
Construction Sequences and Certifying
3-Connectedness

Technical Report B 09-01

Jens M. Schmidt∗
Institute of Computer Science

Freie Universität Berlin, Germany

Abstract
Given two 3-connected graphs G and H, a construction sequence con-

structs G from H (e. g. from the K4) with three basic operations, called
the Barnette-Grünbaum operations. These operations are known to be
able to construct all 3-connected graphs. We extend this result by identi-
fying every intermediate graph in the construction sequence with a sub-
division in G and showing under some minor assumptions that there is
still a construction sequence to G when we start from an arbitrary pre-
scribed H-subdivision. This leads to the first algorithm that computes a
construction sequence in time O(|V (G)|2). As an application, we develop
a certificate for the 3-connectedness of graphs that can be easily com-
puted and verified. Based on this, a certifying test on 3-connectedness is
designed.

keywords: construction sequence, 3-connected graph, nested subdivisions, inductive
characterization, 3-connectedness, certifying algorithm

1 Introduction
Barnette and Grünbaum [1] proved 1969 that every 3-connected graph G can be
constructed from the K4 by iteratively applying three basic operations. Titov
and Kelmans [9, 5] extended this result by allowing it to start with arbitrary
3-connected graphs H instead of K4, as long as a subdivision of H is contained
in G. This is a generalization of Barnette and Grünbaums theorem, since every
3-connected graph contains a subdivision of the K4.

Although both theorems are used frequently in graph theory (see e. g. [8]),
we are not aware of any computational results that find such a construction
sequence. Moreover, efficient algorithms cannot be derived from the existence
proofs, as both depend heavily on adding longest paths, which are NP-hard to
find. Nevertheless, we show that it is possible to find a construction sequence
∗This research was supported by the Deutsche Forschungsgemeinschaft within the research

training group “Methods for Discrete Structures” (GRK 1408). Email: jens.schmidt@inf.fu-
berlin.de).

1

mailto:jens.schmidt@inf.fu-berlin.de
mailto:jens.schmidt@inf.fu-berlin.de

of G in time O(|V (G)|2), if the subdivision of H is part of the input and inter-
mediate graphs in the construction can have parallel edges.

The construction sequence leads to a certificate for the 3-connectedness of G
that is easy to compute and can be verified in O(|E(G)|). Blum and Kannan [2]
introduced the concept of certifying algorithms that give a proof of correctness
along with their output. Achieving such algorithms is a major goal for problems
where the fastest solutions known are complicated and difficult to implement.
Based on our certificate, we develop a certifying and simple 3-connectedness
test for graphs with running time O(|V (G)|2). It remains open whether this
certificate can even be found in linear time.

2 Preliminaries
Let G = (V,E) be a finite graph with n = |V |, m = |E|, V (G) = V and
E(G) = E. Then G is connected if there is a path between every two nodes and
disconnected otherwise. Let k ≥ 1. Then a graph G is k-connected if n > k and
deleting every k − 1 nodes leaves a connected graph. A node (a pair of nodes)
that leaves a disconnected graph upon deletion is called a cut vertex (separation
pair). Note that k-connectedness here does not depend on parallel edges or
self-loops. If not stated otherwise, all graphs can have parallel edges but have
no self-loops, although all results can be adjusted to deal with them.

A subdivision of a graph G replaces each edge by a non-empty path. Con-
versely, we want a notation to get back to the graph without subdivided edges.
For a node v ∈ V (G) of degree two and not incident to a self-loop let smoothv(G)
be the graph obtained from G by deleting v followed by adding an edge between
its neighbors (we say v is smoothed). If v is not of degree two or incident
to a self-loop let smoothv(G) = G. Let smooth(G) be the graph obtained by
smoothing every node. Note that smoothing a graph can always be reversed by
subdividing smooth(G) again.

A path leading from node x to node y is denoted by x→ y. For a node x in
G let N(x) = {y | xy ∈ E(G)} denote its set of neighbors. For an edge e in G
let G \ e be the graph obtained from G by deleting the edge e. Let Kn be the
complete graph on n nodes.

Lemma 1. (J. Isbell [1]) Every 3-connected graph G contains a subdivision of
the K4.

The following are well-known corollaries of Menger’s theorem [6].

Lemma 2. (Fan Lemma) Let x be a node in a graph G that is k-connected with
k ≥ 1 and let A be a set of at least k nodes in G with x /∈ A. Then there are k
internally node-disjoint paths P1, . . . , Pk from x to distinct nodes a1, . . . , ak ∈ A
such that for each of these paths V (Pi) ∩A = ai.

Lemma 3. (Expansion Lemma) Let G be a k-connected graph. Then the graph
obtained by adding a new node x with at least k neighbors in G is still k-
connected.

We define the Barnette and Grünbaum operations (BG-operations) as follows
(see Figures 11(a)-1(c)).

(a) add an edge xy (possibly a parallel edge)

2

(b) subdivide an edge e by a node x and add the edge xy for a node y /∈ e

(c) subdivide two distinct, non-parallel edges by nodes x and y, respectively,
and add the edge xy

Let the added edge of an BG-operation be the edge xy.

(a) parallel
edges allowed

(b) a, b, c distinct (c) e 6= f , e and f not parallel

Figure 1: The operations of Barnette and Grünbaum.

Lemma 4. [1] Performing a BG-operation on a 3-connected graph preserves
3-connectedness.

Conversely, every 3-connected graph can be constructed using operations (a),
(b) and (c) [1]. We call such a construction from another 3-connected graph
using a fixed set of operations a construction sequence of G. If not stated
otherwise, the set of operations is {(a), (b), (c)}. Then all intermediate graphs
in the sequence are 3-connected by Lemma 4.

Let an operation be basic, if it does not create parallel edges and let a
construction sequence be basic, if it only uses basic operations. Of course we
cannot expect all operations to be basic when G is a multigraph. However, on
simple graphs Barnett and Grünbaum proved that basic operations suffice.

Theorem 5. [1] A simple graph G is 3-connected if and only if G can be con-
structed from the K4 using basic BG-operations.

We want an operation inverse to a BG-operation. Let removing an edge
e = xy, x 6= y be that operation, consisting of deleting e followed by smoothing
x and y.

Let K4 = G0, G1, . . . , Gz = G be the 3-connected graphs obtained in a
construction sequence Q. We can reverse Q by starting with G and removing
the edges in the inverse order of how they were added. Suppose we would delete
the edges instead of removing them and identify each emerging path with its
corresponding added edge of the original construction sequence (see Figure 2).
Then iteratively paths have to be deleted to get Gi−1 from Gi and we obtain
the sequence S(Q) of subdivisions S0, . . . , Sz in G with Sz = G and S0 being a
subdivision of the K4. We set this out as a proposition.

Proposition 6. Let G and G0 be graphs and let O be a construction sequence
of G that starts with G0 and uses BG-operations. Then G contains a subdivision
of G0. Furthermore, there is a unique subdivision S0(Q) in G that is obtained
by deleting the paths corresponding to added edges of BG-operations in inverse
order.

Therefore, each graph Gi in our construction sequence can be identified with
a unique subdivision Si(Q) contained in G. Conversely, Gi = smooth(Si) for

3

(a) K4 =
G0 = smooth(S0)

(b)
G1 = smooth(S1)

(c)
G2 = smooth(S2)

(d) G3 = G

(e) S0 (f) S1 (g) S2 (h) S3 = G

Figure 2: The graphs G0, . . . , Gz and S0, . . . , Sz of a construction sequence of
G. On graphs Si the dashed edges and nodes are in G but not in Si and nodes
depicted in black are real nodes. The path C0 = e → h → g is a chain for S0,
yielding S1. The chain links of S1 are the paths C0, a → b → c and the edges
in E(S1) with endnodes of degree 3.

all 0 ≤ i ≤ z, since smoothing a graph is exactly the inverse operation of
subdividing a graph without nodes of degree two. All nodes in Si with degree
at least three are called real nodes, because they correspond to nodes in Gi.

Note that, although Si is simple if G is simple, smooth(Si) can have parallel
edges in non-basic construction sequences. We define the chain links L(Si) of
each Si to be the unique paths in Si with only their endnodes being real. The
chain links L(Si) partition E(Si) because Si is connected, has minimum degree
two and is not a cycle. Let two chain links be parallel if they share the same
endnodes.

Definition 7. A chain for Si is a path P = x → y in G with the following
properties:

1. Si ∩ P = {x, y}

2. x and y are not both contained in a chain link of Si except as endnodes

3. x and y are not inner nodes of parallel chain links of Si

Every chain for Si corresponds to a BG-operation on Gi and possibly sep-
arates some chain links of Si by introducing new real nodes. Construction
sequences are not bound to start with the K4. Titov and Kelmans [9, 5] ex-
tended Theorem 5 to sequences starting from subdivisions in G of arbitrary
3-connected graphs.

Theorem 8. [9, 5] Let G0 be a 3-connected graph. Then a simple graph G is
3-connected and contains a subdivision of G0 if and only if G can be constructed
from G0 using basic BG-operations.

4

3 Prescribing Subdivisions
Both theorems 5 and 8 choose a very special subdivision of the K4 (resp. G0) on
which the construction sequence starts, in fact one in G having the maximum
number of edges. The construction sequence is then obtained by adding longest
chains. Unfortunately, computing these depends heavily on solving the longest
paths problem, which is known to be NP-hard even in 3-connected graphs [3].

That gives rise to the question whether theorems 5 and 8 can be strengthened
to start at a prescribed subdivision H ⊆ G of G0 instead of an arbitrary one.
Note that this is equivalent to the constraint S0(Q) = H in each construction
sequence Q. Such a result would provide an efficient computational access to
construction sequences, since it would allow us to search the neighborhood of
H for chains, yielding a new prescribed subdivision.

However, in general it is not possible to prescribe H, as the minimal coun-
terexample in Figure 3 shows: Consider the graph G consisting of a K4 = H
depicted in black and an additional node connected to three nodes of the K4.
Then every chain for H will create a parallel chain link, although G is simple.
Thus, no basic operation can be applied.

But what if we drop the condition that construction sequences have to be
basic? The following theorem shows that at this expense we can indeed start a
construction sequence from any prescribed subdivision.

Theorem 9. Let G be a 3-connected graph and H ⊂ G with H being a subdi-
vision of a 3-connected graph. Then there is a chain for H in G.

Proof. We find a chain for H 6= G by distinguishing two cases.

• H 6= smooth(H).
Then some chain link T ∈ L(H) contains an inner node x, which has
degree two in H. Let Q be the set of paths in G from x to a node in
V (H) \ V (T) avoiding the endnodes of T . By the 3-connectedness of G,
Q cannot be empty and every path in Q fulfills 7.2. Moreover, there is at
least one path P = x → y in Q with y being not contained in a parallel
chain link of T , because otherwise the endnodes of T would be a separation
pair. Let x′ be the last node in P that is in T or in a parallel chain link
of T and let y′ be the first node after x′ that is in V (H). Then x′ → y′ is
a chain for H, since it has properties 7.1 and 7.3.

• H = smooth(H).
Then H consists only of real nodes and since H 6= G, there is a node in
V (G) \ V (H) or an edge in E(G) \ E(H). At first, assume that there is
a node x ∈ V (G) \ V (H). Then, by the 2-connectedness of G and Fan
Lemma 2 we can choose a path P = y1 → x → y2 with no other nodes
in H than y1 and y2. For P the properties 7.1-7.3 hold, because no chain
link in L(H) can have inner nodes. Let now V (G) = V (H) and e an edge
in E(G) \ E(H). Then e must be a chain for H, since both endnodes are
real.

5

Figure 3: Every
possible BG-
operation adds
a parallel edge.

In Theorem 9, non-basic operations can only occur in case
H = smooth(H) when a path through a node of V (G)\V (H)
is chosen. Although we cannot avoid that, it is possible to
yield a construction that is basic by augmenting {(a), (b), (c)}
with the new operation (d), which is called the expand oper-
ation:

(d) connect a new node to three distinct nodes

Whenever we encounter a node in V (G) \ V (H) in Theo-
rem 9, we know by the Fan Lemma 2 and the 3-connectedness of G that there
are three internally node-disjoint paths to real nodes in H. Adding those paths
corresponds to an expand operation, which is basic, because each path ends on
the new node. This gives the following result (note that G is only assumed to
be simple because some operations have to be basic).

Theorem 10. Let G be a simple graph and let H be a graph with smooth(H)
being 3-connected. Then

G is 3-connected and H ⊆ G (1)
⇔ ∃ construction sequence Q of G with S0(Q) = H using BG-operations (2)
⇔ ∃ basic construction sequence Q′ of G with S0(Q′) = H using BG-

operations and (d) (3)

Proof. The suffiency parts hold with Lemmas 3, 4 and 6. Necessity follows
immediately from applying Theorem 9 iteratively with or without the additional
expand operation.

4 Computing Construction Sequences
Let G be a 3-connected (multi-)graph and let the prerequisites of Theorem 10
and 10.(1) hold with H 6= G. Then there is a non-empty construction sequence
Q of G starting with H and there exists one last BG-operation in Q adding an
edge e ∈ E(G) \ E(H). If we would know e we could undo that operation by
removing e and yield a smaller graph that is still 3-connected. Repeating this
procedure until only graph H is left would give us Q.

Unfortunately we do not know e, but a straight-forward approach is to try
each edge e ∈ E(G) \E(H) and check the graph G′ obtained by removing e on
3-connectedness and on having a BG-operation that gets back to G by adding e.
The following Lemma gives a necessary and sufficient characterization of these
edges.

Lemma 11. Let G′ be a 3-connected graph and G be a graph with an edge
e = xy not in G′. Then the following statements are equivalent.

• There is an BG-operation on G′ that adds e and builds G.

• Removing e in G yields G′ and either |V (G)| = 4 or in G holds

– |N(x)| ≥ 3,
– |N(y)| ≥ 3 and

6

– |N(x) ∪N(y)| ≥ 5.

Proof. If there is an BG-operation on G′ that adds e, it clearly can be undone
by removing e. G must be 3-connected with Lemma 4, thus |N(x)| ≥ 3 and
|N(y)| ≥ 3 in G. Only one of |V (G)| = 4 and |N(x) ∪ N(y)| ≥ 5 can be
true. If |N(x)| > 3 or |N(y)| > 3, |N(x) ∪ N(y)| ≥ 5 follows, since x and y
are neighbors and no self-loops exist. Thus, let |N(x)| = |N(y)| = 3. Having
N(x) \ {y} 6= N(y) \ {x} yields |N(x)∪N(y)| ≥ 5 as well, so let N(x) \ {y} and
N(y) \ {x} contain the same two nodes a and b. If |V (G)| = 4 does not hold, a
or b is adjacent to a node c that is not adjacent to x and y. But then deleting
a and b separates G into at least the connected component containing x and y
and the component containing c, contradicting the 3-connectedness of G. Note
that the case |V (G)| = 4 only occurs if e is a parallel edge.

Now let removing e yield G′ and assume at first that |V (G)| = 4. Since G′
is 3-connected and arises from G by removing e, G can only be the K4 with e
being a parallel edge. Then adding e equates to the BG-operation (a).

Let the neighborhood constraints in G be satisfied. Then both nodes x and
y have degree at least 3 in G. Assume that neither x nor y have exactly degree
3. Then the removing operation does not smooth x and y and this again gives
a BG-operation (a). If either x or y has degree 3, let w. l. o. g. x be that node.
Then x becomes a node of degree 2 during the removal and is smoothed to form
the edge f in G′. This edge cannot be a self-loop, since |N(x)| ≥ 3 in G. The
same argument shows that y cannot be an endnode of f . This ensures that e
can be added by the BG-operation (b).

Finally, let both nodes x and y have degree 3 in G and let f (resp. g) be the
edge inG′ that is formed by smoothing x (resp. y). We show that then e is added
by a BG-operation (c) that subdivides f and g. The constraints |N(x)| ≥ 3 and
|N(y)| ≥ 3 prevent f and g from being identical and from being self-loops.
Furthermore, f and g cannot be parallel, because |N(x) ∪N(y)| ≥ 5.

We phrased Lemma 11 quite general, but we know a bit more about G than
it assumes, namely that G is 3-connected itself. In that case the neighbor-
hood constraints follow directly from the 3-connectedness of G when V (G) 6= 4.
Therefore, it suffices to check the graph G′ on being 3-connected for every edge
e ∈ E(G) \ E(H). Testing a connected graph on 3-connectedness can be done
in time O(m) [4], so we need time O(m2) to find the right edge and O(m3) to
find the whole construction sequence.

However, we can slightly improve the total running time to O(n3) with a
O(m) preprocessing [7] that preserves G to be 3-connected while reducing the
number of edges to O(n). Computing chains instead of BG-operations allows
us to obtain better running times, but at first we need to know how exactly
construction sequences can be represented.

4.1 Representations
An obvious representation of a construction sequence Q would be to store the
graph G0 = smooth(H) and in addition every BG-operation, yielding the se-
quence G0, . . . , Gz = G. Unfortunately, the graphs Gi are not necessarily sub-
graphs of Gi+1, so we have to take care of relabeled edges when specifying each
operation.

7

Whenever an edge e is subdivided as part of an operation (b) or (c), we
specify it by its index in Gi followed by assigning new indices for the new
degree-two node and one of the two new separated edge parts in Gi+1. The
other edge part keeps the index of e.

Similarly, on operations (a) and (b), real endnodes of the added edge are
specified by their indices in Gi. We assign a new index for the added edge
in Gi+1, too. Finally, we have to impose the constraint that Gz is not just
isomorphic but identical to G, meaning that nodes and edges of Gz and G are
labeled by exactly the same indices, since otherwise we would have to solve the
graph isomorphism problem to check that Q really constructs G.

Figure 4: The case H 6=
smooth(H). Dashed edges are
in E(G)\E(H), arrows depict
the chain x′ → y′.

On the other hand we know with Theo-
rem 10.(2) that we can prescribe H = S0(Q) in
G while preserving the construction sequence.
That allows us to represent Q without index-
ing issues by storing just S0(Q) and the chains
C0, . . . , Cz−1. Hence, we can represent a con-
struction sequence Q of G in the following two
ways.

• Represent Q by G0 and a sequence of BG-
operations, along with specifying new and
old indices for each operation, such that
Gz and G are labeled the same.

• RepresentQ by S0 and chains C0, . . . , Cz−1.

Both representations refer to the same se-
quence of graphs G0, . . . , Gz and are of size
θ(m), assuming the uniform cost model. We
show that it does not matter which of the two
representations we compute.

Lemma 12. Both representations of a construction sequence Q can be trans-
formed into each other in O(m). Moreover, the representation computed is a
unique representation of Q.

Proof. Let G0 and a sequence of BG-operations along with their specified indices
on edges and nodes be given. If an operation O′ subdivides an edge e′, we define
β(e′, O′) to be the edge of the two new ones that gets a new index. Let e be
the added edge of an operation in Q. With the preliminary considerations e
corresponds to a chain C, which will therefore be subdivided |C| − 1 times in
the construction sequence. To compute the chain C we have to keep track of
the |C| − 1 operations that involve subdividing e and glue the parts together.

Whenever an operation O ∈ Q subdivides e we store a pointer from β(e,O)
to e. Moreover, on all edges f that point to e and are subdivided we store a
pointer from β(f,O′′) to e. In both cases, we put β(e,O) resp. β(f,O′′) in
a list stored on the edge e. Each β(e,O) can be found in constant time and
by augmenting the list of e with e itself we get all the edges in which C got
subdivided in the end, hence exactly the set of edges in the chain C. Since Gz
has the same labeling as G, the indices of e and all other edges in C are still
contained in G.

8

The set of edges is not necessarily in the order of appearance in C, but
this can be easily fixed in time O(|C|) by temporarily storing the incidence
information of this set on the endnodes and extracting the chain C from a
degree-one node. In order to compute S0, we analogously maintain pointers
for each edge of G0 to get the paths with endnodes having degree three in S0.
Those paths partition E(S0) and since C0, . . . , Cz−1 partition E(G)\E(S0), the
running time is O(m).

Conversely, let S0 and the sequence C0, . . . , Cz−1 of chains be given. We re-
move chains in reversed order from G by deleting their edge followed by smooth-
ing their endnodes (there is only one edge left this way, the one added in the
corresponding BG-operation). Therefore, we pass through the graph sequence
Gz, . . . , G0 and get G0. If both endnodes of the removed chain Ci are real be-
fore smoothing them, we can keep their index and construct the corresponding
BG-operation (a).

Otherwise let a be an endnode having degree two before smoothing it, inci-
dent to the edges e and f . We smooth a, assign the lowest index of e and f to
the new edge and construct the operation (b) or (c) with the involved indices in
constant time. It remains to show that always unique representations of Q are
computed. The representation with chains is by definition unique. The other
representation can vary in the indices, but picking the incident edge with lowest
index before smoothing a node creates a unique representation, since G is given
and every encountered edge is in E(G).

4.2 A quadratic time algorithm
Let G and S0 be given. We follow the lines of Theorem 9 and construct
C0, . . . , Cz−1 in O(n2), which then can be transformed to a BG-operation se-
quence in O(m). An index for every chain link is assigned and stored on each
of its inner nodes. Moreover, a pointer to its two endnodes is saved for every
chain link.

In case H 6= smooth(H) of Theorem 9 we pick an arbitrary node x of degree
two. Let T = a → b be the chain link that contains x and let W be the set of
nodes V (H)\V (T) minus all nodes in parallel chain links of T (see Figure 4). We
compute the path P = x→ y′ by temporarily deleting a and b and performing
a Depth First Search (DFS) on x that stops on the first node y′ ∈ W . We
can check whether a node lies in a parallel chain link of T in constant time by
comparing the endnodes of its containing chain link with a and b. Thus, the
subpath x′ → y′ with x′ being the last node in T or in a parallel chain link of T
is a chain and can be found efficiently. The chain links can be updated in O(n).

Similarly, in case H = smooth(H) we start a DFS on a node x ∈ V (H) that
has incident edges in E(G) \ E(H). This DFS-traversal only traverses edges in
E(G) \ E(H) and stops at the first node y ∈ V (H) \ {x}. The path x → y
is then the desired chain. Applying the preprocessing of [7] in advance gives a
running time of O(n) for each chain, thus O(n2) in total. We can extend this
algorithm to construct the basic construction sequence 10.(3) on simple graphs
G with the following Lemma.

Lemma 13. For simple graphs G, the construction sequences 10.(2) and 10.(3)
can be transformed into each other in O(m).

9

Proof. It is straightforward to split the three internally node-disjoint paths of
each expand operation into two chains, possibly inducing non-basic operations.

Conversely, let the construction sequence 10.(2) be given and represented
with BG-operations, otherwise we can compute this representation in O(m).
For each added edge of a BG-operation its position in the construction sequence
and, if exists, the BG-operation that subdivides it is stored. Performing a bucket
sort on either endnode of all added edges gives a list of added edges sorted in
lexicographic order, which can be used to group edges with the same endnodes.

For each set S of added edges having the same endnodes we apply the fol-
lowing procedure: If there is an edge in S that is not going to be subdivided
and that does not have the first position of all edges in this set, we move it to
the end of the construction sequence and remove it from S. The edge with the
first position in S is already part of a basic operation. All other edges e ∈ S
can be non-basic, but are at some point subdivided by the added edge f of a
BG-operation. We move e = ab to the position of f = cd without harming the
construction sequence. If f subdivides only the edge e with c and no other edge,
we can glue e and f together to an expand operation, which is basic due to the
new node c.

Otherwise, f subdivides another edge g with d (see Figure 5) and e and f
can be replaced with two BG-operations of type (b), namely by adding the edge
da followed by adding the edge cb. Again, these operations are basic, since they
involve subdividing edges and all steps can be carried out in O(m).

Theorem 14. The construction sequences 10.(2) and 10.(3) can be computed
in O(n2).

5 A Certifying 3-Connectedness Test

Figure 5: No ex-
pand operation can
be formed.

We use construction sequences in the chain representation
as a certificate for the 3-connectedness of graphs. This
leads to a new, certifying method for testing graphs on
being 3-connected. The total running time of this method
is O(n2), however this is dominated by the time needed for
finding the construction sequence and every improvement
made there will automatically result in a faster algorithm
for testing 3-connectedness. The test has the advantage
that the input graph does not have to be biconnected nor connected.

For an arbitrary (multi-)graph, we follow the steps:

• Apply preprocessing of Nagamochi & Ibaraki and get G in O(n+m)
(this is only used to improve the running time)

• Try to compute a K4-subdivision S0 in G and prescribe it in O(n)

• Try to compute a construction sequence of G from S0 in O(n2)

– Success: Return the construction sequence
– Failure: Return a separation pair

10

Figure 6: Finding
a K4-subdivision.
Dashed edges
can be (empty)
paths, arcs depict
backedges.

The preprocessing step preserves the graph to be 3-
connected or to be not 3-connected. We first describe how
to find a K4-subdivision by one DFS-traversal, which as
a byproduct can sort out graphs that are not connected
or have nodes with less than 3 neighbors. Let a (resp. b)
be the node in the DFS-tree T that is visited first (resp.
second). IfG is 3-connected, then a and b have exactly one
child, otherwise they form a separation pair. We choose
the two neighbors c and d of a that are visited last (see
Figure 6). Traversing the paths c → b and d → b in T
gives the least common ancestor i 6= b of c and d.

Let j be the child of i that leads to d. If G is 3-
connected, we can find a backedge e that starts on a node
z in the subtree rooted at j and ends on an inner node
z′ of a → i in time O(n). If e does not exist, a and i form a separation pair,
otherwise we have found a K4-subdivision with real nodes a, i, z and z′. The
paths connecting this real nodes are determined by T and the three visited
backedges.

Once we have found the K4-subdivision, we try to compute the construction
sequence and succeed if G is 3-connected. Otherwise no construction sequence
can exist with Lemma 4. In that case a DFS-traversal starting at node x fails
to find a new chain for some subdivision H ⊂ G. If H 6= smooth(H), the
endnodes of the chain link that contains x form a separation pair. Otherwise
H = smooth(H) and x must be a cut vertex. Thus, if G is not 3-connected, the
algorithm returns always a separation pair or cut vertex.

5.1 Verifying the Construction Sequence
It is essential for a certificate that it can be easily validated. We could do this
by transforming the chain representation to BG-operations using Lemma 12 and
checking them on being valid by comparing indices, but there is a more direct
way. First, it can be checked in linear time that all chains C0, . . . , Cz−1 are
paths in G and that these paths partition E(G) \E(S0). We try to remove the
chains Cz−1, . . . , C0 from G in that order. If the certificate is valid, this is well
defined as all removed chains are then edges. On the other hand we can detect
longer chains |Ci| ≥ 2 before their removal, in which case the certificate is not
valid, since inner nodes of Ci are not attached to chains Cj , j > i.

We verify that every removed Ci = ab corresponds to a BG-operation by
using the definition 7 of chains, and start with checking that a and b lie in our
current subgraph for condition 7.1.

The conditions 7.2 and 7.3 can now be checked in constant time: Consider
the situation immediately after the deletion of ab, but before smoothing a and
b. Then almost all chain links in our subgraph are single edges, except possibly
ones containing a and b as inner nodes.

Therefore, 7.2 is not met if and only if a is a neighbor of b and at least one of a
and b has degree two (see Figures 7 for possible configurations). Condition 7.3
is not met if and only if N(a) = N(b) and both a and b have degree two.
Both conditions can be easily checked in constant time. Note that encountering
proper chains Cz−1, . . . , Ci does not necessarily imply that the current subgraph
is 3-connected, since false chains Cj , j < i, can exist.

11

(a) Either
a or b has
degree 2.

(b) Both a
and b have
degree 2.

Figure 7: Cases
where 7.2 fails when
a ∈ N(b).

It remains to validate that the graph after removing
all chains is the K4. This can done in constant time
by checking it on being simple and having exactly 4
degree three nodes.

Theorem 15. A construction sequence can be checked
on validity in time linearly dependent on its length.

References
[1] D. Barnette and B. Grünbaum. On Steinitz’s theorem

concerning convex 3-polytopes and on some properties
of 3-connected graphs. Many Facets of Graph Theory,
Lecture Notes in Mathematics, 110:27–40, 1969.

[2] M. Blum and S. Kannan. Designing programs that
check their work. In STOC ’89, pages 86–97, New York,
1989.

[3] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The
planar hamiltonian circuit problem is NP-complete. Siam J. Comp., 5(4):704–714,
1976.

[4] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into
triconnected components. SIAM J. Comput., 2(3):135–
158, 1973.

[5] A. K. Kelmans. Graph expansion and reduction. Alge-
braic methods in graph theory, Szeged, Hungary, 1:317–
343, 1978.

[6] K. Menger. Zur allgemeinen Kurventheorie. Fund.
Math., 10:96–115, 1927.

[7] H. Nagamochi and T. Ibaraki. A linear-time algorithm
for finding a sparse k-connected spanning subgraph of a
k-connected graph. Algorithmica, 7(1-6):583–596, 1992.

[8] C. Thomassen. Reflections on graph theory. Journal of
Graph Theory, 10(3):309–324, 2006.

[9] V. K. Titov. A constructive description of some classes
of graphs. PhD thesis, Moscow, 1975.

12

	Introduction
	Preliminaries
	Prescribing Subdivisions
	Computing Construction Sequences
	Representations
	A quadratic time algorithm

	A Certifying 3-Connectedness Test
	Verifying the Construction Sequence

