
The Notion of the Interaction Space of an Information
System

Srinath Srinivasa�

Brandenburgische Technische Universität
Postfach 101344,
D-03013 Cottbus

Germany
srinath@informatik.tu-cottbus.de

Abstract

Information systems’ (IS) design concerns modeling systems that are dy-
namic in nature. A dynamic system essentially has two dimensions of concern
– static structure and dynamic behavior. The existence of dynamics – or inter-
actions among parts of the system distinguish a dynamic system from a heap or
collection of parts. Specification and management of the static aspects of an in-
formation system like the data and metadata have been fairly well addressed by
existing paradigms. However, an understanding of the dynamic nature of infor-
mation systems is still low. Currently most paradigms model behavioral proper-
ties above an existing structural model, resulting in what may be called “entity
centric” modeling. Such a kind of modeling would neglect properties that can be
attributed to behavioral processes themselves, and relationships that might exist
among such processes.

This thesis argues that the dynamics of an information system are best man-
aged by explicitly characterizing an “interaction space” of the information sys-
tem. An interaction space is defined as an abstract domain that represents the
set of all dynamics of the information system. This is contrasted with an “entity
space” that represents elements of the static structure of the information system.
Recent results on the nature of interactive behavior and of open systems indicate
that interaction spaces are characteristically different from the hierarchical nature
of algorithmic problem solving. Interaction spaces consist of multiple interactive
processes which affect the behavior of one another. Paradigms for the character-
ization of these spaces are hence explored as part of the thesis.

1 Introduction

Design processes for information systems (ISs) need to address issues of modeling dy-
namic systems. A dynamic system is characterized fundamentally by two dimensions
of concern – the static structure and dynamic behavior. The structural elements of a
dynamic system are those elements which may be identified from static snapshots of

�This research was supported by the German Research Society, Berlin-Brandenburg Graduate School
in Distributed Information Systems (DFG grant no. GRK 316).

the problem domain; while the dynamic aspects involve those semantic elements of the
system that exist over the time domain.

While modeling the static aspects of an information system like the data and meta-
data, have been fairly well addressed; an understanding of the dynamic nature of in-
formation systems is still low. Currently, with paradigms like ER modeling and object
oriented modeling, models can be built in terms of intuitive domain objects or entities
and interactions defined among them. But a characteristic feature of most modeling
techniques is that the modeling is “entity centric” in nature. In this, domain entities
or objects, form the building blocks of the model; and dynamics are represented as
interaction processes on top of the domain entities.

A shortcoming with such an approach is that behavioral aspects of the information
system gets inadequate treatment. Behavioral issues of any fairly large information
system are usually complex, consisting of many interactive sessions with the outside
environment, tasks like coordination and collaboration among different actors of the
information system, etc. Dynamic systems usually have emergent properties that re-
sult from the dynamics, and which cannot be attributed to the static structural aspects.
In case of algorithmic computation, the emergent property depicts a computable func-
tion and can be understood easily. However, given any real world information system
consisting of many multi-stream interactive processes, emergent properties are usually
complex, without a common characteristic structure [6]. Such emergent properties are
hence required to be addressed separately.

Currently, most approaches towards IS design proceed in an entity centric fash-
ion, and neglect the complex nature of emergent behavioral properties of information
systems. Behavioral modeling is usually carried out by defining a set of algorithmic
processes depicting information system behavior. However this would be grossly inad-
equate for characterizing the complex nature of tasks like interactive problem solving,
and its consequent activities like collaboration and coordination [10]. For instance,
some aspects involving multiple behavioral processes are best specified in a negative
fashion that depicts disallowed behavior, rather than allowed behavior [3]. Some ex-
amples of this are paradigms like mutual exclusion, locking and critical regions used in
process management. Similarly modeling interactive behavior with open environments
– like reactive processes – are not specifiable using algorithms [11], [18]. Modeling
behavioral aspects of information systems thus involve more complex characteriza-
tions than just algorithmic specifications of behavioral processes over an entity centric
system model.

In this work, the endeavor is to design a modeling paradigm that better addresses
the dynamic aspects of information systems. This is done by dividing a dynamic sys-
tem into two abstract “spaces” or domains of concern – the static or entity space, and
the dynamic or interaction space. The entity space is the domain that contains the
classes of all entities that can be part of the static system structure, and the interaction
space is the domain that contains classes of all interaction processes that could be part
of the information system dynamics.

The characterization of a space is called as a schema. Hence, a characterization of
the interaction space is in the form of an interaction schema which consists of interac-
tion processes as first class objects that build up the schema, and relationships among
interaction processes.

In current modeling techniques, we occasionally encounter non-intuitive classes as

part of the system model. (For example, a class called “Command” in GUI design; a
class called “Event” in designing discrete event simulation, etc.) Such non-intuitive
classes are often touted as “great” classes which form the key to reducing the com-
plexity in modeling. However, with a notion of entity and interaction spaces; we can
recognize that almost always such non-intuitive classes represent abstractions of inter-
action processes among domain objects. That is, they are classes that are part of the
interaction space. The endeavor in this thesis is to explicitly bring out this notion of an
interaction object and reason about how interactive processes affect one another inside
an information system.

Analysis Design

Identification of
properties that

arise due to
interactions

Characterizing an
Interaction Schema

for the
Information System

System
space

Entity
space

Interaction
space

Figure 1: Overview of the research framework

2 Research Framework

An overall framework of the research is depicted in Figure 1. The research work is
directed towards a better understanding and characterization of the interaction space of
information systems. Broadly, the research efforts are divided into two parts – analysis
and design.

In analysis, the task that is addressed is to discern properties of a given dynamic
system that manifest due to the interactions that take place in the system (emergent
properties of dynamic systems). In order to do this, a general framework of a dynamic
system called an “ad hoc” system, is considered. This is a system framework consisting
of actors interacting among one another with each actor pursuing its own goals. There
is no known common vision or goal binding the actors’ actions. The task is to discern
global patterns of behavior emerging from these interactions.

In [14] an approach is presented that looks for consistent interaction patterns by
mining transaction data. In [16] an approach is presented that seeks to discern task
dependencies and possible semantic states existing in any such interaction pattern dis-
covered. As an example, a situation involving transactions between autonomous, phys-
ically disparate departments of a hospital are considered. The task is to determine prop-
erties of interaction patterns by analyzing the transactions between these departments,
in order to help design better logistics between the physically disparate departments.

Domain Object

O1 method(I1)
O2 method(I2)
...

n

time

1
2

3 ...

SOI

Dialog
Object

(a)

(b)

Domain Object

O1 method(I1)
O2 method(I2)

Domain Object

O1 method(I1)
O2 method(I2)

Domain Object

O1 method(I1)
O2 method(I2)

Time

X

Y

Domain object

Interaction object or dialog (a semantic interaction process)

Z

Interactions among domain objects and with the outside world

Entity space of the information system

Figure 2: Domain objects and dialogs

The design aspect in this work seeks to characterize an interaction space. A char-
acterization of an abstract space is called a schema. An interaction space is hence
characterized by an “interaction schema.” For our purposes, we consider the structure
of a schema to be made up of entities and relationships. A schema S � hE�Ri, where
E is the set of entity types that exist in the domain, and R is the set of relationship
types that exist among the entity types in E. When S is an interaction schema, we
call the entity types as “dialogs” in order to distinguish them from entities of the static
entity space. A dialog represents a semantic interaction process that may involve one
or more entities from the entity space, and may be related to other dialogs by dialog
association relationships.

3 Dialogs and Dialog Associations

Figure 2 contrasts a dialog to a domain object. A dialog may be associated with one
or more domain objects and is said to represent the domain object or subsystem. The
domain object or subsystem is said to have adopted the dialog. Two or more dialogs
may share a domain object and a domain object may have more than one dialog adopted
by it at any time.

The system model consists of two schemata – an entity schema consisting of do-
main objects and relationships among them; and an interaction schema consisting of
dialogs and relationships among them. A compilation of the system model results in
implementable code that may be in one of two paradigms – (a). actor or proactive

domain object model, where domain objects have independent threads of execution,
and act as schedulers of dialogs which they have adopted; or (b). process or proactive
dialog model, where dialogs have independent threads of execution, and use domain
objects as shared data stores. Compiled into a language like Java, the system model
can be considered to consist of two schemata, where, in exactly one of the schemata,
all classes contain the main() method in them (i.e. can have their own independent
thread of execution).

Some examples of domain objects would be objects like Account, Transaction Log,
User, etc. A dialog, on the other hand represents a semantic process that is part of the
information system. They are semantic objects that are identified in a dynamic four-
dimensional picture of the problem domain. Some examples of dialogs are objects that
represent processes or workflows like “OpenNewCreditAccount”, “OpenNewDebitAc-
count”, etc., in a banking situation; or objects like “LandingProtocol”, “TakeoffProto-
col”, “CruiseControlProtocol”, etc., in an air traffic control scenario. Each of the above
dialogs involve one or more domain objects like User, Teller, Account or Airplane,
ControlTower, etc., and interacts with a larger environment.

The interaction space represents the complete set of dynamics of the information
system. Hence any message passing between any two domain objects is always qual-
ified within the context of some dialog object. In addition, dialog objects may pass
messages among themselves; however, a dialog object is not allowed to interact with
any domain object other than those which it represents. An interaction between a dia-
log object D and an arbitrary domain object P should take place only through another
dialog object D� which represents P . This is a consequent of the assertion that the
interaction space represents the complete set of IS dynamics.

The complexity in characterizing an interaction space comes from the interactive
nature of dialogs. Interactive processes which carry out interactive sessions with their
environments cannot be reduced to algorithms [18], [19], [20].

 A

B

A

B

C

D

E

A

B C

D
E

F

G

Algorithmic
Computation

Sequential
Interaction Interaction

Multi-stream (concurrent)

(a) (b) (c)

Figure 3: Algorithmic and interactive computations

Figure 3 contrasts between algorithmic and interactive processes. Figure 3(a) de-
picts an algorithmic mapping that maps a “problem” state to a “solution” state in a
closed functional mapping. Such a behavior, characteristic of (say) read-only databases
are represented as a mapping i� o, that maps an input from the problem domain to an
output from the solution domain. Figure 3(b) depicts a sequential interactive process.
This is characteristic of a single-user read-write database. Here, response to a query
is dependent on the present database state, which is a result of past interactions of the

database with the user. The mapping between any two interactions can be represented
by a partial function of the form �s� i� � �s�� o�, that maps an input to an output based
on the current state of the system, and changes the system state in the process. The
system state is hence a function of interaction history. A semantic sequential interac-
tive process consisting of n interactions is the transitive closure of n partial function
mappings like the above. Figure 3(c) depicts multi-stream interaction that is character-
istic of the dynamics of most information systems. Here, interactive processes occur
concurrently over multiple interaction streams. The response to a query on any stream
would depend on the current system state which in turn depends on past interactions as
well as interactions taking place on other streams. In the figure, while the system state
changes according to the sequence ABCDEFG, the interaction stream on the right
perceives the state change sequence as ACG and the stream on the left perceives the
state change sequence as BDEFG. Multi-stream interactions also model true (non se-
rializable) concurrency and activities like coordination and collaboration between two
or more interacting actors.

In a formal sense, algorithmic computation of Figure 3(a) is represented by a Tur-
ing Machine (TM) which is a mathematical model for computable functions. Sequen-
tial interaction, as depicted in Figure 3(b), represents composition of computable func-
tions sequentially, such that the state is persistent over computations. This is repre-
sented by Persistent Turing Machines (PTMs) [5]. PTMs provide a minimal extension
to TMs by having a persistent worktape whose contents are maintained intact over
multiple PTM computations. Sequential interaction is also expressed by other mathe-
matical models like Labeled Transition Systems, Coalgebras and Transducers.

Multi-stream interaction, on the other hand, is still largely unexplored. Many areas
of computation have dealt with multi-stream interaction. Some examples are: different
kinds of collaboration and coordination models in distributed computing, process man-
agement, resource sharing, etc. However, a generic mathematical model of the notion
of multi-stream interaction is still to be agreed upon. Wegner and Goldin [18] propose
a model called Multi-stream Interaction Machine (MIM) as an extension to the PTM
model, in order to represent multi-stream interactions. However, the MIM model still
lacks a formal mathematical structure.

An algorithm maintains a subroutine relationship with its environment while an in-
teractive process maintains a coroutine relationship with its environment. The abstract
space characterized by an algorithm can be broken down into well formed hierarchies,
with processes in higher levels of granularities invoking processes at lower granulari-
ties as subroutines. Such a hierarchy can be maintained for partial function structures of
sequential interaction. However, for multi-stream interaction, such hierarchical struc-
tures breakdown. There is no single characteristic structure of the space characterized
by a multi-stream interaction. This aspect is elaborated in [6].

An information system can be considered to be a huge MIM; or consisting of many
MIMs. The main challenge here is to be able to build a mathematical model that
characterizes a MIM behavior. In this work, we address this question; although no
claim is made that the resulting model is the complete mathematical model for a MIM.

Dialog Structure: A dialog represents a single-stream interactive process. That
is, it does not distinguish between two or more environments that interact with it. As
mentioned earlier, a dialog represents a subsystem and carries out an interactive pro-
cess with the larger environment. The behavior of a dialog is dependent on the states

of the domain objects that it represents. The dialog interfaces with its environment
through a set of method interfaces M . The method interfaces can be considered to map
the behavior of the dialog into a set of observational equivalence classes; M � B � C ,
where B is the behavior of the dialog, and C is a set of observational equivalence
classes called “operational contexts.” An operational context is determined by the val-
ues of the states of the domain object which the dialog represents. The formal structure
of a dialog is defined below:

Definition: A dialog is represented as D � hA�M�C� s�� �i, where:

� A is the set of domain objects that the dialog represents, and is called the attribute set of
the dialog. Elements of A are of the form of either T – representing any domain object
of type T , or x � T – representing a particular instance x of type T . (Two dialogs which
have attributes of the form x � T hence share the same instance x of the domain object
of type T).

� M is a set of method interfaces, also called observer functions, which are of the form
m�Ti� � Tp � Tp�� � � � � Tq, which indicates that the function can provide an input
of type Ti to the dialog (which could be a combination of multiple inputs of different
types), and can observe an output of one of the types in Tp � � � Tq from the dialog.

� C is a set of operational contexts of the dialog. Each operational context depicts an
observably closed context of dialog behavior, represented by a finite Labeled Transition
System (LTS).

� s� is the Start state of the current context in which the dialog is presently operational.
Each operational context begins from its Start state, and in most cases the start state s�
represents the same state for all operational contexts.

� � is a set of context morphisms, of the form e � ci � cj�Compe�, where e is an ex-
pression involving elements of A, and ci, cj � C. This denotes that when e holds, and
current operational context is ci, then the operational context changes to cj , after exe-
cuting the compensatory operation Compe.

A dialog represents a subspace of the interaction space. This subspace is charac-
terized by the set of operational contexts, that the dialog operates in. Each operational
context represents a particular scenario and depicts an observationally closed world of
dialog behavior. Operational contexts of a dialog are represented in the form of a finite
LTS that interacts with its environment, until it reaches one of the end states.

Dialog trace: Any instance of a dialog is said to leave a trace in the interaction
space. The trace of a dialog is a string of the form s��TI � TO�

�p, where s� is the start
state, �TI � TO� is the invocation of an observer function on the dialog, and p is an
end state in any of the operational contexts. The trace of a dialog represents a particular
interaction stream that maps from the initial state of the dialog to any end state in any
operational context of the dialog. The trace of a dialog is treated as a semantic entity
that represents a dialog instance that once existed in the interaction space. Queries on
interaction spaces return entire dialog traces and not any substructure of them.

Context morphisms: A dialog currently in context ci is said to switch to opera-
tional context cj , after performing operation Compe, if a condition e holds such that
e � ci � cj�Compe� � �. Context morphism may occur at any time during the life
time of a dialog. Let t denote the dialog trace prefix that has charted the behavior of the
dialog in the current context ci. When the dialog changes context to cj , it changes to a

state s in cj determined by the longest prefix p � pref�t�, such that p is recognizable
in cj . The trace prefix that is recognizable by all contexts is s�. Hence in the worst
case, the dialog rolls back to the start state in the new context and begins its process
anew.

Context Subsumption: In the definition of a dialog it was mentioned that the start
state s� is common to all contexts “in most cases.” The exception to the above rule
occurs when contexts subsume one another. Context subsumption is used to denote
special areas of particular operational contexts, for example, critical regions. Since
each operational context contains a separate state machine that defines the dialog, every
context hence shares a common “start” state. However, a context that is subsumed by
another context does not depict a new state machine, but instead depicts a subset of
the state machine of the larger context. Hence such contexts need not have a common
“start” state.

Example 1: A dialog that represents a student application process, would represent
domain objects like: Admission office, University, Student database, etc. The environ-
ment (applicant) interacts with the dialog to submit an application for admission into
the university. The dialog may have many operational contexts like: (a). admission
process for local students, (b). admission process for foreign students, (c). admission
process for working students, etc. The current operational context can be determined
only after the student has submitted the initial request. In this case contexts do not have
to change in the midst of the process, and no compensatory operations are required.

MovePiece

Board BoardObj;
Piece Picked;
Player Me;

Boardpos Move();
Piece Pick();

Boardpos Place();
int Commit();
int Abort();

C0:
[Me.isMyTurn()]

C1:
[not(Me.isMyTurn())]

C0: Start

Picked Placed

Move

Pick()

()

Move()

Place()

Abort()

Commit()

Commit()
Abort()

Pick()

Pick()
Place()
Move()

C1: Start

Show
Hist

Move()

Pick()

Move()

Abort()

Commit() Place() Pick()

Figure 4: Movepiece: A dialog object

Example 2: Figure 4 depicts a dialog that has two operational contexts. The dialog
represents a process by which a user moves his/her piece in a board game like chess.
The context C0 represents the case when it is the user’s turn to move; and context C1
represents the case when it is the other player’s turn to move. In C0, the user can
“Pick()” a Piece object which is a domain object and “Move()” it to another location
on the Board object and “Place()” it there. In C1, the user cannot “Pick()” the piece
since it is not the user’s turn to move. Instead, the user can query as to how a piece
came to its present location.

Dialog Associations: Earlier, a schema was defined as a tuple of entity and rela-
tionship types. In an interaction schema, dialogs form the entity types of the schema.

Relationships among dialogs hence need to be represented in order to obtain a complete
characterization of the interaction schema.

Relationships may be of different types, and different relationship types may be
identified based on the problem domain. However, we introduce a specific type of
dialog relationship that is common across all application domains. This is called con-
strained association.

Definition: A constrained association between n dialogs is an n-ary association denoted
by R�D���Dn� � h��D�� D�� � � � � Dni, where D���Dn are n dialogs, and � is a constraint
relationship on the operational contexts of the n dialogs.

MovePiece
 Player1;

MovePiece
 Player2;

Player1 Player2

MovePiece1
MovePiece2

Board

(a)

(b)

time

C(Player1)=C0
::= ρ [C(Player2)=C1]

C(Player1)=C1 ::=

ρ [C(Player2)=C0]

Figure 5: Constrained association between dialogs

Figure 5 depicts a constrained association relationship. This relationship represents
the association that exists between two “MovePiece” processes of opposing players.
The constraint that needs to hold in this association is that while it is the first player’s
turn to play – that is, when the first player is in context C0, the second player would be
in context C1 and vice versa.

The syntax of a constrained association is of the form body ��� head, where body
is a conjunction of predicates of the form b� � b� � � � � � bn, that depict conditions
that need to hold as part of the constraint. The head consists of a disjunction of one
or more predicates, of the form h� � h� � � � � hn, that need to hold as a consequence,
in order for the constraint to be valid. Different constructs are provided for depicting
conditions over operational contexts of dialogs. An important construct is the “require”
construct denoted by �. A constraint equation of the form body ��� ��head� is read
as “when body holds, then it is required to have corresponding dialogs such that head
also holds.” This means that, if the head refers to other dialogs which are not presently
running, instances of such dialogs have to be created and made to conform to the
conditions in head. In the absence of the “require” construct, a constraint equation is

read as “when body holds, if there are corresponding dialogs that are affected by this
association, then they need to conform such that head holds.”

Constrained association is a generalization of paradigms like mutual exclusion,
locking, monitors and critical sections used in resource sharing and process manage-
ment domains. While locks and critical regions seek to exclude processes from re-
gions, constrained association may also have other constraints as well. For example, a
constrained association may necessitate a dialog to be in a particular context when an
other dialog is in an other context. This not only represents an exclusion constraint,
but also an inclusion constraint that specifies where a particular dialog ought to be in.
Constrained associations may have multiple arity and may hold over n dialogs simul-
taneously.

Multi-stream interactive processes: A constrained association actually repre-
sents an interactive process that interacts over multiple streams. The entire set of
dialogs and the constrained association in Figure 5 may be considered to be a multi-
stream interactive process that interacts with two environments. To an observer on any
of the streams, the behavior of the dialog seems to change due to hidden adversaries.

Formal Underpinnings: The formal underpinnings for the notion of a dialog and
an interaction schema is provided based on category theory and the theory of coalge-
bras. Coalgebras have been shown to be a convenient mechanism for representing dy-
namic systems and their composition [13]. Using category theory, a dialog can be rep-
resented as a category, with the operational contexts being represented as coalgebras.
The combined behavior of the interaction space at any point in time is now represented
as the coproduct of the operational contexts of all dialogs currently functional. Con-
strained association can also be defined in terms of coproducts and set differences of
operational contexts. The formal underpinnings are addressed more comprehensively
in [15].

4 Related Work

The notion of Interaction Machines (IMs) by Wegner and Goldin [18], [19], [20], show
that interactive problem solving cannot be reduced to algorithmic problem solving.
Although an object in the conventional sense would depict an interaction machine, the
notion of IMs led us to ask how the “solution space” of an interactive problem solving
is different from an algorithmic solution space. The solution space is the set of all states
that are visited by a Turing Machine (TM) or an Interaction Machine (IM) in mapping
between the problem and solution states. In [15] we argue that the solution space of an
interactive problem solving can be reducible to that of an algorithmic problem solving
only if the behavior of the environment that interacts with the IM is representable
by an algorithm. The above led to the insight that perhaps the dynamic nature of
information systems are very less understood, leading to the proposal of a paradigm
called “interaction space.”

Depicting an interactive process as a first class object, and relating interaction pro-
cesses are not particularly new notions. There have been some approaches which have
sought to represent processes as first class objects and also to relate process structures.
Some examples are as follows – use cases (now part of UML [17]) consider process
structures as coherent units of functionality. Workflow design for example, considers

process structures as semantic entities in their own right. Recently, there have also
been some approaches to relate workflow structures using aggregation and inheritance,
to characterize a workflow space of sorts [1]. Similarly Liu and Meersman [9] build an
“activity schema”, where each object in the schema represents an activity instead of a
domain object. However, there is no precise distinction between a structural schema
and activity schema as proposed in our approach. At more theoretical levels, there
have been paradigms that relate dynamic processes thus creating a schematic struc-
ture. Some examples are Hierarchical Petri Nets [12], and Abstract State Machines
[7]. However, as noted earlier, they do not address the complex nature of multi-stream
interactive processes.

Other approaches towards combining interactive components include Broy’s com-
positional refinement of interactive components [4]. Here interactive components are
combined based on a notion called “streams” that indicate the history of the compo-
nent’s interactive behavior. Hence the behavior of a component is history sensitive;
however this approach lacks the addressal of constraint relationships that could exist
among components.

In a larger sense, interactive paradigms of programming like object oriented, multi-
agent and reactive systems, have been generally acknowledged to represent a different
computing paradigm than algorithms. For example, in the context of reactive systems,
Manna and Pnueli [11] conjecture that reactive systems are irreducible to algorithms.
Abadi and Cardelli [2] develop a theory of objects using the term objects as fundamen-
tal concepts, rather than trying to explain objects as functions.

5 Conclusions and Expected Outcome

The notion of an interaction space can be further developed to suit different application
contexts and provide general underpinnings for managing the dynamics of information
systems. However, as part of the research work, we restrict the endeavor to developing
the concept of dialogs as explained in this paper, and to design specific implementa-
tions for dialogs. Along this line, a specification language is planned that can be used to
specify a dialog, its operational contexts and dialog associations. A CASE tool would
then translate the specifications into some well known OO language like Java or C++.

In addition to the above, a paradigm called Interaction Schema Management Sys-
tem (ISMS) is also planned which manages dialog traces. Queries may be designed
based on temporal logic declarations that return individual or clusters of dialog traces.

Acknowledgments: The author would like to thank his supervisors Prof. Bernhard
Thalheim and Dr. Myra Spiliopoulou for all their support, and Prof. Dina Goldin for
her guidance regarding Interaction Machines.

References

[1] W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic
Change and Capture Management Information? Proc. of CoopIS ’99, Edinburgh,
Sept. 1999.

[2] M. Abadi, L. Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.

[3] R. Bol and J. F. Groote. The Meaning of Negative Premises in Transition System
Specifications. Journal of the ACM, 43(5):863-914, September 1996.

[4] M. Broy. Compositional Refinement of Interactive Systems Modelled by Rela-
tions. Proc. of Int’l Symposium on Compositionality, 1997.

[5] D. Goldin. Persistent Turing Machines as a Model of Interactive Computation.
Proc. of FoIKS 2000, Burg, Germany, Feb 2000.

[6] D. Goldin, B. Thalheim, S. Srinivasa. Information Systems = Databases + Inter-
action: On Principles of Information System Design. submitted to ER 2000.

[7] Y. Gurevich. May 1997 Draft of the ASM Guide. Tech. Rep., Univ. of Michigan,
EECS Department, CSE-TR-336-97.

[8] B. Jacobs, J.J.M.M. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bul-
letin of EATCS, 62:222-259, 1997.

[9] L. Liu, R. Meersman. The Building Blocks for Specifying Communication Be-
havior of Complex Objects: An Activity-Driven Approach. ACM Transactions
on Database Systems, 21(2):157-207, 1996.

[10] T. W. Malone, K. Crowston. The Interdisciplinary Study of Coordination. ACM
Computing Surveys, 26(1):87-119, 1994.

[11] Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag 1992.

[12] A. Oberweis, P. Sander. Information System Behavior Specification by High-
Level Petri Nets. ACM Transactions on Information Systems, 1(4):380-420, 1996.

[13] J.J.M.M. Rutten. Universal Coalgebra: a theory of systems. Tech. Rep., CS-
R9652, Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands, 1996.

[14] S. Srinivasa, M. Spiliopoulou. Modeling Interactions Based on Consistent Pat-
terns. Proc. of CoopIS’99, Edinburgh, September 1999.

[15] S. Srinivasa, B. Thalheim. Dialogs and Interaction Schema: Characterizing
the Interaction Space of Information Systems. Technical Report, 13/99, BTU-
Cottbus, Germany.

[16] S. Srinivasa, M. Spiliopoulou. Discerning Behavioral Properties by Analyzing
Transaction Logs. Proc. of SAC’00, Como, Italy, 2000.

[17] UML Resource Center. http://www.rational.com/uml/index.jtmpl

[18] P. Wegner. Why Interaction is More Powerful than Algorithms? CACM, May
1997.

[19] P. Wegner, D. Goldin. Interaction as a Framework for Modeling. in LNCS #1565.

[20] P. Wegner, D. Goldin. Mathematical Models of Interactive Computing. Tech.
Rep., Brown University, Jan 1999.

