Investigation of Scrapie Associated Prion Protein PrP27-30 and Strain Differentiation of Transmissible Spongiform Encephalopathy by Fourier-Transform Infrared Spectroscopy Techniques

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Sashko Spassov

aus Svishtov/ Bulgarien

Januar, 2006
1 Gutachter: Prof. Dr. Dieter Naumann
2 Gutachter: Prof. Dr. Wolfram Saenger

Disputation am 08.05.2006
Contents

Index of figures..iv
Index of tables ...v

1 Introduction..1
 1.1 Literature overview ..1
 1.1.1 Transmissible spongiform encephalopathies ...1
 1.1.2 History of the TSEs ..2
 1.1.3 Aetiology of the TSEs ..3
 1.1.4 The prion protein ..6
 1.1.4.1 Properties of PrPSc and PrPSc ..6
 1.1.4.2 Structure of the cellular prion protein PrPC ..7
 1.1.4.3 Conversion of PrPC to PrPSc ..8
 1.1.4.4 Extraction and purification of prion rods ..9
 1.1.4.5 Structure of the prion rods ..11
 1.1.5 Strains of the transmissible spongiform encephalopathies ...13
 1.1.5.1 Strain differentiation in TSE ..14
 1.1.5.2 Incubation periods and histopathology ..14
 1.1.5.3 Classification of sporadic CJD ..15
 1.1.5.4 Structural diversity of PrPSc from different TSEs strains16
 1.1.5.5 FT-IR spectroscopy for TSEs strain differentiation ...18
 1.2 Aims ..20
 1.3 Fourier-transform infrared spectroscopy ..21
 1.3.1 Infrared spectroscopy ...21
 1.3.2 FT-IR spectrometer ..24
 1.3.3 Spectra processing ..25
 1.3.4 Advantages of the FT-IR spectroscopy ..27
 1.3.5 FT-IR spectroscopy of proteins ..28
 1.3.5.1 Amide modes ..28
 1.3.5.2 Analysis of the secondary structure of proteins ...30
 1.3.5.3 IR Absorption of biological molecules present in the prion aggregates31
 1.3.5.4 Investigation of the structural stability of proteins by FT-IR32
 1.4 Cluster analysis ..33

2 Materials and methods ..35
 2.1 TSE agents ..35
 2.1.1 Hamster adapted TSEs ..35
 2.1.2 Sporadic CJD samples ..36
 2.2 Extraction and purification of PrP27-30 ...36
 2.3 Protein analysis ..38
 2.3.1 Protein quantification ..38
 2.3.2 Polyacrylamide gel electrophoresis ..39
 2.3.2.1 Silver staining ...39
 2.3.2.2 Immunostaining of PrP27-30 ..40
 2.4 FT-IR spectroscopy ..42
 2.4.1 Measurement of dried samples ...42
 2.4.2 Measurements of hydrated samples ..43
 2.4.3 Temperature gradient measurements ...44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4</td>
<td>Spectroscopic and biochemical properties of heated and consequently PK digested PrP27-30 samples</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Urea induced unfolding of PrP27-30 aggregates</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Spectral data processing</td>
</tr>
<tr>
<td>2.4.6.1</td>
<td>Spectra subtraction</td>
</tr>
<tr>
<td>2.4.6.2</td>
<td>Averaging</td>
</tr>
<tr>
<td>2.4.6.3</td>
<td>Second derivative</td>
</tr>
<tr>
<td>2.4.6.4</td>
<td>Normalization</td>
</tr>
</tbody>
</table>

3 Results

3.1 Purification and spectroscopic properties of PrP27-30 samples purified from Syrian hamsters

3.1.1 Silver staining

3.1.2 Immunostaining

3.1.3 FT-IR spectra

3.1.4 FT-IR characteristics of chemical compounds used in the PrP27-30 extraction and purification procedure

3.1.5 Effects of protein concentration on the PrP27-30 spectral characteristics

3.1.6 Reproducibility of the FT-IR measurements

3.2 Strain differences

3.2.1 FT-IR spectral characteristics of PrP27-30 aggregates from hamster adapted TSEs

3.2.2 Band assignment from the second derivative analysis of PrP27-30 from hamster adapted TSEs

3.2.3 PrP27-30 of dried samples

3.2.4 Hydrated PrP27-30 samples

3.2.4.1 PrP27-30 samples hydrated in H2O

3.2.4.2 PrP27-30 hydrated in D2O

3.3 Cluster analysis

3.4 Temperature gradient experiments

3.4.1 Temperature dependent structural changes of PrP27-30 from different TSEs

3.4.2 FT-IR characteristics of the PK resistant fraction of heated PrP27-30 samples

3.5 Kinetic measurements of 13C Urea induced unfolding of PrP27-30 from 263K

3.6 Discrimination of sCJD disease and its strains from blinded human brain samples

3.6.1 Extraction and purification of PrP27-30

3.6.1.1 Silver staining properties of PK resistant fractions purified from human samples

3.6.1.2 Immunostaining with 3F4 mAb

3.6.1.3 FT-IR characteristics of the protein samples

3.6.1.4 Secondary structure analysis from the second derivative FT-IR spectra

3.6.1.5 Secondary structure characteristics of samples with common disease, genetic and biochemical characteristics

3.6.1.6 Spectra reproducibility

3.6.2 Cluster analysis

4 Discussion

4.1 Secondary structure characteristics of PrP27-30 from different TSE strains

4.1.1 FT-IR characteristics of PrP27-30 from different laboratories

4.1.2 Strain-associated spectroscopic differences of PrP27-30 from hamster adapted TSEs

4.1.3 TSE strain differentiation capacity of the FT-IR spectroscopy technique

4.1.4 Discrimination of human prion disease and strains of sCJD
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.4.1 Biochemical PrP<sub>Sc</sub> typing</td>
<td>97</td>
</tr>
<tr>
<td>4.1.4.2 Spectroscopic PrP<sub>Sc</sub> typing</td>
<td>98</td>
</tr>
<tr>
<td>4.1.4.3 Differences between the experimental and clinical TSEs</td>
<td>101</td>
</tr>
<tr>
<td>4.2 The structure of different TSE-strains show a different temperature dependent behaviour</td>
<td>102</td>
</tr>
<tr>
<td>4.3 Urea induced unfolding of PrP27-30 aggregates</td>
<td>103</td>
</tr>
<tr>
<td>4.4 Protective function of the non protein constituents of prions</td>
<td>104</td>
</tr>
<tr>
<td>4.5 Molecular implications of the structural variations among the TSEs</td>
<td>105</td>
</tr>
<tr>
<td>4.6 Structural constraints from FT-IR spectroscopy for model building of PrP27-30</td>
<td>106</td>
</tr>
<tr>
<td>4.7 FT-IR characteristics of isolated PrP27-30 versus prions in infected tissue or recombinant SHaPrP<sup>90-232</sup></td>
<td>107</td>
</tr>
<tr>
<td>4.8 Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>5 Abstract</td>
<td>113</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>115</td>
</tr>
<tr>
<td>6 References</td>
<td>119</td>
</tr>
</tbody>
</table>

Publications and presentations .. 135

Acknowledgments .. 137

Curriculum Vitae .. 139

Appendix ... 141
Index of figures

Figure 1.1 Domains (A) and tertiary structure of the PrP^C (B) .. 7
Figure 1.2 Cross β-sheet organisation of an Aβ1-40 protofilament .. 12
Figure 1.3 Prion rod constructed of monomers with a left-handed β-helical fold 12
Figure 1.4 Morse oscillation potential ... 23
Figure 1.5 Components of an FT-IR spectrometer .. 24
Figure 1.6 Amide group of proteins ... 28
Figure 2.1 Schematic view of the needle protected with a plastic disposable tip 37
Figure 2.2 Microscopic views of a dried PrP27-30 film spot ... 42
Figure 2.3 IR cell constructed from two CaF2 windows ... 43
Figure 3.1 Characteristic silver stained SDS-PAGE gels of purified protein samples 49
Figure 3.2 Silver staining of SDS-PAGE gels of PrP27-30 samples purified from 263K, ME-7-H, 22A-H and BSE-H .. 50
Figure 3.3 Variations in the silver staining properties of PrP27-30 samples purified in independent preparation runs .. 50
Figure 3.4 Immunostaining with 3F4 mAb of PrP27-30 from 263K purified according to the original and the modified purification procedures ... 51
Figure 3.5 FT-IR spectra of PrP27-30 and the residual proteins, extracted and purified from healthy hamster brains .. 51
Figure 3.6 FT-IR absorption characteristics of the chemical compounds used in the PrP27-30 extraction and purification procedure ... 52
Figure 3.7 Chemical structure of the polycarbonate monomer .. 53
Figure 3.8 FT-IR spectroscopic characteristics of polycarbonate particles disintegrated from the centrifuging vials .. 53
Figure 3.9 FT-IR spectra of PrP27-30 purified from 263K according to the modified extraction and purification procedure .. 54
Figure 3.10 Effect of the variation in the PrP27-30 concentration on the FT-IR spectral pattern ... 54
Figure 3.11 Secondary structure characteristics of PrP27-30 samples derived before and after treatment with PK .. 55
Figure 3.12 Typical absorption spectra obtained from strain ME7-H PrP27-30 56
Figure 3.13 PrP27-30 second derivative spectra in the amide sensitive spectral ranges- amide I, amide II and amide A, obtained from different TSE strains ... 58
Figure 3.14 H/D exchange levels of the PrP27-30 from the four TSE strains obtained after 1 hour incubation in D2O .. 63
Figure 3.15 Dendrograms of a hierarchical cluster analysis show objectively the strain specific spectral diversity .. 65
Figure 3.16 Hierarchical cluster analysis of TSE strains on the base of a single secondary structure component .. 66
Figure 3.17 Temperature dependent changes between 20 and 90°C observed in the amide I, amide II and amide A spectral regions ... 67
Figure 3.18 Hierarchical cluster analysis of PrP27-30 samples obtained after 1 or 14 hours of incubation in D2O ... 67
Figure 3.19 Strain specific and secondary structure dependent transitions followed by the intensity changes of some pronounced amide I band components .. 69
Figure 3.20 Dendrogram of hierarchical clustering showing specific thermal stability of PrP27-30 samples from different TSEs .. 70
Figure 3.21 Temperature induced PK sensitivity of PrP27-30 from scrapie strain 263K 71
Figure 3.22 FT-IR spectra of PrP27-30 from strain 263K in D₂O after heat treatment and subsequent PK digestion compared to the control spectrum obtained from untreated PrP27-30 samples in D₂O and H₂O .. 72
Figure 3.23 Spectral comparison of heat- and PK treated and untreated PrP27-30 samples ... 73
Figure 3.24 Time course of the secondary structure changes of PrP27-30 in the presence of 6M urea ... 74
Figure 3.25 Time dependent secondary structure transitions in the PrP27-30 samples exposed to 6M urea ... 75
Figure 3.26 SDS-PAGE followed by silver staining of the protein samples extracted and purified from human brain material .. 77
Figure 3.27 FT-IR second derivative absorption spectra of samples before and after treatment with PK .. 77
Figure 3.28 SDS-PAGE followed by western blotting and immunostaining with 3F4, 6H4 and ICSM18 mAbs .. 79
Figure 3.29 Typical absorption spectrum obtained from D₂O suspended PK resistant fractions from human brain tissue ... 82
Figure 3.30 FT-IR second derivative spectra of samples purified from human brain tissue ... 83
Figure 3.31 Spectra reproducibility of protein samples purified from identical human brain donors in independent purification runs ... 87
Figure 3.32 Dendrogram showing sample specific spectral diversity in the amide I region ... 89
Figure 3.33 FT-IR second derivative spectra of the PrP27-30 mixture 90
Figure 3.34 Dendrograms showing controversial classification of the PrP27-30 mixture 91

Index of tables

Table 1.I Molecular classification of sCJD cases ... 16
Table 1.II Characteristic amide IR bands of proteins .. 29
Table 1.III Amide I(I′) frequencies for proteins secondary structures 30
Table 1.IV IR absorptions of cell derived chemical compounds co-purified with PrP27-30 aggregates ... 31
Table 3.I Assignment of amide I band components to the secondary structure of dried PrP27-30 samples purified from different TSEs .. 60
Table 3.II Assignment of amide I band components to the secondary structure of PrP27-30 samples hydrated in H₂O ... 61
Table 3.III Assignment of amide I band components to the secondary structure of PrP27-30 samples hydrated in D₂O ... 62
Table 3.IV Human samples information ... 80
Table 3.V Peak position of the most intense amide I absorption bands and second derivative characteristics of FT-IR spectra obtained from PK resistant protein fractions purified from human brain samples. Tentative assignment to protein secondary structures 84