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Abstract. We propose a variational formulation of rate- and state-dependent
models for the dynamic sliding of a linearly elastic block on a rigid surface in

terms of two coupled variational inequalities. Classical Dieterich–Ruina mod-

els are covered as special cases. We show existence and uniqueness of solutions
for the two spatial subproblems arising from time discretisation. Existence

of solutions to the coupled spatial problems is established for Dieterich’s state

equation through a fixed point argument. We conclude with some numerical ex-
periments that suggest mesh independent convergence of the underlying fixed

point iteration, and illustrate quasiperiodic occurrence of stick/slip events.

1. Introduction

The Dieterich–Ruina model of rate- and state-dependent friction (RSF) [28] has
become a standard for frictional behaviour of solids, in particular in the earth
sciences [4, 20, 27]. It is motivated by so-called velocity stepping tests, in which a
block is slid along a foundation and subjected to abrupt changes in sliding velocity
(see Figure 1.1). The evolution of the coefficient of friction in such tests reveals
two effects: A direct increase/decrease that counteracts the increasing/decreasing
sliding velocity, and a relaxation effect, similar to the behaviour of viscoelastic
solids.
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Figure 1.1. An idealised velocity stepping test

In RSF models, the sliding velocity is often called slip rate. The direct increase/decrease
of the coefficient of friction µ is accounted for through a slip rate-dependence of µ,
and the relaxation effect is captured by an additional state variable. While direct
slip rate-dependence gives rise to intrinsic instability of stick/slip events, state-
dependence of µ has a smoothing effect on the evolution.
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RSF models are inherently coupled, since the evolution of the state variable depends
on the slip rate through a suitable equation of state, usually a pointwise ordinary
differential equation, and the slip rate in turn depends on the state through a
continuum mechanical problem involving the rate- and state-dependent friction
coefficient.
In spite of widespread practical applications of RSF, the mathematical properties of
this model class have hardly been studied. The most thoroughly investigated setup
appears to be the spring–block slider with a single degree of freedom [17, 21, 23, 26].
Also, the stability of sliding between two elastic half-spaces has been analysed
in [24].
In this paper, we consider dynamic sliding of a linearly elastic body on a rigid
surface. Our model involves Newton’s second law together with subdifferential in-
clusions for friction and state evolution. The variational formulation of this general
approach amounts to two variational inequalities that describe the evolution of the
slip rate and state, respectively. Special cases include Tresca friction [9, 18] and
natural extensions of the classical Dieterich–Ruina model [28]. These extensions
include non-smooth evolution of state as well as vanishing velocities, which have
been treated by means of regularisation in previous simulations [5, 7]. The time-
dependent variational inequalities for slip rate and state are discretised in time with
the classical Newmark scheme and the backward Euler method, respectively. As a
result, two coupled convex minimisation problems have to be solved in each time
step. Similar spatial problems are obtained from other implicit time discretisations.
We show existence and uniqueness of solutions for each of these subproblems, so
that a corresponding fixed point iteration is well defined. Existence of a fixed point
is established in the special case of the Dieterich–Ruina model with Dieterich’s
state equation. We emphasise that corresponding variants of our theoretical results
readily extend to a quasistatic variant of the model.
In our numerical experiments, we use piecewise linear and piecewise constant fi-
nite elements for the approximation of velocity and state, respectively. Both for
Dieterich’s and Ruina’s state equation, our numerical computations suggest mesh-
independent convergence rates of a discrete version of the fixed point iteration
mentioned above. The resulting approximate displacements and velocities eventu-
ally enter a regime of quasi-periodic slip events as expected. For Dieterich’s law,
we observe grid convergence for fixed spatial mesh and high temporal resolution,
while Ruina’s law appears to require even smaller time step sizes. More efficient
discretisation schemes are the subject of current research.

2. Rate- and State-Dependent Friction

2.1. Variational Rate- and State-Dependent Friction. We consider dynamic
sliding of a linearly elastic body on a rigid surface. The body shall be represented
by a bounded domain Ω in Rd with Lipschitz boundary. Here, d stands for the
spatial dimension. We assume the boundary of Ω to consist of three subsets ΓD,
ΓN , and ΓF with disjoint relative interiors (Figure 2.1). The letter n is used for the
unit outer normal vector of Ω wherever it is defined.
Suppose that a body force f acts on all of Ω and a surface force fN acts on the
Neumann boundary section ΓN . We write u(x, t) for the displacement field, which
we assume to be prescribed on the Dirichlet boundary section ΓD. On the remain-
ing section ΓF we require the tangential displacement to obey a friction law to
be described below. We also assume bilateral contact on ΓF , i.e. no displacement
in the normal direction. This implies that we need not distinguish between the
displacement u and its tangential projection ut on ΓF .
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Figure 2.1. A model slider

We impose a rate- and state-dependent friction law of the form

−σt ∈ ∂u̇φ(u̇, α),

where ∂u̇φ(u̇, α) denotes the subdifferential of a convex function φ( · , α) [25]. Here,
we wrote σt := σn − (σn · n)n for the tangential component of the stress field on
the boundary, defined through the stress tensor σ. The evolution of the solution-
dependent state variable α is given by

−α̇ ∈ ∂αψ(α, |u̇|)
with a second convex function ψ( · , |u̇|).
In summary, we consider the following abstract problem of RSF.

Problem. Find u : Ω× [0, T ]→ Rd and α : ΓF × [0, T ]→ R such that

σ(u) = Cε(u) in Ω (linear elasticity)(2.1)

Divσ(u) + f = ρü in Ω (balance of momentum)(2.2)

with boundary conditions

u = 0 on ΓD

σ(u)n = fN on ΓN

un = 0 on ΓF

−σt ∈ ∂u̇φ(u̇, α) on ΓF (friction law)(2.3)

and such that α satisfies

−α̇ ∈ ∂αψ(α, |u̇|) on ΓF (state evolution)(2.4)

for all t ∈ [0, T ], where ρ > 0 is the constant material density, C is the tensor
of elasticity, and ε is the linearised strain tensor. In addition, we impose initial
conditions on the displacement u, velocity u̇, and state α.

Remark. We have assumed homogeneous Dirichlet boundary conditions, i.e., u = 0
on ΓD. This assumption serves mainly to simplify the presentation; in Section 6,
we consider a numerical experiment with inhomogeneous Dirichlet boundary con-
ditions.

Assuming that the state α is known, this problem can be written as a variational
inequality for u ∈ H1((0, T ), H) ∩H2((0, T ), H∗) with

H := {w ∈ H1(Ω)d : w|ΓD = 0, wn|ΓF = 0}.
Consider the balance of momentum equation (2.2). After testing with v − u̇(t),
v ∈ H, and using (2.1) as well as the boundary conditions for u and un, we obtain

(2.5) 〈ρü, v − u̇〉+ a(u, v − u̇) = `(v − u̇) +

∫
ΓF

σt(u) · (v − u̇) ∀v ∈ H,

where 〈 · , · 〉 denotes the dual pairing of H and H∗. Also, we have set

a(v, w) :=

∫
Ω

Cε(v) : ε(w), as well as `(v) :=

∫
Ω

f · v +

∫
ΓN

fN · v.
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We now recall that (2.3) can be equivalently written as

(2.6) σt(x) · [v − u̇(x)] + φ(v, α) ≥ φ(u̇(x), α) ∀v ∈ Rd

at any point x ∈ ΓF . Testing (2.6) with traces of functions from H yields the weaker
form

Φ(v, α) ≥ Φ(u̇, α)− σt(v − u̇) ∀v ∈ H
with

Φ(v, α) :=

∫
ΓF

φ(v, α).

Here, we assume φ to be chosen such that Φ is well-defined. Combined with (2.5)
this leads to a variational formulation of the elastic problem with given state α.

Problem (R). For given α, find u ∈ H1((0, T ), H) ∩H2((0, T ), H∗) such that for
almost every t ∈ [0, T ], we have

〈ρü, v − u̇〉+ a(u, v − u̇) + Φ(v, α) ≥ Φ(u̇, α) + `(v − u̇) ∀v ∈ H.

Analogously, we can formulate a variational problem for the state variable α under
the assumption that |u̇| is known. To that end, we test (2.4) with functions β ∈
L2(ΓF ) and define a functional through

Ψ(β, V ) =

∫
ΓF

ψ(β, V ),

with ψ such that Ψ is well-defined, to obtain the following variational formulation
of (2.4).

Problem (S). For given |u̇|, find α ∈ H1((0, T ), L2(ΓF )) such that for almost every
t ∈ [0, T ], we have

(α̇, β − α)L2(ΓF ) + Ψ(β, |u̇|) ≥ Ψ(α, |u̇|) ∀β ∈ L2(Γ).

Here, ( · , · )L2(ΓF ) denotes the scalar product in L2(ΓF ). The variational formulation
of the coupled rate- and state-dependent friction problem finally reads

Problem (RSF). Find u ∈ H1((0, T ), H)∩H2((0, T ), H∗) and α ∈ H1((0, T ), L2(ΓF ))
such that for almost every t ∈ [0, T ], we have

〈ρü, v − u̇〉+ a(u, v − u̇) + Φ(v, α) ≥ Φ(u̇, α) + `(v − u̇) ∀v ∈ H,

(α̇, β − α)L2(ΓF ) + Ψ(β, |u̇|) ≥ Ψ(α, |u̇|) ∀β ∈ L2(Γ).

2.2. Tresca Friction. Coulomb friction [9, 18] postulates that tangential stress σt
and velocity u̇ are related according to

(2.7) − σt = µ|σn|
u̇

|u̇|
if u̇ 6= 0 and |σt| ≤ µ|σn| if u̇ = 0,

with a given friction coefficient µ ≥ 0. Tresca friction is obtained by replacing
the solution-dependent normal stress σn < 0 by a given parameter σ̄n. Since the
subdifferential of the Euclidean norm | · | is given by

∂| · |(u̇) =

{
{u̇/|u̇|} if u̇ 6= 0

{x ∈ Rd : |x| ≤ 1} if u̇ = 0,

the friction law (2.7) with σn = σ̄n can be equivalently written in the form (2.3).
The convex function φ is then given by

(2.8) φ(u̇) = µ|σ̄n||u̇|.
A state-dependent extension of classical Tresca friction (2.8) can be introduced
by replacing φ(u̇) with φ(u̇, α) = µ(α)|σ̄n||u̇|, involving a state-dependent friction
coefficient µ(α) and a state evolution law of the form (2.4).
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2.3. The Dieterich–Ruina Model. The Dieterich–Ruina model of RSF in its
most common form goes back to [28] and consists of two parts: An equation that
relates the coefficient of friction µ to the slip rate V := |u̇| and a state θ, as well as a
state evolution equation. The former is most commonly stated as [1, 3, 10, 19, 22, 29]

(2.9) µ :=
|σt|
|σn|

= µ0 + a log

(
V

V0

)
+ b log

(
V0θ

L

)
with positive parameters µ0, a, b, V0, and L ∈ R.
For the second equation, multiple proposals have been made. The two most popular
laws are given by

θ̇ = 1− V

L
θ (Dieterich’s law)

and

θ̇ = −V
L
θ log

(
V

L
θ

)
(Ruina’s law).

Both can be used to describe some phenomena but not others [1, 19].
As a common feature, both of these state equations provide increasing state θ for
small slip rate V and vice versa. A variety of state equations with this characteristic
property might be useful. Consider, e.g., the most simple but non-smooth law

(2.10) θ̇ =

{
+V if θV < 1

−V if θV > 1
and |θ̇| ≤ V if θV = 1.

We replace the solution-dependent normal stress σn in (2.9) with a parameter σ̄n
(as is done in Tresca friction) and assume collinearity of velocity and stress, i.e.,

(2.11) − |σt|u̇ = |u̇|σt.
Then the Dieterich–Ruina model becomes a special case of the framework set forth
in Section 2.1.
To show that, we first relate (2.9) and (2.3). It is obvious that (2.9) is not meaningful
for very low velocities V , since for fixed θ and V → 0 the right-hand side tends
to −∞, whereas the left-hand side remains non-negative. This problem has been
circumvented in the literature by means of regularisation [5, 7]; in what follows, we
follow a variational approach.
To give a precise bound from which on velocities become inadmissible to (2.9), we
set

Vm(θ) := V0 exp

(
−µ0 + b log(θV0/L)

a

)
,

so that (2.9) becomes

|σt|/|σ̄n| = a log(V/V0)− a log(Vm/V0).

This formulation makes it clear that we must have V ≥ Vm for (2.9) to make sense.
A straightforward extension of (2.9) to velocities that fall short of Vm is given by

(2.12) µ =

{
µ0 + a log(V/V0) + b log(V0θ/L) if V ≥ Vm(θ)

0 otherwise.

In conjunction with the collinearity assumption (2.11), this expression can be re-
formulated as a subdifferential inclusion of type (2.3). Indeed, for V ≥ Vm(θ), we
have

|σt| = a|σ̄n| log(V/Vm(θ)) =
∂ϕ

∂V
(V, θ),

where ϕ is given by

ϕ(V, θ) := a|σ̄n|
[
V log(V/Vm(θ))− V + Vm(θ)

]
, V ≥ Vm(θ).
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This function is convex and non-decreasing in V , a property that is shared by the
extension

(2.13) ϕ(V, θ) =

{
a|σ̄n|[V log(V/Vm(θ))− V + Vm(θ)] if V ≥ Vm(θ)

0 otherwise

corresponding to (2.12), too, since ϕ( · , θ) and ∂ϕ/∂V ( · , θ) vanish at Vm(θ). If we
now define

(2.14) φ( · , θ) := ϕ(| · |, θ),

we obtain

−σt =
∂ϕ

∂V
(V, θ)

u̇

|u̇|
=
∂φ

∂u̇
(u̇, θ)

by virtue of (2.11) and the chain rule, and thus a smooth case of the subdifferential
inclusion (2.3) as desired.
It remains to be shown that the evolution of θ can be written as a subdifferential
inclusion of type (2.4). If we set α := log θ and rewrite Dieterich’s law in terms of
α, it becomes

(2.15) − α̇ =
V

L
− e−α =

d

dα
ψd(α, V ) with ψd(α, V ) =

V

L
α+ e−α.

With the same substitution, Ruina’s law turns into α̇ = −V/L(α+ log(V/L)), or

(2.16) − α̇ =
d

dα
ψr(α, V ) with ψr(α, V ) =

V

L

(
1

2
α2 + log

(
V

L

)
α

)
.

For the discontinuous law (2.10), we set α := θ to obtain

(2.17) − α̇ ∈ ∂αψdc(α, V ) with ψdc(α, V ) = |αV − 1|.

Since the functions ψd( · , V ), ψr( · , V ), and ψdc are convex, the corresponding state
equations are again special cases of (2.4).

3. Time-Discretisation

As a first step towards the numerical solution of the coupled variational Prob-
lem (RSF) stated in Subsection 2.1, we now consider time-discretisations of the
Subproblems (R) and (S). For simplicity, we assume the interval [0, T ] to be parti-
tioned uniformly into N subintervals [tn−1, tn], each of length τ = T/N .
To Subproblem (R) we apply the classical Newmark scheme, which we can write as

u̇n = u̇n−1 +
τ

2
(ün−1 + ün)(3.1)

un = un−1 + τ u̇n−1 +
τ2

4
(ün−1 + ün)(3.2)

for the spatial approximations un := u(tn) and 0 < n ≤ N . Note that we can also
write (3.1) as

(3.3) ün =
2

τ
(u̇n − u̇n−1)− ün−1,

which we can insert into (3.2) to obtain

(3.4) un = un−1 +
τ

2
(u̇n + u̇n−1).

It is easy to see that an application of Newmark’s method in this form to Sub-
problem (R) leads to a variational inequality over H where the sole unknown is
u̇n:

aτ (u̇n, v − u̇n) + Φ(v, α) ≥ Φ(u̇n, α) + `n(v − u̇n) ∀v ∈ H
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with

aτ ( · , · ) :=
2

τ
(ρ · , · )L2(Ω) +

τ

2
a( · , · )

and

`n( · ) := `( · ) +

(
ρ

(
2

τ
u̇n−1 + ün−1

)
, ·
)
L2(Ω)

− a
(
un−1 +

τ

2
u̇n−1, ·

)
.

This variational problem for u̇n can also be written as a minimisation problem; the
corresponding energy functional J ( · , α) is given by

J (v, α) = 1
2aτ (v, v) + Φ(v, α)− `n(v).

The Newmark time-discretisation of Subproblem (R) thus leads to the following
spatial problems.

Problem (Rτ ). For given state α, find u̇n ∈ H such that

J (u̇n, α) ≤ J (v, α) ∀v ∈ H.

The displacement un can then be computed from u̇n using (3.4).

Next, we apply the backward Euler scheme to the L2-gradient flow Subproblem (S).
The spatial approximations αn := α(tn), 0 < n ≤ N , then satisfy the variational
inequality

(3.5) (αn, β − αn)L2(ΓF ) + τΨ(β, |u̇|) ≥ τΨ(αn, |u̇|) + (αn−1, β − αn)L2(ΓF )

for all β ∈ L2(ΓF ). Since (3.5) can be equivalently written as a minimisation prob-
lem for the convex energy functional E( · , |u̇|) given by

E(β, |u̇|) = 1
2 (β, β)L2(ΓF ) + τΨ(β, |u̇|)− (αn−1, β)L2(ΓF ),

we obtain the following spatial problem in each time step.

Problem (Sτ ). For given slip rate V = |u̇|, find αn ∈ L2(ΓF ) such that

E(αn, V ) ≤ E(β, V ) ∀β ∈ L2(ΓF ).

The spatial problems of the time-discretised coupled Problem (RSF) finally read as
follows.

Problem (RSFτ ). Find u̇n ∈ H and αn ∈ L2(ΓF ) such that

J (u̇n, αn) ≤ J (v, αn) ∀v ∈ H
E(αn, |u̇n|) ≤ E(β, |u̇n|) ∀β ∈ L2(ΓF ).

4. Existence and Uniqueness of Solutions of the Spatial Subproblems

Existence and uniqueness of solutions of the spatial Subproblems (Rτ ) and (Sτ )
will be derived from the following general results on convex minimisation and su-
perposition operators.

Lemma 4.1. Let V be a Hilbert space. If we assume that b( · , · ) is a symmetric,
continuous and V-elliptic bilinear form, j : V → R ∪ {+∞} a proper, convex, and
lower semicontinuous functional, and l a bounded linear functional on V, then the
problem of minimising

v 7→ 1
2b(v, v) + j(v)− l(v)

over V admits a unique solution.

Proof. See [13, Lemma 4.1]. �

It is a straightforward consequence of Fatou’s Lemma that integral operators pre-
serve lower semicontinuity.
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Lemma 4.2. Assume that f : ΓF × Rd → R is a non-negative function, such that
f(x, · ) is lower semicontinuous for almost every x ∈ ΓF . Then the superposition
operator ∫

ΓF

f(x, · ) dx : L2(ΓF )→ R ∪ {+∞}

is lower semicontinuous.

Proof. See [11, Theorem 6.49]. �

Now we are ready to show existence and uniqueness of a solution of Subprob-
lem (Rτ ) under the additional assumption that

(A.1) C is elliptic, i.e. there exists a c > 0 such that a.e. in Ω, we have

Cτ : τ ≥ c|τ |2 for every symmetric tensor τ .

Proposition 4.3. Assume that (A.1) holds, un−1, u̇n−1, ün−1 ∈ H, and ` ∈ H∗.
Then the Subproblem (Rτ ) with φ corresponding to Tresca friction (2.8) or the
Dieterich–Ruina model (2.14) has a unique solution for any given state α ∈ L2(ΓF ).

Proof. Both for Tresca friction (2.8) and the Dieterich–Ruina model (2.14) the su-
perposition operator Φ( · , α) is convex, because so is φ( · , α). It is proper, because
φ(0, α) = 0. Since in both cases φ is continuous and non-negative, Lemma 4.2
implies that Φ( · , α) is lower semicontinuous. The bilinear form aτ ( · , · ) is sym-
metric, continuous, and, by assumption (A.1) in conjunction with Korn’s second
inequality [30], elliptic on H. Hence, the claim follows from Lemma 4.1. �

We now consider existence and uniqueness for Subproblem (Sτ ) under the assump-
tion that

(A.2) logL ∈ L∞(ΓF ).

Proposition 4.4. Assume αn−1 ∈ L2(ΓF ). Then the Subproblem (Sτ ) with ψ
corresponding to the state evolution laws of Dieterich (2.15), Ruina (2.16), or (2.17)
has a unique solution for any given slip rate V = |u̇| ∈ L2+δ(ΓF ) with δ ≥ 0, δ > 0,
or δ ≥ 0, respectively.

Proof. For fixed V = |u̇| ≥ 0, the convexity of the functionals j := τΨ( · , V ) =
τ
∫

ΓF
ψ( · , V ) follows immediately from the convexity of ψ( · , V ). From ψr(0, V ) =

0, ψd(0, V ) = 1, and |ψdc(0, V )| ≤ 1, we conclude that Ψ is proper.
To show that Ψ is lower semicontinuous, we decompose ψ into its linear and non-
linear parts. For ψd and ψr, this leads to

ψd = ψd,1 + ψd,2, ψd,1 : α 7→ V

L
α, ψd,2 : α 7→ e−α,

ψr = ψr,1 + ψr,2, ψr,1 : α 7→ V

L
log(V/L)α, ψr,2 : α 7→ 1

2

V

L
α2.

Since ψd,1 and ψr,1 multiply their arguments with functions that lie in L2 by as-
sumption (namely V ∈ L2+δ(ΓF ) and (A.2)), their respective contribution to Ψ is
continuous in α. A similar observation shows that Ψ is continuous if ψ = ψdc.
From the non-negativity of ψd,2 and ψr,2 we conclude that the corresponding inte-
grals are well-defined and that Lemma 4.2 applies.
Because of ρ > 0, the bilinear form ( · , · )L2(ΓF ) is symmetric, continuous, and

elliptic on L2(ΓF ). Since we assumed αn−1 ∈ L2(ΓF ), the claim now follows from
Lemma 4.1. �
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5. Existence of solutions for a Coupled Spatial Dieterich–Ruina
Problem

Since the Dieterich–Ruina model of RSF with Dieterich’s or Ruina’s state evolu-
tion law leads to subproblems that are uniquely solvable, we can define a solution
operator for each problem, namely

S : L2+δ(ΓF )→ L2(ΓF ) corresponding to Subproblem (Sτ )

and

R : L2(ΓF )→ H corresponding to Subproblem (Rτ ),

for any δ ≥ 0. In this manner, we map scalar velocities on ΓF to states (using
S) and states to velocity fields on Ω (using R). Since such velocity fields can be
transformed into scalar velocities on ΓF through the map

|γF | : H → Lp(ΓF ), v 7→ (ΓF 3 x 7→ |v(x)|),

we can close the circle here. Before we discuss for which δ this is possible, we
consider the consequences. We first compose the two solution operators to obtain

RS := R ◦ S : L2+δ(ΓF )→ H.

If |γF | now maps to L2+δ(ΓF ), we have a self-map RS ◦ |γF | : H → H. By con-
struction, a fixed point of this map and its corresponding state solve both Sub-
problem (Sτ ) and Subproblem (Rτ ) simultaneously and thus the coupled Prob-
lem (RSFτ ).
Now back to δ: Since the trace operator γ : H → Lp(ΓF )d is well-defined and
compact for 1 ≤ p < p∗, so is |γF |, with p∗ = 4 in the three-dimensional case and
p∗ =∞ in two dimensions [6]. Any δ < p∗ − 2 is thus admissible.
In what follows, we make the necessary arrangements for an application of Schauder’s
theorem which guarantees that RS ◦ |γF | has a fixed point. To that end, we are
forced to restrict ourselves to Dieterich’s state evolution law for reasons that become
clear as we proceed. We also make the assumptions

(A.3) σ̄n ∈ L∞(ΓF ),
(A.4) V0 ∈ L∞(ΓF ) and log V0 ∈ L∞(ΓF ),
(A.5) a ∈ L∞(ΓF ),
(A.6) b ∈ L∞(ΓF ), and
(A.7) µ0 ∈ L∞(ΓF ).

5.1. Towards boundedness and continuity of RS. Since for any two states α,
β ∈ L2(ΓF ) we have

(5.1)

Φ(R(β), α)− Φ(R(α), α) + Φ(R(α), β)− Φ(R(β), β)

≥ aτ (R(α)−R(β), R(α)−R(β))

≥ C‖R(α)−R(β)‖2

for a constant C > 0 by H-ellipticity of aτ ( · , · ), upper bounds for the term

Φ(R(β), α)− Φ(R(α), α) + Φ(R(α), β)− Φ(R(β), β)

=

∫
ΓF

φ(R(β), α)− φ(R(α), α) + φ(R(α), β)− φ(R(β), β)

also yield upper bounds for the term ‖R(α) − R(β)‖2. By means of such bounds
we establish that RS is bounded (i.e. it maps bounded sets into bounded sets) and
continuous.
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Proposition 5.1. We have

(5.2) φ(U,α)− φ(V, α) + φ(V, β)− φ(U, β)

≤ a|σ̄n|
[
max(U, V )|log(Vm(α)/Vm(β))|+ |Vm(α)− Vm(β)|

]
with α, β, U , V ∈ R and 0 ≤ U , V .

Proof. Since the function ϕ from (2.13) is defined piecewise depending on whether
the first argument is smaller than Vm or not, and we consider four terms at once,
we can distinguish 16 cases, each of which yields an explicit expression for (5.2).
Given that (5.2) remains unchanged if we swap U and V simultaneously with α
and β, some cases are analogous to others. For brevity, we write

(∗) = [φ(U,α)− φ(V, α) + φ(V, β)− φ(U, β)]/a|σ̄n|

and find:

(1) U ≤ Vm(α), V ≤ Vm(α), V ≤ Vm(β), U ≤ Vm(β): Implies (∗) = 0.
(2) U ≤ Vm(α), V ≤ Vm(α), V ≤ Vm(β), U ≥ Vm(β): Implies (∗) ≤ 0.
(3) U ≤ Vm(α), V ≤ Vm(α), V ≥ Vm(β), U ≤ Vm(β): Implies

(∗) = V log(V/Vm(β))− V + Vm(β) ≤ V log(Vm(α)/Vm(β)).

(4) U ≤ Vm(α), V ≤ Vm(α), V ≥ Vm(β), U ≥ Vm(β): Implies

Vm(α) ≥ V , U ≥ Vm(β)

and thus

(∗) = V log(V/Vm(β))− U log(U/Vm(β)) + U − V
≤ V log(Vm(α)/Vm(β)) + |Vm(α)− Vm(β)|.

(5) U ≤ Vm(α), V ≥ Vm(α), V ≤ Vm(β), U ≤ Vm(β): Analogous to (2).
(6) U ≤ Vm(α), V ≥ Vm(α), V ≤ Vm(β), U ≥ Vm(β): Implies

U = Vm(α) = V = Vm(β) = U

and thus (∗) = 0.
(7) U ≤ Vm(α), V ≥ Vm(α), V ≥ Vm(β), U ≤ Vm(β): Implies

(∗) = V log(Vm(α)/Vm(β)) + Vm(β)− Vm(α).

(8) U ≤ Vm(α), V ≥ Vm(α), V ≥ Vm(β), U ≥ Vm(β): Implies

(∗) = V log(Vm(α)/Vm(β))− U log(U/Vm(β)) + U − Vm(α)

≤ V log(Vm(α)/Vm(β)).

(9) U ≥ Vm(α), V ≤ Vm(α), V ≤ Vm(β), U ≤ Vm(β): Analogous to (3).
(10) U ≥ Vm(α), V ≤ Vm(α), V ≤ Vm(β), U ≥ Vm(β): Analogous to (7).
(11) U ≥ Vm(α), V ≤ Vm(α), V ≥ Vm(β), U ≤ Vm(β): Implies

U = Vm(α) = V = Vm(β) = U

and thus (∗) = 0.
(12) U ≥ Vm(α), V ≤ Vm(α), V ≥ Vm(β), U ≥ Vm(β): Implies

(∗) = U log(Vm(β)/Vm(α))− V log(Vm(β)/V ) + Vm(α)− V
≤ U log(Vm(β)/Vm(α))− V log(Vm(β)/Vm(α)) + Vm(α)− V
≤ Vm(α)− V ≤ Vm(α)− Vm(β).

(13) U ≥ Vm(α), V ≥ Vm(α), V ≤ Vm(β), U ≤ Vm(β): Analogous to (4).
(14) U ≥ Vm(α), V ≥ Vm(α), V ≤ Vm(β), U ≥ Vm(β): Analogous to (8).
(15) U ≥ Vm(α), V ≥ Vm(α), V ≥ Vm(β), U ≤ Vm(β): Analogous to (12).
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(16) U ≥ Vm(α), V ≥ Vm(α), V ≥ Vm(β), U ≥ Vm(β): Implies

(∗) = (U − V ) log(Vm(β)/Vm(α)).

The claim now follows by taking the maximum of the above bounds. �

In the following, we write ‖ · ‖k,p,M for the canonical W k,p(M) norm. The pointwise

bound obtained in Proposition 5.1 yields the integral bound1

Φ(R(β), α)− Φ(R(α), α) + Φ(R(α), β)− Φ(R(β), β)

≤ ‖aσ̄n max(|R(α)|, |R(β)|) log(Vm(α)/Vm(β))‖0,1,ΓF
+ ‖aσ̄n[Vm(α)− Vm(β)]‖0,1,ΓF
≤ ‖max(|R(α)|, |R(β)|)‖0,2,ΓF ‖aσ̄n log(Vm(α)/Vm(β))‖0,2,ΓF

+ ‖aσ̄n‖0,∞,ΓF ‖Vm(α)− Vm(β)‖0,1,ΓF
≤ C1‖max(|R(α)|, |R(β)|)‖0,2,ΓF ‖β − α‖0,2,ΓF

+ C2‖e−(b/a)α − e−(b/a)β‖0,1,ΓF
with the constants C1 := ‖bσ̄n‖0,∞,ΓF and

C2 := ‖aσ̄n‖0,∞,ΓF ‖V0 exp(−µ0/a− (b/a) log(V0/L))‖0,∞,ΓF ,

both of which are finite by assumptions (A.2)–(A.7). In conjunction with (5.1), we
thus have

(5.3)
C‖R(α)−R(β)‖21,2,Ω ≤ C1‖max(|R(α)|, |R(β)|)‖0,2,ΓF ‖β − α‖0,2,ΓF

+ C2‖e−(b/a)α − e−(b/a)β‖0,1,ΓF .

On the one hand, α = S(V ) and β = 0 now turn (5.3) into

C
(
‖RS(V )‖1,2,Ω − ‖R(0)‖1,2,Ω

)2
≤ C‖RS(V )−R(0)‖21,2,Ω
≤ C1‖max(|RS(V )|, |R(0)|)‖0,2,ΓF ‖S(V )‖0,2,ΓF

+ C2‖e−(b/a)S(V ) − 1‖0,1,ΓF
≤ C1

(
‖RS(V )‖0,2,ΓF + ‖R(0)‖0,2,ΓF

)
‖S(V )‖0,2,ΓF

+ C2‖e−(b/a)S(V )‖0,1,ΓF + C2‖1‖0,1,ΓF ,

(5.4)

which we can use to bound the growth of RS. On the other hand, once we know
that RS is bounded and show that Vn → V in L2+δ(ΓF ) implies S(Vn)→ S(V ) in
L2(ΓF ) and e−(b/a)S(Vn) → e−(b/a)S(V ) in L1(ΓF ), it follows from (5.3) that RS is
continuous. To that end, we need to investigate S more thoroughly.

5.2. An explicit formulation for the state problem. In this section it is shown
that S can also be viewed as a superposition operator.
We first observe that an application of the backward Euler scheme to Dieterich’s
law (2.15) turns it into

(5.5) αn − τe−αn = αn−1 −
∆Un
L

,

with ∆Un := τVn. This prompts us to investigate the abstract problem

(5.6) z − τe−z = r,

for which it is convenient to introduce the Lambert W function [8].

Definition. For z ∈ [0,∞), we uniquely define W (z) by W (z)eW (z) = z.

1Here and in what follows, we do not distinguish between v ∈ H and γF (v) ∈ Lp(ΓF )d if the
intended meaning is clear from the context.
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We can then write z = W (τe−r) + r for (5.6) and

αn = W (τe∆Un/L−αn−1)− (∆Un/L− αn−1)

for (5.5). If we furthermore define s(V ) := W (τeV ) − V and sα(V ) := s(V − α),
(5.5) takes the form

αn = sαn−1(∆Un/L).

Proposition 5.2. The function s is Lipschitz continuous and so is sα. As a conse-
quence, Tsα is a well-defined Lipschitz continuous operator from Lp(ΓF ) to Lp(ΓF )
whenever α ∈ Lp(ΓF ).

Proof. It is straightforward to show W (z)′ = W (z)/[z(1 +W (z))], which implies

s′(z) =
W (τez)

1 +W (τez)
− 1 = − 1

1 +W (τez)

and thus |s′| < 1 since we have W (z) > 0 for z > 0. �

Given that Subproblem (Sτ ) with αn−1 ∈ L2(ΓF ) has a unique solution over L2(ΓF )
by Proposition 4.4, and Tsαn−1 maps to L2(ΓF ) by Proposition 5.2, the two opera-
tors S and Tsαn−1 must coincide.

5.3. Growth of S. As a consequence of (5.4), the growth of RS is dominated by
the growth of S and e−(b/a)S . In this section, we show that S has asymptotically
logarithmic growth, so that we can shift our attention to e−(b/a)S . To this end, we
first show that s has logarithmic growth on the positive real axis.

Lemma 5.3. We have |s(z)| ≤ log(z/τ) for τ ≤ 1 and z ≥ 1− log τ .

Proof. Since z ≥ τ implies W (τez) ≤ z, we can assume |s(z)| = −s(z). For τ = 1,
we have

y −W (ey) ≤ log y ⇐⇒ (y − log y)ey−log y ≤ ey ⇐⇒ y − log y ≤ y ⇐⇒ 1 ≤ y.

For the general case, with τ ≤ 1 and z + log τ ≥ 1 the above implies

−s(z) + log τ = (z + log τ)−W (τez) ≤ log(z + log τ) ≤ log z

from which the claim immediately follows. �

The operator S inherits this property for non-negative arguments from s. To show
this, we can use Jensen’s inequality. The application is not straightforward, however,
since S is parametrised with a state α, and s2 is not concave on all of R. We first
address the second concern.

Lemma 5.4. Let τ > 0 be arbitrary. Then there is a z0(τ) ≥ 0 such that

d

dz

(
s(z)2

)
≥ 0 and

d2

dz2

(
s(z)2

)
≤ 0

for z ≥ z0(τ).

Proof. We find

d

dz

(
s(z)2

)
= 2 · z −W (τez)

1 +W (τez)
≥ 0 ⇐⇒ z ≥W (τez) ⇐⇒ z ≥ τ,

so that we can choose any z0 ≥ τ to make s2 non-decreasing from z0 on. We also
find

d2

dz2

(
s(z)2

)
= 2 · 1 +W (τez) + (W (τez)− z)W (τez)

(1 +W (τez))3
≤ 0

⇐⇒ 1 +W (τez)

W (τez)
≤ z −W (τez),(5.7)
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which must be true from some z0 ≥ 0 on since the left-hand side of (5.7) converges
to 1 from above and the right-hand side goes to infinity with z →∞. �

Since now s2 is concave and non-decreasing on an interval [z0,∞), we can bound
integrals over s(z)2 with z ≥ z0.

Lemma 5.5. Assume τ ≤ 1. Then there is a constant C such that for any V ∈
Lp(ΓF ) and α ∈ L2(ΓF ) with Z(V, α) := ‖V ‖0,p,ΓF +‖α‖0,2,ΓF ≥ C and M := {x ∈
ΓF : V (x)− α(x) ≥ z0}, we have(∫

M

s(V − α)2

)1/2

≤ λ(ΓF )1/2 log

(
C(ΓF )

τ
Z(V, α)

)
+ 2/e,

where λ denotes the (d− 1)-dimensional Lebesgue measure.

Proof. Since the case λ(M) = 0 is trivially covered by choosing C ≥ τ/C(ΓF ), we
assume λ(M) > 0 and define a function g by

g(z) :=

{
s(z)2 if z ≥ z0

s(z0)2 + (z − z0) ddz (s(z)2)|z=z0 otherwise,

so that g is non-decreasing, concave, and coincides with s2 on [z0,∞). By construc-
tion, we now have

1

λ(M)

∫
M

s(V − α)2 =

∫
M

g(V − α)
dλ

λ(M)

≤ g
(∫

M

V − α dλ

λ(M)

)
≤ g

(
C(ΓF )

λ(M)
Z(V, α)

)
= s

(
C(ΓF )

λ(M)
Z(V, α)

)2

if
C(ΓF )

λ(ΓF )
Z(V, α) ≥ z0

≤ log

(
C(ΓF )

τλ(M)
Z(V, α)

)2

if
C(ΓF )

λ(ΓF )
Z(V, α) ≥ 1− log τ

by Jensen’s inequality, Lemma 5.3, and Lemma 5.4. This means(∫
M

s(V − α)2

)1/2

≤ λ(M)1/2 log

(
C(ΓF )

τλ(M)
Z(V, α)

)
whenever Z(V, α) ≥ C̃ := max{z0, 1− log τ}λ(ΓF )/C(ΓF ). We conclude(∫

M

s(V − α)2

)1/2

≤ λ(M)1/2 log

(
C(ΓF )

τ
Z(V, α)

)
− λ(M)1/2 log (λ(M))

≤ λ(ΓF )1/2 log

(
C(ΓF )

τ
Z(V, α)

)
+ 2/e

whenever Z(V, α) ≥ max{C̃, τ/C(ΓF )}. �

To show that S has asymptotically logarithmic growth, we now only need to make
sure that points x with V (x) < z0 can be neglected.

Lemma 5.6. We have s(z)2 ≤ z2 + 1/τ for all z and τ ≤ 1.

Proof. The substitution z = y/τ + log(y/τ2) reduces the claim to

(5.8) 2
y

τ
log(τ2)− y2

τ2
≤ 2

y

τ
log y +

1

τ



14 PIPPING, SANDER, AND KORNHUBER

with y > 0. Since the left-hand side of (5.8) is negative, this is implied by

0 ≤ 2y log y + 1,

which is obvious. �

Combining the above observations yields the result.

Proposition 5.7. Assuming τ ≤ 1 and α ∈ Lp(ΓF ), we have ‖sα(V )‖0,2,ΓF ∈
O(log‖v‖0,p,ΓF ) for ‖V ‖0,p,ΓF →∞.

Proof. We first observe

‖sα(V )‖0,2 ≤
(∫

V−α<z0
s(V − α)2

)1/2

+

(∫
V−α≥z0

s(V − α)2

)1/2

and(∫
V−α<z0

s(V − α)2

)1/2

≤
(∫

V−α<z0
(V − α)2 + 1/τ

)1/2

≤
(∫

V−α<0

α2 + 1/τ

)1/2

+

(∫
0≤V−α<z0

z2
0 + 1/τ

)1/2

≤ ‖α‖0,2,ΓF + 2‖1/τ‖1/20,1,ΓF
+ ‖z0‖0,2,ΓF

with arbitrary V ∈ Lp(ΓF ) by virtue of Lemma 5.6. Now choose C in accordance
with Lemma 5.5. Either we have ‖V ‖0,p,ΓF + ‖α‖0,2,ΓF ≥ C, so that(∫

V−α≥z0
s(V − α)2

)1/2

≤ λ(ΓF )1/2 log

(
C(ΓF )

τ

[
‖V ‖0,p,ΓF + ‖α‖0,2,ΓF

])
+ 2/e,

which means

‖sα(V )‖0,2,ΓF ∈ O(log‖V ‖0,p,ΓF ) with ‖V ‖0,p,ΓF →∞
as claimed, or ‖V − α‖0,2,ΓF is bounded by a constant and so is ‖s(V − α)‖0,2,ΓF
by Proposition 5.2, so that the claim is trivially true. �

Remark. In the same manner, we obtain ‖sα(|v|)‖0,2,ΓF ∈ O(log‖v‖1,2,Ω) with

‖v‖1,2,Ω →∞.

5.4. Growth of e−(b/a)S. We now bound the growth of e−S := Texp(−sαn−1 ); again
by investigating the underlying scalar map.

Proposition 5.8. The function e−s is Lipschitz continuous.

Proof. We have ∣∣∣∣ ddz e−s(z)
∣∣∣∣ =

ez−W (τez)

1 +W (τez)
≤ 1/τ

since
τez−W (τez) = W (τez) ≤ 1 +W (τez). �

As a consequence, the operator e−S is obviously well-defined and Lipschitz contin-
uous from Lp(ΓF ) to Lp(ΓF ) whenever αn−1 ∈ Lp(ΓF ). We also have

(5.9) ‖e−rS(V )‖0,1,ΓF = ‖e−S(V )‖r0,r,ΓF ∈ O(‖V ‖r0,r,ΓF )

for any r ≤ p.

Corollary 5.9. From αn−1, e−αn−1 ∈ Lp(ΓF ) and u ∈ Lp(ΓF )d it follows that αn,
e−αn ∈ Lp(ΓF ). In other words, regularity of the state variable is carried over from
one time step to the next.

Proof. This is an immediate consequence of Propositions 5.2 and 5.8. �
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It should be noted that the analogue of Corollary 5.9 for Ruina’s law does not seem
to hold.

5.5. Growth and continuity of RS. With Proposition 5.7 and Proposition 5.8
we have bounded the growth of the right-hand side of (5.4). In this section, we
collect the implications for the operator RS. We first need a technical lemma.

Lemma 5.10. From f(t)2 ∈ O(f(t) log t+ tr) with r > 0 it follows that

f(t) ∈ O(tr/2) with t→∞.

Proof. Straightforward. �

Proposition 5.11. Assume b/a ≤ r with r ≤ 2. We then have

‖RS(V )‖1,2,Ω ∈ O(‖V ‖r/20,r,ΓF
)

for ‖V ‖0,r,ΓF →∞. In particular, RS is then bounded.

Proof. From (5.4) and (5.9) as well as Proposition 5.7 we deduce

‖RS(V )‖21,2,Ω ∈ O
(
‖RS(V )‖1,2,Ω‖S(V )‖0,2,ΓF + ‖e−(b/a)S(V )‖0,1,ΓF

)
⊆ O

(
‖RS(V )‖1,2,Ω log‖V ‖0,r,ΓF + ‖V ‖r0,r,ΓF

)
.

The claim now follows from Lemma 5.10. �

Remark. In a similar fashion, we conclude

‖RS(|u|)‖1,2,Ω ∈ O(‖u‖r/21,2,Ω)

for b/a ≤ r < p∗.

Corollary 5.12. If we, furthermore, assume r < 2, we obtain

‖RS(|u|)‖1,2,Ω ∈ o(‖u‖1,2,Ω),

so that RS ◦ |γF | is a self-map on sufficiently large balls in H.

The assumption b/a ≤ r < 2 is not unreasonable. The literature has this to say:

“Laboratory experiments generally show a ≈ 2(b− a)” [26].

which implies b/a ≈ 3/2. From another source:

“Laboratory values of a/b are typically larger than 0.5” [1].

In order to apply Schauder’s theorem, we now only need to show that RS is con-
tinuous.

Proposition 5.13. The operator RS : Lp(ΓF ) → H with p ≥ 2 is continuous
whenever b/a ≤ p and αn−1 ∈ Lp(ΓF ).

Proof. Let Vn converge to V ∈ Lp(ΓF ). We know that the sequence RS(Vn) is
bounded from Proposition 5.11, that S(Vn) converges in L2 from Proposition 5.2,
and that e−(b/a)S(V ) converges in L1 from Proposition 5.8. In summary, the right-
hand side of (5.3) converges and so must the left-hand side. �

We thus have that for b/a ≤ r < 2, the operator RS ◦ |γF | is a continuous compact
self-map on large balls in H. By Schauder’s fixed point theorem [12, Corollary 11.2],
such balls contain fixed points of RS ◦ |γF |. We conclude:

Theorem 5.14. If we have ‖b/a‖0,∞,ΓF ≤ r < 2 as well as αn−1 ∈ L2(ΓF ) and

e−αn−1 ∈ L2(ΓF ), then the time-discrete coupled problem corresponding to the nth

time step with Dieterich’s state evolution law has a solution. The new state satisfies
αn ∈ L2(ΓF ) and e−αn ∈ L2(ΓF ).
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Corollary 5.15. If we have ‖b/a‖0,∞,ΓF ≤ r < 2 as well as α0 ∈ L2(ΓF ) and

e−α0 ∈ L2(ΓF ), then the time-discrete coupled problem with Dieterich’s state evo-
lution law has a solution for every time step.

6. Numerical Experiments

6.1. A model problem. We consider a two-dimensional 5 m × 1 m slider Ω as
depicted in Figure 2.1 and assume it to consist of a St. Venant–Kirchhoff material.
The body force shall represent gravity, hence we set f = −ρg · e2. Here and in the
following e1, e2 denote the unit vectors in R2.
The top of the slider moves with a constant velocity of 2× 10−4 m/s in direction of
e1, which we prescribe through a Dirichlet boundary condition on ΓD. The bottom
ΓF obeys a Dieterich–Ruina friction model, and on ΓN homogeneous Neumann
conditions fN = 0 are imposed.
We select homogeneous initial data u( · , 0) = u̇( · , 0) = 0 on Ω, and the initial
condition α(·, 0) = α0 with α0 = e−10 on ΓF . The remaining parameters are listed
in Table 6.1.
We select the final time T = 15 s and the time step τ = T/N with N = 104, if
not stated otherwise. Spatial discretisation of Subproblem (Rτ ), i.e., of the velocity
u̇n, is carried out with respect to a triangular grid Tj arising from j successive
uniform refinements of a regular initial grid T0 with 2× 6 vertices and correspond-
ing piecewise linear finite elements Sj ⊂ H. For the states αn, n = 1, . . . , N , we
use piecewise constant finite elements on the dual of the trace grid Tj ∩ ΓF . The
implementation is based on the Dune libraries [2].

6.2. Convergence properties of the fixed point iteration. In light of the
theoretical considerations in Section 4, we first investigate the convergence of the
fixed point iteration

u̇ν+1
n,j = Rj

(
ωναν+1

n,j + (1− ων)ανn,j
)
, αν+1

n,j = Sj
(
|γF (u̇νn,j)|

)
, ν = 0, 1, . . .

for the algebraic spatial problems (see Section 6.1) numerically. We select the damp-
ing parameter ων = 1, if ν = 0, 1 or

‖αν+1
n,j − α

ν
n,j‖L2(ΓF ) ≤

1

2
‖ανn,j − αν−1

n,j ‖L2(ΓF ), ν = 2, 3, . . . ,

and ων = 0.5 otherwise.
The evaluation of Sj , i.e., the solution of a discrete version of (Sτ ) is computed
pointwise by a bisection method up to a pointwise absolute error of 10−12.
The evaluation of the discrete operator Rj , i.e., the solution of the discrete coun-
terpart of the smooth, convex minimisation problem (Rτ ) on the finite-dimensional
space Sj ⊂ H is performed iteratively by Truncated Nonsmooth Newton Multigrid
iterations (TNNMG) [14, 15, 16] with an absolute error tolerance of 10−10 with
respect to the norm ‖ · ‖ given by

‖v‖ =
(
(Cε(v), ε(v))L2(Ω) + (ρv, v)L2(Ω)

)1/2
, v ∈ H.

Parameter Value Parameter Value
Mass density ρ 5× 103 kg/m2 Ref. velocity V0 1× 10−6 m/s
Poisson’s ratio ν 0.3 Ref. friction coeff. µ0 0.6
Young’s modulus E 5× 107 N/m Rate-effect coeff. a 0.010
Gravity g 9.81 N/kg State-effect coeff. b 0.015
Prescr. normal stress σ̄n 49 050 N/m Characteristic slip dist. L 1× 10−5 m

Table 6.1. Material parameters
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The overall fixed point iteration is stopped once the criterion

‖uν+1
n,j − u

ν
n,j‖ ≤ 10−10

is satisfied.
Both for Dieterich’s law (left) and Ruina’s law (right), Figure 6.1 shows the average
(solid) and maximum number (dashed) of required fixed point iterations per time
step for the spatial problems arising in 104 time steps over the number of refinement
levels j of the underlying triangulation Tj , j = 2, . . . , 8. In both cases, the number
of required fixed point iterations appears to saturate with decreasing mesh size,
suggesting mesh-independent convergence. A theoretical justification is the subject
of future research.
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Figure 6.1. Average (solid) and maximum (dashed) number of
fixed point iterations per time step required for 104 time steps
over the number of refinement levels j for Dieterich’s law (left)
and Ruina’s law (right).

6.3. Convergence properties of the discretisation. During the time interval
[0, T ], the evolution of the body Ω goes through three phases: It first shears without
slipping (roughly for tn ∈ [0, 0.4T ]), then it starts to slip unsteadily (roughly for
tn ∈ [0.4T, 0.75T ]), and finally—both for Dieterich’s and Ruina’s law— it enters a
regime of quasiperiodic slip events.
We concentrate on Dieterich’s law and the quasiperiodic regime. To get an idea of
the total movement of the object we examine the displacement γF (uj)(x0, ·) and
sliding velocity |γF (u̇j)(x0, ·)| at the centre x0 of ΓF . Discretisation is carried out
using the Newmark/finite element methodology described in Sections 3 and 6.1. The
triangulation Tj , j = 4 is fixed and we consider a sequence of decreasing time step
sizes τi = T/Ni, Ni = 104+i, i = 0, 1, 2. The resulting approximate displacements
and velocities are shown in Figures 6.2 and 6.3, respectively. Note the quasiperiodic
steps (displacement) and peaks (velocity) associated with slip events. Each of these
periods is resolved by about 103–105 time steps. For the step sizes τ1 and τ2, we
obtain strong agreement of both approximate displacement and velocity. Note that
frequency and amplitude of the oscillations displayed by the sliding velocity appear
to increase with decreasing time step size τ .
We found the same qualitative behaviour for Ruina’s law. However, grid conver-
gence seems to require even smaller values of τ that might be prohibitive in prac-
tical calculations. More efficient discretisation schemes are the subject of current
research.
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Figure 6.2. Dieterich’s law: Displacement at the centre x0 of the
frictional boundary ΓF for the time step sizes τi = T/104+i, i =
0, 1, 2 (left to right).
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Figure 6.3. Dieterich’s law: Velocity at the centre x0 of the fric-
tional boundary ΓF for the time step sizes τi = T/104+i, i = 0, 1, 2
(top to bottom).
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