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Abstract 
 

The segmentation of objects whose color-composition is not trivial represents a 
difficult task, due to the illumination and the appropriate threshold selection for each 
one of the object color-components. In this work we propose the Fuzzy C-Means 
algorithm application for the segmentation of such objects. It is chosen, by the 
characteristics that it represents the face segmentation.  This technical report is 
organized in the following way:  in section 1 a clustering techniques introduction are 
presented. In section 2 Fuzzy C-means algorithm is analysed and also showed with a 
simple example. In section 3 Matlab tools, that are used to code the fuzzy C-means 
algorithm are described. In section 4 the Fuzzy C-Means algorithm is implemented for 
the face segmentation. Finally in section 5 the results are presented and the possible 
improvements are proposed. 

 
 
 1. Introduction. 
Pattern recognition techniques can be classified into two broad categories: unsupervised 
techniques and supervised techniques. An unsupervised technique does not use a given set of 
unclassified data points, whereas a supervised technique uses a dataset with known 
classifications. These two types of techniques are complementary. For example, unsupervised 
clustering can be used to produce classification information needed by a supervised pattern 
recognition technique. In this section, we first introduce the basics of unsupervised clustering. 
The fuzzy C-Means algorithm (FCM) [1], which is the best known unsupervised fuzzy  
clustering algorithm is then described in detail.  
 
1.1 Unsupervised Clustering. 
 
Unsupervised clustering is motivated by the need to find interesting patterns or groupings in a 
given set of data.   
 
In the area of pattern recognition an image processing, unsupervised clustering is often used 
to perform the task of “segmenting” the images (i.e., partitioning pixel on an image into 
regions that correspond to different objects or different faces of objects in the images). This is 
because image segmentation can be viewed as kind of data clustering problem where each 
data is described by a set of image features (e.g., intensity, color, texture, etc) of each pixel. 
 



Conventional clustering algorithms find a “hard partition” of given dataset based on certain 
criteria that evaluate the goodness of a partition. By “hard partition” we mean that each data 
belongs to exactly one cluster of the partition. More formally, we can define the concept “hard 
partition” as follows. 
 
Definition 1. Let X be a set of data and xi be an element of X. A partition P={C1,C2,….,CL} of 
X is “hard” if and only if 
 

Xxi i ∈∀)        such that   PC j ∈∃ ji Cx ∈   
Xxii i ∈∀)       where  iiji CxCx ∉⇒∈ PCjk j ∈≠ ,  

 
The first condition in the definition assures that the partition covers all data points in X, the 
second condition assures that all clusters in the partition are mutually exclusive. 
 
In many real-world clustering problems, however, some data points partially belong to 
multiple clusters, rather than a single cluster exclusively. For example, a pixel in a magnetic 
resonance image may correspond to mixture of a different types of issues.  
 
A soft clustering algorithms finds a “soft partition” of a given dataset based on certain criteria. 
In soft partition, a data can partially belong to multiple clusters. We formally define this 
concept below. 
 
Definition 2. Let X be a set a data, and xi be an element of X. A partition P={C1,C2,….,CL} of 
X is soft if and only if the following two condition hold 
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where )( iC x

j
µ  denotes the degree to which xi belongs to cluster Cj. 

 
A type of soft clustering of special interest is one that ensures the membership degree of a 
point x in all clusters adding up to one, i.e., 
 
                                                    1)( =∑ i

j
C x

j
µ Xxi ∈∀  

 
A soft partition that satisfies this additional condition is called a constrained soft partition. 
The fuzzy c-means algorithm, which is best known as fuzzy clustering algorithm, produces a 
constrained soft partition. 
 
A constrained soft partition can also be generated by a probabilistic clustering algorithm (e.g., 
maximum likelihood estimators). Even thought both fuzzy c-means and probabilistic 
clustering produce a partition of similar properties, the clustering criteria underlying these 
algorithms are very different. While we focus our discussion an fuzzy clustering in this 
section, we should point out that probabilistic clustering has also found successful real-world 
applications. Fuzzy clustering and probabilistic clustering are two different approaches to the 
problem of clustering. 
 



The fuzzy c-means algorithm generalizes a hard clustering algorithm called the c-means 
algorithm, which was introduced in the ISODATA clustering method. The (hard) c-means 
algorithm aims to identify compact, well-separated cluster. Figure 1 shows a two-dimensional 
dataset containing compact well separated clusters. In contrast, the dataset shown in the figure 
2 contain clusters that are not compact and well separated. Informally, a compact cluster has a 
“ball-like” shape. The center of the ball is called the prototype of the cluster. A set of cluster 
are well separated when any two points in a cluster are closer than the shortest distance 
between two clusters in different clusters. Figure 3 shows two clusters that are not well 
separated because there are points in C2 that are closer to a point in C1 than point in C2. We 
formally define well separated clusters bellow. 
 
Definition 3. A partition P={C1,C2,……,Ck} of the dataset X has compact separated cluster if 
and only if any two points in a cluster are closer than the distance between two points in 
different cluster, i.e,   PCyx ∈∀ , ),(),( wzdyxd <  where ,,, kjCwCz rq ≠∈∈ and d denotes 
a distance measure. 
 
Assuming that a dataset contains c compact, well-separated clusters, the goal of hard c-means 
algorithm is twofold: 
 

(1) To find the centers of these clusters, and 
(2) To determine the clusters (i.e., labels) of each point in the dataset. 

 
In fact, the second goal can easily be achieved once we accomplish the first goal, based on the 
assumption that clusters are compact and well separated. Given cluster centers, a point in the 
dataset belongs to cluster whose center is closest, i.e., 
 
                               if ji Cx ∈ kiji vxvx −<−    jkck ≠= ,....,2,1                       (1) 
 
where vj denotes the center of the cluster Cj. 
 

                                                    
Fig. 1. An Example of compact well separated clusters. 

 
 
In order to archive the first goal (i.e., finding the cluster centers), we need to establish a 
criterion that can be used to search for these cluster centers. One such criteria is the sum of the 
distance between points in each cluster and their center. 
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Fig. 2. An example of two clusters that are not compact and well separated. 
 
 
 

                                                      
 

Fig. 3. Two clusters that are compact, but not well separated. 
 
 
where V is a vector of cluster center to be identified. This criterion is useful because a set of 
true cluster centers will give a minimal J value for a given database. Based on these 
observations, the hard c-means algorithm tries to find the clusters centers V than minimize J. 
However, J is also a function of partition P, which is determined by the cluster centers V 
according to equation 1. Therefore, the hard c-means algorithm (HCM) [2] searches for the 
true cluster center by iterating the following two step: 
 

(1) Calculating the current partition based on the current cluster. 
(2) Modifying the current cluster centers using a gradient decent method to minimize the J 

function. 
 
The cycle terminates when the difference between cluster centers in two cycles is smaller than 
a threshold. This means that the algorithm has converged to a local minimum of J. 
 
2. Fuzzy c-Means Algorithm. 
 
The fuzzy C-Means algorithm (FCM) generalizes the hard c-mans algorithm to allow a point 
to partially belong to multiple clusters. Therefore, it produces a soft partition for a given 
dataset. In fact, it produces a constrained soft partition. To do this, the objective function J1 of 
hard c-means has been extended in two ways: 
 

(1) The fuzzy membership degrees in clusters were incorporated into the formula, and  
(2) An additional parameter m was introduced as a weight exponent in the fuzzy 

membership. 



The extended objective function [3], denoted Jm, is: 
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where P is fuzzy partition of the dataset X formed by C1,C2,…,Ck. The parameter m is a 
weight that determines the degree to which partial members of a clusters affect the clustering 
result. 
 
Like hard c-means, fuzzy c-means also tries to find a good partition by searching for 
prototypes vi that minimize the objective function Jm. Unlike hard c-means, however, the 
fuzzy c-means algorithm also needs to search for membership functions 

iCµ that minimize Jm. 
To accomplish these two objectives, a necessary condition for local minimum of Jm was 
derived from Jm. This condition, which is formally stated below, serves as the foundation of 
the fuzzy c-means algorithm. 
 
Theorem.  Fuzzy c-means theorem. A constrained fuzzy partition {C1,C2,…,Ck} can be a 
local minimum of objective function Jm only if the following conditions are satisfied: 
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Based on this theorem, FCM updates the prototypes and the membership function iteratively 
using equations 2 and 3 until a convergence criterion is reached. We describe the algorithm 
below. 

FCM (X, c, m, ε) 
 
X: an unlabeled data set. 
c: the number the clusters. 
m: the parameter in the objective function. 
ε: a threshold for the convergence criteria. 
 
Initialize prototype V={v1,v2,…,vc} 
Repeat 
VPrevious ← V 
Compute membership functions using equations 3. 
Update the prototype, vi in V using equation 2. 

Until ε≤−∑
=

c

i
i

evious
i vv

1

Pr  

 



Suppose we are given a dataset of six points, each of which has two features F1 and F2. We 
list the dataset in table 1. Assuming that we want to use FCM to partition the dataset into two 
clusters (i.e., the parameter c=2), suppose we set the parameter m in FCM at 2, and the initial 
prototypes to v1=(5,5) and v2=(10,10). 
 

 F1 F2
x1 2 12 
x2 4 9 
x3 7 13 
x4 11 5 
x5 12 7 
x6 14 4 

 
Tale  1. Dataset  values. 

 

                               
Fig. 4. Dataset graphical representation. 

 
 
The initial membership functions of the two clusters are calculated using equation 2. 
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Similarly, we obtain the following 
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Therefore, using these initial prototypes of the two clusters, membership function indicated 
that x1 and x2 are more in the first cluster, while the remaining points in the dataset are more 
in the second cluster. 
 
The FCM algorithm then updates the prototypes according to equation 3. 
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The updated prototype v1, as is shown in fig 5, is moved closer to the center of the cluster 
formed by x1, x2 and x3; while the updated prototype v2 is moved closer to the cluster formed  
by x4, x5 and x6. 

                                 
Fig. 5  Prototype updating. 

 
  
We wish to make a few important points regarding the FCM algorithm: 
 

- FCM is guaranteed to converge for m>1. This important convergence theorem was 
established in 1980 [4]. 

- FCM finds a local minimum (or saddle point) of the objective function Jm. This is 
because the FCM theorem (theorem 1) is derived from the condition that the gradient 
of the objective function Jm should be 0 at an FCM solution, which is satisfied by all 
local minima and saddle points. 

- The result of applying FCM to a given dataset depends not only on the choice of 
parameters m and c, but also on the choice of initial prototypes. 

 
3. Matlab tools. 
 
The Fuzzy Logic Toolbox is equipped with some tools that allow to find clusters in input-
output training data. We can use the cluster information to generate a Sugeno-type fuzzy 
inference system that best models the data behaviour using a minimum number of rules. The 
rules partition themselves according to the fuzzy qualities associated with each of the data 
clusters. This type of FIS generation can be accomplished automatically using the command 
line function, genfis2. 
 
The Fuzzy Logic Toolbox command line function fcm starts with an initial guess for the 
cluster centers, which are intended to mark the mean location of each cluster. The initial guess 
for these cluster centers is most likely incorrect. Additionally, fcm assigns every data point a 
membership grade for each cluster. By iteratively updating the cluster centers and the 
membership grades for each data point,  fcm iteratively moves the cluster centers to the 
“right” location within a data set. This iteration is based on minimizing an objective function 
that represents the distance from any given data point to a cluster center weighted by that data 
point’s membership grade. 
 
fcm is a command line function whose output is a list of cluster centers and several 
membership grades for each data point. We can use the information returned by fcm to help 



we build a fuzzy inference system by creating membership functions to represent the fuzzy 
qualities of each cluster. 
 
Now, the fcm function will be described: 
 

[center, U, obj_fcn] = fcm(data, cluster_n) 
 
The input arguments of this function are: 
 
•data: data set to be clustered; each row is a sample data point. 
•cluster_n: number of clusters (greater than one). 
 
The output arguments of this function are: 
 
•center: matrix of final cluster centers where each row provides the center coordinates. 
•U: final fuzzy partition matrix (or membership function matrix). 
•obj_fcn: values of the objective function during iterations. 
 
4. Implementation. 
 
To implement the segmentation system it is necessary to use as data an image of the object to 
be segment (in our case a person face). Each pixel of the image is coded in three components 
represented respectively with the red, green and blue color.  
 
The next code assign to each pixel its respective color component dataset represented by VP 
with the fcm function format (that means the pixel data is presented in row form). Something 
that one must not forget is that the image dataset is obtained in integer format but to work 
with it will be necessary to change it to double format. 
 
R=Im(:,:,1); 
G=Im(:,:,2); 
B=Im(:,:,3); 
 
[m,n]=size(R); 
 
indice=m*n; 
 
erik=0; 
 
for a1=1:m 
    for an=1:n 
        data=R(a1,an); 
        data1=G(a1,an); 
        data2=B(a1,an); 
        num=num+1; 
        VR(num)=data; 
        VG(num)=data1; 
        VB(num)=data2; 
         
    end 
end 
 
    VP=[VR;VG;VB]; 
    VP=double(VP); 
 

 There is an important parameter in the fcm function, this is the cluster number in wich one 
wants to divide the presented dataset, this parameter should be founded heuristically. For this 
example its value was 7. If this value is big, then the system generalization is not good enough 



and if is very small then the neighbor colors can be confused. The matlab code to find the 
image clusters is: 

[center,U,of]=fcm(VPT,7); 
 
After used this function we have in the variable center the clusters centers, which will be used 
to classify the pixels belonging to the interest class. In our case the interest class is the class 
that represent the flesh color. In this work the classification is achieved calculating the 
minimum distance from each pixel to the cluster centroid (this centroid was previously 
obtained with the fcm function). The code in C++ to achieve that in real time is: 
 
 for(int i=1;i<=sizeImage;i++) 
  { 
   b=*pBuffer; 
   pBuffer++; 
   g=*pBuffer; 
   pBuffer++; 
   r=*pBuffer; 
   pBuffer++; 
  dist=sqrt((abs(r-176.1448)*abs(r-176.1448))+(abs(g-
115.1489)*abs(g-115.1489))+(abs(b-20.4083)*abs(b-20.4083))); 
 
  if (dist<45) 
   temp1=255; 
  else 
   temp1=0; 
 
  pBuffer--; 
  pBuffer--; 
  pBuffer--; 
  *pBuffer=temp1; 
  pBuffer++; 
  *pBuffer=temp1; 
  pBuffer++; 
  *pBuffer=temp1; 
  pBuffer++; 
 
  } 
  pBuffer=pixel; 
 
The previous code considers that sizeImage is the image size and also that the flesh color 
class centroid values are 176.1448 for red, 115.1489 for green and 20.4083 for blue and a 
similarity criteria minor to 45. 
   
5. Results.   
   
The obtained results using the fuzzy C-Means as a segmentation method is quite good for 
objects whose colors are not trivial. A fast training is an important advantage obtained with 
the use of Fuzzy C-Means matlab tools as well as the easy change of its parameters. This 
allows to experiment with different operation conditions like changing the class number until 
the system robustness is satisfied.    
   
The figure 6 shows the cluster distribution obtained by training  the fcm function. While the 
figure 7 shows an image and their respective classification using the following cluster center 
values for the class flesh color:  red=176.1448, green=115.1489 and blue =20.4083.   



                              
Fig. 6 Cluster distribution. 

 
 
 

              
 

Fig. 7. (left) Original image, (rigth) Segmented image. 
 
 
In this work we only used as a classify criteria the centroid distance but we proporse also the 
use of the class dispersion as a classify criteria as well (distance of Mahalanobis) that surely 
will show better results. 
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