Efficient Multi-Profile Filtering using
Finite Automata

Lukas C. Faulstich*
<http://www.inf .fu-berlin.de/~faulstic>

Technical Report B 01-03
April 17, 2001

Abstract

The task of an alerting system is to observe events, produce a stream
of event notifications, and deliver each notification to all clients whose
profiles match this notification. The details of the delivery are specified
by a notification policy that is part of a profile.

This report deals with the problem of matching an incoming document
against a set of profiles. Focusing on this aspect, we can model profiles
as unary predicates on the set of documents. If profiles are arbitrary
unary predicates on documents, each profile must be checked separately.
However, in many application domains such as digital libraries, much
simpler predicates are common.

In this paper we focus on substring matching. We extend the well-
known technique (cf. [1]) of constructing a deterministic finite state ma-
chine from a single search string and feeding the document as input to
it. We show that any finite number of simple substring profiles can be
checked simultaneously by a single deterministic finite state machine in
linear time. We give a construction for this automaton and show that it
has very modest storage requirements. We present methods for the incre-
mental maintenance of this automaton in case of insertion or deletion of
profiles.

Extensions of simple substring profiles to exact word matching, phrase
matching, and profiles against different parts (fields) of a document are
straight-forward. An extension to Boolean profiles based on post-processing
by an additional layer of finite state machines is discussed. However, the
advantage of linear running time is lost; the performance of this approach
is similar to the methods presented in [8].

*Institut fiir Informatik, Freie Universitit Berlin, Takustr. 9, D-14195 Berlin

1 Preliminaries

Let A be a finite alphabet and w = a4 ...a,, € A* be a word over A. A substring
a; . ..ay denotes the empty word A iff & < i. The set of prefizes of w is defined
by prefizes(w) = {a1...a; | 7 =0...m}. The set of suffizes of w is defined by
suffizes(w) = {a;...am | j =1...m + 1}. Both sets include both w and A. The
set of proper prefizes of a word w is denoted by pprefizes(w) = prefizes(w)—{w}.
The set psuffizes(w) is defined analogously.

These definitions can be extended to languages (sets of words): prefizes(L) =
U {prefizes(w) | w € L} and suffizes(L) = |J {suffizes(w) | w € L}. In the same
way we define the set of proper prefixes/suffixes of a language.

2 Construction

Let A be an alphabet. Let W = {wy,...,w,} C A* be a set of words over
A. We call the elements of W keywords. We denote the set of indices of W by
N ={1,...,n} and use the function indez : W — N to map each keyword w;
to its index indez(w;) = i. We denote by I = LE, |w;| the average length of a
keyword.

We construct a deterministic generalized sequential machine (GSM) [7] Mw
that transforms a word w € A* into a sequence M (w) € N* comprised of the
indices 4 of all words w; contained in w, in the order of their occurrence.

A GSM is a finite automaton that outputs a word over an output alphabet at
each transition. The output of the GSM for an input word is the concatenation
of all these words, if the last transition leads to an accepting state.

One possible approach would be to construct a nondeterministic finite au-
tomaton (NFA) that accepts the language A*W A* and then turn it into a
deterministic GSM. The construction of this NFA is shown in the appendix in
Section 7. This construction is very intuitive. The transformation into a deter-
ministic finite automaton (DFA) is a standard procedure, but turns out to be
rather lengthy. Moreover, turning the DFA into a GSM would require a proof
that the resulting GSM produces the correct output.

Hence we resort to a less intuitive but more direct approach: we construct
a deterministic GSM from scratch and show that it solves our problem. To
understand what the problems are we consider two examples.

Example 2.1

Let W = {wi, w2} C {a,b,c,d,e, f}* where w; = abc, wy = def. The GSM
printing the indices of those w; occurring in the input is shown in Fig. 1.

Note, that all states of this automaton are accepting states. We use the
following notation: an edge from a state ¢ to a state ¢’ is labeled (i) with
symbols a1, ... ,a, € A if there are productions (ga; — A¢’) for j =1,... ,m,
or (ii) with alo if there is a production (qa — oq") with o # A. The initial state
is indicated by an incoming arrow without source node.

We recognize two chains of states, one for matching abc (g0, g1, ¢2) and one
for matching def (¢0, ¢3,¢4). What complicates this automaton is the need to
treat the input symbols a and b consistently as starting symbols of w; and ws,
respectively, and to switch to the appropriate states g1 and ¢3. O

Figure 1: A GSM for W = {abc,def}.

Example 2.2

We now change W slightly by replacing def by bcd: Let W = {w;, w2} C
{a,b,c,d}" where w; = abc and ws = bcd. Note, that the prefix bc of ws
occurs within wy. This fact must be honored in ¢2 by switching upon input c
to the same state g4 that is reached by input be rather than to the initial state
q0. This is depicted in Fig. 2

Figure 2: A GSM for W = {abc, bcd}.

O

In general, we must keep book for every state to which words from W the
input read so far can be completed. This means to recognize which prefixes
of words from W have appeared as suffix of the input read so far. Hence we
introduce the set @ = pprefizes(W) of all proper prefixes of words from W. We

call the elements of Q W-prefixes. Note, that @ is finite since W is finite.

The function starts : A* — P(Q) defined by starts(w) = suffizes(w) N Q
computes the set of W-prefixes occurring as suffixes of a word w. We define by
mazxstart(w) = max(starts(w)) the longest suffix of w that is a W-prefix. Note,
that the set starts(w) is totally ordered by length since it is a finite subset of
the totally ordered set suffizes(w).

Lemma 2.1 Let w € A*. Then starts(w) C suffizes(mazstart(w)).

Proof: v = mazstart(w) is by definition the maximal element of starts(w).
Furthermore starts(w) = suffizes(w) N Q C suffizes(w). Let u € starts(w).
Since both u and v are suffixes of w, but |u| < |v|, u must be a suffix of v.
Hence starts(w) C suffizes(mazstart(w)). a

We denote by tailocc : A* — N* the indices of all words in W that occur as
suffixes of a word, ordered by size. It is defined by tailocc(w) = iy ... i where
{wiy, ..., wi, } = suffives(w) N W, Jwy, | < |wg,,, | for j=1,... k—1.

Construction 2.1

Now we construct the deterministic GSM My = (A4, N, Q, qo, P) with input
alphabet A, output alphabet N, state set @), initial state go = A, and production
set P = Pyrgns U Pyee where

Pirans = {({g)a = o{w)) | ¢ € Q,a € A,w = mawzstart(qa), o = tailocc(qa)}
Pyee = {(<q>_>>‘)|q€Q}

(We use the syntax (w) to indicate that w is treated as a single symbol from @
rather than a word over A.) |

Example 2.3

To illustrate the construction described above, we return to Example 2.2
and build the automaton M for W = {abc,bcd}. This set of keywords yields
the state set Q = {(A), (a), (ab), (b), (bc)} consisting of all proper prefixes of abc
and bcd, respectively.

We exemplify the construction of the productions for the state ¢ = (ab): For
input symbol a = a we consider ga = aba. Clearly no keyword from W appears
in ga, hence the output o = tailocc(ga) is the empty word. The longest state
being a suffix of ga is (a), hence there is a production (ab)a — A(a) in Ppraps.
Similarly, the input symbol a = b yields as output the empty word and the
successor state is (b). For input symbol a = d there is no output as well and
the successor state ¢ = mazstart(abd) is the state () since no keyword starts
with one of the suffixes abd, bd, or 4 of ga.

Input symbol a = c yields ga = abc = wy € W. Hence the output o =1 is
produced. Moreover, ga ends in the prefix be of wy which requires the successor
state ¢' = (bc).

The automaton My, constructed this way is shown in Fig. 3. It turns out
that this automaton is in fact isomorphic the automaton shown in shown in
Fig. 2.

O

Figure 3: The GSM My for W = {abc, bcd}.

3 Correctness and Completeness

A GSM produces an output o for an input w iff there is a derivation gow =* o.
The GSM Myy is deterministic as one can see easily from the definition of Pyqqns
since for every v € @ and a € A there is exactly one production ((v)a — o{w)) €
Pyrans- This also shows that My, can read arbitrary words from A*. Since all
states are accepting states (i.e., Vw € Q I((w) — A) € Py), the language
accepted by My, is A*.

Lemma 3.1 After reading an input sequence w € A*, the automaton My is
in state ¢ = mawxstart(w).

Proof: Lemma 3.1 obviously holds for w = X since the reached state is go = A
and mazstart(\) = A.

Let us assume that Lemma 3.1 holds for a certain w € A*. Let a € A. Then
by assumption My reaches the state ¢ = mazstart(w) by reading w. There
exists a production ((¢)a — o(¢')) € P where ¢' = mazstart(qa). Using this
production, My reaches the state ¢’ by reading wa.

It remains to show that mazstart(qa) = mazstart(wa). Since mazstart(wa)
is a suffix of wa, it must have the form va where v is a suffix of w (*). By
definition of mazstart the word va = mazstart(wa) is in Q. By the definition
of @ it follows that the prefix of a W-prefix is a W-prefix as well. Hence
from va € @ it follows that also v € @ (**). From (*) and (**) it follows
that v is in suffizes(w) N Q = starts(w). By Lemma 2.1 it follows that v €
suffizes(maxstart(w)) = suffizes(q). Hence va € suffizes(qa). As already noted,
va € Q. Together this implies va € suffizes(ga) N Q = starts(qa). Again we use
Lemma 2.1 to conclude that

mazstart(wa) = va € suffizes(mazstart(qa)) (1)

On the other hand we have ¢ = mazstart(w) € suffives(w) and hence qa €
suffizes(wa). Since mazstart(ga) € suffives(qa) we get by transitivity of the
suffix relation

mazstart(qa) € suffizes(mazstart(wa)) (2)

Equations 1 and 2 show that mazstart(ga) and mazstart(wa) are suffixes of
each other which implies mazstart(qa) = mazstart(wa).
By structural induction, this proves the lemma for all w € A*. O

Theorem 3.1 The output o of automaton My, for an input sequence w € A*
contains an index ¢ € N iff w; € W occurs in w.

Proof: Let w; occur in w, i.e., Ju,u’ € A* : w = vwu'. Let w; = va for
some v € A* and a € A. By Lemma 3.1 automaton My reaches the state
g = mazstart(uv) by reading input wv. v is a proper prefix of w; and hence
v €). Therefore ¢ must contain v as a suffix and accordingly ga must contain
w; as suffix. By reading the additional input symbol a the automaton uses a
transition that outputs tailocc(qa). Since w; is a suffix of qa, tailocc(gqa) contains
the index i. Hence the output of My for input w contains 3.

On the other hand, if the output of My contains i, then after reading
some prefix v of w, My must have made a transition ({¢g)a — o{(q')) where
o = tailocc(qa) contains 4. This means that w; must be a suffix of ga. By
Lemma 3.1 we know that ¢ = mazstart(v). In particular, ¢ is a suffix of v and
hence qa is a suffix of va. By transitivity of the suffix relation w; is therefore a
suffix of va and hence it occurs in the whole input w. a

Corollary 3.1 If two words from W occur in the input of automaton My,
then their indices occur in the output of My in the same order.

Proof: Let w; occur before w; in input w € A*. This means there exist
UL, V1, U2, 2 € A*,us # A such that w = wjw;v; and w;v; = wswjve. By
reading u; w; the automaton will reach state ¢; and output i after reading the last
symbol of w;, as shown in the proof of Theorem 3.1. Using the same argument
we conclude that by reading the additional input usw; the automaton will reach
a state g» and output a word containing j after reading the last symbol of w;.
Hence j occurs after ¢ in the output for w. a

4 Incremental Maintenance

Our aim is to support a large number of profiles submitted by independent users.
Hence it is important to update the automaton My, constructed in Section 2
incrementally when new profiles (i.e., elements of the set W) are entered or
existing profiles are deleted.

4.1 Auxiliary Indices

Several indices are needed to support the efficient implementation of updates.

4.1.1 Overlap Count

When deleting an element w from W only those of its prefixes can be deleted
from (that are not at the same time prefixes of some other word from W. To
avoid checking all elements of W we keep book on how many elements of W a
state ¢ € @ is a prefix of. This means we treat () as a multiset by recording the
multiplicity of each element being defined by the function overlap : A* — N
as follows:

overlap(q) = |[{w € W | q € pprefizes(w)}|

Each counter overlap(q) can be stored together with the corresponding state
(¢) of automaton My,. To look up overlap(w) for w = a; ...a; we simulate
automaton My, with input w, but only as long as the reached state equals the
input consumed so far. For this it is sufficient to check the length of the reached
state. To accelerate this test we can attach to each state its length.

If the whole input sequence w is consumed this way, we have reached state (g)
where ¢ = w and return the counter overlap(q) attached to state {q). Otherwise
w ¢ @ and hence we return overlap(w) = 0.

4.1.2 Tail Occurrences

The function tailoce lists all words tailocc(w) from W that occur as suffix of a
word w. To compute this function requires all elements of W to be checked.
This computation can be sped up by organizing the reverse w’ of each word
w € W in a trie Ty . For every i = 1,...,n the trie stores at w; the entry i.
The value of tailocc(w) can be computed by traversing Ty along wf as far as
possible and returning all entries encountered on the way in reverse order.

In Fig. 4 the resulting trie Ty is demonstrated for a small set W of keywords.
In this example, tailocc(metadata) could be computed by starting from the root
of the trie and traversing its topmost branch. Two entries will be encountered,
namely 1 (for data) and 4 (for metadata). Hence tailocc(metadata) = 41.

(e (3a)
—O—@

Figure 4: Trie Tw for W = {data, meta, agenda, metadata}.

The lookup in Tw can be executed in time linear in the length of w. On

the other hand the number of steps is limited by the depth of the trie which
equals the maximum keyword length [,,x. The average depth of a leaf of Ty
is somewhere between the average keyword length I and ax.

Insert or delete require linear time in the length of the word to be inserted or
deleted. In the case of a deletion this takes in average [steps. If we assume that
the distribution of new keywords equals the distribution of existing keywords in
W, this holds for insertions as well.

The trie contains a number of nodes that equals in the worst case the total
number of symbols stored in the trie. This number can be expressed as n - [
where n = |W|.

Since every node stores at most |A| references to subnodes the maximum
storage requirements of the trie are proportional to |A|-n -I. Both |A| and [
can be assumed to be fixed, and hence the storage requirements are linear in n.

4.1.3 Starts

To compute the function starts(w) all W-prefixes from ¢ must be checked. This
can be avoided by organizing the set Q% of all reversed W-prefixes in a trie T
that for every q € Q stores at ¢ the entry q. To compute starts(w) the trie is
traversed along w® and all entries ¢ € Q encountered on the way are collected
as result. The last entry encountered points to the maximum W-prefix ¢ that
is a suffix of w, i.e., ¢ = mazstart(w).

As for the trie Ty above, the computation of starts(w) or mazstart(w)
requires a number of steps linear in |w|, but no more than the depth of the trie
along the path indicated by w. This depth is limited by lyax-

Insert and delete of a keyword w with |w| = [require insertion or deletion
of at most [proper prefixes of w, each of which takes a number of steps linear
in its length. This results in a total of O(I?) steps.

The storage requirements of Tg are O(|A| - 1% - n) = O(n).

4.2 Insert

We discuss the insertion of a new keyword w,+; = a1 ...a; € A*. We denote
the updated set of keywords by W' = W W {w,,+1}. The trie Ty is updated by
inserting w1 which results in the modified trie Ty .

We abbreviate the prefixes of w,4+1 by ¢; :=a;1...a; for j =0,...1.

Let k =max{g; € Q|j=0,...,l —1} be the length of the maximum pre-
fix of w,41 that is already a W-prefix. This number k& can be computed by
simulating automaton My, with input w,; as long as the reached state equals
the consumed input (cf. Section 4.1.1). The number of symbols consumed this
way equals k.

We now construct the updated automaton M’. Its set Q' of states is the
old set of states plus the proper prefixes of wy,1. More formally, Q' = Q W
{g; | k < j <1}. The overlap count overlap(q') for all proper prefixes g;, j =
0,...,l—1isincremented. For all new states q;, j = k+1,... ,l—1, the reverse
¢; is inserted into trie Ty, yielding the modified trie T¢y .

We construct the production set of M' in three steps. First we provide
default productions for the new states that are consistent with the productions
of the existing automaton M. More formally, for ¢;, j = k+1,...,0 =1
and input symbol a we copy the corresponding production of ¢ = maxzstart(g;).

Provided that state g; is reached by consuming an input string ending in the
suffix ¢;, the resulting automaton reacts just like the old one.

In the second step we correct those productions (g)a — o{¢’) that now have
to lead to one of the new states. This is the case if a state ¢ ends in a prefix g;
of wyy1 for j = k,...,1 — 2, the input symbol a equals aj;1, and |¢'| < j + 1.
Then the new state is g1 instead of ¢’. To find those states that end in g;,
we look up the node corresponding to qu in Ty. All entries occurring in the
subtree rooted in this node correspond to states that have g; as suffix.

In the final step we add the index n + 1 to the output of those productions
(¢)a —> o{q') where qa contains wy4+1 as a suffix. This means that ¢ ends in
qi—1 and a = a;. T can be used to find all these states g efficiently.

4.3 Delete

Deleting a keyword w = a; ...a; from W can be achieved in two ways: either
by just removing all occurrences of indexw from output strings in productions
or by additionally removing all traces of w in My, which yields the automaton
M' corresponding to W' =W — {w}.

We abbreviate the prefixes of w by ¢; := a1 ...a;, for j =0,...L

Removing indexw from the output requires to look up all states ¢ ending
in ;1 in T and correcting the production (¢)a; — o{(q’) by deleting indezw
from o.

If the automaton My will be left this way, w must be marked as deleted
in Tyw. The re-insertion of w then requires just removing this mark and then
executing the third phase of the insertion procedure (cf. Section 4.2).

If every trace of w is to be deleted from My, we need two additional phases.
In phase two we decrement overlap(g;) for j =0,...1—1, yielding overlap’. Let
k=max{j=0,...,l—1] overlap’(g;) > 0}. Then overlap'(g;) = 0 for j > k.
We now delete all states gg+1, - .. ,q—1 from @ and T since they are not needed
for other keywords from W. This yields Q' and T¢y.

In the phase three we correct those productions leading to the deleted states
Qk+1, .- ,qi—1. To this purpose we look up in Ty for each ¢;, j = k+1,... ,1-1
the states ¢ ending in ¢;_; and replace the production (g)a; — o(¢') by
(¢)a; — o{mazstart(g;)). Since mazstart(q;) can be obtained by looking
up ¢; in Tg and finding the entry for the maximum suffix of ¢; (cf. Sec-
tion 4.1.3). Hence we can start with j = — 1 and combine the computation of
mazstart(gj—1) and of the states ending in ¢;_1.

5 Complexity

Automaton My executes | = |w| transitions for an input w. Each transition
is comprised of (i) reading an input symbol and (ii) possibly printing several
output symbols. The total length of the output is the number m of occurrences
of words from W in the input. Hence the runtime of My is O(l + m). Since
every input symbol must be consumed and every occurrence of a word from W
has to announced, there can be no algorithm with a better runtime complexity.

The storage requirements of My are |Pians| = |Q| - 4] < (22, |wi]) - |A] if
we store the automaton in form of a transition table. The size of () is limited
by X%, |w;| = n - [where [is the average length of a keyword.

If one would use n automata M; for checking each profile A*{w;}A* sepa-
rately, one would have runtime O(n-1+m) which means that the runtime would
grow linearly in the number of profiles. The storage requirements for each M;
would be |w;| - |A| which results in the same total storage requirements as for
My .

6 Complex Profiles

In the last section, we considered profiles to be defined by languages of the form
A*{w}A*. Now we introduce several extensions:

1. exact, prefix, suffix, and substring match; phrases
2. field specifications
3. Boolean operators

4. proximity operators

We introduce the set II of all possible profiles and the current set P C II of
profiles that are to be matched.

6.1 Atomic Profiles

Definition 6.1 (Atomic Profile)

Let * and _ be dedicated symbols not in A. The symbol _ represents white
space in the input.

An atomic profile has one of the forms

1. w
2. wx
3. xw
4. xwx
where w € AT(_AT)*. We call the set of all atomic profiles II 4 omge- O

We match arbitrary atomic profiles as follows:

The alphabet A is extended to A’ = AU{_}. We encode a phrase of k words
Wy, Ws, ..., W, € A* as a single word wy _wy ... w,, € A'*. Atomic profiles
of the forms w, wx, xw, *w* are stored in W as _w_, w,w_,w, respectively.
We say, a profile p subscribes to the element of W that is derived from p. The
GSM Myy is then constructed as described in Section 2.

We preprocess the input sequence by prepending and appending a _ symbol
and replacing every sequence of whitespace characters by a single _ symbol.
This preprocessing can be carried out by a very simple GSM M.

We postprocess the output of automaton My by marking for each output
symbol i € N all profiles p € P that subscribe to w;. After processing the whole
document, notification messages are sent for all marked profiles.

10

6.2 Qualified Profiles

Definition 6.2 (Qualified Profile)

Let F be a finite set of field names.

We assume a function field : F x A* — A* that selects from an input
document w the content field(f,w) of each field f. The required format of
the input documents and how the fields are identified and extracted is domain-
specific.

The set of qualified profiles 11,4 contains all profiles of the form f : p where
f € F and p € Uytomic-]

A set P C Ilgyq of qualified profiles is handled by building for each field
f € Ftheset Py ={p|p: f € P} and the set W; of keywords derived from P;.
Then for each nonempty W the corresponding automaton My, is constructed.

An incoming document is processed by extracting every field f and feeding
it to the automaton My, for f.

6.3 Boolean Profiles

Definition 6.3 (Boolean Profile)
A Boolean profile over a set II of so-called simple profiles has one of the
forms

1. p where p € II

2. p1 V p2 where p; and p, are Boolean profiles over IT

3. p1 A p2 where p; and py are Boolean profiles over IT

4. —p where p is a Boolean profile over II

We call 1T, the set of Boolean profiles over Il ,y,4. O

A Boolean profile over II matches a document if it is fulfilled when being
interpreted as a propositional formula where each simple profile p € II is fulfilled
if p matches the current document.

The naive approach to evaluate a set of Boolean profiles from II;,,; is to run
the automaton My, for each field f and marking for each output symbol the
corresponding profile as being fulfilled. After processing all fields, each Boolean
profile is evaluated and if it is fulfilled, a notification message is sent to its owner.

If the average selectivity of a profile is small, the naive approach means a
large overhead because all profiles have to be evaluated, but only few actually
match.

6.3.1 A GSM-based approach

Can the GSM-based technique presented in this work extended to Boolean pro-
files? A natural approach would be to build a GSM My for all simple profiles
occurring in the Boolean profiles and then feed the output to a number of au-
tomata working in parallel, each of which is responsible for matching a single
Boolean profile. This approach is based on the idea that a Boolean profile can be
interpreted as a regular expression over the output alphabet N of My,. Hence

11

it is straight-forward to construct a finite state automaton 1, for each Boolean
profile p.

However, the approach to execute all these automata M, for each output
symbol ¢ € N produced by My is not efficient since the symbol i is relevant
only to a (typically small) fraction of the profiles. An enhanced approach would
therefore manage for every output symbol i an inverted list containing all au-
tomata M, for which i is relevant. Still there is an overhead because all automata
for which i is relevant have to be executed. The vision would be to have a single
automaton that handles all Boolean profiles in parallel, just like My handles
all simple profiles in parallel. It is straight-forward to combine several finite
state machines to a single finite state machine that emulates all the component
machines in parallel’ Unfortunately the state space of the combined machine
is the Cartesian product of the component state spaces. This combinatorial
explosion means that the transition tables may exceed the available memory
and the current state cannot be stored in a single integer variable. It might
make sense to combine smaller groups of automata with similar sets of relevant
input symbols into larger automata as long as the size does not exceed a certain
limit. This modest approach would also facilitate incremental maintenance. To
identify groups of similar automata one could employ incremental clustering
algorithms.

6.3.2 Index structures for selective dissemination of information

Yan and Garcia-Molina describe in [8] several index methods for efficiently
matching a large set of conjunctive profiles. All index methods discussed there
have in common that for all words inverse lists are managed that indicate in
which profile a word occurs. Here we shortly outline the counting method: for
each profile, a counter exists that is initialized to zero. For each element in the
set of words occurring in the input document, the inverse list is looked up and
the counters of all profiles mentioned in this list are incremented. If a counter
reaches the length of its corresponding profile, a notification for this profile is
sent. Because of words occurring more than once in the input document the
counting method does not work on the sequence of words in a document but
requires that this sequence is converted into a set.

A weakness of the index methods described by Yan and Garcia-Molina is
the missing support for substring matches. Building the set of all substrings
occurring in an input document would be a highly inefficient approach. By em-
ploying the GSM-based technique presented in this work, the set of all keywords
occurring as substrings in the input document can be computed efficiently.

Another weakness of the approach of Yan and Garcia-Molina is its limita-
tion to conjunctive profiles. Although it is straight-forward to support profiles in
disjunctive form and hence arbitrary Boolean profiles, this may cause a combi-
natorial explosion of the number of profiles. This is for instance the case when a
thesaurus is used to expand terms in a profile into disjunctions of related terms.

IThis construction is for instance used to prove that the class of regular languages is closed
with respect to intersection.

12

6.3.3 Composite events in active databases

A problem very similar to the matching a large number of Boolean profiles
against a document occurs in active databases: there the task is to identify
composite events in a stream of atomic events that occur as the database content
changes. There exist various algebras for composite events, but most of them
support the Boolean operators. If one interprets a document as a stream of
atomic events describing occurrences of words or substrings, then a Boolean
profile can be seen as a composite event triggering a rule that sends a notification
to the profile owner.

There are various approaches to monitor active databases for composite
events, using techniques such as colored petrinets [3] or operator graphs [4, 2, 5].
For an overview of active database technology in general, please see [6].

7 Conclusion

In this report we have presented a method for simultaneously matching in linear
time a set of search strings against an input document. We have introduced
incremental algorithms for maintaining the finite state machine constructed from
the set of search strings. Several extensions of the profile language have been
discussed. A straight-forward extension to Boolean profiles turned out not to be
possible. We have sketched an approach for Boolean profiles based on multiple
finite state machines that achieves an efficiency similar to the methods presented
in [8].

References

[1] Alfred V. Aho, John E. Hopcraft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim.
Composite events for active databases: Semantics, contexts and detection.
In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, 20th Interna-
tional Conference on Very Large Data Bases, September 12-15, 1994, San-
tiago, Chile proceedings, pages 606617, Los Altos, CA 94022, USA, 1995.
Morgan Kaufmann Publishers.

[3] S. Gatziu and K. R. Dittrich. Detecting Composite Events in Active
Databases Using Petri Nets. In Proceedings of the 4th International Work-
shop on Research Issues in Data Engineering (RIDE)- Active Database Sys-
tems, pages 2—9, 1994.

[4] Eric N. Hanson. Rule condition testing and action execution in Ariel. In
Michael Stonebraker, editor, Proceedings of the 1992 ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, California, June
2-5, 1992, volume 21(2) of SIGMOD Record (ACM Special Interest Group
on Management of Data), pages 49-58, New York, NY 10036, USA, 1992.
ACM Press.

13

[5] U. Jaeger. SMILE - A framework for lossless situation detection. In Proceed-
ings of the 5th Annual Workshop on Information Technologies and Systems
WITS, pages 110-119, 1995.

[6] U. Jaeger and J. C. Freytag. An annotated bibliography on active databases.
SIGMOD Record (ACM Special Interest Group on Management of Data),
24(1):58-69, March 1995.

[7] Arto Salomaa. Computation and Automata. Cambridge University Press,
1985.

[8] Tak W. Yan and Héctor Garcia-Molina. Index structures for selective dis-
semination of information under the Boolean model. ACM Transactions on
Database Systems, 19(2):332-364, June 1994.

14

A. Constructing a NFA

It is quite easy to construct a nondeterministic finite automaton (NFA) that
accepts the language L = A*W A*. The graph of this automaton Mywa is shown
in Fig. 5. There is a common initial state gg, from which n chains depart each of
which matches a word w;. Each chain ends in an accepting state. Additionally,
the initial state has a self-edge for each element of the input alphabet A.

ai2 /\al?) aiyy
ail qi1 \qu T '

a €A

@ i1 a2 ais ail;
P @)
ac A a€ A
An1 an2 an3 Anl,,
(= A
a€ A

Figure 5: The nondeterministic finite automaton Mypa accepting A*W A*.

15

