that are managed strictly with the special-purpose process
model EASE [12]. Moreover the statistic features rely on explicit data about collaboration that
is stored in a special project data repository from the outset. No analytical interface is provided
and the analysis results are pure reports, i.e. they are not visualized.

Yet, surveys of research about software evolution note that there has been relatively little
research on empirical studies of software evolution [19].

Suggestions for exploiting version control data for analyzing software evolution were explored
in the Bell Labs [2], some years ago. The metrics and visualizations provided there where focused
on aspects of the software product, like e.g. logical coupling of files, and did not take examinations
of different versions of the product or changes over time periods into account.

Software evolution studied, which use version control data, do often not provide information
about accessing the data. A step in this direction has recently been performed by transforming
version control data and bug tracking data into a database schema, allowing simple queries on
the project data [17]. Like many other studies before, this work relies on manual data access
and transformation. It does not aim to integrate provision of automatic data accessing, analytical
processing and result generation into one system.

Targeting this goal, the Open Source project StatCus [9] released a product which generates
a static suite of web pages, filled with charts and tables, which contain metric results about
the history of a software project. Although StatCvs made it to interest many users, lacking of
scalability, flexibility and interoperability in the design of StatCvs led to the creation of the Bloof
system.

9 Conclusion

The Bloof system is suitable for analyzing software projects which have their source code under
version control. Even small projects provide sufficient data for analytical processing. This solution
removes the barrier of access to software project data. The system is easy to integrate due to
its lightweight interface. It enables flexible analyses of evolution aspects, because it provides a
simple query-result mechanism and supports complex data queries. It is particularly capable of
visualizing process aspects of evolution, as the analyses from a process-centric viewpoint show and
also supports more prevalent examinations of evolution aspects of a software product. The system
satisfies the demand for a testbed on software evolution and the Bloof tools satisfy the requirements
for tools for software evolution. They enable its users to perform explorative experimentations on
project data. Bloof aims to provide an infrastructure for empirical research of software evolution.

References

[1] E. R. Babbie. The Practice of Social Research, 10th ed. Wadsworth, 2004.

[2] T. Ball, J. Kim, A. Porter, and H. Siy. If your version control system could talk. In ICSE 97
Workshop on Process Modelling and Empirical Studies of Software Engineering, May 1997.

[3] R. Banker, R. Kaufman, and R. Kumar. An empirical test of object-based output measurement
metrics in a computer aided software engineering (case) environment. Journal of Management In-
formation Systems, 8(3):127-150, 1992.

[4] K. Beck. Eztreme Programming Ezplained - Embrace Change. Addison-Wesley, 2000.

[6] K. Bennet and V. Rajlich. The Future of Software Engineering, chapter Software Maintenance and
Evolution: a Roadmap. ACM Press, 2000.

[6] C. E. Bogan and M. J. English. Benchmarking for Best Practices: Winning Through Innovative
Adaptation. McGraw-Hill Trade, 1994.

10

[7]

8]

[30]
31]

32]

C. Byard. Software beans: Class metrics and the mismeasure of software. Journal of Object Oriented
Programming, 7(5):32-34, 1994.

P. Cederqvist. Version management with CVS.

http://www.cvshome.org/docs/manual/. 1992.

R. Cyganiak, A. Jentzsch, L. Pekacki, and M. Schulze. Statcvs - stat your repository.
http://statcvs.sourceforge.net/, 2002.

C. Dale and H. van der Zee. Software productivity metrics: Who needs them? Information and
Software Technology, 34(11):731-738, 1992.

D. Davis. Does your IS shop measure up? Datamation, Sept 1:27-32, 1992.

D. Draheim. Learning software engineering with EASE. In T. J. van Weert and R. K. Munro, editors,
Informatics and the Digital Society, pages 119-128. Kluwer Academic Publishers, 2003.

D. Draheim. A CSCW and project management tool for learning software engineering. In Frontiers
in Education - Engineering as a Human Endeavor. IEEE Press, to appear.

S. Ducasse, M. Lanza, and L. S. Software. Supporting evolution recovery: A query-based approach.
Software Composition Group, University of Berne, 2000.

S. G. Eick. Does code decay? assessing the evidence from change management data. IEEE Transac-
tions on Software Engineering, 6(1):1-12, 2001.

N. Fenton and S. L. Pfleeger. Software Metrics - A Rigorous and Practical Approach. International
Thomson Computer Press, London, 2 edition, 1996.

M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version control
and bug tracking systems. Technical Report TUV-1841-2003-06, Information Systems Institute,
Distributed Systems Group, Technical University of Vienna, 2003.

H. Gall, M. Jazayeri, R. R. Klésch, and G. Trausmuth. Software evolution observations based on
product release history. In Proceedings: 1997 International Conference on Software Maintenance,
pages 160-166. IEEE Computer Society Press, 1997.

M. Godfrey and Q. Tu. Evolution in open source software: A case study. In ICSM, pages 131-142,
2000.

C. F. Kemerer and S. Slaughter. An empirical approach to studying software evolution. IEEE
Transactions on Software Engineering, 25(4):493-509, July/Aug. 1999.

W. Keuffel. Metrics conclusions. Software Development, June:29-32, 1995.

R. Kliem and I. Ludin. Making reuse a reality. Software Development, 3(12):63-69, 1995.

M. Lanza and S. Ducasse. Understanding software evolution using a combination of software visual-
ization and software metrics. In Proceedings of LMO 2002, pages 135-149, 2002.

D. B. Leblang. Managing the software development process with ClearGuide. In Software configu-
ration management: ICSE 97 SCM-7 Workshop, pages 66—80. Lecture Notes in Computer Science
1235, Springer, May 1997.

M. Lehman. Feast/2 final report.

http://www.doc.ic.ac.uk/ mml/feast. 2001.

M. Lehman, D. Perry, J. Ramil, W. Turski, and P. Wernick. Metrics and laws of software evolution-the
nineties view. In Proc. of the Fourth Intl. Software Metrics Symposium (Metrics’97), Albuquerque,
NM, 1997.

M. M. Lehman. Program Ewvolution: Processes of Software Change, chapter 12, pages 247-274.
Academic Press, London, UK, 1985.

P. Mattis and S. Kimball. Gimp - gnu image manipulation program. http://www.gimp.org/, 2003.

T. Mens and S. Demeyer. Evolution metrics. In Proc. Int. Workshop on Principles of Software
Evolution, 2001.

A. Mockus, S. Eick, T. Graves, and A. Karr. On measurement and analysis of software changes.
Technical report, National Institute of Statistical Sciences, Research Triangle Park, NC, 1999.

A. Mockus and J. Herbsleb. Expertise browser: A quantitative approach to identifying expertise. In
ICSE 02 Workshop on Open Source Software Engineering, Orlando, FL, USA, 2002.

L. Pekacki. Bloof - visualize software project evolution. http://bloof.sourceforge.net/, 2003.

Appendix

This Appendix consists of figures showing data that has been imported from various Sourceforge
projects and processed by the Bloof system.

11

200.000

180.000

160.000
Devebper
—8—apha
140.000

O bavo

*—charlé

120.000

100.000

1Iries of code

80.000

60.000

40.000

20.000

g

LR i i i i . S S

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
days of month

Figure 3: Cumulative productivity measured in changed LOC per day, generated by the Bloof
system (GIMP project, processed for Nov. 2001, comparing three developers)

O~ tdalchanges

—8— colaborative
changes

dai lghanges
Q

21.11 2211 23.11 24.11 2511 26.11 27.11 2811 29.11 3011

Figure 4: Time line of collaboration, comparing total changes with collaborative changes on a
daily basis (GIMP project, processed for the time period of the final 10 days of Nov. 2000,
summarizing contribution of all developers)

Module %
swingui 33%
framework 17%
tests 13%
textui 13%
runner 1%
awtui 8%
other 5%

Figure 5: Distribution of changes between main modules in the Junit project, comparing the sum
of added and deleted lines of code over the whole period of the project.

12

Sum of changes

Sum of changes

10000 +

- ﬂ
- R —
[Ny
R TR
VARV
T LA LE
3000 NR 7
[W
w00 TAA A n f"
NS
?Vlai 97 Nc:v 97 M;i 98 No‘v 98 Ma‘\ 99 No‘v 99 M;i 00 No‘v 00 Ma‘\ 01 NCr‘v 01 M;i 02 NO‘V 02 M;li 03
Figure 6: Time line of changes per month. (KDFE project)
3500
3000
A
2500
]
1500 / \ | |
j \VH\V/ \\ /r
500 A A
[\WINANY P~
0No\/ 99 M;i 00 N<‘3V 00 M;i 01 Nt‘)v 01 M‘a\ 02 Nc‘)v 02 M;i 03

Figure 7: Time line of changes per month. (JEDIT project)

13

800 -

700 f.

—— File age j.i-
600

500 ,‘..‘-
» f

7 400

) .’F{

300

200

100

0+ T T T T T T
Mai.97. Nov.97. Mai.98. Nov.98. Mai.99. Nov.99. Mai.00. Nov.00. Mai.01. Nov.01. Mai.02. Nov.02. Mai.03.

Figure 8: Average time since a file was changed the last time. (KDE project)

50

) A /N
, /\ /
) /N /
\ .~/ \/
L SN/
/ N

Hours

07.05.02 08.05.02 09.05.02 10.05.02 11.05.02 12.05.02 13.05.02 14.05.02

Figure 9: Time line of hours that lay between the current change an the last change of a file.
(JEDIT project, processed for one developer for the time period of a week in May 2002)

14

