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Abstract

In the robotics area, visual tracking is an important and difficult problem there-

fore is necessary to have a robust and efficient control algorithm which presents im-

munity characteristics to stochastic direction and speed changes of the object to be

tracked. Also is important count with a segmentation algorithm which be able to tol-

erate changes in the intensity of light. We describe in this report the implementation

of fuzzy controllers based on the fuzzy condensed algorithm and also the developed of

a LVQ neural network to segment the image. For this work we used two fuzzy con-

densed algorithms running in a PC to control a robot’s head which tracks a human

face. We describe the main lines of the fuzzy condensed algorithm as well as the LVQ

neural networks architecture employed and the implementation, the fuzzy condensed

controller performance in comparison to a PID controller and real time results.

1 Introduction

In the robotics area, visual tracking is an important and difficult problem therefore is neces-
sary to have a robust and efficient control algorithm which presents immunity characteristics
to stochastic direction and speed changes of the object to be tracked. Also is important
count with a segmentation algorithm which be able to tolerate changes in the intensity of
light. We describe in this report the implementation of fuzzy controllers based on the fuzzy
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condensed algorithm and also the developed of a LVQ neural network to segment the image.
For this work we used two fuzzy condensed algorithms running in a PC to control a robot’s
head which tracks a human face. We describe the main lines of the fuzzy condensed algo-
rithm as well as the LVQ neural networks architecture employed and the implementation,
the fuzzy condensed controller performance in comparison to a PID controller and real time
results.

Fuzzy is a computational paradigm originally developed in the early 1960’s [1]. Fuzzy
logic allows partial truths and multivalue truths. It is therefore especially advantageous for
problems which cannot be easily represented by mathematical modelling because data is
either unavailable, incomplete, or the process is too complex. The real-world language used
in fuzzy control enables the incorporation of approximate human logic into computers. Using
linguistic modelling, as opposed to mathematical modelling, greatly simplifies system design
and modification. It generally leads to quicker development cycles, easy programming, and
fairly accurate control. However it is important to underline the fact that fuzzy logic solutions
are usually not aimed at achieving the computational precision of traditional techniques, but
aims at finding acceptable solutions in shorter time.

2 Fuzzy condensed control scheme

In this work the fuzzy condensed algorithm is used as described in [2](fuzzy PD) witch
consists of only 4 rules and has the structure illustrated in the Fig. 1 [3].

Figure 1: Fuzzy-condensed structure

u = Gu(u∗)
The gains Gu, Ge and Gr are determined by tunning and they correspond respectively to
the output gains, the error and error rate gains. The u∗ is the defuzzyficated output, that
means the “crisp output”.

2.1 Fuzzyfication

As is shown in Fig. 1, there are two inputs to the controller: error and rate. The error is
defined as:

error = setpoint − y (1)
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Rate it is defined as it follows:

rate = (ce − pe)/sp (2)

Where ce is the current error, pe is the previous error and sp is the sampling period.
Current and previous error, are referred to an error without gain. The fuzzy controller has
a single output, which is used to control the process.

The input an output membership functions for the fuzzy controller are shown in Fig. 2
and Fig. 3, respectively. Fig. 2 shows that each input has two linguistic terms. For the error
input are: Ge ∗ negative error (en) and Ge ∗ positive error (ep) and for the rate input are:
Gr ∗negative rate (rn) and Gr ∗ positive rate (rp), while the output fuzzy terms are shown
in Fig. 3 and they are: Negative output (on), Zero output (oz) and Positive output (op).

Figure 2: Input membership functions

As shown in Fig. 2, the same function is applied for error and rate but with different
scaling factors: Ge and Gr respectively.

In Fig. 2 and Fig. 3, H and L are two positive constants to be determined. For convenience
we will take H=L to reduce the number of control parameters to be determined.

The membership functions for the input variables, error and rate, are defined by the
following expressions [3]:

2.2 Fuzzy rules

Since here error will correspond to Ge ∗ error and rate to Gr ∗ rate.
Exist four rules to evaluate the condense fuzzy controller [4]:

R1. If error is ep and rate is rp then output is op
R2. If error is ep and rate is rn then output is oz
R3. If error is en and rate is rp then output is oz
R4. If error is en and rate is rn then output is on
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Figure 3: Output membership functions

2.3 Defuzzyfication

The defuzzyfication method used is the gravity center, in this case is:

For the fuzzy condensed controller proposed, the input error and rate values ranges can
be represented in 20 input region (IC), like is shown in Fig. 4

If the membership functions are evaluated, the 4 control rules, H=L and the defuzzyfica-
tion is applied in each one of the 20 inputs combinations, then 9 equations can be obtained
[4], which can determine the control signal u that should be applied, depending on the re-
gion in which is. In other words, to implement the fuzzy condensed controller, only will
be necessary to know the region in which the inputs variables are and later evaluate the
corresponding equation for this region. For example the first equation acts in regions IC1,
IC2, IC5, IC6.

3 Architecture of the color segmentation System

The core of the algorithm is a LVQ network whose inputs are connected directly with the
pixel-vector of the image I (in RGB format) and its outputs are connected directly to the
decision function fd, which produces an output of 1 or 0 depending of if the color corresponds
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Figure 4: Input regions

to the object to be segmented forming in this way a new vector image I’. The Fig. 5 shows
a scheme of the segmentator.

Considering that the LVQ net is configured with N output neurons, then it would be
possible train the competitive net to learn the configuration space and the color pixels
topology, described as the vector p with elements pR , pG and pB coming from the image.
For the supervised training of the linear net, we suppose that the image I contains an Object
O to be segmented, being pO a pixel corresponding to the object, we train the linear network
in such a way that the class S2 (of this pixel) corresponds to the assigned (in a supervised
way) for the neuron N/2 of the linear network.

The idea is that the color to be segmented is located halfway of the network, while the
similar colors are located in the neighboring neurons. In such a way that if exists a vector p1

that belongs to the object but for the illumination conditions and noise could be classified
in the neighborhood of the neuron N/2.

The classification achieved by the LVQ network gives a vector of elements categorized by
S2 of N elements corresponding to the N classes. Each element of the S2 vector could have
2 possible values, 1 or 0 and only an element from each vector could be 1, while the other
elements will be 0. Then for the object to be segmented, the activation of the neurons is
concentrated in the middle of the vector, that is the neurons nearest to the N/2 will have
a bigger possibility to be activated than the other ones corresponding to the color to be
segment.

Considering the previous problem is necessary to define a function fd able to define
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Figure 5: Architecture of the color segmentation system

neurons density which will be taken to consider if a pixel corresponds or not to the color
to be segmented, this function will be called in this work decision function. It is possible
to formulate many functions which could solve the decision problem satisfactorily, however
the Gaussian function has been chosen by its well-known properties, although it is possible
to use other, including non-simmetrical distributions. The Fig. 6 shows graphically the
function used. The equation 2 shows mathematically this function where g is the number
of the activated neuron, µ is N/2 and σ is the standard deviation. Therefore, fd has only a
calibration parameter represented by σ which determines the generalization capacity of the
complete system. Thus, if the value of σ is chosen small enough, the segmentation capacity
will be more selective than in the case of a bigger σ. For the final result the decision function
was evaluated with a threshold of 0.7.

fd(g) =
1√
2πσ

exp

(

− (g − µ)2

2σ2

)

(3)

4 Implementation

The goal of the robotic head system is to be in permanent contact with the person’s face, to
achieved that, a face localization algorithm is used [5], it calculates the face’s central point,
then the controller acts on the difference between this point and the image’s central point.
The Fig. 7 (a) shows the localization process and Fig. 7 (b) the tracking system.

A condensed controller allows real time work for each captured frame, in this case even
to a 30 Hz. The system was implemented with an USB Webcam with a 352x244 resolution,
therefore the central point of the image and also the fuzzy controller set point is 176 for x
and 144 for y. The complete vision and control system was totally implemented in C++

The robot head consists of two rc-servo motors to control each axis movement. The
mathematical model for the tracking system was implemented using Simulink as shown in
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Figure 6: Decision function model

(a) (b)

Figure 7: (a) Localization process. (b) Tracking System

Fig. 8, where Ea represents the applied voltage and Pos the position.
Two fuzzy controllers were implemented and tuned to different dynamic parameters to

control each axis. For violent change-direction movements (when the position’s rate value
was considerably high) the system experimented some difficulties, which were eliminated im-
plementing a Kalman’s filter allowing the smooth position’s rate. The controller’s parameters
were experimentally obtained, the Table 1 shows the values.

Diverse tests were realized to prove the controller’s performance, these are described as
follows:

1 There were applied movements in x axis (avoiding to make them in y axis), simulating
a “step signal” in x direction. The Fig. 9(a) shows the head’s position, the motor’s
signal and the camera’s position for this case. Fig. 9 (b) shows the head’s movements
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Figure 8: Tracking system model implemented in Simulink

Table 1: Obtained controller parameters

Axis Ge Gr Gu L
x 2.5 4 0.10 100
y 6 4 0.10 100

map in x axis.

2 There were applied movements in y axis (avoiding to make them in x axis), simulating
a “step signal” in y direction. The Fig. 10 (a) shows the head’s position, the motor’s
signal and the camera’s position for this case. Fig. 10 (b) shows the head’s movements
map in y axis.

3 There were applied violent movements in both axes to prove the system’s robustness.
The Fig. 11 (a)-(b) shows the head’s position, the motor’s signal and the camera’s
position for this case. Fig. 12 shows the head’s movements map.

5 Conclusions

The fuzzy condensed controller showed a better performance compared to the PID controller.
Although the PID controller behavior seems similar to the fuzzy condensed controller be-
havior for slow object movements, when the object to be tracked move faster, the PID
controller’s behavior showed a bigger settling-time, which means: the PID controller was
slower to track the object as shown in the Fig. 13 where can also be observe that after
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Figure 9: (a) Movements in x axis. (b) Movements map in x axis
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Figure 10: (a) Movements in y axis. (b) Movements map in y axis
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Figure 11: (a) Movements in x axis. (b) Movements map in y axis
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Figure 12: Movements map for both axis
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Figure 13: PID settling-time

an abrupt x axis change position the system presented extended oscillations, situation that
doesn’t happen with the condensed fuzzy controller as it was shown during the tests applied
for abrupt movements in both axis in Fig. 7 to Fig. 13.

The LVQ neural network system was tested to track a human head showing very good
results. The system performance proposed in this work compared with some other algorithms
[6,7] was good with the advantage that is computationally more efficient, being better for
applications where it is required, besides of the object localization, also to perform complex
calculations, for example the dynamics of a robot structure (that could supports the vision
system).

The robot head utilized in this work is part of a biped robot design project which is being
developed in the Freie Universität Berlin.
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