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� Introduction

This paper considers 	�dimensional visibility representations for graphs
 Vertices are
represented by ��dimensional objects �oating in 	�d parallel to the xy�plane �these
objects can be swept in the z direction to form thick objects if desired

 There is
an edge in the graph if� and only if� the objects corresponding to its endpoints can
see each other along a thick line of sight parallel to the z�axis
 A thick line of sight
is a tube of arbitrarily small but positive radius whose ends are contained in the
objects
 Throughout this paper� we use the term �visibility representation� to refer
to this particular model


The corresponding notion of ��dimensional visibility has received wide attention
due to its applications to such areas as graph drawing� VLSI wire routing� algorithm
animation� CASE tools and circuit board layout
 See �DETT� for a survey on graph
drawing in general� for ��dimensional visibility representations� see for example �DH��
�TT�� �KKU�� �W�


Exploration of 	�dimensional visibility is still in the early stages
 From the point
of view of geometric graph theory� it is natural to consider visibility representations
of graphs in dimensions higher than �
 From the point of view of visualization of
graphs� it is basic to ask whether 	�dimensional representations give useful visual�
izations
 For a 	�dimensional representation to be useful for visualization� it should
be powerful enough to represent all graphs� or at least basic kinds of graphs
 This
motivates us to ask which classes of objects are universal� i
e
� can give visibility
representations for all graphs� or all graphs of a given kind


The visibility representation considered in this paper has also been studied in
�BEF�� �an abstract of some of its results was presented at GD���
� in �Rom��
and in �FHW�
 In these papers� the objects representing vertices are axis�aligned
rectangles� or disks� and the properties of graphs that can be represented by these
objects are studied
 By contrast� this paper begins with families of graphs �all
graphs� or all graphs of a speci�c kind
� and explores simple ways to represent all
graphs in the family


Section � considers which translates of a given� �xed �gure are universal for
cliques Kn and complete bipartite graphs Km�n
 Section 	 uses counting arguments
based on arrangements to show that no class of polygons having at most some �xed
number k of sides is strong enough to represent all graphs
 Section � shows that
every graph on n vertices has a visibility representation by polygons each of which
has at most �n sides
 These sections also contain additional results not listed here
in the introduction


� Graphs realizable by translates of a �gure

In this section we will investigate which complete and which complete bipartite
graphs can be realized as visibility graphs of translates of one �xed �gure
 Here a
�gure is de�ned as an open bounded set whose boundary is a Jordan curve
 We say
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that a graph G can be realized by a �gure F if and only if G is the visibility graph
of translates of F 
 It will turn out� for example� that there are many �gures that
can realize all complete graphs
 On the other hand� no �gure can realize more than
a �nite number of stars� i
e
� complete bipartite graphs of the form K��n


��� Complete graphs

The realization of complete graphs Kn by translates of special �gures like squares
and disks has been investigated by Fekete� Houle� and Whitesides �FHW� and by
Bose et al
 �BEF��
 In �FHW� it is shown that K	 can be realized by a square�
whereas no Kn� n � �� can be realized
 On the other hand� any Kn can be realized
by a disk
 We will consider more general �gures in the following theorem


First� we need the following de�nitions�
A curve C is called strictly convex if and only if for any two points p� q � C� the
interior of the line segment pq does not intersect C
 We say that a �gure F has a
local roundness if there is some open set U such that U � �F is a strictly convex
curve
 A �gure bounded by a strictly convex curve is a strictly convex �gure


Theorem ��� a� Any Kn can be realized by any nonconvex polygon�

b� For any convex polygon P there is an n � IN such that no Km�m � n� can be
realized by P �

c� For any Kn there is a convex polygon realizing it�

d� Any �gure F with a local roundness can realize any Kn�

Proof�

a
 We �rst observe that the �gure in Fig
 � can realize any Kn
 If P is a nonconvex
polygon� then it has at least one nonconvex vertex
 Arranging copies of P in a
neighborhood of this vertex as in Fig
 � realizes any Kn


b
 Let P�� � � � � Pk be a sequence of �projections of
 translates of a convex n�gon
ordered by increasing z�coordinate� let e�� � � � � ek be the corresponding translates
of one edge� and Hi the halfplane bounded by the straight line through ei which
contains Pi� i � �� � � � � k
 We de�ne a linear order on e�� � � � � ek �more precisely� on
the set of lines passing through them
 by� ei � ej �� Hi � Hj
 First� we will
show�
Claim� If P�� P�� P
 are translates of a convex polygon realizing K
� then not all
sequences e�� e�� e
 of translates of one edge can be monotone in the above order


For example� in Fig
 � e�� e�� e
 is monotone increasing� d�� d�� d
 is monotone
decreasing� but c�� c�� c
 is not monotone


To prove the claim� consider a point p �in the xy�plane
 where P� and P
 see
each other
 Then p lies outside �the projection of
 P� and therefore there exists an
edge c� of P� so that the straight line g through c� separates p from P�
 Let c�� c
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Figure �� Realization of an arbitrary Kn with a nonconvex polygon
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be the edges of P�� P
� respectively� corresponding to c�
 Assume a line parallel to
g is being moved towards the scene from the outside
 It will �rst meet P� and P

before it meets P� �or vice versa

 Consequently� the order in which edges c�� c�� c

are met is not monotone


For n� k � IN � let f�k
 �� �k��
��� and let N �� fn�	
 �i
e
� the n�fold iteration
of f�k
 evaluated at k �� 	� actually N �� ��

n

��

 Using an argument from �BEF��
we will show that KN cannot be realized by any convex n�gon
 Suppose otherwise
and let e�� � � � � en be the edges of the n�gon and P�� � � � � PN the translates of the
n�gon
 Since N � �fn���	
 � �
� � �� by the theorem of Erd�os�Szekeres �ES� the
sequence e��� � � � � e

�
N of translates of edge e� has a monotone subsequence of length

fn���	

 The corresponding subsequence of polygons must have a subsequence of
length fn���	
 where both the e�� and e��sequences are monotone
 Iterating this
process yields a subsequence of length f��	
 �� 	 where all edge�sequences are
monotone in contradiction to the claim above
 N can be reduced from doubly
exponential to exponential in n using properties of edge colorings in graphs �F�


c
 The statement follows from the fact that any Kn can be realized by disks �FHW�
and any disk can be approximated to arbitrary precision by convex polygons
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d
 Consider a nondegenerate segment of the boundary of F that is strictly convex

We can select a suitable subsegment � with the following property� if l is the straight
line through the endpoints of �� then no line perpendicular to l intersects � in more
than one point

Assume also without limitation of generality that l is horizontal� so � looks as in
Fig
 	


S
σ

l

Figure 	� Curve segment �

Let S be the closed convex �gure bounded by � and the line segment between
its endpoints
 We will show by an inductive construction�

Claim� For any Kn there exists a realization of S by n translates S�� � � � � Sn

with the following properties�

i
 Let S�

�� � � � � S
�

n be the projections of S�� � � � � Sn into the xy�plane� and let
���� � � � � �

�

n and l��� � � � � l
�

n denote the pieces of the boundaries of these projec�
tions that arise from � and l
 There exists a horizontal line g such that all the
l��� � � � � l

�

n lie strictly below g


ii
 Any pair Si� Sj� i 	� j� see each other along a line of sight that intersects the
xy�plane strictly above g


iii
 For � � i � n� the boundary pieces ��i and ��n have exactly one common
intersection point above g
 Let sin denote this point� and let Din��
 denote the
closed disk of positive radius � centered at sin
 Consider the set Din��
�S�

inS
�

n

For all su�ciently small � � �� all points in Si with x� y�projections in this set
see upward to z � 



iv
 For i � �� � � � � n the z�coordinate of Si is i


The claim is obviously true for n � �

Suppose now by inductive hypothesis that we positioned S�� � � � � Sn satisfying
the claim
 We choose some point p on the boundary of Sn to the right of all
s��n� � � � � sn���n as intersection point sn���n �see Fig
 �

 Now we position Sn�� in the
plane z � n � � as follows�
First we put it exactly over Sn
 Then we move it upwards �i
e
 in positive y�
direction
 slightly so that i
 is still correct
 Then it is moved to the left until it
intersects Sn at p �see Fig
 �

 The total motion can be made arbitrarily small� in
fact� small enough so that iii
 is satis�ed with n replaced by n � � and points sin
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replaced by points si�n�� �see Fig
 �

 Item ii
 is satis�ed by part iii
 of the inductive
hypothesis since Sn�� covers all points s��n � � � sn���n


�

��� Complete Bipartite Graphs

�BEF�� considers the realization of complete bipartite graphs by unit disks and
unit squares
 It is shown that K��
 and K
�
 can be realized but claimed that Kj�
�
j � � cannot
 Here we will consider translates of more general convex objects and
in particular� the realization of stars K��n
 In fact� we will show�

Theorem ��� a� K��� but no K��n� n � �� can be realized with parallelograms�

b� If B is a strictly convex body then K��� but no K��n� n � �� can be realized by
B�

c� For any �gure F there exists an n � IN such that for all k � IN with k � n
K��k is not realizable by F �

d� For any Kn�m there exists a quadrilateral realizing it�

For the proof of the theorem we need the following lemma
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Lemma ��� Let A be a strictly convex body and let A�� A� translates of A such
that A�A�� A� pairwise touch each other �i�e�� the boundaries intersect but not the
interiors�� Then for any su�ciently small 	 � � A� can be translated by a vector t
of length 	 such that A� � t still touches A but is disjoint from A��

Proof� Assume without loss of generality that the origin � � A and let Ai �
A� ti� i � �� �� so t�� t� are reference points within A�� A� corresponding to � within
A
 De�ne A� by the Minkowski sum A� �� A���A
 and de�ne A�

i �� A��ti� i � �� �

Then A�� A�

�� A
�

� are also strictly convex
 The fact that two of these �gures� say A�A��
touch is equivalent to the fact that the reference points �� t� lie on the boundaries
�A�

�� �A
�� respectively
 So altogether we have the situation illustrated in Fig
 �


Because of their strict convexity the curves �A� and �A�

� intersect properly in t�� so
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Figure �� Three translates touching each other

any su�ciently small 	�circle around t� has an intersection point p with �A� nA�

�
 A
translation of A� by t � p � t� then has the desired properties
 �

Proof of Theorem ����

a
 A realization of K��� by parallelograms is quite straightforward
 K��n n � �
is not possible since one parallelogram cannot intersect � or more disjoint parallel�
ograms of the same size


b
 Here we use some results from convexity theory obtained by Hadwiger �H� and
Gr�unbaum �G�
 In fact� they showed that at most � translates of a convex body B
in two dimensions can touch B without intersecting it or each other
 The number
� is only achieved by parallelograms� otherwise it is � �see Fig
 �

 Suppose one
of the � outer translates is removed
 Then we can apply Lemma �
� to one of the
neighboring ones and move it away from its neighbor that is touching it
 Repeating
this process� we can adjust the �ve outer translates so that each still touches the



�

B

Figure �� B touched by � of its translates


inner one but no two outer ones touch or intersect each other
 Clearly� it is then
possible to push each of them slightly inward so that all properly intersect the inner
one still without touching each other
 Placing the �ve outer translates at� say� z � ��
the inner one at z � �� and another one exactly above it at z � � realizes K���


To show the impossibility of K��	 we assume without loss of generality that the
object B is closed
 Suppose K��	� could be realized and let A be �the projection of

the copy of B realizing the central vertex
 Then at most one of the other vertices can
be realized by a translate of B having exactly the same projection
 Otherwise� since
the translate representing the central vertex would be covered from both sides by two
other translates� any additional translate would either fail to see the translate for the
central vertex or would see at least two translates
 So there are �at least
 six vertices
whose representations have projections A�� ���� A� di�erent from A� but intersecting
A
 For i � �� ���� �� let ti 	� � be the translation vector such that Ai � A�ti
 Further
let 
i � � be the unique positive number such that Ci �� A� 
iti just touches A in
one point


Claim� Ci � Cj � � for i 	� j


In fact� we will show that there is a straight line separating Ci from Cj 
 Let
Bi �� Ai n A for all i
 Then the interiors of B�� ���� B� do not intersect
 Even their
convex hulls do not intersect� as easily can be seen
 So for i 	� j there is a straight
line l separating Bi from Bj �see Fig
 �

 Furthermore l must intersect the interior
of A
 Since l does not intersect the curve � in Fig
 � it cannot intersect Ci
 Likewise
it cannot intersect Cj� so it separates Ci and Cj


By the claim we would have C�� ���� C� all touching A but not two touching each�
which is not possible by the results of Hadwiger and Gr�unbaum


c
 Consider a realization of K��n and its projection into the xy�plane
 Then no
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point of the plane can be covered by the projections of more than three of the
�gures
 Furthermore the projection of the �gure representing the center of the star
must be intersected by the projections of all the other �gures� so all projections must
lie within a circle whose diameter is at most three times the diameter of F 
 These
two properties imply that the number of �gures is limited by an area argument


d
 The construction is shown in Fig
 �


Figure �� Realization of K��� by quadrilaterals

�

� An upper bound on the number of graphs rep�

resentable by k�gons

In this section we will show that there is no �xed k � IN such that every graph has a
visibility representation by k�gons
 In fact� we will even see that there is a constant



��

� � � such that in order to represent all graphs with n vertices by polygons� some
of those polygons must have more than b �n

logn
c vertices


De�nition ��� A graph is said to be k�representable if and only if there is a
visibility representation with �not necessarily convex� simple polygons each having at
most k vertices�

The interesting fact that for every k there is a graph that is not k�representable
follows from the following theorem


Theorem ��� There is an � � � and there are graphs G�� G
� G�� ���� Gn� ��� such
that Gn has n vertices and is not b �n

logn
c�representable�

The theorem follows quite easily from the following lemma


Lemma ��� There is a 
 such that for all n� k� there can be at most ��nk log�nk�

many graphs with a �xed vertex set V � fv�� ���� vng that are k�representable�

Proof� We consider an arbitrary k�representable graph G � �V�E
 with V �
fv�� ���� vng
 Obviously� if G is k�representable then there exists a representation by
polygons P�� ���� Pn parallel to the xy�plane with at most k edges each
 Without loss
of generality we can assume that Pi has z�coordinate i for i � �� ���� n


Consider the projections of all the polygons into the xy�plane
 Extend each edge
s of each polygon to a line ls� obtaining a familyL of at most m �� nk not necessarily
distinct straight lines
 Each edge s and� thus� each line ls can be oriented by the
convention that the polygon lies� say� left of s
 Now� G can be uniquely identi�ed
by the information in the following items


�
 the arrangement of the lines in L


�
 Each polygon Pi� i � �� ���� n� is identi�ed by the description of a counterclock�
wise tour around its boundary
 In particular� the starting point s is given by
a line l � L containing it and by a number n� � m meaning that s is the nth�
intersection point when traversing l in the direction of its orientation
 Then
a sequence of at most k numbers n�� ���� nr � f�� ����mg is given� meaning that
the tour starts at s� goes straight on l for n� intersections� then turns into the
oriented line crossing there� goes straight for n� intersections� etc
 Clearly� this
describes a tour within the arrangement


Clearly� the information in the above items uniquely identi�es the pairwise in�
tersections of the projections of the polygons into the xy�plane
 This together with
the convention that Pi has z�coordinate equal to i makes it possible to determine
all visibilities� and hence G itself


It remains to count the number of di�erent possibilities for the data in the above
items�
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�
 As is well known �see �A�
� the number of di�erent arrangements of m oriented
straight lines is at most ���m logm for some constant 
� � �


�
 For each polygon there are m possibilities for the starting line l� and at most
m possibilities for each number n�� ���� nr� r � k
 So the number of possibilities
per polygon is bounded by mk��
 Altogether� the number of possibilities is at
most m�k���n� which is at most ���m logm for some constant 
� � �


Multiplying the upper bounds in � and � gives the desired total upper bound of
��m logm� where 
 � 
� � 
�
 �

Since there are exactly ��n
�

 graphs with vertex set V there are at least ��n

�

�n 

�pairwise nonisomorphic
 graphs with n vertices� which is more than ��n
�

for some
� � �
 Theorem 	
� follows from this lower bound and Lemma 	
�


On the other hand� every graph with n vertices is ��n � �
�representable� which
will be shown in the next section


� The Construction

This section gives a general construction which produces for any graph G � �V�E

a 	�dimensional visibility representation for G
 The construction can be carried out
in a straight�forward manner by an algorithm that runs in O�n�
 time� where n is
the number of vertices of G
 Each vertex is represented by a polygon of O�n
 sides
�the polygons may di�er in shape



If desired� the basic construction can be modi�ed easily and with the same time
complexity to produce convex polygonal �or polyhedral
 pieces
 Furthermore� these
pieces can be made to have all vertex angles of at least ���
 By using the technique
of �CDR�� it is also possible to implement the algorithm in O�n�
 time with respect
to a Turing machine model of computation


��� The Basic Pieces

Let W denote a regular� convex �n�gon centered at the origin O� and let
w�� w�� � � �w�n denote the locations of its vertices
 We use W to de�ne the basic
pieces representing the vertices of G
 For this purpose� let X denote a regular� con�
vex n�gon with vertices located at the odd�indexed vertices of W 
 Imagine adding
triangular �tabs� to X to obtain W as follows
 Call edge w�i��� w�i�� of X tab posi�
tion i� and for each i from � to n� add a triangle whose vertices are w�i��� w�i� w�i��

to X at tab position i
 W is X together with its tabs �see Fig
 ��


The pieces of our construction are obtained from X in a similar way� except that

the tabs may vary in size
 The construction may attach to tab position i of X a tab
Ti with vertices w�i��� ti� w�i��
 Vertex ti is called the tab vertex of Ti
 In general�
Ti lies inside the corresponding tab on W � with vertex ti lying on the radial line
through O and w�i




��
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Figure ��� Regular n�gon X for n � � tabs


De�nition 	�� Let p�i denote the point of intersection of the radial line through O
and w�i with the line through w�i�� and w�i��� The size si of tab Ti is de�ned by si
	 nd�ti� p�i
�d�w�i� p�i
�

A tab of full size n has its tab vertex ti positioned at w�i

We depth��rst search G� assigning to each vertex a number i indicating the order

in which the search discovers the vertex
 The ith vertex discovered is represented by
a polygon Pi consisting of a wedge�shaped portion of X with tabs of various sizes
adjoined
 See Fig
 ��


The bounding wedge of Pi is de�ned by two radial segments emanating from O�
one to w�i�� and the other to w��i�ni���� for some ni � � to be determined
 Between
these radial segments� X has ��ni tab positions
 Each piece Pi has a tab of full size
n at its lowest indexed tab position� i
e
� at position i
 Hence Pi has a tab vertex
ti�Pi
 � w�i
 For i � j � i � ni� the existence and location of the tab vertex tj�Pi

of tab Tj�Pi
 depends on the size sj�Pi
 assigned to tab Tj�Pi



The idea behind the construction is as follows
 Realize a depth��rst search tree
for G by polygonal pieces �oating parallel to the x� y�plane
 Arrange these pieces so
that the piece P �v
 representing a vertex v lies above the pieces representing vertices
in the subtree rooted at v� with the x� y�projection of P �v
 containing exactly the
projections of the pieces P �w
 for which w belongs to the subtree rooted at v
 Thus
each piece has the possibility of seeing its ancestors and descendants� but nothing
else


Unless G itself is a tree� depth��rst search discovers back edges� i
e
� edges of G
that do not appear as tree edges in the depth��rst search tree
 A familiar property of
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depth��rst search trees for graphs is that each back edge must connect an ancestor�
descendant pair in the tree
 The purpose of adding tabs of varying sizes is to control
which ancestors and descendants see each other


Suppose the depth��rst search tree has a back edge between i and ancestor j of
i
 Our construction creates a visibility between the tab Ti of full size n in position
i on Pi and a tab in position i on Pj
 See Fig
 ��


Of course there may be back edges in the tree joining i to k� where k lies on
the path from i to its ancestor j
 �Consider k � b� c� d in the �gures

 In this case�
our construction creates a visibility between the tab in position i on Pk and the full
sized tab in position i on Pi
 Note that the visibility between the tabs in position
i on Pk and Pj must be blocked if the graph G contains no edge between j and k

Hence� for example� the tabs in position i on Pb and Pj must be blocked from seeing
each other by intervening tabs


Blocking inappropriate visibilities between tabs is achieved by creating an in�
verted staircase of tabs above the tab in position i on Pi and the tab in position
i on Pj
 The tab in position i has full size n
 The tab in position i on the piece
immediately above Pi is assigned size �� as this piece sees Pi in any case
 The tab
on the next piece above Pi is also assigned size � unless there is a back edge from i
to the vertex corresponding to this piece� in this case� the tab size is increased to �

Tab size remains the same or increases with increasing integer z values
 In fact� tab
size increases precisely when Pi and the piece at the z value in question should be
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Figure ��� Back edges from i and their inverted staircase of tabs


mutually visible
 Thus the size of the tab in position i on Pj is equal to the number
of back edges of the form i� k� where k lies on the path from i to j �possibly k � j



Lemma 	�� Let G be a connected graph� The following assignment of parameters
to the piece representing an arbitrary vertex v of G gives a 
�dimensional visibility
representation for G�


 v is assigned its depth��rst search order i�


 the index ni of v is set equal to the number of descendants of v in the depth��rst
search tree�


 the tab Ti�Pi
 in position i on Pi is assigned size si�Pi
 	 n�


 for i � j � i � ni the size sj�Pi
 of the tab Tj�Pi
 on Pi at position j is set
equal to the number of nodes on the tree path from j� up to and including i�
that receive a back edge from j� and


 the z coordinate of Pi is set equal to 
 less than the z coordinate of its parent�

Proof�

A well�known property of depth��rst search ordering is that the descendants of
v are numbered with consecutive integers� beginning with i � �
 Thus Pi has� in
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addition to a tab of full size at position i� a tab �possibly of size �
 in position j for
� � j � i � ni


It is easy to check that the pieces have disjoint interiors and that Pi representing
a vertex v cannot see any Pk representing a vertex w unless w is either an ancestor or
a descendant of v
 �Note that if two pieces have the same parent� they are assigned
the same z�coordinate and may share an edge
 However� the pieces can be perturbed
slightly to make all the pieces disjoint

 Clearly� Pi sees its parent �if any
 and all
of its children


Let us check that if the depth��rst search tree has a back edge from v� where v
is numbered i� to some ancestor u of v� where u is numbered k� then Pi and Pk are
mutually visible
 Pk has a tab in position i
 This tab aligns with the tab of full size
in position i on Pi
 Furthermore� the tab on Pk has size greater than the intervening
tabs in position i� as the number of back edges from i on the path from i to k is
at least one greater than the number of back edges on the path from i to k� up to
but not including k
 Hence Pi and Pk have a line of visibility between their tabs at
position i
 Thus all back edges are represented


Now we check that no inappropriate visibilites are present
 Clearly pieces cor�
responding to vertices in disjoint subtrees do not even overlap in projection� so no
visibilities occur between pieces that are not ancestor�descendant pairs
 Now con�
sider a vertex u� numbered k� and a vertex v� numbered i� where k is an ancestor
of i but not the parent of i
 Suppose there is no edge �u� v
 � G but that pieces Pi

and Pk are mutually visible
 Clearly any visibility line must pass through some tab
Tj�Pi
 on Pi and some corresponding tab Tj�Pk
 on Pk


Suppose �rst that j � i
 Of course tab Ti�Pi
 has full size
 Because there is
no back edge from i to k� and because k is not the parent of i� tab Ti�Pk
 has the
same size �possibly �
 as the tab Ti of the piece immediately below Pk on the path
of pieces between Pi and Pk
 This piece blocks visibility between Ti�i
 and Ti�k



Now suppose that j � i
 Then the tab Tj of the piece immediately above Pi in
the path of pieces between Pi and Pk has size equal to or greater than the size of
Tj�Pi

 Hence the tabs in position j on Pi and Pk are not visible to one another


This completes the proof that no inappropriate visibilities occur� and hence the
proof of the lemma
 �

Now we can state the main result of this section


Theorem 	�� Every graph on n vertices is �n�representable� Furthermore� a rep�
resentation can be constructed in O�n�
 time�

Proof� If G is connected� the statement holds by Lemma �
�
 If G is not connected�
a representation can be obtained by representing each connected component and
then translating these representations so that their projections do not overlap


It is straightforward to design an algorithm that runs in O�n�
 time for carrying
out the construction of Lemma �
�
 This can be done by modifying the usual
depth��rst search algorithm to compute the description of Pi at the time the search
returns from i to the parent of i




��

To facilitate the computation of Pi� a list Bi is maintained that records the
number j of any vertex for which �j� i
 is a back edge to i
 When search of the
subtree rooted at i has been completed� the value of ni is set to the number of
the most recently discovered vertex
 The tab size of Ti�Pi
 is set to n
 Then the
remaining sizes for tabs on Pi are initialized to �
 The tab sizes of tabs on the
children of Pi are copied to the sizes of the tabs in the same positions on Pi
 Finally�
the list Bi is processed
 For each j � Bi� the tab size for the tab in position j
on Pi is increased by �
 The z�coordinate of Pi can be determined when i is �rst
labeled� as it is equal to � less than the z�coordinate of the parent of Pi
 Hence the
computation of the description of Pi can be completed when the search is about to
return from i to its parent
 Each tab on Pi is computed in constant time
 �

We can generalize our results as follows

Corollary 	�� The construction of Lemma ��� can be modi�ed to produce convex
pieces� fat pieces� polyhedral pieces� or pieces having any combination of these prop�
erties�

Proof� To produce convex pieces� use a W with su�ciently many vertices ���n

that each piece has a vertex angle at O of at most ���
 To produce fat pieces� move
the vertex at O su�ciently close to the chord through the �rst and last vertices of
Pi shared with W 
 To produce polyhedral pieces� take the cross product of Pi with
a short line segment parallel to the z axis
 �
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