On equilateral simplices in normed spaces

Peter Brafl
Institut fur Informatik, FU Berlin
D-14195 Berlin, Germany

Dedicated to Prof. H. Harborth on occasion of his sixtieth birthday

Abstract: It is the aim of this note to improve the lower bound for the problem of Petty on the
existence of equilateral simplices in normed spaces. We show that for each k there is a d(k) such that
each normed space of dimension d > d(k) contains k points at pairwise distance one, and that if the
norm is sufficiently near to the euclidean norm, the maximal equilateral sets behave like their euclidean
counterparts.

1. Introduction

The question whether each d-dimensional normed space contains d + 1 points at pairwise
distance one, i.e. an equilateral simplex, was first raised by Petty in 1971 [6]. This seems
obvious at first, especially in the equivalent packing version: each convex body K admits
a packing (K + t;)¢t] of d + 1 pairwise touching translates. But it turned out much
more difficult, as illustrated by the following near-counterexample constructed by Petty:
define a norm on IR? by H(xl,...,xd)H := |zy| + /a3 + -+ + 2%, so the unit ball is a
double cone over a d — 1-dimensional euclidean ball (Figure 1). Start with the two points
(0,0,...,0) and (1,0,...,0) (the center of that double cone and one apex). Then any
further point with distance one to both these points must be of the form (%, Toy ..., Tq)

with (/23 + -+ + 22 = % So all possible extensions of these two starting points to larger
equilateral sets lie on a d — 1-dimensional euclidean sphere with radius %, which admits
at most two points with pairwise distance one. So there are norms in IR? for which there
exist nonextendable equilateral sets of four points. Petty also showed that each normed
space of dimension at least three contains four points at pairwise distance one; in fact,
each equilateral set of less than four points can be extended to a four-point set. He
conjectured that each normed space contains d 4+ 1 points at pairwise distance one; this
conjecture occurs also in the book of Thompson [9, problem 4.1.1], but no progress was
made beyond the lower bound of four ([3],[5]). There are, of course, normed spaces that
admit much larger equilateral sets, the upper bound is 2¢, as reached by the maximum
norm. For further material on equilateral and few-distance sets in normed spaces see [8],
for combinatorial distance problems also [1]. In this note, we show:
Theorem 1: For each k there is a d(k) such that each normed space of dimension
d > d(k) contains k points at pairwise distance one.

This follows by an application of Dvoretzky’s theorem from
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Theorem 2: For each dimension d there is a ¢ > 0 such that if (V,|-||) is a d-
dimensional normed space with

(1 - 52)||x||euclidean S ||ZL‘|| S (1 + 82)||-'L’||euclidea.n for all x € V, (*)

then each equilateral set in V' can be extended to an equilateral set of
d + 1 points.
So if the norm is sufficiently near to a euclidean norm, then the equilateral sets behave
like euclidean equilateral sets: they can be freely rotated, without ‘forbidden directions’
as in Petty’s double-cone example.

2. Proof of the theorems

We need the following lemma, which states that we can prescribe arbitrary distances
‘near’ a regular simplex, and still find a realization in the same euclidean space, but not
in a space of smaller dimension.
Lemma:  For each dimension d there is a ¢4 > 1(d + 2)~2 such that
(1) each metric space of d+ 1 points whose distances are all between 1 — ¢4
and 1 + ¢4 can be realized in euclidean d-dimensional space.
(2) each metric space of d+ 2 points whose distances are all between 1 — ¢4
and 1 + ¢4 cannot be realized in euclidean d-dimensional space.
We note that the bound for g4 is certainly not best possible for either property, but it is
probably difficult to determine the optimal bounds. The second property is equivalent to
the minimum diameter of a packing of d+ 2 unit balls in dimension d. The related planar
problem of the minimum diameter packing of n unit disks is a known difficult problem
by Erdos; and for higher dimensions already the minimum diameter of a packing of five
unit balls in dimension three seems to be unknown.

Using this Lemma, we now prove Theorem 2. Let (V, ||-]|) be a d-dimensional normed
space with property (x) for the €} : = %5,1 of the Lemma. Let py,...,p; be a set of points
in V with pairwise distance one with respect to that norm. We first note that & is at most
d + 1; for otherwise we had a set of d + 2 points in euclidean d-dimensional space with
pairwise distances between (1 +¢%)~! and (1 — &%)}, contradicting the second assertion
of the Lemma.



To prove Theorem 2, we have to show that for £ < d there is an extension point pgi1
that also has distance one to py, ..., pr. For this we select a k-dimensional linear subspace
Vi € V that contains ps — py,...,pr — p1 and one further dimension, and a halfspace H
in the affine space p; + V. that is bounded by the hyperplane through py, ..., p.

The points py, ..., p; have pairwise distances one with respect to the norm, so their
pairwise euclidean distances are in the interval [(1+¢5)7" (1 —&5)7' C [1 —e4,1+&4) =
1,;. By the Lemma we can prescribe arbitrary euclidean distances dy, . .., dj in the interval
I, from a further point x to the points py, ..., px, and always find a euclidean realization.
This realization is made unique by choosing the point x from the halfspace H. So we can
apply these distances as coordinates for a well-defined point p(dy, ..., d); this defines a
continuous mapping from 4 into H. For this point p(dy, ..., d) we can again determine
the norm distances to py, ..., pg; by property (%) we have

Hp(dh ce e dk) — Di

€ [(1 —eq)di, (1 +eg)di] ,

and we search a point for which each of these norm distances is one.
We now consider the mapping ¢: (x1,...,2q) = (y1,...,yq) defined by

Y = + (1 —|Ip(z1, ..., xx) —pi||) fori=1,... k.
This is a continuous mapping which maps the compact set I¢ into itself, for

l+eg>14¢5(1+¢y)
>14ceimi=1+xz; — (1 —e))z;

21+xi_‘|p($17---7xk)_pi =Y
>14a— 1 +ey)r, =1—ep
>1—eh(l+4¢q)

Zl—8d.

By Brouwer’s Fixed-point Theorem this mapping has a fixed point (x1,...,z4) € I%; for
this point the correction terms in each coordinate vanish, so Hp(xl, R sz =1 for
each i. Therefore pyy1 1= p(z1,...,xx) is the point extending pi,...,pr to a bigger set
of points with pairwise distance one. This completes the proof of Theorem 2.

Theorem 1 follows from Theorem 2 by application of a theorem of Dvoretzky ([2],[10])
which states that for each dimension d and each ¢ there is a d' such that each normed
space of dimension at least d’ has a subspace of dimension d that is e-near to a euclidean
space in the sense required by Theorem 2.

[t remains to prove the Lemma. Let CMD(py,...,pr) denote the Cayley-Menger-
determinant of py,...,pg, that is the determinant of the (k + 1) x (k + 1)-matrix with
0’s in the main diagonal, 1’s in the first column and first row, and the squared distance
d(pi, pj)? at position (i +1), (j+1). We use a theorem of Menger ([4], [7]) characterizing
the metric spaces embeddable into a d-dimensional euclidean space.
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Theorem (Menger): A metric space (M, d(-,-)) is realizable in euclidean d-dimensional
space if and only if one of the following conditions is satisfied:

(1) |[M| < d and M is realizable in d — 1-dimensional space.

(2) M| =d+1, (=1)CMD(M) > 0 and each subset of d points of M is
realizable in d — 1-dimensional space.
(3) M| = d+ 2, CMD(M) = 0 and each subset of d + 1 points of M is
realizable in d-dimensional space.
(4) |[M| = d+ 3, CMD(M) = 0 and each subset of d + 2 points of M is
realizable in d-dimensional space.
(5) |M| > d+ 4 and each subset of d + 2 points of M is realizable in d-
dimensional space.

To prove the Lemma, we have to show that the determinant of a matrix

0
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in which |6;;| < 2e4 + €2 for all 7,7 has the same sign as the determinant of the same
matrix without the d;;, which is (—1)*k for a (k+1) x (k+1)-matrix. This gives also the
second part of the Lemma, since the necessary condition for embeddability of d + 2-point

sets is that this determinant vanishes. Elementary transformations show
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summand of the last line may be bounded directly using
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Hadamard’s inequality, which gives an upper bound of

(CODER (S 1)5)2>% (14 (k= 19)" + (= 13?) " < o821+ 172

for the absolute value of the determinant. The second determinant is decomposed in such

k
2

a way that we have have an isolated d;;-column in each matrix but one:

0 d12 O3 1k —1 412 O3 O1k
da1 —1 o3 ok 0 0 o do
det|d31 d30 —1 O3k | +det| O d30 —1 O3 | + - -

Okt Ok2 Ok -1 0 ko k3 -1

-1 0 0 01k -1 0 0 0

0O -1 0 Ok 0O -1 0 0

+det| 0 0 -1 O | +det| O 0 —1 0

0 0 0O ... 0 0 0 0 -1

The value of the last determinant is (—1)*, the other & summands are each smaller in

k—1
absolute value than /(k — 1)42 (1 + (k — 1)62) * (again Hadamard’s inequality). So it
is sufficient for the determinant (xx) to have the correct sign that

L k-1

0k*(1+ £26%) + kovE—1(1+ (k—1)8%) 7 <k.

This condition is satisfied in the case needed by the Lemma, that is k = d+1 or k = d+2,
and 6 < 2e4 4 3 with e = 1(d + 2)*%. This completes the proof.
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